Random Graphs II

Y. Kohayakawa (São Paulo)

Chorin, 2 August 2006

Outline of Lecture II

- 1. Subgraph containment: small subgraphs $(1 o(1) \text{ probability}, 1 e^{-\Omega(\mu)} \text{ probability}, 1 e^{-\omega\mu})$
- 2. **Subgraph containment:** large (and sparse) subgraphs (matchings, long paths, Hamilton cycles, bounded degree subgraphs)
- 3. Subgraph containment with adversary: existence of subgraphs in colourings and 'dense' subgraphs (Ramsey type results and Turán type results) [mostly won't get there today]

Subgraphs in r.gs: small subgraphs

Definition 1 (Density and m(H); balanced graphs). The density d(H) of a graph H with |V(H)| > 0 is

$$|E(H)|/|V(H)|$$
 (1)

 $[= (1/2) \times average \ degree]$. We also set

$$\mathfrak{m}(\mathsf{H}) = \max\{\mathfrak{d}(\mathsf{J}) \colon \mathsf{J} \subset \mathsf{H}, \, |\mathsf{V}(\mathsf{J})| > 0\}. \tag{2}$$

We say that H is balanced if max in (2) achieved by J = H.

▷ Simple: $\mathbb{E}(\#\{J \hookrightarrow G(n,p)\}) = o(1)$ if $p \ll n^{-1/d(J)}$, where $\#\{J \hookrightarrow G(n,p)\}$ is the number of embeddings of J into G(n,p). This implies that almost no G(n,p) contains J for such a p.

▷ Exercise 1: find nice classes of balanced graphs.

Subgraphs in r.gs: small subgraphs

Theorem 2. The threshold function for the event $\{H \subset G(n,p)\}$ is $p_0 = n^{-1/m(H)}$.

Proof. We have already seen the 0-statement. Just need to show the 1statement. Compute the variance and apply the second moment method. For the variance, use $Var(X) = \sum_{(H',H'')} Cov(X_{H'}, X_{H''})$, where $X = \sum_{H'} X_{H'}$ and $X_{H'} = [H' \subset G(n, p)]$ and the sum is over all $H \hookrightarrow K^n$. Recall Cov(X, X') = 0 if X and X' independent. We have to estimate $Var(X) = \sum_{(H',H'')} Cov(X_{H'}, X_{H''})$, where the sum is over *overlapping* pairs (H', H'') of copies of H. [Exercise 2: complete this proof].

Probability of containment

▷ If $p = p_0/\omega$ and $\omega \to \infty$, then $\mathbb{P}(H \subset G(n,p)) \leq 1/\omega'$ for some $\omega' \to \infty$ polynomially related to ω . In fact, $\mathbb{P}(H \subset G(n,p)) \leq \Phi_H = 1/\omega'$, where

 $\Phi_H = \Phi_H(n,p) = min\{\mathbb{E}(\#\{J \hookrightarrow G(n,p)\}) \colon J \subset H, |E(J)| > 0\}.$ (3)

▷ If $p = p_0 \omega$ and $\omega \to \infty$, then, writing $X = \#\{H \hookrightarrow G(n,p)\}$, we have $\mathbb{P}(X = 0) \leq Var(X)/\mathbb{E}(X)^2 = 1/\omega'$ for some $\omega' \to \infty$ polynomially related to ω . In fact, we have $Var(X)/\mathbb{E}(X)^2 = O(1/\Phi_H) = 1/\omega'$.

Probability of containment

Recall

 $\Phi_H=\Phi_H(n,p)=min\{\mathbb{E}(\#\{J\hookrightarrow G(n,p)\})\colon J\subset H,\,|E(J)|>0\}. \tag{4}$ We concluded

$$1 - \Phi_{\mathsf{H}} \le \mathbb{P}(\mathsf{H} \not\subset \mathsf{G}(\mathfrak{n}, \mathfrak{p})) = \mathsf{O}(1/\Phi_{\mathsf{H}}). \tag{5}$$

Can we do better? [*Application*: Can we approach the problem " $G(n, p) \rightarrow (K^3)_2^{V}$?" with the union bound?]

Theorem 3. Suppose |E(H)| > 0. Then, for any p = p(n) < 1, we have

$$\exp\left\{-\frac{1}{1-p}\Phi_{H}\right\} \leq \mathbb{P}(H \not\subset G(n,p)) \leq \exp\left\{-\Theta(\Phi_{H})\right\}.$$
(6)

An application

▷ **Therefore, can do better!** Application: show that if $p = Cn^{-2/3}$ and C is a large enough constant, then almost every G(n,p) is such that $G(n,p) \rightarrow (K^3)_2^V$, that is, any colouring of the vertices of G(n,p) with 2 colours necessarily contains a monochromatic K^3 . [Exercise 3: prove this statement. Generalize it from K^3 to arbitrary graphs H and to more than 2 colours.]

The FKG inequality

[We just stick to random graphs] Let \mathcal{P}_1 and \mathcal{P}_2 be two *increasing* graph properties. Let \mathcal{Q}_1 and \mathcal{Q}_2 be two *decreasing* graph properties.

Theorem 4. The following hold:

(i) $\mathbb{P}(G(n,p) \in \mathcal{P}_1 \cap \mathcal{P}_2) \ge \mathbb{P}(G(n,p) \in \mathcal{P}_1)\mathbb{P}(G(n,p) \in \mathcal{P}_2)$

(ii) $\mathbb{P}(G(n,p) \in Q_1 \cap Q_2) \ge \mathbb{P}(G(n,p) \in Q_1)\mathbb{P}(G(n,p) \in Q_2)$

(iii) $\mathbb{P}(G(n,p) \in \mathcal{P}_1 \cap \mathcal{Q}_2) \le \mathbb{P}(G(n,p) \in \mathcal{P}_1)\mathbb{P}(G(n,p) \in \mathcal{Q}_2)$

 $\triangleright \text{ Remark: } (i) \text{ is equivalent to } \mathbb{P}(G(n,p) \in \mathcal{P}_1 \mid \mathcal{P}_2) \geq \mathbb{P}(G(n,p) \in \mathcal{P}_1) \\ \text{ and } (iii) \text{ is equivalent to } \mathbb{P}(G(n,p) \in \mathcal{P}_1 \mid \mathcal{Q}_2) \leq \mathbb{P}(G(n,p) \in \mathcal{P}_1).$

▷ Exercise 4: How do the probabilities $\mathbb{P}(G(n, p) \text{ is Hamiltonian})$ and $\mathbb{P}(G(n, p) \text{ is Hamiltonian} | G(n, p) \text{ is planar})$ compare?

The FKG inequality

Remark 5. In fact, in Theorem 4, one may leave out the hypothesis that the \mathcal{P}_i and the \mathcal{Q}_i are closed under isomorphism.

9

The FKG inequality

We consider the decreasing events $\{X_{J'} = 0\}$, where J' ranges over all copies of a $J \subset H$ that achieves the minimum in the definition of Φ_H (see (4)): that is, $\Phi_H = \mathbb{E}(\#\{J \hookrightarrow G(n, p)\})$.

FKG implies that

$$\mathbb{P}(J \not\subset G(n,p)) = \mathbb{P}(X_{J'} = 0 \text{ for all } J') \ge \prod_{J'} \mathbb{P}(X_{J'} = 0) = \prod_{J'} (1 - p^{e(J)}).$$
(7)

Using $1 - x \ge e^{-x/(1-x)}$, we get that $\mathbb{P}(J \not\subset G(n, p))$ is

$$\geq \exp\left\{-\frac{1}{1-p^{e(J)}}\mathbb{E}(\#\{J \hookrightarrow G(n,p)\})\right\} \geq \exp\left\{-\frac{1}{1-p}\Phi_{H}\right\}.$$
 (8)

This proves the lower bound in Theorem 3.

Janson's inequality

[We just stick to random graphs] Let H be fixed. Let $X = \#\{H \hookrightarrow G(n, p)\}$. We have $X = \sum_{H'} X_{H'}$, where the sum ranges over all copies H' of H in Kⁿ and $X_{H'} = [H' \subset G(n, p)]$. Set

$$\Delta^* = \sum_{(\mathsf{H}',\mathsf{H}'')} \mathbb{E}(\mathsf{X}_{\mathsf{H}'}\mathsf{X}_{\mathsf{H}''}), \tag{9}$$

where the sum is over all pairs (H', H'') of copies of H with at least one common edge. Note that this is very similar to

$$Var(X_{H}) = \sum_{(H',H'')} \mathbb{E}(X_{H'}X_{H''}) - \mathbb{E}(X_{H})\mathbb{E}(X_{H''}).$$
(10)

Janson's inequality

Put $\mu = \mathbb{E}(X) = \mathbb{E}(\#\{H \hookrightarrow G(n,p)\}).$

Exercise 5: $\Delta^* = \Theta(\mu^2/\Phi_H)$.

Exercise 6: Var(X_H) = $\Theta(\mu^2/\Phi_H)$ if p is bounded away from 1 (and = $O(\mu^2/\Phi_H)$ always).

Janson's inequality

Theorem 6. Let $\mu = \mathbb{E}(X_H)$. Then

$$\mathbb{P}(\mathsf{H} \not\subset \mathsf{G}(\mathfrak{n}, \mathfrak{p})) \le \exp\left\{-\frac{\mu^2}{\Delta^*}\right\} = \exp\left\{-\Theta(\Phi_{\mathsf{H}})\right\}. \tag{11}$$

 \triangleright Got the upper bound in Theorem 3.

Let us briefly discuss $\mathbb{P}(H \not\subset G(n, M))$ for small subgraphs H.

- \triangleright Threshold: $n^{2-1/m(H)}$
- ▷ Analogue of Theorem 3?
 - Define $\Phi_H = \Phi_H(n, M)$ as $\Phi_H(n, p)$ with $p = M/\binom{n}{2}$.
 - The bounds in Theorem 3 cannot be true for all M = M(n): if M <
 e(H) and if M > ex(n, H), then we know P(H ⊄ G(n, p)) quite precisely!

Theorem 7. If $M \ge e(H)$, then

$$\mathbb{P}(\mathsf{H} \not\subset \mathsf{G}(\mathfrak{n}, \mathsf{M})) \le \exp\{-\Theta(\Phi_{\mathsf{H}})\}. \tag{12}$$

Theorem 8. If H is such that $M \ge c\Phi_H$ for some suitably small constant c = c(H) > 0, then

$$\mathbb{P}(\mathsf{H} \not\subset \mathsf{G}(\mathsf{n}, \mathsf{M})) \ge \exp\{-\Theta(\Phi_{\mathsf{H}})\}.$$
(13)

Theorem 9. If H is such that $M \ge c\Phi_H$ for some constant c > 0, and it is not bipartite and $M \leq c \binom{n}{2}$ for some constant $c < 1 - 1/(\chi(H) - 1)$, then (13) also holds

Exercise 7⁺: Prove the above three theorems. Particular interest (and quick): Theorem 7 when $\Phi_{\rm H} \gg \log n$

14

Conjecture 10. Suppose H is a bipartite graph. For any $\beta > 0$, there is C_0 such that for any M = M(n) such that $\Phi_H \ge C_0 M$, we have

$$\mathbb{P}(\mathsf{H} \not\subset \mathsf{G}(\mathsf{n},\mathsf{M})) \le \beta^{\mathsf{M}}$$
(14)

for all large enough n.

In short: $\mathbb{P}(H \not\subset G(n, M)) = o(1)^M$

- Known for even cycles [Exercise 8⁺⁺ (now); simpler later, after the notion of sparse regularity]
- \circ Known when M is larger

▷ If true Conjecture 10 would have interesting consequences.

Exercise 9: deduce a fault-tolerance result for G(n, M) with respect to H. Estimate $f(n, \eta, H) = \min |E(\Gamma)|$, where Γ ranges over all graphs with the property $\Gamma \rightarrow_{\eta} H$.

Exercise 10: translate the hypothesis $\Phi_H \ge C_0 M$ to something nicer. Suppose |V(H)| > 2. Then let

$$d_2(H) = \frac{|V(E)| - 1}{|V(H)| - 2}.$$
(15)

For $H = K^1$ and $2K^1$ let $d_2(H) = 0$; set $d_2(K^2) = 1/2$. Finally, let

$$m_2(H) = max\{d_2(J) \colon J \subset H\}. \tag{16}$$
 Consider $M_0 = n^{2-1/m_2(H)}.$

Subgraphs in r.gs: large subgraphs

- ▷ Matchings in random bipartite graphs
- ▷ Matchings in random graphs
- ▷ Long paths in random graphs
- ▷ Hamilton cycles in random graphs
- Bounded degree spanning subgraphs in random graphs

Matchings in random bipartite graphs

Theorem 11. Let $p = C(\log n)/n$, where C > 4 is some constant. Then a.e. random bipartite graph G(n, n; p) contains a perfect matching.

Remark 12. For any r > 0, the probability of failure in Theorem 11 is $\leq 1/n^r$ if $C \geq C(r)$ and $n \geq n_0(r)$. For instance, for r = 1, it suffices to take C > 6 (and $n \geq n_0$).

Matchings in random bipartite graphs

Proof of Theorem 11. Let U and W be the vertex classes of G = G(n, n; p). Note that, by Hall's theorem, if there is no perfect matching, then there is a pair (X, Y) with $1 \le |X| \le \lceil n/2 \rceil$, |Y| = n - |X|, and $e(X, Y) = \emptyset$ and either with $X \subset U$ and $Y \subset W$ or else with $X \subset W$ and $Y \subset U$ (in fact, we may even get |Y| = n - |X| + 1). Let us estimate the expected number $\mathbb{E}(Z)$ of such pairs (X, Y). We have

$$\mathbb{E}(Z) = 2 \sum_{1 \le k \le \lceil n/2 \rceil} {n \choose k} {n \choose n-k} (1-p)^{k(n-k)},$$
(17)

which is

$$\leq 2 \sum_{k \geq 1} \left(n^2 e^{-(C/2) \log n} \right)^k = o(1), \tag{18}$$

because C > 4. The result follows.

20

Matchings in random graphs

Theorem 13. Let

$$p = \frac{1}{n} (\log n + c_n). \quad (19)$$
Then

$$\lim_{n \to \infty, n \text{ even}} \mathbb{P}(\nu(G(n, p)) = n/2) = \begin{cases} 0 & \text{if } \lim_{n \to \infty} c_n = -\infty, \\ e^{-e^{-c}} & \text{if } \lim_{n \to \infty} c_n = c \in \mathbb{R}, \\ 1 & \text{if } \lim_{n \to \infty} c_n = \infty. \end{cases}$$

Heuristic (which may be turned precise): leading obstructions are the isolated vertices.

Matchings in random graphs

Let $\{\delta \ge 1\}$ denote the event that the minimum degree is at least 1, and let CONN denote the event that the graph is connected.

Theorem 14. For almost every $\mathbf{G} = (G_t)_{t=0}^N$ with n even, we have $\tau(\mathbf{G}, \text{CONN}) = \tau(\mathbf{G}, \nu = n/2) = \tau(\mathbf{G}, \delta \ge 1).$ (21)

Exercise 11: deduce Theorem 13 from Theorem 14.

Long paths in random graphs

Let $\ell(G)$ denote the length of the longest path in G. We shall sketch the proof of the following.

Theorem 15. For any $\varepsilon > 0$, there is $C = C(\varepsilon)$ such that if p = C/n, then $\ell(G(n, p)) \ge (1 - \varepsilon)n$ almost surely.

▷ Following is true: even if $C = 1 + \epsilon$ and $\epsilon > 0$ is a small constant, we have $\ell(G(n, p)) \ge cn$ for some $c = c(\epsilon) > 0$.

23

Long paths in random graphs

Definition 16. The k-core of a graph G is its unique maximal subgraph with minimum degree at least k (possibly empty). Let us write $core_k(G)$ for the k-core of G.

Lemma 17. For any integer $k \ge 1$ and any real $\varepsilon > 0$, there is $C = C(k, \varepsilon)$ such that if p = C/n, then $|V(core_k(G(n, p)))| \ge (1 - \varepsilon)n$ almost surely.

Proof. Exercise 12.

Recap: expansion and bipartite Pósa

Definition 18 ((b, f)-expansion). Let B = (U, W; E) be a bipartite graph with vertex classes U and W and edge set E. Let positive reals b and f be given. We say that B is (b, f; U)-expanding if, for every $X \subset U$ with $|X| \leq b$, we have $|\Gamma(X)| \geq f|X|$. If B is both (b, f; U)-expanding and (b, f; W)-expanding, we say that B is (b, f)-expanding.

Lemma 19. Let $b \ge 1$ be an integer. If the bipartite graph B is (b, 2)-expanding, then B contains a path P^{4b} on 4b vertices.

Long paths in random graphs

Proof of Theorem 15 (Sketch). Fix an arbitrary constant $\delta > 0$. Choose C = pn large so that the k-core H of G = G(n, p) has at least $(1 - \delta)n$ vertices, where k is some large constant (we shall need $C \gg k$). Split the vertex set of H into two parts U and W maximizing e(U, W). Then every vertex sends at least as many edges to the opposite part as it does to its part. Also, if C is large enough, then |U|, $|W| \ge (1/2 - \delta)n$. Prove that the induced bipartite graph G[U, W] is (b, 2)-expanding, for $b = (1/4 - \delta)n$ (take $k \gg \sqrt{C}$). Apply the bipartite version of Pósa's lemma (Lemma 19). Take δ small enough with respect to ε . [Exercise 13: fill in the details.]

26

Long paths in random graphs

Let circ(G) be the length of the longest cycles in G.

Exercise 14: show that almost surely G(n,p) has $circ(G(n,p)) \ge (1-\epsilon)n$ if $pn \ge C_{\epsilon}$.

Hamilton cycles in random graphs

Theorem 20. Let

$$p = \frac{1}{n} (\log n + \log \log n + c_n). \quad (22)$$
Then

$$\lim_{n \to \infty} \mathbb{P}(G(n, p) \text{ is Hamiltonian}) = \begin{cases} 0 & \text{if } \lim_{n \to \infty} c_n = -\infty, \\ e^{-e^{-c}} & \text{if } \lim_{n \to \infty} c_n = c \in \mathbb{R}, \\ 1 & \text{if } \lim_{n \to \infty} c_n = \infty. \end{cases}$$

 \triangleright Heuristic (which may be turned precise): leading obstructions are vertices of degree < 2.

Hamilton cycles in random graphs

Let $\{\delta \ge 2\}$ denote the event that the minimum degree is at least 2 and let HAM denote the event that the graph is Hamiltonian.

Theorem 21. For almost every $\mathbf{G} = (G_t)_{t=0}^N$, we have $\tau(\mathbf{G}, \mathsf{HAM}) = \tau(\mathbf{G}, \delta \ge 2).$ (24)

Exercise 15: deduce Theorem 20 from Theorem 21.

We shall sketch the proof of a weak version of the results above:

Theorem 22. If $p = C(\log n)/n$ and C is large enough, then G(n,p) is almost surely Hamiltonian.

Path rotation

Definition 23 (Path rotation). Let $P = x_1 \dots x_h$ be an x_1 -path in G: a path beginning at x_1 , which we think of as rooted at x_1 . Suppose $\{x_j, x_h\} \in E(G)$. The rotation of P with pivot x_j is the x_1 -path

$$P' = x_1 x_2 \dots x_{j-1} x_j x_h x_{h-1} \dots x_{j+1},$$
(25)

obtained by removing the edge $\{x_j, x_{j+1}\}$ and adding the edge $\{x_j, x_h\}$.

Definition 24 (Left and right rotation). Let $P = x_1 \dots x_h$ be an x_1 -path. We shall consider x_1 as the left endvertex of P and x_h as the right endvertex of P. A right rotation (resp., left rotation) will be a rotation of P considered as an x_1 -path (resp., x_h -path). Thus, a right rotation preserves the left endvertex and vice-versa.

Pósa's lemma

Definition 25 (Transform). A transform of a path P is a path obtained by applying a sequence of rotations to P. A right transform (resp., left transform) of P is a path obtained by applying a sequence of right rotations (resp., left rotations) to P.

The following subtle lemma is central in Posá's method.

Lemma 26. Let $P = x_1 x_2 \dots x_h$ be a longest x_1 -path in a graph G and let U be the set of right endvertices of the right transforms of P. Set

$$N = \left\{ x_i \colon 1 \le i < h, \{x_{i-1}, x_{i+1}\} \cap U \neq \emptyset \right\}$$
(26)

and $R = V(P) \setminus (U \cup N)$. Then the graph G contains no U–R edge.

Proof. Exercise 16.

Pósa's lemma

Corollary 27. Let $u \ge 1$ be an integer. Suppose a graph G is such that $|U \cup \Gamma(U)| \ge 3|U|$ (27) for all $U \subset V(G)$ with $|U| \le u$. Then G contains a path P^{3u} on 3u vertices. **Proof.** Exercise 17.

Exercise 18: prove Lemma 19.

Pósa's lemma

Lemma 28. Let u and $h \ge 2$ be integers. Suppose G is such that (27) holds for all $U \subset V(G)$ with |U| < u. Suppose further that $\ell(G) = h$ and circ(G) $\le h$. Then there there are $\ge {\binom{u+1}{2}}$ vertex pairs that are not edges of G such that the addition of any of them to G creates a cycle of length h + 1.

Proof. Fix a longest path P, and suppose U is the set of right endvertices of the right transforms of P. By Lemma 26 and (27), we have that $|U| \ge u$. Consider $y_1, \ldots, y_u \in U$, and consider the u right transforms naturally associated with these y_i . Let the set of left endvertices of the left transforms of these u paths be Y_1, \ldots, Y_u . We again have $|Y_i| \ge u$. All the $y_i - Y_i$ pairs are such that their addition creates a cycle of length h + 1.

Hamilton cycles in random graphs

Proof of Theorem 22 (Sketch). It follows from the $(p, e^{3/2}\sqrt{d})$ -bijumbledness of G = G(n, p) that G is expanding enough to guarantee paths of length n - t where $t = \lfloor n/\log \log n \rfloor$, say. (See the proof of Theorem 15.) Now let $q = D(\log n)/n^2$ and consider $G \cup \bigcup_{1 \le i \le t} G(n, q)$: that is, add t independent copies of G(n, q) to G. Let $G_j = G \cup \bigcup_{1 \le i \le j} G(n, q)$ $(0 \le j < t)$. The probability that $\ell(G_j) > \ell(G_{j-1})$ fails is at most, say, $1/n^2$ (choosing D large). The final step is to prove that $G \cup \bigcup_{1 \le i \le t} G(n, q)$ is indeed Hamiltonian. [Exercise 19: fill in the details.]

Hamilton cycles in bipartite random graphs

Problem 20⁺⁺: prove the analogue of Theorem 22 for the random bipartite graph G(n, n; p).

The analogue of Theorem 21 is also known to hold.

A problem of Bollobás: let Q^d be the d-dimensional hypercube.

Problem 29. For which p do we have $Q^d \subset G(2^d,p)$ almost surely $(n=2^d \rightarrow \infty)$?

Theorem 30 (Alon and Füredi 1992). Let $H = H^n$ satisfy $\Delta(H) \leq d$, and $n/(d^2 + 1) \geq N_0$, where N_0 is some suitable absolute constant. Let p = p(n) be such that

$$p^{d}\lfloor n/(d^{2}+1)\rfloor \geq 7\log\lfloor n/(d^{2}+1)\rfloor.$$
(28)

Then G(n,p) fails to contain H with probability $\leq 2d^2(d^2+1)/n$.

Corollary 31. Let p > 1/2. Then a.e. $G(2^d, p)$ contains Q^d as a subgraph. **Proof**. Exercise 21.

Corollary 32. Let $H = H^n$ have $\Delta(H) \leq d$. If $p = C((\log n)/n)^{1/d}$ for some large absolute C, then a.e. G(n,p) contains H as a subgraph.

Proof. Exercise 22 (d is not necessarily a constant).

Remark 33. Let $H = H^n$ be d-regular. Then $\mu = \mathbb{E}(\#\{H \hookrightarrow G(n, p)\}) = n!p^{nd/2}$. If $p = n^{-2/d}$, then $\mu = o(1)$. In particular, almost no $G(2^d, 1/4)$ contains Q^d .

Exercise 23: let L_k be the $k \times k$ square lattice, that is, the graph on the $(i, j) \in [k] \times [k]$ with two such pairs joined by an edge if they differ by 1 in one coordinate. Find p_- such that almost no $G(k^2, p_-)$ contains L_k . Using Theorem 30, find p_+ such that almost every $G(k^2, p_+)$ contains L_k .

Riordan (2000) resolved the spanning hypercube and the spanning lattice problem as follows.

Theorem 34. Let $p = 1/4 + 6(\log d)/d$. Then almost every $G(2^d, p)$ contains a Q^d .

Theorem 35. Let $p \gg 1/k$. Then almost every $G(k^2, p)$ contains L_k .

Open problem 24: the $k \times k$ comb (Kahn). Some partial results known for spanning bounded degree trees.

Proof of Theorem 30 (Sketch). Let us just give the steps of the proof.

- ▷ Apply the theorem of Hajnal and Szemerédi to $H^{\leq 2}$: obtain a partition $V(H) = U_1 \cup \cdots \cup U_D$, where $D = d^2 + 1$, with $U_i = \lfloor n/D \rfloor$ or $\lceil n/D \rceil$ for all i and $\Delta(H[U_i, U_j]) \leq 1$ for all $i \neq j$ (that is, we have at most a matching between U_i and U_j).
- ▷ Partition V(G(n,p)) as $\bigcup_{1 \le i \le D} W_i$ with $|W_i| = |U_i|$ for all i. We embed H into G = G(n,p) by defining bijections $f_i: U_i \to W_i$ for i = 1, ..., D in turn.

Proof of Theorem 30 (Sketch). (Cont'd)

- $\begin{tabular}{ll} \begin{tabular}{ll} & \end{tabular} \\ & \end{tabular} \\ & f_i\colon U_i\to W_i \mbox{ for } i< j \ (1< j\leq D), \mbox{ we define } f_j. \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} & \end{tabular} \\ & \end{tabular} \\ & f_i\colon U_i\to W_i \mbox{ for } i< j \ (1< j\leq D), \mbox{ we define } f_j. \end{tabular} \end{tabular}$
- ▷ Generate the edges in the random bipartite graph $G[\bigcup_{1 \le i \le j} W_i, W_j]$.
- Crucial observation: the probability that the required bijection

$$f_j: U_j \to W_j$$
 (29)

fails to exist is at most the probability that a perfect matching fails to exist in the random bipartite graph $G(U_j, W_j; p^d)$. But this probability is $\leq 1/\lfloor n/D \rfloor$ (recall Remark 12). We need this not to fail D-1 times.

Done! [Exercise 25: fill in the details. In particular, why did we square the graph H?]