Random Graphs III

Y. Kohayakawa (São Paulo)

Chorin, 4 August 2006

Outline of Lecture III

1. Subgraph containment with adversary:
\triangleright Existence of monox subgraphs in coloured random graphs; properties of the form $G(n, p) \rightarrow(H)_{r}^{e}$ (omit "e"; we are done with vertex colourings)
\triangleright Existence of monochromatic subgraphs in 'dense' subgraphs of random graphs; statements of the form $G(n, p) \rightarrow_{\eta} H$
2. Regularity method for sparse graphs: some of the (partial) successes
3. Literature: shall discuss some of the literature

One last thing about the vertex case

Exercise 1^{++}: determine $p_{0}=p_{0}(n)$ such that if $p \gg p_{0}$, then a.e. $G(n, p)$ is such that

$$
\begin{equation*}
G(n, p) \rightarrow\left(K^{3}, K^{4}\right)^{v} \tag{1}
\end{equation*}
$$

Have you obtained the threshold?

The results for K^{3}

Theorem 1. There is a large enough constant C such that if $p \geq C / \sqrt{n}$, then a.e. $\mathrm{G}(\mathrm{n}, \mathrm{p})$ satisfies

$$
\begin{equation*}
\mathrm{G}(\mathrm{n}, \mathrm{p}) \rightarrow\left(\mathrm{K}^{3}\right)_{2} . \tag{2}
\end{equation*}
$$

Theorem 2. For any $\eta>0$, there C such that ifp $\geq C / \sqrt{n}$ then a.e. $G(n, p)$ satisfies

$$
\begin{equation*}
G(n, p) \rightarrow_{1 / 2+\eta} K^{3} . \tag{3}
\end{equation*}
$$

The case $p=1$

Theorem 3 (Goodman). The number of monochromatic triangles in any 2-colouring of K^{n} is $\geq\binom{ n}{3}-\frac{1}{8} n(n-1)^{2}=\left(\frac{1}{4}+o(1)\right)\binom{n}{3}$.

Proof. Count the number N of 2-coloured cherries. Say have $b(x)$ blue edges and $r(x)$ red edges at vertex x. Have $N=\sum_{x} b(x) r(x) \leq n(n-$ $1)^{2} / 4$ (use $b(x)+r(x)=n-1$). The number of non-monochromatic triangles is $\mathrm{N} / 2$.

Clearly, there are 2-colourings with $\leq \frac{1}{4}\binom{n}{3}$ monochromatic triangles!

The case $p=1$

Theorem 4. Goodman implies Mantel: $\operatorname{ex}\left(\mathrm{n}, \mathrm{K}^{3}\right) \leq \mathrm{n}^{2} / 4$.
Proof. Suppose $K^{3} \not \subset G^{n}$ and $e\left(G^{n}\right)>n^{2} / 4$, so that $e\left(G^{n}\right) \geq n^{2} / 4+3 / 4$. Count the number N of pairs (e, T) where $e \in E\left(G^{n}\right), T \in\binom{V\left(G^{n}\right)}{3}$ and $e \subset$ T. Say there are t_{i} triples containing i edges of G. Then, by Theorem 3 ,

$$
\begin{aligned}
& \left(n^{2} / 4+3 / 4\right)(n-2) \leq e\left(G^{n}\right)(n-2) \\
& \quad=N \leq t_{1}+2 t_{2} \leq 2\left(t_{1}+t_{2}\right) \leq n(n-1)^{2} / 4,
\end{aligned}
$$

which is a contradiction for $n \geq 4$.

Theorems 1 and 2 from Goodman's counting

Theorem 5. For every $\varepsilon>0$ there is C such that if $p \geq C / \sqrt{n}$, then a.e. $\mathrm{G}(\mathrm{n}, \mathrm{p})$ is such that any 2-colouring of its edges contains at least $(1 / 4-\varepsilon) p^{3}\binom{n}{3}$ monochromatic K^{3}.

Proof. Exercise 2^{+}.

Exercise 3^{+}: derive Theorem 2 from Theorem 5.

Exercise 4^{++}: show that the threshold for Theorem 1 is indeed $1 / \sqrt{n}$.

Exercise 5: show that the threshold for Theorem 2 is indeed $1 / \sqrt{n}$.

The Rödl-Ruciński theorem

Definition 6 (2-density and $\mathrm{m}_{2}(\mathrm{H})$). The 2-density $\mathrm{d}_{2}(\mathrm{H})$ of a graph H with $|\mathrm{V}(\mathrm{H})|>2$ is

$$
\begin{equation*}
\frac{|\mathrm{E}(\mathrm{H})|-1}{|\mathrm{~V}(\mathrm{H})|-2} . \tag{4}
\end{equation*}
$$

For $\mathrm{H}=\mathrm{K}^{1}$ and $2 \mathrm{~K}^{1}$ let $\mathrm{d}_{2}(\mathrm{H})=0$; set $\mathrm{d}_{2}\left(\mathrm{~K}^{2}\right)=1 / 2$. Let

$$
\begin{equation*}
m_{2}(\mathrm{H})=\max \left\{\mathrm{d}_{2}(\mathrm{~J}): \mathrm{J} \subset \mathrm{H},|\mathrm{~V}(\mathrm{~J})|>0\right\} . \tag{5}
\end{equation*}
$$

Exercise 6: consider, say, $H=K^{h}$. Show that if $p \ll n^{-1 / m_{2}(H)}$, then a.s. $\#\{H \hookrightarrow G(n, p)\} \ll e(G(n, p))$. On the other hand, if $p \gg n^{-1 / m_{2}(H)}$, then a.s. $\#\{\mathrm{H} \hookrightarrow \mathrm{G}(\mathrm{n}, \mathrm{p})\} \gg e(\mathrm{G}(\mathrm{n}, \mathrm{p}))$.

The Rödl-Ruciński theorem

Theorem 7. Let H be a graph containing at least a cycle and let $\mathrm{r} \geq 2$ be an integer. Then there exist constants c and C such that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(G(n, p) \rightarrow(H)_{r}\right)= \begin{cases}0 & \text { if } p \leq \mathrm{cn}^{-1 / m_{2}(\mathrm{H})} \tag{6}\\ 1 & \text { if } p \geq \mathrm{Cn}^{-1 / m_{2}(\mathrm{H})} .\end{cases}
$$

\triangleright In particular, $p_{0}=p_{0}(n)=n^{-1 / m_{2}(H)}$ is a threshold for the property $\mathrm{G}(\mathrm{n}, \mathrm{p}) \rightarrow(\mathrm{H})_{\mathrm{r}}$.

The Rödl-Ruciński theorem

Exercise 7: show that there exists a graph G with the property that $\mathrm{G} \rightarrow$ $\left(K^{h}\right)_{r}$ but $K^{h+1} \not \subset G$.

Exercise 8: Given a graph G, let $\mathcal{H}_{3}(\mathrm{G})$ be the 3 -uniform hypergraph whose hypervertices are the edges of G and the hyperedges are the edge sets of the triangles in G. Show that, for any integers ℓ and r, there is a graph G satisfying $G \rightarrow\left(\mathrm{~K}^{3}\right)_{\mathrm{r}}$ such that $\mathcal{H}_{3}(\mathrm{G})$ has girth $\geq \ell$.

Turán type results for subgraphs of random graphs

Generalized Turán number:

$$
\begin{equation*}
\operatorname{ex}(G, H)=\max \left\{\left|E\left(G^{\prime}\right)\right|: H \not \subset G^{\prime} \subset G\right\} . \tag{7}
\end{equation*}
$$

$\triangleright \operatorname{ex}(\mathrm{n}, \mathrm{H})=\mathrm{ex}\left(\mathrm{K}^{\mathrm{n}}, \mathrm{H}\right)$
$\triangleright \operatorname{ex}\left(\mathrm{Q}^{\mathrm{d}}, \mathrm{C}^{4}\right)=$?
$\triangleright \operatorname{ex}\left(\mathrm{G}, \mathrm{K}^{\mathrm{h}}\right)=$? for $(\mathrm{n}, \mathrm{d}, \lambda)$-graphs G

Turán type results for subgraphs of random graphs

Exercise 9: show that, for any G and H , we have

$$
\begin{equation*}
e(G, H) \geq\left(1-\frac{1}{\chi(H)-1}\right) e(G) . \tag{8}
\end{equation*}
$$

\triangleright Interested in knowing when this is sharp for $G=G(n, p)$ (up to o $(e(G))$)

Turán type results for subgraphs of random graphs

Theorem 8. Let H be a graph with degeneracy d and suppose $\mathrm{np}^{\mathrm{d}} \gg 1$. Then

$$
\begin{equation*}
\operatorname{ex}(G(n, p), H)=\left(1-\frac{1}{\chi(H)-1}+o(1)\right) p\binom{n}{2} . \tag{9}
\end{equation*}
$$

Conjecture 9. For any graph H , if $\mathfrak{n p}^{\mathfrak{m}_{2}(\mathrm{H})} \rightarrow \infty$ then (9) holds almost surely.

Example: if $H=K^{k}$, have $m_{2}(H)=(k+1) / 2$, but Theorem 8 supposes $n p^{1 /(k-1)} \gg 1$.

Cycles and small cliques

Theorem 10. Conjecture 9 holds for cycles.
Theorem 11. Conjecture 9 holds for K^{4}, K^{5}, and K^{6}.

A sharp result for even cycles

Theorem 12. Let $k \geq 2$ be an integer and let $p=p(n)=\alpha n^{-1+1 /(2 k-1)}$ be such that

$$
\begin{equation*}
2 \leq \alpha \leq n^{1 /(2 k-1)^{2}} . \tag{10}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{ex}\left(G(n, p), C^{2 k}\right) \asymp \frac{(\log \alpha)^{1 /(2 k-1)}}{\alpha} e(G(n, p)) . \tag{11}
\end{equation*}
$$

Szemerédi's regularity lemma

1. Tool for identifying the quasirandom structure of deterministic graphs
2. Works very well for large, dense graphs: n-vertex graphs with $\geq \mathrm{cn}^{2}$ edges, $n \rightarrow \infty$
3. Variant for sparse graphs exists (sparse $=$ with $o\left(n^{2}\right)$ edges)
4. Much harder to use

ε-regularity

Definition 13 (ε-regular pair). $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ a graph; $\mathrm{U}, \mathrm{W} \subset \mathrm{V}$ non-empty and disjoint. Say (U, W) is ε-regular (in G$)$ if
\triangleright for all $\mathrm{U}^{\prime} \subset \mathrm{U}, \mathrm{W}^{\prime} \subset \mathrm{W}$ with $\left|\mathrm{U}^{\prime}\right| \geq \varepsilon|\mathrm{U}|$ and $\left|\mathrm{W}^{\prime}\right| \geq \varepsilon|\mathrm{W}|$, we have

$$
\begin{equation*}
\left|\frac{\left|\mathrm{E}\left(\mathrm{U}^{\prime}, W^{\prime}\right)\right|}{\left|\mathrm{U}^{\prime}\right|\left|\mathrm{W}^{\prime}\right|}-\frac{|\mathrm{E}(\mathrm{U}, \mathrm{~W})|}{|\mathrm{U}||\mathrm{W}|}\right| \leq \varepsilon . \tag{12}
\end{equation*}
$$

ε-regularity

The pair (U, W) is ε-regular if

$$
\begin{equation*}
\left|\frac{\left|\mathrm{E}\left(\mathrm{U}^{\prime}, \mathrm{W}^{\prime}\right)\right|}{\left|\mathrm{U}^{\prime}\right|\left|\mathrm{W}^{\prime}\right|}-\frac{|\mathrm{E}(\mathrm{U}, \mathrm{~W})|}{|\mathrm{U} \||\mathrm{W}|}\right| \leq \varepsilon . \tag{13}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
\left|\mathrm{E}\left(\mathrm{U}^{\prime}, \mathrm{W}^{\prime}\right)\right|=\left|\mathrm{U}^{\prime}\right|\left|\mathrm{W}^{\prime}\right|\left(\frac{|\mathrm{E}(\mathrm{U}, \mathrm{~W})|}{|\mathrm{U}||\mathrm{W}|} \pm \varepsilon\right) \tag{14}
\end{equation*}
$$

Clearly, not meaningful if

$$
\begin{equation*}
\frac{|\mathrm{E}(\mathrm{U}, \mathrm{~W})|}{|\mathrm{U}||\mathrm{W}|} \rightarrow 0 \tag{15}
\end{equation*}
$$

and ε is fixed. (We think of $G=(\mathrm{V}, \mathrm{E})$ with $n=|\mathrm{V}| \rightarrow \infty$.)

ε-regularity; multiplicative error version

Replace

$$
\begin{equation*}
\left|\mathrm{E}\left(\mathrm{U}^{\prime}, \mathrm{W}^{\prime}\right)\right|=\left|\mathrm{U}^{\prime}\right|\left|\mathrm{W}^{\prime}\right|\left(\frac{|\mathrm{E}(\mathrm{U}, \mathrm{~W})|}{|\mathrm{U}||\mathrm{W}|} \pm \varepsilon\right) \tag{16}
\end{equation*}
$$

by

$$
\begin{equation*}
\left|\mathrm{E}\left(\mathrm{U}^{\prime}, \mathrm{W}^{\prime}\right)\right|=(1 \pm \varepsilon)|\mathrm{E}(\mathrm{U}, \mathrm{~W})| \frac{\left|\mathrm{U}^{\prime}\right|\left|\mathrm{W}^{\prime}\right|}{|\mathrm{U}||\mathrm{W}|} \tag{17}
\end{equation*}
$$

Altered condition becomes
\triangleright for all $\mathrm{U}^{\prime} \subset \mathrm{U}, \mathrm{W}^{\prime} \subset \mathrm{W}$ with $\left|\mathrm{U}^{\prime}\right| \geq \varepsilon|\mathrm{U}|$ and $\left|\mathrm{W}^{\prime}\right| \geq \varepsilon|\mathrm{W}|$, we have

$$
\begin{equation*}
\left|\left|\mathrm{E}\left(\mathrm{U}^{\prime}, \mathrm{W}^{\prime}\right)\right|-|\mathrm{E}(\mathrm{U}, \mathrm{~W})| \frac{\left|\mathrm{U}^{\prime}\right|\left|\mathrm{W}^{\prime}\right|}{|\mathrm{U}||\mathrm{W}|}\right| \leq \varepsilon|\mathrm{E}(\mathrm{U}, \mathrm{~W})| \frac{\left|\mathrm{U}^{\prime}\right|\left|\mathrm{W}^{\prime}\right|}{|\mathrm{U}||\mathrm{W}|} . \tag{18}
\end{equation*}
$$

OK even if $|\mathrm{E}(\mathrm{U}, \mathrm{W})| /|\mathrm{U}||\mathrm{W}| \rightarrow 0$.

Szemerédi's regularity lemma, sparse version

Any graph with no 'dense patches' admits a Szemerédi partition with the new notion of ε-regularity.

Definition $14((\mathfrak{\eta}, b)$-bounded). Say $G=(V, E)$ is $(\mathfrak{\eta}, b)$-bounded if for all $\mathrm{U} \subset \mathrm{V}$ with $|\mathrm{U}| \geq \eta|\mathrm{V}|$, we have

$$
\begin{equation*}
\#\{\text { edges within } \mathrm{U}\} \leq \mathrm{b}|\mathrm{E}|\binom{|\mathrm{U}|}{2}\binom{|\mathrm{~V}|}{2}^{-1} . \tag{19}
\end{equation*}
$$

[\triangleright Something like one-sided ($\mathfrak{p}, \mathfrak{\eta}$)-uniformity]

Szemerédi's regularity lemma, sparse version

Theorem 15 (The regularity lemma). For any $\varepsilon>0, t_{0} \geq 1$, and b, there exist $\eta>0$ and T_{0} such that any (η, b)-bounded graph G admits a partition $\mathrm{V}=\mathrm{V}_{1} \cup \cdots \cup \mathrm{~V}_{\mathrm{t}}$ such that

1. $\left|\mathrm{V}_{1}\right| \leq \cdots \leq\left|\mathrm{V}_{\mathrm{t}}\right| \leq\left|\mathrm{V}_{1}\right|+1$
2. $\mathrm{t}_{0} \leq \mathrm{t} \leq \mathrm{T}_{0}$
3. at least $(1-\varepsilon)\binom{\mathrm{t}}{2}$ pairs $\left(\mathrm{V}_{\mathfrak{i}}, \mathrm{V}_{\mathfrak{j}}\right)(\mathfrak{i}<\mathfrak{j})$ are ε-regular.

Proof. Just follow Szemerédi's original proof.

A counting lemma (simplest version)

Setup. $G=\left(V_{1}, V_{2}, V_{3} ; E\right)$ tripartite with

1. $\left|\mathrm{V}_{\mathrm{i}}\right|=\mathrm{m}$ for all i
2. $\left(V_{i}, V_{j}\right) \varepsilon$-regular for all $i<j$
3. $\left|E\left(V_{i}, V_{j}\right)\right|=\rho m^{2}$ for all $i<j$

Notation: $G=G_{3}^{(\varepsilon)}(m, \rho)[G$ is an ε-regular triple with density ρ]
\triangleright Wish to embed K^{3} with $V\left(K^{3}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$ such that x_{i} is placed in V_{i}.

A counting lemma (simplest version)

Just like random:

Lemma 16 (Counting Lemma; Embedding lemma). $\forall \rho>0, \delta>0 \exists \varepsilon>0$, m_{0} : if $\mathrm{m} \geq \mathrm{m}_{0}$, then

$$
\begin{equation*}
\left|\#\left\{\mathrm{~K}^{3} \hookrightarrow \mathrm{G}_{3}^{(\varepsilon)}(\mathrm{m}, \rho)\right\}-\rho^{3} \mathrm{~m}^{3}\right| \leq \delta \mathrm{m}^{3} . \tag{20}
\end{equation*}
$$

Tough: counting Lemma is false if $\rho \rightarrow 0$

Fact 17. $\forall \varepsilon>0 \exists \rho>0, m_{0} \forall m \geq m_{0} \exists G_{3}^{(\varepsilon)}(m, \rho)$ with

$$
\begin{equation*}
K^{3} \not \subset G_{3}^{(\varepsilon)}(m, \rho) \tag{21}
\end{equation*}
$$

[cf. Lemma 16]

Change of focus: from counting $\mathrm{K}^{3} \subset \mathrm{G}_{3}^{(\varepsilon)}(\mathrm{m}, \rho)$ to existence of $\mathrm{K}^{3} \subset$ $G_{3}^{(\varepsilon)}(m, \rho)$

Key observation

Counterexamples to the embedding lemma in the sparse setting do exist (Fact 17), but

```
are extremely rare.
```


An asymptotic enumeration lemma

Lemma 18. $\forall \beta>0 \exists \varepsilon>0, C>0, m_{0}:$ if $T=\rho m^{2} \geq \mathrm{Cm}^{3 / 2}$, then

$$
\begin{equation*}
\#\left\{G_{3}^{(\varepsilon)}(\mathfrak{m}, \rho) \not \supset K^{3}\right\} \leq \beta^{\mathrm{T}}\binom{\mathrm{~m}^{2}}{\mathrm{~T}}^{3} . \tag{22}
\end{equation*}
$$

Observe that $\rho \geq \mathrm{C} / \sqrt{\mathrm{m}} \rightarrow 0$.

Consequence for random graphs

Easy expectation calculations imply
\triangleright if $p \gg 1 / \sqrt{n}$, then almost every $G(n, p)$ is such that

$$
\begin{equation*}
\left(K^{3} \text {-free } G_{3}^{(\varepsilon)}(m, \rho)\right) \not \subset G(n, p) \tag{23}
\end{equation*}
$$

if (*) $m p \gg \log n$ and $\rho \geq \alpha p$ for some fixed α.
Conclusion. Recovered an 'embedding lemma' in the sparse setting, for subgraphs of random graphs.

Corollary 19 (EL for subgraphs of r.gs). If $p>1 / \sqrt{n}$ and (*) holds, then almost every $\mathrm{G}(\mathrm{n}, \mathrm{p})$ is such that if $\mathrm{G}_{3}^{(\varepsilon)}(\mathrm{m}, \rho) \subset \mathrm{G}(\mathrm{n}, \mathrm{p})$, then

$$
\begin{equation*}
\exists l: K^{3} \hookrightarrow G_{3}^{(\varepsilon)}(m, \rho) \subset G(n, p) . \tag{24}
\end{equation*}
$$

The easy calculation

Recall $\mathrm{T}=\rho \mathrm{m}^{2}, \rho \geq \alpha p$, and $m p>\log n$. Therefore

$$
\begin{aligned}
\mathbb{E}(\# & \left.\left\{K^{3} \text {-free } G_{3}^{(\varepsilon)}(m, \rho) \hookrightarrow G(n, p)\right\}\right) \leq n^{3 m} o(1)^{T}\binom{m^{2}}{T}^{3} p^{3 T} \\
& \leq n^{3 m}\left(o(1) \frac{e m^{2}}{T}\right)^{3 T} p^{3 T} \leq n^{3 m}\left(o(1) \frac{e m^{2} p}{T}\right)^{3 T} \\
& =n^{3 m}\left(o(1) \frac{e m^{2} p}{\rho m^{2}}\right)^{3 T} \leq n^{3 m}\left(o(1) \frac{e}{\alpha}\right)^{3 T} \\
& \leq e^{3 m \log n}\left(o(1) \frac{e}{\alpha}\right)^{3 \alpha m \log n}=o(1)
\end{aligned}
$$

Superexponential bounds

Suppose we wish to prove a statement about all subgraphs of $G(n, p)$.

- Too many such subgraphs: about $2^{p\binom{n}{2}}$
- $G(n, p)$ has no edges with probability $(1-p)^{\binom{n}{2}} \geq \exp \left\{-2 p n^{2}\right\}$, if, say, $p \leq 1 / 2$.
- Concentration inequalities won't do $\left(2^{p}\binom{n}{2}\right.$ vs $\left.\mathrm{e}^{-2 \mathrm{pn}^{2}}\right)$.
- Bounds of the form

$$
\begin{equation*}
\mathrm{o}(1)^{\mathrm{T}}\binom{\binom{m}{2}}{\mathrm{~T}} \tag{25}
\end{equation*}
$$

for the cardinality of a family of 'undesirable subgraphs' $\mathrm{U}(\mathrm{m}, \mathrm{T})$ do the job. Use of such bounds goes back to Füredi (1994).

An embedding lemma for K^{3} (sparse setting)

Scheme:

1. Proved an asymptotic enumeration lemma:

$$
\begin{equation*}
\#\left\{G_{3}^{(\varepsilon)}(\mathrm{m}, \rho) \not \supset \mathrm{K}^{3}\right\}=\mathrm{o}(1)^{\mathrm{T}}\binom{\mathrm{~m}^{2}}{\mathrm{~T}}^{3} \tag{26}
\end{equation*}
$$

$\left[T=\rho m^{2}\right]$
2. Observed that this implies a.e. $G(n, w / \sqrt{n})$ contains no K^{3}-free $G_{3}^{(\varepsilon)}(m, \rho)$ [any $\omega=\omega(n) \rightarrow \infty$ as $n \rightarrow \infty$].
3. Obtained a K^{3}-embedding lemma for subgraphs of $G(n, p)$, even when $p=\omega / \sqrt{n}$: for all $G_{3}^{(\varepsilon)}(m, \rho) \subset G(n, p)$, have $K^{3} \subset G_{3}^{(\varepsilon)}(m, \rho)$.

General graphs H?

Let us consider the case $\mathrm{H}=\mathrm{K}^{\mathrm{k}}$.

Conjecture 20. $\forall \mathrm{k} \geq 4, \beta>0 \exists \varepsilon>0, \mathrm{C}>0, \mathrm{~m}_{0}$: if $\mathrm{T}=\rho \mathrm{m}^{2} \geq$ $\mathrm{Cm}^{2-2 /(k+1)}$, then

$$
\begin{equation*}
\#\left\{G_{k}^{(\varepsilon)}(m, \rho) \not \supset K^{k}\right\} \leq \beta^{T}\binom{m^{2}}{T}^{\binom{k}{2}} \tag{27}
\end{equation*}
$$

\triangleright Known for $k=3, k=4$, and $k=5$
\triangleright For general H , the conjecture involves $\mathrm{m}_{2}(\mathrm{H})$

General graphs H?

Suppose $|\mathrm{V}(\mathrm{H})|>2$. Then let

$$
\begin{equation*}
d_{2}(\mathrm{H})=\frac{|\mathrm{E}(\mathrm{H})|-1}{|\mathrm{~V}(\mathrm{H})|-2} . \tag{28}
\end{equation*}
$$

For $H=K^{1}$ and $2 K^{1}$ let $d_{2}(H)=0$; set $d_{2}\left(K^{2}\right)=1 / 2$. Finally, let

$$
\begin{equation*}
\mathrm{m}_{2}(\mathrm{H})=\max \left\{\mathrm{d}_{2}(\mathrm{~J}): \mathrm{J} \subset \mathrm{H}\right\} . \tag{29}
\end{equation*}
$$

Conjecture 21. $\forall \mathrm{H}, \beta>0 \exists \varepsilon>0, \mathrm{C}>0, \mathrm{~m}_{0}$: if $\mathrm{T}=\rho^{2} \geq \mathrm{Cm}^{2-1 / m_{2}(\mathrm{H})}$, then

$$
\begin{equation*}
\#\left\{\mathrm{G}_{\mathrm{H}}^{(\varepsilon)}(\mathrm{m}, \rho) \not \supset \mathrm{H}\right\} \leq \beta^{\mathrm{T}}\binom{\mathrm{~m}^{2}}{\mathrm{~T}}^{e(\mathrm{H})} \tag{30}
\end{equation*}
$$

\triangleright Known for cycles

The bipartite case

Conjecture 22. Suppose H is a bipartite graph. For any $\beta>0$, there is C such that for any $M=M(n)$ such that $M \geq \mathrm{Cn}^{2-1 / m_{2}(H)}$, we have

$$
\#\{G(n, M) \not \supset H\} \leq \beta^{M}\left(\begin{array}{c}
n \tag{31}\\
2 \\
M
\end{array}\right)
$$

for all large enough n .
In short: $\#\{G(n, M) \not \supset H\}=o(1)^{M}\left(\begin{array}{c}\left(\begin{array}{c}n \\ (2) \\ M\end{array}\right)\end{array}\right.$

- Known for even cycles [Exercise 10^{++}: still ${ }^{++}$, even after regularity. What is simpler to show is that $\operatorname{ex}\left(G(n, p), C^{2 k}\right)=o\left(p\binom{n}{2}\right)$ if $p \gg$ $n^{-1+1 /(2 k-1)}$.]

Consequences of the conjecture

1. The Rödl-Ruciński theorem on threshold for Ramsey properties of random graphs (1-statement) and the Turán counterpart, with the best possible threshold
2. Łuczak (2000): structural and enumerative consequences for H-free graphs on n vertices and M edges

Consequences of the conjecture

Under the hypothesis that Conjecture 21 holds for a graph H:

Theorem 23. Conjecture 22 holds: if H is bipartite, then for every $\beta>$ 0 there exists $C=C(\beta, H)$ and n_{0} such that for $n \geq n_{0}$ and $M \geq$ $\mathrm{Cn}^{2-1 / m_{2}(\mathrm{H})}$ we have

$$
\#\{G(n, M) \not \supset H\} \leq \beta^{M}\left(\begin{array}{c}
n \tag{32}\\
2 \\
2
\end{array}\right) .
$$

Consequences of the conjecture

Under the hypothesis that Conjecture 21 holds for a graph H:

Theorem 24. Suppose $\chi(H)=h \geq 3$. Then for every $\delta>0$ there exists $\mathrm{C}=\mathrm{C}(\delta, \mathrm{H})$ such that, almost surely, a graph chosen uniformly at random from the family of all H -free labelled graphs on n vertices and $M \geq \mathrm{Cn}^{2-1 / m_{2}}(\mathrm{H})$ edges can be made ($h-1$)-partite by removing $\leq \delta M$ edges.

Consequences of the conjecture

Under the hypothesis that Conjecture 21 holds for a graph H:

Theorem 25. Suppose $\chi(H)=h \geq 3$. Then for every $\varepsilon>0$ there exist $C=C(\varepsilon, H)$ and $n_{0}=n_{0}(\varepsilon, H)$ such that, for $n \geq n_{0}$ and $C n^{2-1 / d_{2}(H)} \leq$ $M \leq n^{2} / C$, we have

$$
\begin{equation*}
\left(\frac{h-2}{h-1}-\varepsilon\right)^{M} \leq \mathbb{P}(G(n, M) \not \supset H) \leq\left(\frac{h-2}{h-1}+\varepsilon\right)^{M} . \tag{33}
\end{equation*}
$$

The hereditary nature of regularity

Setup. $\quad \mathrm{B}=(\mathrm{U}, \mathrm{W} ; \mathrm{E})$ an ε-regular bipartite graph with $|\mathrm{U}|=|\mathrm{W}|=\mathrm{m}$ and $|E|=\rho m^{2}, \rho>0$ constant, and an integer d. Sample $N \subset U$ and $N^{\prime} \subset W$ with $|N|=\left|N^{\prime}\right|=d$ uniformly at random.

Theorem 26. For any $\beta>0, \rho>0$, and $\varepsilon^{\prime}>0$, if $\varepsilon \leq \varepsilon_{0}\left(\beta, \rho, \varepsilon^{\prime}\right)$, $d \geq d_{0}\left(\beta, \rho, \varepsilon^{\prime}\right)$, and $m \geq m_{0}\left(\beta, \rho, \varepsilon^{\prime}\right)$, then

$$
\begin{equation*}
\mathbb{P}\left(\left(N, N^{\prime}\right) \text { bad }\right) \leq \beta^{\mathrm{d}} \tag{34}
\end{equation*}
$$

where $\left(\mathrm{N}, \mathrm{N}^{\prime}\right)$ is bad if $\left|\mathrm{E}\left(\mathrm{N}, \mathrm{N}^{\prime}\right)\right| \mathrm{d}^{-2}-\rho \mid>\varepsilon^{\prime}$ or else $\left(\mathrm{N}, \mathrm{N}^{\prime}\right)$ is not ε^{\prime}-regular.

The hereditary nature of regularity

Exercise 11^{++}: for any k and $\delta>0$, there is C such that the following holds. If $\chi(G-F) \geq k$ for any $F \subset E(G)$ with $|F| \leq \delta n^{2}$, then there is $\mathrm{H} \subset \mathrm{G}$ with $\chi(\mathrm{H}) \geq \mathrm{k}$ and $|\mathrm{V}(\mathrm{H})| \leq \mathrm{C}$. Can you guarantee many such 'witnesses' H?

Local characterization for regularity

Setup. $B=(U, W ; E)$, a bipartite graph with $|\mathrm{U}|=|\mathrm{W}|=\mathrm{m}$. Consider the properties
(PC) for some constant p, have $\mathfrak{m}^{-1} \sum_{\mathfrak{u} \in \mathrm{u}}|\operatorname{deg}(\mathfrak{u})-\mathrm{pm}|=\mathrm{o}(\mathrm{m})$ and

$$
\begin{equation*}
\frac{1}{\mathfrak{m}^{2}} \sum_{u, u^{\prime} \in u}\left|\operatorname{deg}\left(u, u^{\prime}\right)-p^{2} \mathfrak{m}\right|=o(m) . \tag{35}
\end{equation*}
$$

(R$)(\mathrm{U}, \mathrm{W})$ is o(1)-regular (classical sense).

Theorem 27. (PC) and (R) are equivalent.

A proof of Theorem 26

Let a graph $F=(U, E)$ with $|U|=m$ and $|E| \leq \eta\binom{m}{2}$ be given. Suppose we select a d-set N uniformly at random from U . We are then interested in giving an upper bound for $e(F[N])$, the number of edges that the set N will induce in F.

Lemma 28. For every α and $\beta>0$, there exist $\eta_{0}=\eta_{0}(\alpha, \beta)>0$ such that, whenever $0<\eta \leq \eta_{0}$, we have

$$
\begin{equation*}
\mathbb{P}\left(e(F[\mathrm{~N}]) \geq \alpha\binom{\mathrm{d}}{2}\right) \leq \beta^{\mathrm{d}} \tag{36}
\end{equation*}
$$

Proof. Exercise 12^{+}.

Exercise 13^{++}: use Lemma 28 and Theorem 27 to prove Theorem 26.

The hereditary nature of sparse regularity

Definition 29 (($\varepsilon, p)$-lower-regularity). Suppose $0<\varepsilon<1$ and $0<p \leq 1$. A bipartite graph $\mathrm{B}=(\mathrm{U}, \mathrm{W} ; \mathrm{E})$ is $(\varepsilon, \mathrm{p})$-lower-regular if for all $\mathrm{U}^{\prime} \subset \mathrm{U}$ and $W \subset W$ with $\left|\mathrm{U}^{\prime}\right| \geq \varepsilon|\mathrm{U}|$ and $\left|\mathrm{W}^{\prime}\right| \geq \varepsilon|W|$, we have

$$
\begin{equation*}
\frac{e\left(\mathrm{U}^{\prime}, W^{\prime}\right)}{\left|\mathrm{U}^{\prime}\right||W|} \geq(1-\varepsilon) p \tag{37}
\end{equation*}
$$

The hereditary nature of sparse regularity

Setup. $\quad \mathrm{B}=(\mathrm{U}, \mathrm{W} ; \mathrm{E})$ an (ε, p)-lower-regular bipartite graph with $|\mathrm{U}|=$ $|W|=m$ and $|E|=\mathrm{pm}^{2}$ and integer d. Sample $N \subset U$ and $N^{\prime} \subset W$ with $|\mathrm{N}|=\left|\mathrm{N}^{\prime}\right|=\mathrm{d}$ uniformly at random.

Theorem 30. For all $0<\beta, \varepsilon^{\prime}<1$, there exist $\varepsilon_{0}=\varepsilon_{0}\left(\beta, \varepsilon^{\prime}\right)>0$ and $C=C\left(\varepsilon^{\prime}\right)$ such that, for any $0<\varepsilon \leq \varepsilon_{0}$ and $0<p<1$, the following holds. Let $\mathrm{G}=(\mathrm{U}, \mathrm{W} ; \mathrm{E})$ be an $(\varepsilon, \mathrm{p})$-lower-regular bipartite graph and suppose $\mathrm{d} \geq \mathrm{Cp}^{-1}$. Then

$$
\begin{equation*}
\mathbb{P}\left(\left(N, N^{\prime}\right) \text { bad }\right) \leq \beta^{\mathrm{d}} \tag{38}
\end{equation*}
$$

where $\left(\mathrm{N}, \mathrm{N}^{\prime}\right)$ is bad if $\left(\mathrm{N}, \mathrm{N}^{\prime}\right)$ is not $\left(\varepsilon^{\prime}, \mathrm{p}\right)$-lower-regular.

The hereditary nature of sparse regularity

Setup. $\quad \mathrm{B}=(\mathrm{U}, \mathrm{W} ; \mathrm{E})$ an (ε, p)-lower-regular bipartite graph with $|\mathrm{U}|=$ $|W|=m,|E|=m^{2}$, and $p \geq \alpha q$. Also, suppose we have two other bipartite graphs $A=\left(U^{\prime}, U ; E_{A}\right)$ and $C=\left(W, W^{\prime} ; E_{C}\right)$, also (ε, p)-lowerregular.

Corollary 31 (Quite imprecise...). Suppose $A \cup B \cup C \subset G(n, q)$ and $u^{\prime} \in$ U^{\prime} and $w^{\prime} \in \mathrm{W}^{\prime}$ are 'typical' vertices. If $\mathrm{pm} \gg 1 / \mathrm{p}$ then $\mathrm{B}\left[\Gamma_{\mathcal{A}}\left(\mathrm{u}^{\prime}\right), \Gamma_{\mathrm{C}}\left(w^{\prime}\right)\right]$ is $(\mathrm{f}(\varepsilon), \mathrm{p})$-lower-regular $(\mathrm{f}(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0)$.
\triangleright Corollary above may be used in inductive embedding schemes.

Local characterization for sparse regularity

Very imprecisely: a similar statement to Theorem 27 may be proved for subgraphs of random graphs.

Bibliography

1. Béla Bollobás, Random graphs, second ed., Cambridge Studies in Advanced Mathematics, vol. 73, Cambridge University Press, Cambridge, 2001. MR 2002j:05132
2. Svante Janson, Tomasz Łuczak, and Andrzej Ruciński, Random graphs, Wiley-Interscience, New York, 2000. MR 2001k:05180

Bibliography

1. Stefanie Gerke and Angelika Steger, The sparse regularity lemma and its applications, Surveys in combinatorics 2005 (University of Durham, 2005) (Bridget S. Webb, ed.), London Math. Soc. Lecture Note Ser., vol. 327, Cambridge Univ. Press, Cambridge, 2005, pp. 227-258.
2. Stefanie Gerke, Yoshiharu Kohayakawa, Vojtěch Rödl, and Angelika Steger, Small subsets inherit sparse ε-regularity, J. Combin. Theory Ser. B, Available online 17 April 2006, 23pp.

Bibliography

1. Yoshiharu Kohayakawa, Bernd Kreuter, and Angelika Steger, An extremal problem for random graphs and the number of graphs with large even-girth, Combinatorica 18 (1998), no. 1, 101-120. MR 2000b:05118
2. Yoshiharu Kohayakawa and Vojtěch Rödl, Regular pairs in sparse random graphs. I, Random Structures Algorithms 22 (2003), no. 4, 359434. MR 2004b:05187
3. Yoshiharu Kohayakawa, Vojtěch Rödl, and Mathias Schacht, The Turán theorem for random graphs, Combin. Probab. Comput. 13 (2004), no. 1, 61-91. MR 2034303

Yoshi and Yoshi, admiring your patience for being still in the room

