Random Graphs III

Y. Kohayakawa (São Paulo)

Chorin, 4 August 2006

Outline of Lecture III

1. Subgraph containment with adversary:

- ▷ Existence of mono χ subgraphs in **coloured random graphs**; properties of the form $G(n,p) \rightarrow (H)_r^e$ (omit "e"; we are done with vertex colourings)
- ▷ Existence of monochromatic subgraphs in 'dense' subgraphs of random graphs; statements of the form $G(n,p) \rightarrow_{\eta} H$
- 2. Regularity method for sparse graphs: some of the (partial) successes
- 3. Literature: shall discuss some of the literature

One last thing about the vertex case

Exercise 1⁺⁺: determine $p_0 = p_0(n)$ such that if $p \gg p_0$, then a.e. G(n, p) is such that

$$G(n,p) \to (K^3, K^4)^{v}$$
⁽¹⁾

Have you obtained the threshold?

The results for K^3

Theorem 1. There is a large enough constant C such that if $p \ge C/\sqrt{n}$, then a.e. G(n,p) satisfies

$$G(n,p) \to (K^3)_2.$$
⁽²⁾

Theorem 2. For any $\eta > 0$, there C such that if $p \ge C/\sqrt{n}$ then a.e. G(n, p) satisfies

$$G(n,p) \rightarrow_{1/2+\eta} K^3.$$
(3)

The case p = 1

Theorem 3 (Goodman). The number of monochromatic triangles in any 2-colouring of K^n is $\ge {\binom{n}{3}} - \frac{1}{8}n(n-1)^2 = (\frac{1}{4} + o(1)){\binom{n}{3}}.$

Proof. Count the number N of 2-coloured cherries. Say have b(x) blue edges and r(x) red edges at vertex x. Have $N = \sum_{x} b(x)r(x) \le n(n - 1)^2/4$ (use b(x) + r(x) = n - 1). The number of non-monochromatic triangles is N/2.

Clearly, there are 2-colourings with $\leq \frac{1}{4} \binom{n}{3}$ monochromatic triangles!

The case p = 1

Theorem 4. Goodman implies Mantel: $ex(n, K^3) \le n^2/4$.

Proof. Suppose $K^3 \not\subset G^n$ and $e(G^n) > n^2/4$, so that $e(G^n) \ge n^2/4 + 3/4$. Count the number N of pairs (e, T) where $e \in E(G^n)$, $T \in \binom{V(G^n)}{3}$ and $e \subset T$. Say there are t_i triples containing i edges of G. Then, by Theorem 3,

$$\begin{split} (n^2/4+3/4)(n-2) &\leq e(G^n)(n-2) \\ &= N \leq t_1+2t_2 \leq 2(t_1+t_2) \leq n(n-1)^2/4, \\ \end{split}$$
 which is a contradiction for $n \geq 4.$

Theorems 1 and 2 from Goodman's counting

Theorem 5. For every $\varepsilon > 0$ there is C such that if $p \ge C/\sqrt{n}$, then a.e. G(n,p) is such that any 2-colouring of its edges contains at least $(1/4 - \varepsilon)p^3\binom{n}{3}$ monochromatic K³.

Proof. Exercise 2⁺.

Exercise 3⁺: derive Theorem 2 from Theorem 5.

Exercise 4⁺⁺: show that the threshold for Theorem 1 is indeed $1/\sqrt{n}$.

Exercise 5: show that the threshold for Theorem 2 is indeed $1/\sqrt{n}$.

The Rödl–Ruciński theorem

Definition 6 (2-density and $m_2(H)$). The 2-density $d_2(H)$ of a graph H with |V(H)| > 2 is

$$\frac{|E(H)| - 1}{|V(H)| - 2}.$$
 (4)

For $H=K^1$ and $2K^1$ let $d_2(H)=0$; set $d_2(K^2)=1/2.$ Let

$$m_2(H) = \max\{d_2(J): J \subset H, |V(J)| > 0\}.$$
 (5)

Exercise 6: consider, say, $H = K^h$. Show that if $p \ll n^{-1/m_2(H)}$, then a.s. $\#\{H \hookrightarrow G(n,p)\} \ll e(G(n,p))$. On the other hand, if $p \gg n^{-1/m_2(H)}$, then a.s. $\#\{H \hookrightarrow G(n,p)\} \gg e(G(n,p))$.

The Rödl–Ruciński theorem

Theorem 7. Let H be a graph containing at least a cycle and let $r \ge 2$ be an integer. Then there exist constants c and C such that

$$\lim_{n \to \infty} \mathbb{P}(G(n,p) \to (H)_r) = \begin{cases} 0 & \text{if } p \le cn^{-1/m_2(H)} \\ 1 & \text{if } p \ge Cn^{-1/m_2(H)}. \end{cases}$$
(6)

 \rhd In particular, $p_0=p_0(n)=n^{-1/m_2(H)}$ is a threshold for the property $G(n,p)\to (H)_r.$

The Rödl–Ruciński theorem

Exercise 7: show that there exists a graph G with the property that $G \to (K^h)_r$ but $K^{h+1} \not\subset G$.

Exercise 8: Given a graph G, let $\mathcal{H}_3(G)$ be the 3-uniform hypergraph whose hypervertices are the edges of G and the hyperedges are the edge sets of the triangles in G. Show that, for any integers ℓ and r, there is a graph G satisfying $G \to (K^3)_r$ such that $\mathcal{H}_3(G)$ has girth $\geq \ell$.

Turán type results for subgraphs of random graphs

Generalized Turán number:

$$ex(G,H) = max \{ |E(G')| : H \not\subset G' \subset G \}.$$
(7)

$$\triangleright ex(n, H) = ex(K^n, H)$$

- $\triangleright ex(Q^d, C^4) = ?$
- $\triangleright ex(G, K^h) = ?$ for (n, d, λ) -graphs G

Turán type results for subgraphs of random graphs

Exercise 9: show that, for any G and H, we have

$$e(G,H) \ge \left(1 - \frac{1}{\chi(H) - 1}\right)e(G).$$
(8)

 \triangleright Interested in knowing when this is sharp for G = G(n, p) (up to o(e(G)))

Turán type results for subgraphs of random graphs

Theorem 8. Let H be a graph with degeneracy d and suppose $np^d \gg 1$. Then

$$ex(G(n,p),H) = \left(1 - \frac{1}{\chi(H) - 1} + o(1)\right)p\binom{n}{2}.$$
 (9)

Conjecture 9. For any graph H, if $np^{m_2(H)} \to \infty$ then (9) holds almost surely.

Example: if $H = K^k$, have $m_2(H) = (k+1)/2$, but Theorem 8 supposes $np^{1/(k-1)} \gg 1$.

Cycles and small cliques

Theorem 10. Conjecture 9 holds for cycles.

Theorem 11. Conjecture **9** holds for K^4 , K^5 , and K^6 .

A sharp result for even cycles

Theorem 12. Let $k\geq 2$ be an integer and let $p=p(n)=\alpha n^{-1+1/(2k-1)}$ be such that

$$2 \le \alpha \le n^{1/(2k-1)^2}$$
. (10)

Then

$$ex(G(n,p),C^{2k}) \asymp \frac{(\log \alpha)^{1/(2k-1)}}{\alpha} e(G(n,p)).$$
(11)

Szemerédi's regularity lemma

- 1. Tool for identifying the quasirandom structure of deterministic graphs
- 2. Works very well for large, dense graphs: n-vertex graphs with $\geq cn^2$ edges, $n \rightarrow \infty$
- 3. Variant for sparse graphs exists (sparse = with $o(n^2)$ edges)
- 4. Much harder to use

ε-regularity

Definition 13 (ϵ -regular pair). G = (V, E) a graph; $U, W \subset V$ non-empty and disjoint. Say (U, W) is ϵ -regular (in G) if

 $\triangleright \text{ for all } U' \subset U, W' \subset W \text{ with } |U'| \ge \varepsilon |U| \text{ and } |W'| \ge \varepsilon |W|, \text{ we have}$ $\left| \frac{|E(U', W')|}{|U'||W'|} - \frac{|E(U, W)|}{|U||W|} \right| \le \varepsilon.$ (12)

ε-regularity

The pair (U, W) is ε -regular if

$$\frac{|\mathsf{E}(\mathsf{U}',\mathsf{W}')|}{|\mathsf{U}'||\mathsf{W}'|} - \frac{|\mathsf{E}(\mathsf{U},\mathsf{W})|}{|\mathsf{U}||\mathsf{W}|} \le \varepsilon.$$
(13)

Equivalently,

$$E(U', W')| = |U'||W'|\left(\frac{|E(U, W)|}{|U||W|} \pm \varepsilon\right)$$
 (14)

Clearly, not meaningful if

$$\frac{\mathsf{E}(\mathbf{U}, W)|}{|\mathbf{U}||W|} \to 0 \tag{15}$$

and ε is fixed. (We think of G = (V, E) with $n = |V| \rightarrow \infty$.)

ε-regularity; multiplicative error version

Replace

$$|E(U', W')| = |U'||W'| \left(\frac{|E(U, W)|}{|U||W|} \pm \varepsilon\right)$$
(16)

by

$$E(U', W')| = (1 \pm \varepsilon)|E(U, W)|\frac{|U'||W'|}{|U||W|}$$
(17)

Altered condition becomes

 $|| \varepsilon(u', W')| - |\varepsilon(u, W)| \frac{|u'||W'|}{|u||W|} \le \varepsilon ||u|| \text{ and } ||W'| \ge \varepsilon ||W|, \text{ we have}$ $||\varepsilon(u', W')| - |\varepsilon(u, W)| \frac{|u'||W'|}{|u||W|} \le \varepsilon ||\varepsilon(u, W)| \frac{|u'||W'|}{|u||W|}.$ (18)
OK even if $||\varepsilon(u, W)|/|u||W| \to 0.$

Szemerédi's regularity lemma, sparse version

Any graph with no 'dense patches' admits a Szemerédi partition with the new notion of ε -regularity.

Definition 14 ((η, b) -bounded). Say G = (V, E) is (η, b) -bounded if for all $U \subset V$ with $|U| \ge \eta |V|$, we have

$$\#\{\text{edges within } U\} \le b|E| {|U| \choose 2} {|V| \choose 2}^{-1}.$$
(19)

[> Something like one-sided (p, η) -uniformity]

Szemerédi's regularity lemma, sparse version

Theorem 15 (The regularity lemma). For any $\varepsilon > 0$, $t_0 \ge 1$, and b, there exist $\eta > 0$ and T_0 such that any (η, b) -bounded graph G admits a partition $V = V_1 \cup \cdots \cup V_t$ such that

- 1. $|V_1| \le \dots \le |V_t| \le |V_1| + 1$
- $\textit{2. } t_0 \leq t \leq T_0$
- 3. at least $(1 \epsilon) {t \choose 2}$ pairs (V_i, V_j) (i < j) are ϵ -regular.

Proof. Just follow Szemerédi's original proof.

A counting lemma (simplest version)

Setup. $G = (V_1, V_2, V_3; E)$ tripartite with

- 1. $|V_i| = m$ for all i
- 2. $(V_i, V_j) \epsilon$ -regular for all i < j
- 3. $|E(V_i, V_j)| = \rho m^2$ for all i < j

Notation: $G = G_3^{(\varepsilon)}(m, \rho)$ [G is an ε -regular triple with density ρ]

 \triangleright Wish to embed K³ with V(K³) = {x₁, x₂, x₃} such that x_i is placed in V_i.

A counting lemma (simplest version)

Just like random:

Lemma 16 (Counting Lemma; Embedding lemma). $\forall \rho > 0, \delta > 0 \exists \epsilon > 0, m_0$: *if* $m \ge m_0$, *then*

$$\left| \#\{\mathsf{K}^3 \hookrightarrow \mathsf{G}_3^{(\varepsilon)}(\mathfrak{m}, \rho)\} - \rho^3 \mathfrak{m}^3 \right| \le \delta \mathfrak{m}^3.$$
 (20)

Tough: counting Lemma is false if $\rho \to 0$

Fact 17. $\forall \epsilon > 0 \exists \rho > 0, m_0 \forall m \ge m_0 \exists G_3^{(\epsilon)}(m, \rho)$ with $K^3 \not\subset G_3^{(\epsilon)}(m, \rho).$

[cf. Lemma 16]

Change of focus: from counting $K^3\subset G_3^{(\epsilon)}(m,\rho)$ to existence of $K^3\subset G_3^{(\epsilon)}(m,\rho)$

(21)

Key observation

Counterexamples to the embedding lemma in the sparse setting do exist (Fact 17), but

are extremely rare.

An asymptotic enumeration lemma

Lemma 18.
$$\forall \beta > 0 \exists \epsilon > 0, C > 0, m_0: \text{ if } T = \rho m^2 \ge C m^{3/2}, \text{ then}$$

$$\#\{G_3^{(\epsilon)}(m, \rho) \not\supseteq K^3\} \le \beta^T {\binom{m^2}{T}}^3.$$
(22)

Observe that $\rho \geq C/\sqrt{m} \rightarrow 0$.

Consequence for random graphs

Easy expectation calculations imply

 \triangleright if $p \gg 1/\sqrt{n}$, then almost every G(n,p) is such that

$$\left(\mathsf{K}^{3}\text{-}\mathsf{free}\;\mathsf{G}_{3}^{(\varepsilon)}(\mathfrak{m},\rho)\right)\not\subset\mathsf{G}(\mathfrak{n},\mathfrak{p}),$$
 (23)

if (*) mp $\gg \log n$ and $\rho \geq \alpha p$ for some fixed α .

Conclusion. Recovered an 'embedding lemma' in the sparse setting, *for subgraphs of random graphs*.

Corollary 19 (EL for subgraphs of r.gs). If $p \gg 1/\sqrt{n}$ and (*) holds, then almost every G(n,p) is such that if $G_3^{(\epsilon)}(m,\rho) \subset G(n,p)$, then

$$\exists \iota \colon \mathsf{K}^3 \hookrightarrow \mathsf{G}_3^{(\epsilon)}(\mathfrak{m},\rho) \subset \mathsf{G}(\mathfrak{n},p). \tag{24}$$

The easy calculation

Recall $T = \rho m^2$, $\rho \ge \alpha p$, and $mp \gg \log n$. Therefore

$$\mathbb{E}(\#\{K^{3}\text{-}\text{free } G_{3}^{(\epsilon)}(m,\rho) \hookrightarrow G(n,p)\}) \leq n^{3m}o(1)^{T}\binom{m^{2}}{T}^{3}p^{3T}$$

$$\leq n^{3m} \left(o(1) \frac{em^2}{T} \right)^{3T} p^{3T} \leq n^{3m} \left(o(1) \frac{em^2p}{T} \right)^{3T}$$
$$= n^{3m} \left(o(1) \frac{em^2p}{\rho m^2} \right)^{3T} \leq n^{3m} \left(o(1) \frac{e}{\alpha} \right)^{3T}$$

$$\leq e^{3m\log n} \left(o(1)\frac{e}{\alpha}\right)^{3\alpha m\log n} = o(1).$$

Superexponential bounds

Suppose we wish to prove a statement about all subgraphs of G(n, p).

- Too many such subgraphs: about $2^{p\binom{n}{2}}$
- G(n,p) has no edges with probability $(1-p)^{\binom{n}{2}} \ge \exp\{-2pn^2\}$, if, say, $p \le 1/2$.
- Concentration inequalities won't do $(2^{p\binom{n}{2}} \text{ vs } e^{-2pn^2})$.
- Bounds of the form

$$o(1)^{\mathsf{T}}\binom{\binom{\mathsf{m}}{2}}{\mathsf{T}}$$
(25)

for the cardinality of a family of 'undesirable subgraphs' U(m, T) do the job. Use of such bounds goes back to Füredi (1994).

An embedding lemma for K^3 (sparse setting)

Scheme:

1. Proved an asymptotic enumeration lemma:

$$\#\{G_{3}^{(\epsilon)}(m,\rho) \not\supset K^{3}\} = o(1)^{\mathsf{T}} {\binom{m^{2}}{\mathsf{T}}}^{3}.$$
 (26)

 $[T=\rho m^2]$

- 2. Observed that this implies a.e. $G(n, \omega/\sqrt{n})$ contains no K³-free $G_3^{(\epsilon)}(m, \rho)$ [any $\omega = \omega(n) \to \infty$ as $n \to \infty$].
- 3. Obtained a K³-embedding lemma for subgraphs of G(n,p), even when $p = \omega/\sqrt{n}$: for all $G_3^{(\epsilon)}(m,\rho) \subset G(n,p)$, have $K^3 \subset G_3^{(\epsilon)}(m,\rho)$.

General graphs H?

Let us consider the case $H = K^k$.

Conjecture 20. $\forall k\geq 4,\ \beta>0\ \exists \epsilon>0,\ C>0,\ m_0:\ \textit{if}\ T=\rho m^2\geq Cm^{2-2/(k+1)},$ then

$$\#\{G_{k}^{(\varepsilon)}(\mathfrak{m},\rho) \not\supset K^{k}\} \le \beta^{\mathsf{T}} {\binom{\mathfrak{m}^{2}}{\mathsf{T}}}^{\binom{k}{2}}.$$
(27)

 \triangleright Known for k = 3, k = 4, and k = 5

 \triangleright For general H, the conjecture involves $m_2(H)$

General graphs H?

Suppose |V(H)| > 2. Then let

$$d_2(H) = \frac{|E(H)| - 1}{|V(H)| - 2}.$$
 (28)

For $H = K^1$ and $2K^1$ let $d_2(H) = 0$; set $d_2(K^2) = 1/2$. Finally, let $m_2(H) = max\{d_2(J) \colon J \subset H\}.$

Conjecture 21. $\forall H,\,\beta>0\,\exists\epsilon>0,\,C>0,\,m_0\colon\,\textit{if}\,T=\rho m^2\geq Cm^{2-1/m_2(H)},$ then

$$\#\{G_{H}^{(\varepsilon)}(\mathfrak{m},\rho) \not\supset H\} \le \beta^{\mathsf{T}} {\mathfrak{m}^{2} \choose \mathsf{T}}^{e(\mathsf{H})}.$$
(30)

⊳ Known for cycles

31

(29)

The bipartite case

Conjecture 22. Suppose H is a bipartite graph. For any $\beta > 0$, there is C such that for any M = M(n) such that $M \ge Cn^{2-1/m_2(H)}$, we have

$$\#\{G(n, M) \not\supset H\} \le \beta^{M} \binom{\binom{n}{2}}{M}$$
(31)

for all large enough n.

In short: #{G(n, M) $\not\supset$ H} = o(1)^M $\binom{\binom{n}{2}}{M}$

• Known for even cycles [Exercise 10⁺⁺: still ⁺⁺, even after regularity. What is simpler to show is that $ex(G(n,p), C^{2k}) = o(p\binom{n}{2})$ if $p \gg n^{-1+1/(2k-1)}$.]

Consequences of the conjecture

- 1. The Rödl–Ruciński theorem on threshold for Ramsey properties of random graphs (1-statement) and the Turán counterpart, with the best possible threshold
- 2. Łuczak (2000): structural and enumerative consequences for H-free graphs on n vertices and M edges

Consequences of the conjecture

Under the hypothesis that Conjecture **21** holds for a graph H:

Theorem 23. Conjecture 22 holds: if H is bipartite, then for every $\beta > 0$ there exists $C = C(\beta, H)$ and n_0 such that for $n \ge n_0$ and $M \ge Cn^{2-1/m_2(H)}$ we have

$$\#\{G(n,M) \not\supset H\} \le \beta^M \binom{\binom{n}{2}}{M}.$$
(32)

Consequences of the conjecture

Under the hypothesis that Conjecture **21** holds for a graph H:

Theorem 24. Suppose $\chi(H) = h \ge 3$. Then for every $\delta > 0$ there exists $C = C(\delta, H)$ such that, almost surely, a graph chosen uniformly at random from the family of all H-free labelled graphs on n vertices and $M \ge Cn^{2-1/m_2(H)}$ edges can be made (h-1)-partite by removing $\le \delta M$ edges.

Consequences of the conjecture

Under the hypothesis that Conjecture **21** holds for a graph H:

Theorem 25. Suppose $\chi(H) = h \ge 3$. Then for every $\varepsilon > 0$ there exist $C = C(\varepsilon, H)$ and $n_0 = n_0(\varepsilon, H)$ such that, for $n \ge n_0$ and $Cn^{2-1/d_2(H)} \le M \le n^2/C$, we have

$$\left(\frac{h-2}{h-1}-\varepsilon\right)^{M} \leq \mathbb{P}\left(\mathsf{G}(\mathsf{n},\mathsf{M}) \not\supseteq \mathsf{H}\right) \leq \left(\frac{h-2}{h-1}+\varepsilon\right)^{M}. \tag{33}$$

The hereditary nature of regularity

Setup. B = (U, W; E) an ε -regular bipartite graph with |U| = |W| = m and $|E| = \rho m^2$, $\rho > 0$ constant, and an integer d. Sample N \subset U and N' \subset W with |N| = |N'| = d uniformly at random.

Theorem 26. For any $\beta > 0$, $\rho > 0$, and $\epsilon' > 0$, if $\epsilon \leq \epsilon_0(\beta, \rho, \epsilon')$, $d \geq d_0(\beta, \rho, \epsilon')$, and $m \geq m_0(\beta, \rho, \epsilon')$, then

$$\mathbb{P}\big((\mathsf{N},\mathsf{N}') \textit{ bad}\big) \leq \beta^d, \tag{34}$$

where (N, N') is bad if $||E(N, N')|d^{-2} - \rho| > \epsilon'$ or else (N, N') is not ϵ' -regular.

The hereditary nature of regularity

Exercise 11⁺⁺: for any k and $\delta > 0$, there is C such that the following holds. If $\chi(G - F) \ge k$ for any $F \subset E(G)$ with $|F| \le \delta n^2$, then there is $H \subset G$ with $\chi(H) \ge k$ and $|V(H)| \le C$. Can you guarantee many such 'witnesses' H?

Local characterization for regularity

Setup. B = (U, W; E), a bipartite graph with |U| = |W| = m. Consider the properties

(PC) for some constant p, have $m^{-1} \sum_{u \in U} |\deg(u) - pm| = o(m)$ and $\frac{1}{m^2} \sum_{u,u' \in U} |\deg(u, u') - p^2m| = o(m).$ (35)

(R) (U, W) is o(1)-regular (classical sense).

Theorem 27. (PC) and (R) are equivalent.

A proof of Theorem 26

Let a graph F = (U, E) with |U| = m and $|E| \le \eta {m \choose 2}$ be given. Suppose we select a d-set N uniformly at random from U. We are then interested in giving an upper bound for e(F[N]), the number of edges that the set N will induce in F.

Lemma 28. For every α and $\beta > 0$, there exist $\eta_0 = \eta_0(\alpha, \beta) > 0$ such that, whenever $0 < \eta \le \eta_0$, we have

$$\mathbb{P}\left(e(\mathsf{F}[\mathsf{N}]) \ge \alpha \binom{d}{2}\right) \le \beta^{d}.$$
(36)

Proof. Exercise 12⁺.

Exercise 13^{++} : use Lemma 28 and Theorem 27 to prove Theorem 26.

The hereditary nature of sparse regularity

Definition 29 ((ϵ , p)-lower-regularity). Suppose $0 < \epsilon < 1$ and 0 .A bipartite graph <math>B = (U, W; E) is (ϵ, p) -lower-regular if for all $U' \subset U$ and $W \subset W$ with $|U'| \ge \epsilon |U|$ and $|W'| \ge \epsilon |W|$, we have

$$\frac{e(\mathbf{U'}, \mathbf{W'})}{|\mathbf{U'}||\mathbf{W}|} \ge (1 - \varepsilon)\mathbf{p}.$$
(37)

The hereditary nature of sparse regularity

Setup. B = (U, W; E) an (ε, p) -lower-regular bipartite graph with |U| = |W| = m and $|E| = pm^2$ and integer d. Sample N \subset U and N' \subset W with |N| = |N'| = d uniformly at random.

Theorem 30. For all $0 < \beta, \varepsilon' < 1$, there exist $\varepsilon_0 = \varepsilon_0(\beta, \varepsilon') > 0$ and $C = C(\varepsilon')$ such that, for any $0 < \varepsilon \leq \varepsilon_0$ and 0 , the following holds. Let <math>G = (U, W; E) be an (ε, p) -lower-regular bipartite graph and suppose $d \geq Cp^{-1}$. Then

$$\mathbb{P}\big((\mathsf{N},\mathsf{N}') \textit{ bad}\big) \leq \beta^d, \tag{38}$$

where (N, N') is bad if (N, N') is not (ε', p) -lower-regular.

The hereditary nature of sparse regularity

Setup. B = (U, W; E) an (ε, p) -lower-regular bipartite graph with |U| = |W| = m, $|E| = pm^2$, and $p \ge \alpha q$. Also, suppose we have two other bipartite graphs $A = (U', U; E_A)$ and $C = (W, W'; E_C)$, also (ε, p) -lower-regular.

Corollary 31 (Quite imprecise...). Suppose $A \cup B \cup C \subset G(n,q)$ and $u' \in U'$ and $w' \in W'$ are 'typical' vertices. If $pm \gg 1/p$ then $B[\Gamma_A(u'), \Gamma_C(w')]$ is $(f(\varepsilon), p)$ -lower-regular $(f(\varepsilon) \rightarrow 0 \text{ as } \varepsilon \rightarrow 0)$.

▷ Corollary above may be used in inductive embedding schemes.

Local characterization for sparse regularity

Very imprecisely: a similar statement to Theorem 27 may be proved for subgraphs of random graphs.

Bibliography

- Béla Bollobás, *Random graphs*, second ed., Cambridge Studies in Advanced Mathematics, vol. 73, Cambridge University Press, Cambridge, 2001. MR 2002j:05132
- Svante Janson, Tomasz Łuczak, and Andrzej Ruciński, *Random graphs*, Wiley-Interscience, New York, 2000. MR 2001k:05180

Bibliography

- Stefanie Gerke and Angelika Steger, *The sparse regularity lemma and its applications*, Surveys in combinatorics 2005 (University of Durham, 2005) (Bridget S. Webb, ed.), London Math. Soc. Lecture Note Ser., vol. 327, Cambridge Univ. Press, Cambridge, 2005, pp. 227–258.
- Stefanie Gerke, Yoshiharu Kohayakawa, Vojtěch Rödl, and Angelika Steger, *Small subsets inherit sparse ε-regularity*, J. Combin. Theory Ser. B, Available online 17 April 2006, 23pp.

46

Bibliography

- 1. Yoshiharu Kohayakawa, Bernd Kreuter, and Angelika Steger, *An extremal problem for random graphs and the number of graphs with large even-girth*, Combinatorica **18** (1998), no. 1, 101–120. MR 2000b:05118
- Yoshiharu Kohayakawa and Vojtěch Rödl, *Regular pairs in sparse random graphs. I*, Random Structures Algorithms 22 (2003), no. 4, 359– 434. MR 2004b:05187
- Yoshiharu Kohayakawa, Vojtěch Rödl, and Mathias Schacht, *The Turán theorem for random graphs*, Combin. Probab. Comput. **13** (2004), no. 1, 61–91. MR 2 034 303

Yoshi and Yoshi, admiring your patience for being still in the

room

