Random Graphs II

Y. Kohayakawa (São Paulo)

Chorin, 2 August 2006

Outline of Lecture II

1. Subgraph containment: small subgraphs (1-o(1) probability, $1-$ $e^{-\Omega(\mu)}$ probability, $\left.1-e^{-\omega \mu}\right)$
2. Subgraph containment: large (and sparse) subgraphs (matchings, long paths, Hamilton cycles, bounded degree subgraphs)
3. Subgraph containment with adversary: existence of subgraphs in colourings and 'dense' subgraphs (Ramsey type results and Turán type results) [mostly won't get there today]

Subgraphs in r.gs: small subgraphs

Definition 1 (Density and $m(H)$; balanced graphs). The density $\mathrm{d}(\mathrm{H})$ of a graph H with $|\mathrm{V}(\mathrm{H})|>0$ is

$$
\begin{equation*}
|\mathrm{E}(\mathrm{H})| / / \mathrm{V}(\mathrm{H}) \mid \tag{1}
\end{equation*}
$$

[= (1/2) \times average degree]. We also set

$$
\begin{equation*}
m(H)=\max \{d(J): J \subset H,|V(J)|>0\} . \tag{2}
\end{equation*}
$$

We say that H is balanced if max in (2) achieved by $\mathrm{J}=\mathrm{H}$.
\triangleright Simple: $\mathbb{E}(\#\{\mathrm{~J} \hookrightarrow \mathrm{G}(\mathrm{n}, \mathfrak{p})\})=\mathrm{o}(1)$ if $\mathrm{p} \ll \mathrm{n}^{-1 / \mathrm{d}(\mathrm{J})}$, where $\#\{\mathrm{~J} \hookrightarrow$ $\mathrm{G}(\mathrm{n}, \mathrm{p})\}$ is the number of embeddings of J into $\mathrm{G}(\mathrm{n}, \mathrm{p})$. This implies that almost no $G(n, p)$ contains J for such a p.
\triangleright Exercise 1: find nice classes of balanced graphs.

Subgraphs in r.gs: small subgraphs

Theorem 2. The threshold function for the event $\{\mathrm{H} \subset \mathrm{G}(\mathrm{n}, \mathrm{p})\}$ is $\mathrm{p}_{0}=$ $\mathrm{n}^{-1 / m(H)}$.

Proof. We have already seen the 0 -statement. Just need to show the 1 statement. Compute the variance and apply the second moment method. For the variance, use $\operatorname{Var}(\mathrm{X})=\sum_{\left(\mathrm{H}^{\prime}, \mathrm{H}^{\prime \prime}\right)} \operatorname{Cov}\left(\mathrm{X}_{\mathrm{H}^{\prime}}, \mathrm{X}_{\mathrm{H}^{\prime \prime}}\right)$, where $\mathrm{X}=$ $\sum_{H^{\prime}} X_{H^{\prime}}$ and $X_{H^{\prime}}=\left[H^{\prime} \subset G(n, p)\right]$ and the sum is over all $H \hookrightarrow K^{n}$. Recall $\operatorname{Cov}\left(X, X^{\prime}\right)=0$ if X and X^{\prime} independent. We have to estimate $\operatorname{Var}(X)=$ $\sum_{\left(\mathrm{H}^{\prime}, \mathrm{H}^{\prime \prime}\right)} \operatorname{Cov}\left(\mathrm{X}_{\mathrm{H}^{\prime}}, \mathrm{X}_{\mathrm{H}^{\prime \prime}}\right)$, where the sum is over overlapping pairs $\left(\mathrm{H}^{\prime}, \mathrm{H}^{\prime \prime}\right)$ of copies of H . [Exercise 2: complete this proof].

Probability of containment

\triangleright If $p=p_{0} / \omega$ and $\omega \rightarrow \infty$, then $\mathbb{P}(H \subset G(n, p)) \leq 1 / \omega^{\prime}$ for some $\omega^{\prime} \rightarrow \infty$ polynomially related to ω. In fact, $\mathbb{P}(\mathrm{H} \subset \mathrm{G}(\mathrm{n}, \mathrm{p})) \leq \Phi_{\mathrm{H}}=$ $1 / \omega^{\prime}$, where

$$
\begin{equation*}
\Phi_{\mathrm{H}}=\Phi_{\mathrm{H}}(\mathrm{n}, \mathrm{p})=\min \{\mathbb{E}(\#\{\mathrm{~J} \hookrightarrow \mathrm{G}(\mathrm{n}, \mathrm{p})\}): \mathrm{J} \subset \mathrm{H},|\mathrm{E}(\mathrm{~J})|>0\} . \tag{3}
\end{equation*}
$$

\triangleright If $p=p_{0} \omega$ and $\omega \rightarrow \infty$, then, writing $X=\#\{\mathrm{H} \hookrightarrow \mathrm{G}(\mathrm{n}, \mathrm{p})\}$, we have $\mathbb{P}(X=0) \leq \operatorname{Var}(X) / \mathbb{E}(X)^{2}=1 / \omega^{\prime}$ for some $\omega^{\prime} \rightarrow \infty$ polynomially related to ω. In fact, we have $\operatorname{Var}(\mathrm{X}) / \mathbb{E}(\mathrm{X})^{2}=\mathrm{O}\left(1 / \Phi_{\mathrm{H}}\right)=1 / \omega^{\prime}$.

Probability of containment

Recall

$$
\begin{equation*}
\Phi_{\mathrm{H}}=\Phi_{\mathrm{H}}(\mathrm{n}, \mathrm{p})=\min \{\mathbb{E}(\#\{\mathrm{~J} \hookrightarrow \mathrm{G}(\mathrm{n}, \mathrm{p})\}): \mathrm{J} \subset \mathrm{H},|\mathrm{E}(\mathrm{~J})|>0\} . \tag{4}
\end{equation*}
$$

We concluded

$$
\begin{equation*}
1-\Phi_{\mathrm{H}} \leq \mathbb{P}(\mathrm{H} \not \subset \mathrm{G}(\mathrm{n}, \mathrm{p}))=\mathrm{O}\left(1 / \Phi_{\mathrm{H}}\right) . \tag{5}
\end{equation*}
$$

Can we do better? [Application: Can we approach the problem " $\mathrm{G}(\mathrm{n}, \mathrm{p}) \rightarrow$ $\left(K^{3}\right)_{2}^{\vee}$?" with the union bound?]

Theorem 3. Suppose $|E(H)|>0$. Then, for any $p=p(n)<1$, we have

$$
\begin{equation*}
\exp \left\{-\frac{1}{1-\mathrm{p}} \Phi_{\mathrm{H}}\right\} \leq \mathbb{P}(\mathrm{H} \not \subset \mathrm{G}(\mathrm{n}, \mathrm{p})) \leq \exp \left\{-\Theta\left(\Phi_{H}\right)\right\} . \tag{6}
\end{equation*}
$$

An application

\triangleright Therefore, can do better! Application: show that if $p=\mathrm{Cn}^{-2 / 3}$ and C is a large enough constant, then almost every $\mathrm{G}(\mathrm{n}, \mathrm{p})$ is such that $\mathrm{G}(\mathrm{n}, \mathrm{p}) \rightarrow\left(\mathrm{K}^{3}\right)_{2}^{v}$, that is, any colouring of the vertices of $\mathrm{G}(\mathrm{n}, \mathrm{p})$ with 2 colours necessarily contains a monochromatic K^{3}. [Exercise 3: prove this statement. Generalize it from K^{3} to arbitrary graphs H and to more than 2 colours.]

The FKG inequality

[We just stick to random graphs] Let \mathcal{P}_{1} and \mathcal{P}_{2} be two increasing graph properties. Let \mathcal{Q}_{1} and \mathcal{Q}_{2} be two decreasing graph properties.

Theorem 4. The following hold:
(i) $\mathbb{P}\left(\mathrm{G}(\mathrm{n}, \mathrm{p}) \in \mathcal{P}_{1} \cap \mathcal{P}_{2}\right) \geq \mathbb{P}\left(\mathrm{G}(\mathrm{n}, \mathrm{p}) \in \mathcal{P}_{1}\right) \mathbb{P}\left(\mathrm{G}(\mathrm{n}, \mathrm{p}) \in \mathcal{P}_{2}\right)$
(ii) $\mathbb{P}\left(\mathrm{G}(\mathrm{n}, \mathrm{p}) \in \mathcal{Q}_{1} \cap \mathcal{Q}_{2}\right) \geq \mathbb{P}\left(\mathrm{G}(\mathrm{n}, \mathrm{p}) \in \mathcal{Q}_{1}\right) \mathbb{P}\left(\mathrm{G}(\mathrm{n}, \mathrm{p}) \in \mathcal{Q}_{2}\right)$
(iii) $\mathbb{P}\left(G(n, p) \in \mathcal{P}_{1} \cap \mathcal{Q}_{2}\right) \leq \mathbb{P}\left(G(n, p) \in \mathcal{P}_{1}\right) \mathbb{P}\left(G(n, p) \in \mathcal{Q}_{2}\right)$
\triangleright Remark: (i) is equivalent to $\mathbb{P}\left(\mathrm{G}(\mathrm{n}, \mathrm{p}) \in \mathcal{P}_{1} \mid \mathcal{P}_{2}\right) \geq \mathbb{P}\left(\mathrm{G}(\mathrm{n}, \mathrm{p}) \in \mathcal{P}_{1}\right)$ and (iii) is equivalent to $\mathbb{P}\left(G(n, p) \in \mathcal{P}_{1} \mid \mathcal{Q}_{2}\right) \leq \mathbb{P}\left(G(n, p) \in \mathcal{P}_{1}\right)$.
\triangleright Exercise 4: How do the probabilities $\mathbb{P}(G(n, p)$ is Hamiltonian) and $\mathbb{P}(G(n, p)$ is Hamiltonian | $G(n, p)$ is planar) compare?

The FKG inequality

Remark 5. In fact, in Theorem 4, one may leave out the hypothesis that the $\mathcal{P}_{\mathfrak{i}}$ and the $\mathcal{Q}_{\mathfrak{i}}$ are closed under isomorphism.

The FKG inequality

We consider the decreasing events $\left\{\mathrm{X}_{\mathrm{J}^{\prime}}=0\right\}$, where J^{\prime} ranges over all copies of a $\mathrm{J} \subset \mathrm{H}$ that achieves the minimum in the definition of Φ_{H} (see (4)): that is, $\Phi_{\mathrm{H}}=\mathbb{E}(\#\{J \hookrightarrow \mathrm{G}(\mathrm{n}, \mathrm{p})\})$.

FKG implies that

$$
\begin{equation*}
\mathbb{P}(\mathrm{J} \not \subset \mathrm{G}(\mathrm{n}, \mathrm{p}))=\mathbb{P}\left(X_{\mathrm{J}^{\prime}}=0 \text { for all } \mathrm{J}^{\prime}\right) \geq \prod_{\mathrm{J}^{\prime}} \mathbb{P}\left(X_{\mathrm{J}^{\prime}}=0\right)=\prod_{\mathrm{J}^{\prime}}\left(1-\mathrm{p}^{e(\mathrm{~J})}\right) . \tag{7}
\end{equation*}
$$

Using $1-x \geq e^{-x /(1-x)}$, we get that $\mathbb{P}(J \not \subset G(n, p))$ is

$$
\begin{equation*}
\geq \exp \left\{-\frac{1}{1-p^{e(J)}} \mathbb{E}(\#\{J \hookrightarrow G(n, p)\})\right\} \geq \exp \left\{-\frac{1}{1-p} \Phi_{H}\right\} . \tag{8}
\end{equation*}
$$

This proves the lower bound in Theorem 3.

Janson's inequality

[We just stick to random graphs] Let H be fixed. Let $\mathrm{X}=\#\{\mathrm{H} \hookrightarrow \mathrm{G}(\mathrm{n}, \mathrm{p})\}$. We have $\mathrm{X}=\sum_{H^{\prime}} X_{H^{\prime}}$, where the sum ranges over all copies H^{\prime} of H in K^{n} and $X_{H^{\prime}}=\left[H^{\prime} \subset G(n, p)\right]$. Set

$$
\begin{equation*}
\Delta^{*}=\sum_{\left(\mathrm{H}^{\prime}, \mathrm{H}^{\prime \prime}\right)} \mathbb{E}\left(\mathrm{X}_{\mathrm{H}^{\prime}} \mathrm{X}_{\mathrm{H}^{\prime \prime}}\right) \tag{9}
\end{equation*}
$$

where the sum is over all pairs $\left(\mathrm{H}^{\prime}, \mathrm{H}^{\prime \prime}\right)$ of copies of H with at least one common edge. Note that this is very similar to

$$
\begin{equation*}
\operatorname{Var}\left(\mathrm{X}_{\mathrm{H}}\right)=\sum_{\left(\mathrm{H}^{\prime}, \mathrm{H}^{\prime \prime}\right)} \mathbb{E}\left(\mathrm{X}_{\mathrm{H}^{\prime}} \mathrm{X}_{\mathrm{H}^{\prime \prime}}\right)-\mathbb{E}\left(\mathrm{X}_{\mathrm{H}}\right) \mathbb{E}\left(\mathrm{X}_{\mathrm{H}^{\prime \prime}}\right) \tag{10}
\end{equation*}
$$

Janson’s inequality

Put $\mu=\mathbb{E}(X)=\mathbb{E}(\#\{\mathrm{H} \hookrightarrow \mathrm{G}(\mathrm{n}, \mathrm{p})\})$.
Exercise 5: $\Delta^{*}=\Theta\left(\mu^{2} / \Phi_{H}\right)$.

Exercise 6: $\operatorname{Var}\left(\mathrm{X}_{\mathrm{H}}\right)=\Theta\left(\mu^{2} / \Phi_{\mathrm{H}}\right)$ if p is bounded away from 1 (and $=$ $\mathrm{O}\left(\mu^{2} / \Phi_{\mathrm{H}}\right)$ always $)$.

Janson's inequality

Theorem 6. Let $\mu=\mathbb{E}\left(X_{H}\right)$. Then

$$
\begin{equation*}
\mathbb{P}(\mathrm{H} \not \subset \mathrm{G}(\mathrm{n}, \mathrm{p})) \leq \exp \left\{-\frac{\mu^{2}}{\Delta^{*}}\right\}=\exp \left\{-\Theta\left(\Phi_{H}\right)\right\} . \tag{11}
\end{equation*}
$$

\triangleright Got the upper bound in Theorem 3.

The $G(n, M)$ model

Let us briefly discuss $\mathbb{P}(\mathrm{H} \not \subset \mathrm{G}(n, M))$ for small subgraphs H.
\triangleright Threshold: $\mathrm{n}^{2-1 / m(H)}$
\triangleright Analogue of Theorem 3?

- Define $\Phi_{H}=\Phi_{H}(n, M)$ as $\Phi_{H}(n, p)$ with $p=M /\binom{n}{2}$.
- The bounds in Theorem 3 cannot be true for all $M=M(n)$: if $M<$ $e(H)$ and if $M>e x(n, H)$, then we know $\mathbb{P}(H \not \subset G(n, p))$ quite precisely!

The $G(n, M)$ model

Theorem 7. If $M \geq e(H)$, then

$$
\begin{equation*}
\mathbb{P}(\mathrm{H} \not \subset \mathrm{G}(\mathrm{n}, \mathrm{M})) \leq \exp \left\{-\Theta\left(\Phi_{\mathrm{H}}\right)\right\} . \tag{12}
\end{equation*}
$$

Theorem 8. If H is such that $\mathrm{M} \geq \mathrm{c} \Phi_{\mathrm{H}}$ for some suitably small constant $\mathrm{c}=\mathrm{c}(\mathrm{H})>0$, then

$$
\begin{equation*}
\mathbb{P}(\mathrm{H} \not \subset \mathrm{G}(\mathrm{n}, \mathrm{M})) \geq \exp \left\{-\Theta\left(\Phi_{\mathrm{H}}\right)\right\} . \tag{13}
\end{equation*}
$$

Theorem 9. If H is such that $\mathrm{M} \geq \mathrm{c} \Phi_{\mathrm{H}}$ for some constant $\mathrm{c}>0$, and it is not bipartite and $M \leq c\binom{n}{2}$ for some constant $c<1-1 /(\chi(H)-1)$, then (13) also holds
Exercise 7^{+}: Prove the above three theorems. Particular interest (and quick): Theorem 7 when $\Phi_{\mathrm{H}} \gg \log n$

The $G(n, M)$ model

Conjecture 10. Suppose H is a bipartite graph. For any $\beta>0$, there is C_{0} such that for any $M=M(n)$ such that $\Phi_{H} \geq C_{0} M$, we have

$$
\begin{equation*}
\mathbb{P}(H \not \subset G(n, M)) \leq \beta^{M} \tag{14}
\end{equation*}
$$

for all large enough n.
In short: $\mathbb{P}(\mathrm{H} \not \subset \mathrm{G}(\mathrm{n}, \mathrm{M}))=\mathrm{o}(1)^{\mathrm{M}}$

- Known for even cycles [Exercise 8^{++}(now); simpler later, after the notion of sparse regularity]
- Known when M is larger

The $G(n, M)$ model

\triangleright If true Conjecture 10 would have interesting consequences.
Exercise 9: deduce a fault-tolerance result for $G(n, M)$ with respect to H. Estimate $\mathrm{f}(\mathrm{n}, \eta, \mathrm{H})=\min |\mathrm{E}(\Gamma)|$, where Γ ranges over all graphs with the property $\Gamma \rightarrow_{\eta} H$.

Exercise 10: translate the hypothesis $\Phi_{\mathrm{H}} \geq \mathrm{C}_{0} M$ to something nicer. Suppose $|\mathrm{V}(\mathrm{H})|>2$. Then let

$$
\begin{equation*}
\mathrm{d}_{2}(\mathrm{H})=\frac{|\mathrm{V}(\mathrm{E})|-1}{|\mathrm{~V}(\mathrm{H})|-2} \tag{15}
\end{equation*}
$$

For $H=K^{1}$ and $2 K^{1}$ let $d_{2}(H)=0$; set $d_{2}\left(K^{2}\right)=1 / 2$. Finally, let

$$
\begin{equation*}
m_{2}(H)=\max \left\{d_{2}(J): J \subset H\right\} \tag{16}
\end{equation*}
$$

Consider $M_{0}=n^{2-1 / m_{2}(H)}$.

Subgraphs in r.gs: large subgraphs

\triangleright Matchings in random bipartite graphs
\triangleright Matchings in random graphs
\triangleright Long paths in random graphs
\triangleright Hamilton cycles in random graphs
\triangleright Bounded degree spanning subgraphs in random graphs

Matchings in random bipartite graphs

Theorem 11. Let $p=C(\log n) / n$, where $C>4$ is some constant. Then a.e. random bipartite graph $\mathrm{G}(\mathrm{n}, \mathrm{n} ; \mathfrak{p})$ contains a perfect matching.

Remark 12. For any $r>0$, the probability of failure in Theorem 11 is \leq $1 / n^{r}$ if $C \geq C(r)$ and $n \geq n_{0}(r)$. For instance, for $r=1$, it suffices to take $C>6$ (and $\left.n \geq n_{0}\right)$.

Matchings in random bipartite graphs

Proof of Theorem 11. Let U and W be the vertex classes of $G=G(n, n ; p)$. Note that, by Hall's theorem, if there is no perfect matching, then there is a pair (X, Y) with $1 \leq|X| \leq\lceil n / 2\rceil,|Y|=n-|X|$, and $e(X, Y)=\emptyset$ and either with $X \subset U$ and $Y \subset W$ or else with $X \subset W$ and $Y \subset U$ (in fact, we may even get $|Y|=n-|X|+1$). Let us estimate the expected number $\mathbb{E}(Z)$ of such pairs (X, Y). We have

$$
\begin{equation*}
\mathbb{E}(Z)=2 \sum_{1 \leq k \leq\lceil n / 2\rceil}\binom{n}{k}\binom{n}{n-k}(1-p)^{k(n-k)}, \tag{17}
\end{equation*}
$$

which is

$$
\begin{equation*}
\leq 2 \sum_{k \geq 1}\left(n^{2} e^{-(C / 2) \log n}\right)^{k}=o(1) \tag{18}
\end{equation*}
$$

because $C>4$. The result follows.

Matchings in random graphs

Theorem 13. Let

$$
\begin{equation*}
p=\frac{1}{n}\left(\log n+c_{n}\right) \tag{19}
\end{equation*}
$$

Then

$$
\lim _{n \rightarrow \infty, n} \text { even } \mathbb{P}(v(G(n, p))=n / 2)= \begin{cases}0 & \text { if } \lim _{n} c_{n}=-\infty \tag{20}\\ e^{-e^{-c}} & \text { if } \lim _{n} c_{n}=c \in \mathbb{R} \\ 1 & \text { if } \lim _{n} c_{n}=\infty\end{cases}
$$

\triangleright Heuristic (which may be turned precise): leading obstructions are the isolated vertices.

Matchings in random graphs

Let $\{\delta \geq 1\}$ denote the event that the minimum degree is at least 1 , and let CONN denote the event that the graph is connected.

Theorem 14. For almost every $\mathbf{G}=\left(\mathrm{G}_{\mathrm{t}}\right)_{\mathrm{t}=0}^{\mathrm{N}}$ with n even, we have

$$
\begin{equation*}
\tau(\mathbf{G}, \mathrm{CONN})=\tau(\mathbf{G}, v=\mathrm{n} / 2)=\tau(\mathbf{G}, \delta \geq 1) \tag{21}
\end{equation*}
$$

Exercise 11: deduce Theorem 13 from Theorem 14.

Long paths in random graphs

Let $\ell(G)$ denote the length of the longest path in G. We shall sketch the proof of the following.

Theorem 15. For any $\varepsilon>0$, there is $C=C(\varepsilon)$ such that if $p=C / n$, then $\ell(\mathrm{G}(\mathrm{n}, \mathrm{p})) \geq(1-\varepsilon) \mathrm{n}$ almost surely.
\triangleright Following is true: even if $C=1+\varepsilon$ and $\varepsilon>0$ is a small constant, we have $\ell(\mathrm{G}(\mathrm{n}, \mathrm{p})) \geq \mathrm{cn}$ for some $\mathrm{c}=\mathrm{c}(\varepsilon)>0$.

Long paths in random graphs

Definition 16. The k-core of a graph G is its unique maximal subgraph with minimum degree at least k (possibly empty). Let us write core $_{\mathrm{k}}(\mathrm{G})$ for the k-core of G .

Lemma 17. For any integer $k \geq 1$ and any real $\varepsilon>0$, there is $C=C(k, \varepsilon)$ such that if $p=C / n$, then $\left|V\left(\operatorname{core}_{k}(G(n, p))\right)\right| \geq(1-\varepsilon) n$ almost surely.

[^0]
Recap: expansion and bipartite Pósa

Definition 18 ((b, f)-expansion). Let $\mathrm{B}=(\mathrm{U}, \mathrm{W} ; \mathrm{E})$ be a bipartite graph with vertex classes U and W and edge set E . Let positive reals b and f be given. We say that B is $(\mathrm{b}, \mathrm{f} ; \mathrm{U})$-expanding if, for every $\mathrm{X} \subset \mathrm{U}$ with $|\mathrm{X}| \leq$ b , we have $|\Gamma(\mathrm{X})| \geq \mathrm{f}|\mathrm{X}|$. If B is both $(\mathrm{b}, \mathrm{f} ; \mathrm{U})$-expanding and $(\mathrm{b}, \mathrm{f} ; \mathrm{W})$ expanding, we say that B is (b, f)-expanding.

Lemma 19. Let $\mathrm{b} \geq 1$ be an integer. If the bipartite graph B is ($\mathrm{b}, 2$)expanding, then B contains a path $\mathrm{P}^{4 \mathrm{~b}}$ on 4 b vertices.

Long paths in random graphs

Proof of Theorem 15 (Sketch). Fix an arbitrary constant $\delta>0$. Choose $C=p n$ large so that the k-core H of $G=G(n, p)$ has at least $(1-\delta) n$ vertices, where k is some large constant (we shall need $C \gg k$). Split the vertex set of H into two parts U and W maximizing e (U, W). Then every vertex sends at least as many edges to the opposite part as it does to its part. Also, if C is large enough, then $|\mathrm{U}|,|\mathrm{W}| \geq(1 / 2-\delta) n$. Prove that the induced bipartite graph $G[U, W]$ is $(b, 2)$-expanding, for $b=(1 / 4-\delta) n$ (take $k \gg \sqrt{C}$). Apply the bipartite version of Pósa's lemma (Lemma 19). Take δ small enough with respect to ε. [Exercise 13: fill in the details.]

Long paths in random graphs

Let circ(G) be the length of the longest cycles in G.

Exercise 14: show that almost surely $G(n, p)$ has $\operatorname{circ}(G(n, p)) \geq(1-\varepsilon) n$ if $p n \geq C_{\varepsilon}$.

Hamilton cycles in random graphs

Theorem 20. Let

$$
\begin{equation*}
p=\frac{1}{n}\left(\log n+\log \log n+c_{n}\right) \tag{22}
\end{equation*}
$$

Then

$$
\lim _{n \rightarrow \infty} \mathbb{P}(G(n, p) \text { is Hamiltonian })= \begin{cases}0 & \text { if } \lim _{n} c_{n}=-\infty \tag{23}\\ e^{-e^{-c}} & \text { if } \lim _{n} c_{n}=c \in \mathbb{R} \\ 1 & \text { if } \lim _{n} c_{n}=\infty\end{cases}
$$

\triangleright Heuristic (which may be turned precise): leading obstructions are vertices of degree <2.

Hamilton cycles in random graphs

Let $\{\delta \geq 2\}$ denote the event that the minimum degree is at least 2 and let HAM denote the event that the graph is Hamiltonian.

Theorem 21. For almost every $\mathbf{G}=\left(\mathrm{G}_{\mathrm{t}}\right)_{\mathrm{t}=0}^{\mathrm{N}}$, we have

$$
\begin{equation*}
\tau(\mathbf{G}, \mathrm{HAM})=\tau(\mathbf{G}, \delta \geq 2) . \tag{24}
\end{equation*}
$$

Exercise 15: deduce Theorem 20 from Theorem 21.

We shall sketch the proof of a weak version of the results above:

Theorem 22. If $p=C(\log n) / n$ and C is large enough, then $G(n, p)$ is almost surely Hamiltonian.

Path rotation

Definition 23 (Path rotation). Let $\mathrm{P}=\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{h}}$ be an x_{1}-path in G : a path beginning at x_{1}, which we think of as rooted at x_{1}. Suppose $\left\{x_{j}, x_{h}\right\} \in$ $\mathrm{E}(\mathrm{G})$. The rotation of P with pivot x_{j} is the x_{1}-path

$$
\begin{equation*}
P^{\prime}=x_{1} x_{2} \ldots x_{j-1} x_{j} x_{h} x_{h-1} \ldots x_{j+1} \tag{25}
\end{equation*}
$$

obtained by removing the edge $\left\{x_{j}, x_{j+1}\right\}$ and adding the edge $\left\{x_{j}, x_{h}\right\}$.
Definition 24 (Left and right rotation). Let $\mathrm{P}=\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{h}}$ be an x_{1}-path. We shall consider x_{1} as the left endvertex of P and x_{h} as the right endvertex of P . A right rotation (resp., left rotation) will be a rotation of P considered as an x_{1}-path (resp., x_{h}-path). Thus, a right rotation preserves the left endvertex and vice-versa.

Pósa’s lemma

Definition 25 (Transform). A transform of a path P is a path obtained by applying a sequence of rotations to P . A right transform (resp., left transform) of P is a path obtained by applying a sequence of right rotations (resp., left rotations) to P .

The following subtle lemma is central in Posá's method.

Lemma 26. Let $\mathrm{P}=\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{h}}$ be a longest x_{1}-path in a graph G and let U be the set of right endvertices of the right transforms of P . Set

$$
\begin{equation*}
N=\left\{x_{i}: 1 \leq i<h,\left\{x_{i-1}, x_{i+1}\right\} \cap U \neq \emptyset\right\} \tag{26}
\end{equation*}
$$

and $\mathrm{R}=\mathrm{V}(\mathrm{P}) \backslash(\mathrm{U} \cup \mathrm{N})$. Then the graph G contains no $\mathrm{U}-\mathrm{R}$ edge.
Proof. Exercise 16.

Pósa’s lemma

Corollary 27. Let $\mathfrak{u} \geq 1$ be an integer. Suppose a graph G is such that

$$
\begin{equation*}
|\mathrm{U} \cup \Gamma(\mathrm{U})| \geq 3|\mathrm{U}| \tag{27}
\end{equation*}
$$

for all $\mathrm{U} \subset \mathrm{V}(\mathrm{G})$ with $|\mathrm{U}| \leq \mathrm{u}$. Then G contains a path $\mathrm{P}^{3 \mathrm{u}}$ on 3 u vertices.
Proof. Exercise 17.

Exercise 18: prove Lemma 19.

Pósa’s lemma

Lemma 28. Let u and $h \geq 2$ be integers. Suppose G is such that (27) holds for all $\mathrm{U} \subset \mathrm{V}(\mathrm{G})$ with $|\mathrm{U}|<\mathrm{u}$. Suppose further that $\ell(\mathrm{G})=\mathrm{h}$ and $\operatorname{circ}(\mathrm{G}) \leq h$. Then there there are $\geq\binom{\mathfrak{u}+1}{2}$ vertex pairs that are not edges of G such that the addition of any of them to G creates a cycle of length $\mathrm{h}+1$.

Proof. Fix a longest path P, and suppose U is the set of right endvertices of the right transforms of P. By Lemma 26 and (27), we have that $|u| \geq u$. Consider $y_{1}, \ldots, y_{u} \in U$, and consider the u right transforms naturally associated with these y_{i}. Let the set of left endvertices of the left transforms of these u paths be Y_{1}, \ldots, Y_{u}. We again have $\left|Y_{i}\right| \geq u$. All the $y_{i}-Y_{i}$ pairs are such that their addition creates a cycle of length $h+1$.

Hamilton cycles in random graphs

Proof of Theorem 22 (Sketch). It follows from the ($p, e^{3 / 2} \sqrt{d}$)-bijumbledness of $G=G(n, p)$ that G is expanding enough to guarantee paths of length $n-t$ where $t=\lfloor n / \log \log n\rfloor$, say. (See the proof of Theorem 15.) Now let $q=D(\log n) / n^{2}$ and consider $G \cup \cup_{1 \leq i \leq t} G(n, q)$: that is, add t independent copies of $G(n, q)$ to G. Let $G_{j}=G \cup \cup_{1 \leq i \leq j} G(n, q)$ $(0 \leq j<t)$. The probability that $\ell\left(G_{j}\right)>\ell\left(G_{j-1}\right)$ fails is at most, say, $1 / n^{2}$ (choosing D large). The final step is to prove that $G \cup \cup_{1 \leq i \leq t} G(n, q)$ is indeed Hamiltonian. [Exercise 19: fill in the details.]

Hamilton cycles in bipartite random graphs

Problem 20^{++}: prove the analogue of Theorem 22 for the random bipartite graph $G(n, n ; p)$.

The analogue of Theorem 21 is also known to hold.

Bounded degree spanning subgraphs of random graphs

A problem of Bollobás: let Q^{d} be the d-dimensional hypercube.

Problem 29. For which p do we have $\mathrm{Q}^{\mathrm{d}} \subset \mathrm{G}\left(2^{\mathrm{d}}, \mathrm{p}\right)$ almost surely ($\mathrm{n}=$ $2^{\mathrm{d}} \rightarrow \infty$)?

Theorem 30 (Alon and Füredi 1992). Let $\mathrm{H}=\mathrm{H}^{n}$ satisfy $\Delta(\mathrm{H}) \leq \mathrm{d}$, and $n /\left(\mathrm{d}^{2}+1\right) \geq \mathrm{N}_{0}$, where N_{0} is some suitable absolute constant. Let $\mathrm{p}=\mathrm{p}(\mathrm{n})$ be such that

$$
\begin{equation*}
p^{d}\left\lfloor n /\left(d^{2}+1\right)\right\rfloor \geq 7 \log \left\lfloor n /\left(d^{2}+1\right)\right\rfloor . \tag{28}
\end{equation*}
$$

Then $\mathrm{G}(\mathrm{n}, \mathrm{p})$ fails to contain H with probability $\leq 2 \mathrm{~d}^{2}\left(\mathrm{~d}^{2}+1\right) / n$.

Bounded degree spanning subgraphs of random graphs

Corollary 31. Let $\mathrm{p}>1 / 2$. Then a.e. $\mathrm{G}\left(2^{\mathrm{d}}, \mathrm{p}\right)$ contains Q^{d} as a subgraph.
Proof. Exercise 21.

Corollary 32. Let $\mathrm{H}=\mathrm{H}^{\mathrm{n}}$ have $\Delta(\mathrm{H}) \leq \mathrm{d}$. If $\mathrm{p}=\mathrm{C}((\log \mathfrak{n}) / \mathrm{n})^{1 / \mathrm{d}}$ for some large absolute C , then a.e. $\mathrm{G}(\mathrm{n}, \mathrm{p})$ contains H as a subgraph.

Proof. Exercise 22 (d is not necessarily a constant).

Remark 33. Let $\mathrm{H}=\mathrm{H}^{n}$ be d-regular. Then $\mu=\mathbb{E}(\#\{\mathrm{H} \hookrightarrow \mathrm{G}(\mathrm{n}, \mathrm{p})\})=$ $\mathrm{n}!\mathrm{p}^{\mathrm{nd} / 2}$. If $\mathrm{p}=\mathrm{n}^{-2 / \mathrm{d}}$, then $\mu=\mathrm{o}(1)$. In particular, almost no $\mathrm{G}\left(2^{\mathrm{d}}, 1 / 4\right)$ contains Q^{d}.

Bounded degree spanning subgraphs of random graphs

Exercise 23: let L_{k} be the $k \times k$ square lattice, that is, the graph on the $(\mathfrak{i}, \mathfrak{j}) \in[k] \times[k]$ with two such pairs joined by an edge if they differ by 1 in one coordinate. Find p_{-}such that almost no $G\left(k^{2}, p_{-}\right)$contains L_{k}. Using Theorem 30 , find p_{+}such that almost every $G\left(k^{2}, p_{+}\right)$contains L_{k}.

Bounded degree spanning subgraphs of random graphs

Riordan (2000) resolved the spanning hypercube and the spanning lattice problem as follows.

Theorem 34. Let $\mathrm{p}=1 / 4+6(\log \mathrm{~d}) / \mathrm{d}$. Then almost every $\mathrm{G}\left(2^{\mathrm{d}}, \mathrm{p}\right)$ contains a Q^{d}.

Theorem 35. Let $p \gg 1 / k$. Then almost every $G\left(k^{2}, p\right)$ contains L_{k}.

Open problem 24: the $k \times k$ comb (Kahn). Some partial results known for spanning bounded degree trees.

Bounded degree spanning subgraphs of random graphs

Proof of Theorem 30 (Sketch). Let us just give the steps of the proof.
\triangleright Apply the theorem of Hajnal and Szemerédi to $\mathrm{H} \leq 2$: obtain a partition $\mathrm{V}(\mathrm{H})=\mathrm{U}_{1} \cup \cdots \cup \mathrm{U}_{\mathrm{D}}$, where $\mathrm{D}=\mathrm{d}^{2}+1$, with $\mathrm{U}_{\mathrm{i}}=\lfloor\mathrm{n} / \mathrm{D}\rfloor$ or $[\mathrm{n} / \mathrm{D}\rceil$ for all i and $\Delta\left(\mathrm{H}\left[\mathrm{U}_{\mathrm{i}}, \mathrm{U}_{\mathrm{j}}\right]\right) \leq 1$ for all $\mathrm{i} \neq \mathrm{j}$ (that is, we have at most a matching between U_{i} and U_{j}).
\triangleright Partition $\mathrm{V}(\mathrm{G}(\mathrm{n}, \mathrm{p}))$ as $\mathrm{U}_{1 \leq \mathrm{i} \leq \mathrm{D}} W_{i}$ with $\left|\mathrm{W}_{\mathrm{i}}\right|=\left|\mathrm{U}_{\mathrm{i}}\right|$ for all i . We embed H into $G=G(n, p)$ by defining bijections $f_{i}: U_{i} \rightarrow W_{i}$ for $i=$ $1, \ldots, \mathrm{D}$ in turn.

Bounded degree spanning subgraphs of random graphs

Proof of Theorem 30 (Sketch). (Cont'd)

\triangleright Take any bijection for $\mathrm{f}_{1}: \mathrm{U}_{1} \rightarrow \mathrm{~W}_{1}$. Having suceeded in defining $f_{i}: U_{i} \rightarrow W_{i}$ for $i<j(1<j \leq D)$, we define f_{j}.
\triangleright Generate the edges in the random bipartite graph $\mathrm{G}\left[U_{1 \leq i<j} W_{i}, W_{j}\right]$.
\triangleright Crucial observation: the probability that the required bijection

$$
\begin{equation*}
f_{j}: u_{j} \rightarrow W_{j} \tag{29}
\end{equation*}
$$

fails to exist is at most the probability that a perfect matching fails to exist in the random bipartite graph $\mathrm{G}\left(\mathrm{U}_{\mathrm{j}}, \mathrm{W}_{\mathrm{j}} ; \mathrm{p}^{\mathrm{d}}\right)$. But this probability is $\leq 1 /\lfloor n / D\rfloor$ (recall Remark 12). We need this not to fail $D-1$ times.
\triangleright Done! [Exercise 25: fill in the details. In particular, why did we square the graph H ?]

[^0]: Proof. Exercise 12.

