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Outline of Lecture III

1. Subgraph containment with adversary:

B Existence of monoχ subgraphs in coloured random graphs; prop-
erties of the form G(n, p) → (H)e

r (omit “e”; we are done with ver-
tex colourings)

B Existence of monochromatic subgraphs in ‘dense’ subgraphs of
random graphs; statements of the form G(n, p) →η H

2. Regularity method for sparse graphs: some of the (partial) suc-
cesses

3. Literature: shall discuss some of the literature
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One last thing about the vertex case

Exercise 1++: determine p0 = p0(n) such that if p � p0, then a.e. G(n, p)

is such that

G(n, p) → (K3, K4)v (1)

Have you obtained the threshold?
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The results for K3

Theorem 1. There is a large enough constant C such that if p ≥ C/
√

n,
then a.e. G(n, p) satisfies

G(n, p) → (K3)2. (2)

Theorem 2. For any η > 0, there C such that if p ≥ C/
√

n then a.e. G(n, p)

satisfies

G(n, p) →1/2+η K3. (3)
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The case p = 1

Theorem 3 (Goodman). The number of monochromatic triangles in any
2-colouring of Kn is ≥

(
n
3

)
− 1

8n(n − 1)2 = (1
4 + o(1))

(
n
3

)
.

Proof. Count the number N of 2-coloured cherries. Say have b(x) blue
edges and r(x) red edges at vertex x. Have N =

∑
x b(x)r(x) ≤ n(n −

1)2/4 (use b(x) + r(x) = n − 1). The number of non-monochromatic
triangles is N/2.

Clearly, there are 2-colourings with ≤ 1
4

(
n
3

)
monochromatic triangles!
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The case p = 1

Theorem 4. Goodman implies Mantel: ex(n, K3) ≤ n2/4.

Proof. Suppose K3 6⊂ Gn and e(Gn) > n2/4, so that e(Gn) ≥ n2/4+3/4.
Count the number N of pairs (e, T) where e ∈ E(Gn), T ∈

(
V(Gn)

3

)
and e ⊂

T . Say there are ti triples containing i edges of G. Then, by Theorem 3,

(n2/4 + 3/4)(n − 2) ≤ e(Gn)(n − 2)

= N ≤ t1 + 2t2 ≤ 2(t1 + t2) ≤ n(n − 1)2/4,

which is a contradiction for n ≥ 4.
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Theorems 1 and 2 from Goodman’s counting

Theorem 5. For every ε > 0 there is C such that if p ≥ C/
√

n, then
a.e. G(n, p) is such that any 2-colouring of its edges contains at least
(1/4 − ε)p3

(
n
3

)
monochromatic K3.

Proof. Exercise 2+.

Exercise 3+: derive Theorem 2 from Theorem 5.

Exercise 4++: show that the threshold for Theorem 1 is indeed 1/
√

n.

Exercise 5: show that the threshold for Theorem 2 is indeed 1/
√

n.
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The Rödl–Ruciński theorem

Definition 6 (2-density and m2(H)). The 2-density d2(H) of a graph H with
|V(H)| > 2 is

|E(H)| − 1

|V(H)| − 2
. (4)

For H = K1 and 2K1 let d2(H) = 0; set d2(K
2) = 1/2. Let

m2(H) = max{d2(J) : J ⊂ H, |V(J)| > 0}. (5)

Exercise 6: consider, say, H = Kh. Show that if p � n−1/m2(H), then
a.s. #{H ↪→ G(n, p)} � e(G(n, p)). On the other hand, if p � n−1/m2(H),
then a.s. #{H ↪→ G(n, p)} � e(G(n, p)).
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The Rödl–Ruciński theorem

Theorem 7. Let H be a graph containing at least a cycle and let r ≥ 2 be
an integer. Then there exist constants c and C such that

lim
n→∞ P(G(n, p) → (H)r) =

{
0 if p ≤ cn−1/m2(H)

1 if p ≥ Cn−1/m2(H).
(6)

B In particular, p0 = p0(n) = n−1/m2(H) is a threshold for the prop-
erty G(n, p) → (H)r.
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9

The Rödl–Ruciński theorem

Exercise 7: show that there exists a graph G with the property that G →
(Kh)r but Kh+1 6⊂ G.

Exercise 8: Given a graph G, let H3(G) be the 3-uniform hypergraph
whose hypervertices are the edges of G and the hyperedges are the edge
sets of the triangles in G. Show that, for any integers ` and r, there is a
graph G satisfying G → (K3)r such that H3(G) has girth ≥ `.
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Turán type results for subgraphs of random graphs

Generalized Turán number:

ex(G, H) = max
{
|E(G ′)| : H 6⊂ G ′ ⊂ G

}
. (7)

B ex(n, H) = ex(Kn, H)

B ex(Qd, C4) = ?

B ex(G, Kh) = ? for (n, d, λ)-graphs G
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Turán type results for subgraphs of random graphs

Exercise 9: show that, for any G and H, we have

e(G, H) ≥
(
1 −

1

χ(H) − 1

)
e(G). (8)

B Interested in knowing when this is sharp for G = G(n, p) (up to o(e(G)))
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Turán type results for subgraphs of random graphs

Theorem 8. Let H be a graph with degeneracy d and suppose npd � 1.
Then

ex(G(n, p), H) =

(
1 −

1

χ(H) − 1
+ o(1)

)
p
(n
2

)
. (9)

Conjecture 9. For any graph H, if npm2(H) → ∞ then (9) holds almost
surely.

Example: if H = Kk, have m2(H) = (k + 1)/2, but Theorem 8 supposes
np1/(k−1) � 1.
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Cycles and small cliques

Theorem 10. Conjecture 9 holds for cycles.

Theorem 11. Conjecture 9 holds for K4, K5, and K6.
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A sharp result for even cycles

Theorem 12. Let k ≥ 2 be an integer and let p = p(n) = αn−1+1/(2k−1)

be such that

2 ≤ α ≤ n1/(2k−1)2. (10)

Then

ex(G(n, p), C2k) �
(logα)1/(2k−1)

α
e(G(n, p)). (11)
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Szemerédi’s regularity lemma

1. Tool for identifying the quasirandom structure of deterministic graphs

2. Works very well for large, dense graphs: n-vertex graphs with ≥ cn2

edges, n → ∞
3. Variant for sparse graphs exists (sparse = with o(n2) edges)

4. Much harder to use
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ε-regularity

Definition 13 (ε-regular pair). G = (V, E) a graph; U, W ⊂ V non-empty
and disjoint. Say (U, W) is ε-regular (in G) if

B for all U ′ ⊂ U, W ′ ⊂ W with |U ′| ≥ ε|U| and |W ′| ≥ ε|W|, we have∣∣∣∣∣|E(U ′, W ′)|

|U ′||W ′|
−

|E(U, W)|

|U||W|

∣∣∣∣∣ ≤ ε. (12)
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ε-regularity

The pair (U, W) is ε-regular if∣∣∣∣∣|E(U ′, W ′)|

|U ′||W ′|
−

|E(U, W)|

|U||W|

∣∣∣∣∣ ≤ ε. (13)

Equivalently,

|E(U ′, W ′)| = |U ′||W ′|

(
|E(U, W)|

|U||W|
± ε

)
(14)

Clearly, not meaningful if

|E(U, W)|

|U||W|
→ 0 (15)

and ε is fixed. (We think of G = (V, E) with n = |V | → ∞.)
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ε-regularity; multiplicative error version

Replace

|E(U ′, W ′)| = |U ′||W ′|

(
|E(U, W)|

|U||W|
± ε

)
(16)

by

|E(U ′, W ′)| = (1± ε)|E(U, W)|
|U ′||W ′|

|U||W|
(17)

Altered condition becomes

B for all U ′ ⊂ U, W ′ ⊂ W with |U ′| ≥ ε|U| and |W ′| ≥ ε|W|, we have∣∣∣∣∣|E(U ′, W ′)| − |E(U, W)|
|U ′||W ′|

|U||W|

∣∣∣∣∣ ≤ ε|E(U, W)|
|U ′||W ′|

|U||W|
. (18)

OK even if |E(U, W)|/|U||W| → 0.
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Szemerédi’s regularity lemma, sparse version

Any graph with no ‘dense patches’ admits a Szemerédi partition with the
new notion of ε-regularity.

Definition 14 ((η, b)-bounded). Say G = (V, E) is (η, b)-bounded if for all
U ⊂ V with |U| ≥ η|V |, we have

#{edges within U} ≤ b|E|
(|U|

2

)(|V |

2

)−1

. (19)

[B Something like one-sided (p, η)-uniformity]
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Szemerédi’s regularity lemma, sparse version

Theorem 15 (The regularity lemma). For any ε > 0, t0 ≥ 1, and b, there
exist η > 0 and T0 such that any (η, b)-bounded graph G admits a parti-
tion V = V1 ∪ · · · ∪ Vt such that

1. |V1| ≤ · · · ≤ |Vt| ≤ |V1| + 1

2. t0 ≤ t ≤ T0

3. at least (1 − ε)
(
t
2

)
pairs (Vi, Vj) (i < j) are ε-regular.

Proof. Just follow Szemerédi’s original proof.
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A counting lemma (simplest version)

Setup. G = (V1, V2, V3; E) tripartite with

1. |Vi| = m for all i

2. (Vi, Vj) ε-regular for all i < j

3. |E(Vi, Vj)| = ρm2 for all i < j

Notation: G = G
(ε)
3 (m, ρ) [G is an ε-regular triple with density ρ]

B Wish to embed K3 with V(K3) = {x1, x2, x3} such that xi is placed in Vi.
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A counting lemma (simplest version)

Just like random:

Lemma 16 (Counting Lemma; Embedding lemma). ∀ρ > 0, δ > 0 ∃ε > 0,
m0 : if m ≥ m0, then∣∣∣#{K3 ↪→ G

(ε)
3 (m, ρ)} − ρ3m3

∣∣∣ ≤ δm3. (20)
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Tough: counting Lemma is false if ρ → 0

Fact 17. ∀ε > 0 ∃ρ > 0, m0 ∀m ≥ m0 ∃G
(ε)
3 (m, ρ) with

K3 6⊂ G
(ε)
3 (m, ρ). (21)

[cf. Lemma 16]

Change of focus: from counting K3 ⊂ G
(ε)
3 (m, ρ) to existence of K3 ⊂

G
(ε)
3 (m, ρ)
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Key observation

Counterexamples to the embedding lemma in the sparse setting do exist
(Fact 17), but

are extremely rare.
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An asymptotic enumeration lemma

Lemma 18. ∀β > 0 ∃ε > 0, C > 0, m0 : if T = ρm2 ≥ Cm3/2, then

#{G
(ε)
3 (m, ρ) 6⊃ K3} ≤ βT

(m2

T

)3
. (22)

Observe that ρ ≥ C/
√

m → 0.
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Consequence for random graphs

Easy expectation calculations imply

B if p � 1/
√

n, then almost every G(n, p) is such that(
K3-free G

(ε)
3 (m, ρ)

)
6⊂ G(n, p), (23)

if (*) mp � logn and ρ ≥ αp for some fixed α.

Conclusion. Recovered an ‘embedding lemma’ in the sparse setting, for
subgraphs of random graphs.

Corollary 19 (EL for subgraphs of r.gs). If p � 1/
√

n and (*) holds, then

almost every G(n, p) is such that if G
(ε)
3 (m, ρ) ⊂ G(n, p), then

∃ι : K3 ↪→ G
(ε)
3 (m, ρ) ⊂ G(n, p). (24)
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The easy calculation

Recall T = ρm2, ρ ≥ αp, and mp � logn. Therefore

E(#{K3-free G
(ε)
3 (m, ρ) ↪→ G(n, p)}) ≤ n3mo(1)T

(m2

T

)3
p3T

≤ n3m

(
o(1)

em2

T

)3T

p3T ≤ n3m

(
o(1)

em2p

T

)3T

= n3m

(
o(1)

em2p

ρm2

)3T

≤ n3m
(
o(1)

e

α

)3T

≤ e3m logn
(
o(1)

e

α

)3αm logn
= o(1).
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Superexponential bounds

Suppose we wish to prove a statement about all subgraphs of G(n, p).

• Too many such subgraphs: about 2p(n
2)

• G(n, p) has no edges with probability (1 − p)(
n
2) ≥ exp{−2pn2}, if,

say, p ≤ 1/2.

• Concentration inequalities won’t do (2p(n
2) vs e−2pn2

).

• Bounds of the form

o(1)T
((m

2

)
T

)
(25)

for the cardinality of a family of ‘undesirable subgraphs’ U(m, T) do
the job. Use of such bounds goes back to Füredi (1994).
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An embedding lemma for K3 (sparse setting)

Scheme:

1. Proved an asymptotic enumeration lemma:

#{G
(ε)
3 (m, ρ) 6⊃ K3} = o(1)T

(m2

T

)3
. (26)

[T = ρm2]

2. Observed that this implies a.e. G(n, ω/
√

n) contains no K3-free

G
(ε)
3 (m, ρ) [any ω = ω(n) → ∞ as n → ∞].

3. Obtained a K3-embedding lemma for subgraphs of G(n, p), even when

p = ω/
√

n: for all G(ε)
3 (m, ρ) ⊂ G(n, p), have K3 ⊂ G

(ε)
3 (m, ρ).
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General graphs H?

Let us consider the case H = Kk.

Conjecture 20. ∀k ≥ 4, β > 0 ∃ε > 0, C > 0, m0 : if T = ρm2 ≥
Cm2−2/(k+1), then

#{G
(ε)
k (m, ρ) 6⊃ Kk} ≤ βT

(m2

T

)(k
2)

. (27)

B Known for k = 3, k = 4, and k = 5

B For general H, the conjecture involves m2(H)
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General graphs H?

Suppose |V(H)| > 2. Then let

d2(H) =
|E(H)| − 1

|V(H)| − 2
. (28)

For H = K1 and 2K1 let d2(H) = 0; set d2(K
2) = 1/2. Finally, let

m2(H) = max{d2(J) : J ⊂ H}. (29)

Conjecture 21. ∀H, β > 0 ∃ε > 0, C > 0, m0 : if T = ρm2 ≥ Cm2−1/m2(H),
then

#{G
(ε)
H (m, ρ) 6⊃ H} ≤ βT

(m2

T

)e(H)

. (30)

B Known for cycles
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The bipartite case

Conjecture 22. Suppose H is a bipartite graph. For any β > 0, there is C

such that for any M = M(n) such that M ≥ Cn2−1/m2(H), we have

#{G(n, M) 6⊃ H} ≤ βM
((n

2

)
M

)
(31)

for all large enough n.

In short: #{G(n, M) 6⊃ H} = o(1)M
((n

2)
M

)
◦ Known for even cycles [Exercise 10++: still ++, even after regularity.

What is simpler to show is that ex(G(n, p), C2k) = o(p
(
n
2

)
) if p �

n−1+1/(2k−1).]
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Consequences of the conjecture

1. The Rödl–Ruciński theorem on threshold for Ramsey properties of
random graphs (1-statement) and the Turán counterpart, with the best
possible threshold

2. Łuczak (2000): structural and enumerative consequences for H-free
graphs on n vertices and M edges
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Consequences of the conjecture

Under the hypothesis that Conjecture 21 holds for a graph H:

Theorem 23. Conjecture 22 holds: if H is bipartite, then for every β >

0 there exists C = C(β, H) and n0 such that for n ≥ n0 and M ≥
Cn2−1/m2(H) we have

#{G(n, M) 6⊃ H} ≤ βM
((n

2

)
M

)
. (32)
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Consequences of the conjecture

Under the hypothesis that Conjecture 21 holds for a graph H:

Theorem 24. Suppose χ(H) = h ≥ 3. Then for every δ > 0 there ex-
ists C = C(δ, H) such that, almost surely, a graph chosen uniformly at
random from the family of all H-free labelled graphs on n vertices and
M ≥ Cn2−1/m2(H) edges can be made (h − 1)-partite by removing ≤ δM

edges.
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Consequences of the conjecture

Under the hypothesis that Conjecture 21 holds for a graph H:

Theorem 25. Suppose χ(H) = h ≥ 3. Then for every ε > 0 there exist
C = C(ε, H) and n0 = n0(ε, H) such that, for n ≥ n0 and Cn2−1/d2(H) ≤
M ≤ n2/C, we have(

h − 2

h − 1
− ε

)M

≤ P (G(n, M) 6⊃ H) ≤
(

h − 2

h − 1
+ ε

)M

. (33)
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The hereditary nature of regularity

Setup. B = (U, W; E) an ε-regular bipartite graph with |U| = |W| = m

and |E| = ρm2, ρ > 0 constant, and an integer d. Sample N ⊂ U and
N ′ ⊂ W with |N| = |N ′| = d uniformly at random.

Theorem 26. For any β > 0, ρ > 0, and ε ′ > 0, if ε ≤ ε0(β, ρ, ε ′),
d ≥ d0(β, ρ, ε ′), and m ≥ m0(β, ρ, ε ′), then

P
(
(N, N ′) bad

)
≤ βd, (34)

where (N, N ′) is bad if
∣∣∣|E(N, N ′)|d−2 − ρ

∣∣∣ > ε ′ or else (N, N ′) is not
ε ′-regular.
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The hereditary nature of regularity

Exercise 11++: for any k and δ > 0, there is C such that the following
holds. If χ(G − F) ≥ k for any F ⊂ E(G) with |F| ≤ δn2, then there
is H ⊂ G with χ(H) ≥ k and |V(H)| ≤ C. Can you guarantee many such
‘witnesses’ H?
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Local characterization for regularity

Setup. B = (U, W; E), a bipartite graph with |U| = |W| = m. Consider
the properties

(PC) for some constant p, have m−1
∑

u∈U |deg(u) − pm| = o(m) and

1

m2

∑
u,u ′∈U

|deg(u, u ′) − p2m| = o(m). (35)

(R) (U, W) is o(1)-regular (classical sense).

Theorem 27. (PC) and (R) are equivalent.
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A proof of Theorem 26

Let a graph F = (U, E) with |U| = m and |E| ≤ η
(
m
2

)
be given. Suppose

we select a d-set N uniformly at random from U. We are then interested in
giving an upper bound for e(F[N]), the number of edges that the set N will
induce in F.

Lemma 28. For every α and β > 0, there exist η0 = η0(α, β) > 0 such
that, whenever 0 < η ≤ η0, we have

P
(
e(F[N]) ≥ α

(d
2

))
≤ βd. (36)

Proof. Exercise 12+.

Exercise 13++: use Lemma 28 and Theorem 27 to prove Theorem 26.
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The hereditary nature of sparse regularity

Definition 29 ((ε, p)-lower-regularity). Suppose 0 < ε < 1 and 0 < p ≤ 1.
A bipartite graph B = (U, W; E) is (ε, p)-lower-regular if for all U ′ ⊂ U and
W ⊂ W with |U ′| ≥ ε|U| and |W ′| ≥ ε|W|, we have

e(U ′, W ′)

|U ′||W|
≥ (1 − ε)p. (37)
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The hereditary nature of sparse regularity

Setup. B = (U, W; E) an (ε, p)-lower-regular bipartite graph with |U| =

|W| = m and |E| = pm2 and integer d. Sample N ⊂ U and N ′ ⊂ W

with |N| = |N ′| = d uniformly at random.

Theorem 30. For all 0 < β, ε ′ < 1, there exist ε0 = ε0(β, ε ′) > 0 and
C = C(ε ′) such that, for any 0 < ε ≤ ε0 and 0 < p < 1, the following
holds. Let G = (U, W; E) be an (ε, p)-lower-regular bipartite graph and
suppose d ≥ Cp−1. Then

P
(
(N, N ′) bad

)
≤ βd, (38)

where (N, N ′) is bad if (N, N ′) is not (ε ′, p)-lower-regular.
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The hereditary nature of sparse regularity

Setup. B = (U, W; E) an (ε, p)-lower-regular bipartite graph with |U| =

|W| = m, |E| = pm2, and p ≥ αq. Also, suppose we have two other
bipartite graphs A = (U ′, U; EA) and C = (W, W ′; EC), also (ε, p)-lower-
regular.

Corollary 31 (Quite imprecise. . . ). Suppose A∪B∪C ⊂ G(n, q) and u ′ ∈
U ′ and w ′ ∈ W ′ are ‘typical’ vertices. If pm � 1/p then B[ΓA(u ′), ΓC(w ′)]
is (f(ε), p)-lower-regular (f(ε) → 0 as ε → 0).

B Corollary above may be used in inductive embedding schemes.
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Local characterization for sparse regularity

Very imprecisely: a similar statement to Theorem 27 may be proved for
subgraphs of random graphs.
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Yoshi and Yoshi, admiring your patience for being still in the

room


