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Outline of Lecture II

1. Subgraph containment: small subgraphs (1 − o(1) probability, 1 −

e−Ω(µ) probability, 1 − e−ωµ)

2. Subgraph containment: large (and sparse) subgraphs (matchings,
long paths, Hamilton cycles, bounded degree subgraphs)

3. Subgraph containment with adversary: existence of subgraphs in
colourings and ‘dense’ subgraphs (Ramsey type results and Turán
type results) [mostly won’t get there today]
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Subgraphs in r.gs: small subgraphs

Definition 1 (Density and m(H); balanced graphs). The density d(H) of a
graph H with |V(H)| > 0 is

|E(H)|/|V(H)| (1)

[= (1/2)× average degree]. We also set

m(H) = max{d(J) : J ⊂ H, |V(J)| > 0}. (2)

We say that H is balanced if max in (2) achieved by J = H.

B Simple: E(#{J ↪→ G(n, p)}) = o(1) if p � n−1/d(J), where #{J ↪→
G(n, p)} is the number of embeddings of J into G(n, p). This implies that
almost no G(n, p) contains J for such a p.

B Exercise 1: find nice classes of balanced graphs.
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Subgraphs in r.gs: small subgraphs

Theorem 2. The threshold function for the event {H ⊂ G(n, p)} is p0 =

n−1/m(H).

Proof. We have already seen the 0-statement. Just need to show the 1-
statement. Compute the variance and apply the second moment method.
For the variance, use Var(X) =

∑
(H ′,H ′′) Cov(XH ′, XH ′′), where X =∑

H ′ XH ′ and XH ′ = [H ′ ⊂ G(n, p)] and the sum is over all H ↪→ Kn. Re-
call Cov(X, X ′) = 0 if X and X ′ independent. We have to estimate Var(X) =∑

(H ′,H ′′) Cov(XH ′, XH ′′), where the sum is over overlapping pairs (H ′, H ′′)
of copies of H. [Exercise 2: complete this proof].
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Probability of containment

B If p = p0/ω and ω → ∞, then P(H ⊂ G(n, p)) ≤ 1/ω ′ for some
ω ′ → ∞ polynomially related to ω. In fact, P(H ⊂ G(n, p)) ≤ ΦH =

1/ω ′, where

ΦH = ΦH(n, p) = min{E(#{J ↪→ G(n, p)}) : J ⊂ H, |E(J)| > 0}. (3)

B If p = p0ω and ω → ∞, then, writing X = #{H ↪→ G(n, p)}, we
have P(X = 0) ≤ Var(X)/E(X)2 = 1/ω ′ for some ω ′ → ∞ polynomi-
ally related to ω. In fact, we have Var(X)/E(X)2 = O(1/ΦH) = 1/ω ′.
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Probability of containment

Recall

ΦH = ΦH(n, p) = min{E(#{J ↪→ G(n, p)}) : J ⊂ H, |E(J)| > 0}. (4)

We concluded

1 − ΦH ≤ P(H 6⊂ G(n, p)) = O(1/ΦH). (5)

Can we do better? [Application: Can we approach the problem “G(n, p) →
(K3)v

2?” with the union bound?]

Theorem 3. Suppose |E(H)| > 0. Then, for any p = p(n) < 1, we have

exp
{

−
1

1 − p
ΦH

}
≤ P(H 6⊂ G(n, p)) ≤ exp

{
− Θ(ΦH)

}
. (6)
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An application

B Therefore, can do better! Application: show that if p = Cn−2/3

and C is a large enough constant, then almost every G(n, p) is such that
G(n, p) → (K3)v

2, that is, any colouring of the vertices of G(n, p) with 2

colours necessarily contains a monochromatic K3. [Exercise 3: prove this
statement. Generalize it from K3 to arbitrary graphs H and to more than 2

colours.]
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The FKG inequality

[We just stick to random graphs] Let P1 and P2 be two increasing graph
properties. Let Q1 and Q2 be two decreasing graph properties.

Theorem 4. The following hold:

(i) P(G(n, p) ∈ P1 ∩ P2) ≥ P(G(n, p) ∈ P1)P(G(n, p) ∈ P2)

(ii) P(G(n, p) ∈ Q1 ∩Q2) ≥ P(G(n, p) ∈ Q1)P(G(n, p) ∈ Q2)

(iii) P(G(n, p) ∈ P1 ∩Q2) ≤ P(G(n, p) ∈ P1)P(G(n, p) ∈ Q2)

B Remark: (i) is equivalent to P(G(n, p) ∈ P1 | P2) ≥ P(G(n, p) ∈ P1)
and (iii) is equivalent to P(G(n, p) ∈ P1 | Q2) ≤ P(G(n, p) ∈ P1).

B Exercise 4: How do the probabilities P(G(n, p) is Hamiltonian) and
P(G(n, p) is Hamiltonian | G(n, p) is planar) compare?
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The FKG inequality

Remark 5. In fact, in Theorem 4, one may leave out the hypothesis that
the Pi and the Qi are closed under isomorphism.
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The FKG inequality

We consider the decreasing events {XJ ′ = 0}, where J ′ ranges over all
copies of a J ⊂ H that achieves the minimum in the definition of ΦH

(see (4)): that is, ΦH = E(#{J ↪→ G(n, p)}).

FKG implies that

P(J 6⊂ G(n, p)) = P(XJ ′ = 0 for all J ′) ≥
∏
J ′

P(XJ ′ = 0) =
∏
J ′

(1 − pe(J)).

(7)
Using 1 − x ≥ e−x/(1−x), we get that P(J 6⊂ G(n, p)) is

≥ exp
{

−
1

1 − pe(J)
E(#{J ↪→ G(n, p)})

}
≥ exp

{
−

1

1 − p
ΦH

}
. (8)

This proves the lower bound in Theorem 3.
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Janson’s inequality

[We just stick to random graphs] Let H be fixed. Let X = #{H ↪→ G(n, p)}.
We have X =

∑
H ′ XH ′, where the sum ranges over all copies H ′ of H

in Kn and XH ′ = [H ′ ⊂ G(n, p)]. Set

∆∗ =
∑

(H ′,H ′′)

E(XH ′XH ′′), (9)

where the sum is over all pairs (H ′, H ′′) of copies of H with at least one
common edge. Note that this is very similar to

Var(XH) =
∑

(H ′,H ′′)

E(XH ′XH ′′) − E(XH)E(XH ′′). (10)
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Janson’s inequality

Put µ = E(X) = E(#{H ↪→ G(n, p)}).

Exercise 5: ∆∗ = Θ(µ2/ΦH).

Exercise 6: Var(XH) = Θ(µ2/ΦH) if p is bounded away from 1 (and =

O(µ2/ΦH) always).
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Janson’s inequality

Theorem 6. Let µ = E(XH). Then

P(H 6⊂ G(n, p)) ≤ exp

{
−

µ2

∆∗

}
= exp {−Θ(ΦH)} . (11)

B Got the upper bound in Theorem 3.
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The G(n, M) model

Let us briefly discuss P(H 6⊂ G(n, M)) for small subgraphs H.

B Threshold: n2−1/m(H)

B Analogue of Theorem 3?

◦ Define ΦH = ΦH(n, M) as ΦH(n, p) with p = M/
(
n
2

)
.

◦ The bounds in Theorem 3 cannot be true for all M = M(n): if M <

e(H) and if M > ex(n, H), then we know P(H 6⊂ G(n, p)) quite
precisely!
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The G(n, M) model

Theorem 7. If M ≥ e(H), then

P(H 6⊂ G(n, M)) ≤ exp{−Θ(ΦH)}. (12)

Theorem 8. If H is such that M ≥ cΦH for some suitably small con-
stant c = c(H) > 0, then

P(H 6⊂ G(n, M)) ≥ exp{−Θ(ΦH)}. (13)

Theorem 9. If H is such that M ≥ cΦH for some constant c > 0, and it
is not bipartite and M ≤ c

(
n
2

)
for some constant c < 1 − 1/(χ(H) − 1),

then (13) also holds

Exercise 7+: Prove the above three theorems. Particular interest (and
quick): Theorem 7 when ΦH � logn
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The G(n, M) model

Conjecture 10. Suppose H is a bipartite graph. For any β > 0, there is C0

such that for any M = M(n) such that ΦH ≥ C0M, we have

P(H 6⊂ G(n, M)) ≤ βM (14)

for all large enough n.

In short: P(H 6⊂ G(n, M)) = o(1)M

◦ Known for even cycles [Exercise 8++ (now); simpler later, after the
notion of sparse regularity]

◦ Known when M is larger
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The G(n, M) model

B If true Conjecture 10 would have interesting consequences.

Exercise 9: deduce a fault-tolerance result for G(n, M) with respect to H.
Estimate f(n, η, H) = min |E(Γ)|, where Γ ranges over all graphs with the
property Γ →η H.

Exercise 10: translate the hypothesis ΦH ≥ C0M to something nicer.
Suppose |V(H)| > 2. Then let

d2(H) =
|V(E)| − 1

|V(H)| − 2
. (15)

For H = K1 and 2K1 let d2(H) = 0; set d2(K
2) = 1/2. Finally, let

m2(H) = max{d2(J) : J ⊂ H}. (16)

Consider M0 = n2−1/m2(H).
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Subgraphs in r.gs: large subgraphs

B Matchings in random bipartite graphs

B Matchings in random graphs

B Long paths in random graphs

B Hamilton cycles in random graphs

B Bounded degree spanning subgraphs in random graphs
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Matchings in random bipartite graphs

Theorem 11. Let p = C(logn)/n, where C > 4 is some constant. Then
a.e. random bipartite graph G(n, n; p) contains a perfect matching.

Remark 12. For any r > 0, the probability of failure in Theorem 11 is ≤
1/nr if C ≥ C(r) and n ≥ n0(r). For instance, for r = 1, it suffices to
take C > 6 (and n ≥ n0).
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Matchings in random bipartite graphs

Proof of Theorem 11. Let U and W be the vertex classes of G = G(n, n; p).
Note that, by Hall’s theorem, if there is no perfect matching, then there is a
pair (X, Y) with 1 ≤ |X| ≤ dn/2e, |Y| = n − |X|, and e(X, Y) = ∅ and either
with X ⊂ U and Y ⊂ W or else with X ⊂ W and Y ⊂ U (in fact, we may
even get |Y| = n − |X| + 1). Let us estimate the expected number E(Z) of
such pairs (X, Y). We have

E(Z) = 2
∑

1≤k≤dn/2e

(n

k

)( n

n − k

)
(1 − p)k(n−k), (17)

which is

≤ 2
∑
k≥1

(
n2e−(C/2) logn

)k
= o(1), (18)

because C > 4. The result follows.
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Matchings in random graphs

Theorem 13. Let

p =
1

n
(logn + cn) . (19)

Then

lim
n→∞, n even

P(ν(G(n, p)) = n/2) =


0 if limn cn = −∞,
e−e−c

if limn cn = c ∈ R,
1 if limn cn = ∞.

(20)

B Heuristic (which may be turned precise): leading obstructions are the
isolated vertices.
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Matchings in random graphs

Let {δ ≥ 1} denote the event that the minimum degree is at least 1, and
let CONN denote the event that the graph is connected.

Theorem 14. For almost every G = (Gt)
N
t=0 with n even, we have

τ(G, CONN) = τ(G, ν = n/2) = τ(G, δ ≥ 1). (21)

Exercise 11: deduce Theorem 13 from Theorem 14.
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Long paths in random graphs

Let `(G) denote the length of the longest path in G. We shall sketch the
proof of the following.

Theorem 15. For any ε > 0, there is C = C(ε) such that if p = C/n,
then `(G(n, p)) ≥ (1 − ε)n almost surely.

B Following is true: even if C = 1 + ε and ε > 0 is a small constant, we
have `(G(n, p)) ≥ cn for some c = c(ε) > 0.
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Long paths in random graphs

Definition 16. The k-core of a graph G is its unique maximal subgraph
with minimum degree at least k (possibly empty). Let us write corek(G)

for the k-core of G.

Lemma 17. For any integer k ≥ 1 and any real ε > 0, there is C = C(k, ε)

such that if p = C/n, then |V(corek(G(n, p)))| ≥ (1 − ε)n almost surely.

Proof. Exercise 12.
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Recap: expansion and bipartite Pósa

Definition 18 ((b, f)-expansion). Let B = (U, W; E) be a bipartite graph
with vertex classes U and W and edge set E. Let positive reals b and f be
given. We say that B is (b, f; U)-expanding if, for every X ⊂ U with |X| ≤
b, we have |Γ(X)| ≥ f|X|. If B is both (b, f; U)-expanding and (b, f; W)-
expanding, we say that B is (b, f)-expanding.

Lemma 19. Let b ≥ 1 be an integer. If the bipartite graph B is (b, 2)-
expanding, then B contains a path P4b on 4b vertices.
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Long paths in random graphs

Proof of Theorem 15 (Sketch). Fix an arbitrary constant δ > 0. Choose
C = pn large so that the k-core H of G = G(n, p) has at least (1 − δ)n

vertices, where k is some large constant (we shall need C � k). Split the
vertex set of H into two parts U and W maximizing e(U, W). Then every
vertex sends at least as many edges to the opposite part as it does to its
part. Also, if C is large enough, then |U|, |W| ≥ (1/2 − δ)n. Prove that the
induced bipartite graph G[U, W] is (b, 2)-expanding, for b = (1/4 − δ)n

(take k �
√

C). Apply the bipartite version of Pósa’s lemma (Lemma 19).
Take δ small enough with respect to ε. [Exercise 13: fill in the details.]
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Long paths in random graphs

Let circ(G) be the length of the longest cycles in G.

Exercise 14: show that almost surely G(n, p) has circ(G(n, p)) ≥ (1−ε)n

if pn ≥ Cε.
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Hamilton cycles in random graphs

Theorem 20. Let

p =
1

n
(logn + log logn + cn) . (22)

Then

lim
n→∞ P(G(n, p) is Hamiltonian) =


0 if limn cn = −∞,
e−e−c

if limn cn = c ∈ R,
1 if limn cn = ∞.

(23)

B Heuristic (which may be turned precise): leading obstructions are
vertices of degree < 2.
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Hamilton cycles in random graphs

Let {δ ≥ 2} denote the event that the minimum degree is at least 2 and
let HAM denote the event that the graph is Hamiltonian.

Theorem 21. For almost every G = (Gt)
N
t=0, we have

τ(G, HAM) = τ(G, δ ≥ 2). (24)

Exercise 15: deduce Theorem 20 from Theorem 21.

We shall sketch the proof of a weak version of the results above:

Theorem 22. If p = C(logn)/n and C is large enough, then G(n, p) is
almost surely Hamiltonian.
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Path rotation

Definition 23 (Path rotation). Let P = x1 . . . xh be an x1-path in G: a path
beginning at x1, which we think of as rooted at x1. Suppose {xj, xh} ∈
E(G). The rotation of P with pivot xj is the x1-path

P ′ = x1x2 . . . xj−1xjxhxh−1 . . . xj+1, (25)

obtained by removing the edge {xj, xj+1} and adding the edge {xj, xh}.

Definition 24 (Left and right rotation). Let P = x1 . . . xh be an x1-path. We
shall consider x1 as the left endvertex of P and xh as the right endvertex
of P. A right rotation (resp., left rotation) will be a rotation of P considered
as an x1-path (resp., xh-path). Thus, a right rotation preserves the left
endvertex and vice-versa.
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Pósa’s lemma

Definition 25 (Transform). A transform of a path P is a path obtained by ap-
plying a sequence of rotations to P. A right transform (resp., left transform)
of P is a path obtained by applying a sequence of right rotations (resp., left
rotations) to P.

The following subtle lemma is central in Posá’s method.

Lemma 26. Let P = x1x2 . . . xh be a longest x1-path in a graph G and let U

be the set of right endvertices of the right transforms of P. Set

N =
{
xi : 1 ≤ i < h, {xi−1, xi+1} ∩U 6= ∅

}
(26)

and R = V(P) \ (U ∪N). Then the graph G contains no U–R edge.

Proof. Exercise 16.
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Pósa’s lemma

Corollary 27. Let u ≥ 1 be an integer. Suppose a graph G is such that

|U ∪ Γ(U)| ≥ 3|U| (27)

for all U ⊂ V(G) with |U| ≤ u. Then G contains a path P3u on 3u vertices.

Proof. Exercise 17.

Exercise 18: prove Lemma 19.



Random Graphs II Large subgraphs
32

Pósa’s lemma

Lemma 28. Let u and h ≥ 2 be integers. Suppose G is such that (27)
holds for all U ⊂ V(G) with |U| < u. Suppose further that `(G) = h

and circ(G) ≤ h. Then there there are ≥
(
u+1

2

)
vertex pairs that are not

edges of G such that the addition of any of them to G creates a cycle of
length h + 1.

Proof. Fix a longest path P, and suppose U is the set of right endvertices
of the right transforms of P. By Lemma 26 and (27), we have that |U| ≥ u.
Consider y1, . . . , yu ∈ U, and consider the u right transforms naturally as-
sociated with these yi. Let the set of left endvertices of the left transforms
of these u paths be Y1, . . . , Yu. We again have |Yi| ≥ u. All the yi–Yi pairs
are such that their addition creates a cycle of length h + 1.
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Hamilton cycles in random graphs

Proof of Theorem 22 (Sketch). It follows from the (p, e3/2
√

d)-bijumbled-
ness of G = G(n, p) that G is expanding enough to guarantee paths
of length n − t where t = bn/ log lognc, say. (See the proof of Theo-
rem 15.) Now let q = D(logn)/n2 and consider G∪

⋃
1≤i≤t G(n, q): that

is, add t independent copies of G(n, q) to G. Let Gj = G∪
⋃

1≤i≤j G(n, q)

(0 ≤ j < t). The probability that `(Gj) > `(Gj−1) fails is at most, say, 1/n2

(choosing D large). The final step is to prove that G ∪
⋃

1≤i≤t G(n, q) is
indeed Hamiltonian. [Exercise 19: fill in the details.]
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Hamilton cycles in bipartite random graphs

Problem 20++: prove the analogue of Theorem 22 for the random bipartite
graph G(n, n; p).

The analogue of Theorem 21 is also known to hold.
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Bounded degree spanning subgraphs of random graphs

A problem of Bollobás: let Qd be the d-dimensional hypercube.

Problem 29. For which p do we have Qd ⊂ G(2d, p) almost surely (n =

2d → ∞)?

Theorem 30 (Alon and Füredi 1992). Let H = Hn satisfy ∆(H) ≤ d,
and n/(d2 + 1) ≥ N0, where N0 is some suitable absolute constant.
Let p = p(n) be such that

pdbn/(d2 + 1)c ≥ 7 logbn/(d2 + 1)c. (28)

Then G(n, p) fails to contain H with probability ≤ 2d2(d2 + 1)/n.
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Bounded degree spanning subgraphs of random graphs

Corollary 31. Let p > 1/2. Then a.e. G(2d, p) contains Qd as a subgraph.

Proof. Exercise 21.

Corollary 32. Let H = Hn have ∆(H) ≤ d. If p = C((logn)/n)1/d for
some large absolute C, then a.e. G(n, p) contains H as a subgraph.

Proof. Exercise 22 (d is not necessarily a constant).

Remark 33. Let H = Hn be d-regular. Then µ = E(#{H ↪→ G(n, p)}) =

n!pnd/2. If p = n−2/d, then µ = o(1). In particular, almost no G(2d, 1/4)

contains Qd.
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Bounded degree spanning subgraphs of random graphs

Exercise 23: let Lk be the k × k square lattice, that is, the graph on
the (i, j) ∈ [k]× [k] with two such pairs joined by an edge if they differ by 1

in one coordinate. Find p− such that almost no G(k2, p−) contains Lk.
Using Theorem 30, find p+ such that almost every G(k2, p+) contains Lk.
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Bounded degree spanning subgraphs of random graphs

Riordan (2000) resolved the spanning hypercube and the spanning lattice
problem as follows.

Theorem 34. Let p = 1/4 + 6(logd)/d. Then almost every G(2d, p) con-
tains a Qd.

Theorem 35. Let p � 1/k. Then almost every G(k2, p) contains Lk.

Open problem 24: the k×k comb (Kahn). Some partial results known for
spanning bounded degree trees.
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Bounded degree spanning subgraphs of random graphs

Proof of Theorem 30 (Sketch). Let us just give the steps of the proof.

B Apply the theorem of Hajnal and Szemerédi to H≤2: obtain a parti-
tion V(H) = U1 ∪ · · · ∪ UD, where D = d2 + 1, with Ui = bn/Dc
or dn/De for all i and ∆(H[Ui, Uj]) ≤ 1 for all i 6= j (that is, we have
at most a matching between Ui and Uj).

B Partition V(G(n, p)) as
⋃

1≤i≤D Wi with |Wi| = |Ui| for all i. We em-
bed H into G = G(n, p) by defining bijections fi : Ui → Wi for i =

1, . . . , D in turn.
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Bounded degree spanning subgraphs of random graphs

Proof of Theorem 30 (Sketch). (Cont’d)

B Take any bijection for f1 : U1 → W1. Having suceeded in defining
fi : Ui → Wi for i < j (1 < j ≤ D), we define fj.

B Generate the edges in the random bipartite graph G[
⋃

1≤i<j Wi, Wj].

B Crucial observation: the probability that the required bijection

fj : Uj → Wj (29)

fails to exist is at most the probability that a perfect matching fails to
exist in the random bipartite graph G(Uj, Wj; p

d). But this probability
is ≤ 1/bn/Dc (recall Remark 12). We need this not to fail D−1 times.

B Done! [Exercise 25: fill in the details. In particular, why did we square
the graph H?]


