Random Graphs I

Y. Kohayakawa (São Paulo)

Chorin, 31 July 2006

Outline of Lecture I

1. Probabilistic preliminaries: basics, binomial distribution
2. Models of random graphs: the models, monotonicity, equivalence
3. Jumbledness and expansion: edge-distribution, expansion
4. Threshold phenomena: Thresholds, giant component

Probabilistic preliminaries

\triangleright Focus on discrete probability spaces: (Ω, \mathbb{P})

- $|\Omega|<\infty$
- $\mathbb{P}: \Omega \rightarrow[0,1]$
- $\sum_{\omega \in \Omega} \mathbb{P}(\omega)=1$
\triangleright Random variable (r.v.): X: $\Omega \rightarrow \mathbb{R}$

Expectation and linearity

\triangleright Expectation:

$$
\begin{equation*}
\mathbb{E}(X)=\sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\omega)=\sum_{\chi} x \mathbb{P}(X=x) \tag{1}
\end{equation*}
$$

\triangleright Linearity:

$$
\begin{equation*}
\mathbb{E}\left(\sum_{i} a_{i} X_{i}\right)=\sum_{i} a_{i} \mathbb{E}\left(X_{i}\right) \tag{2}
\end{equation*}
$$

Variance and standard deviation

\triangleright Variance:

$$
\begin{equation*}
\sigma^{2}(X)=\operatorname{Var}(X)=\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2} \tag{3}
\end{equation*}
$$

\triangleright Standard deviation:

$$
\begin{equation*}
\sigma(X)=\sqrt{\operatorname{Var}(X)} \tag{4}
\end{equation*}
$$

Indicator random variables

$\triangleright X_{E}=$ [event E holds]
$\triangleright X=\sum_{E \in \mathcal{E}} X_{E}[=$ number of $E \in \mathcal{E}$ that hold]
$\triangleright \mathbb{E}(\mathrm{X})=\sum_{\mathrm{E} \in \mathcal{E}} \mathbb{E}\left(\mathrm{X}_{\mathrm{E}}\right)=\sum_{\mathrm{E} \in \mathcal{E}} \mathbb{P}(\mathrm{E}$ holds $)$
$\triangleright \operatorname{Var}(\mathrm{X})=\sum_{\left(\mathrm{E}, \mathrm{E}^{\prime}\right)} \operatorname{Cov}\left(\mathrm{X}_{\mathrm{E}}, \mathrm{X}_{\mathrm{E}^{\prime}}\right)$
$\triangleright \operatorname{Cov}\left(X, X^{\prime}\right)=\mathbb{E}\left(X X^{\prime}\right)-\mathbb{E}(X) \mathbb{E}\left(X^{\prime}\right)\left[=0\right.$ if X and X^{\prime} independent $]$

Markov's and Chebyshev's inequality

\triangleright Markov: if $X \geq 0$, then for all $t>0$ we have

$$
\begin{equation*}
\mathbb{P}(X \geq t) \leq \frac{1}{t} \mathbb{E}(X) . \tag{5}
\end{equation*}
$$

- Consequence: if X is integer-valued, taking $t=1$ gives

$$
\begin{equation*}
\mathbb{P}(X>0)=\mathbb{P}(X \geq 1) \leq \mathbb{E}(X) . \tag{6}
\end{equation*}
$$

Often, just estimate $\mathbb{E}(X)$ and show that $\mathbb{E}(X)=o(1)$.

Markov's and Chebyshev's inequality

\triangleright Chebyshev: for all $\mathrm{t}>0$,

$$
\begin{equation*}
\mathbb{P}(|X-\mathbb{E}(\mathrm{X})| \geq \mathrm{t}) \leq \frac{1}{\mathrm{t}^{2}} \operatorname{Var}(\mathrm{X}) . \tag{7}
\end{equation*}
$$

Proof. Apply Markov to $\mathrm{Y}=(\mathrm{X}-\mathbb{E}(\mathrm{X}))^{2}$.
\triangleright Taking $t=\mathbb{E}(X)$, we have

$$
\begin{equation*}
\mathbb{P}(X=0) \leq \mathbb{P}(|X-\mathbb{E}(X)| \geq \mathbb{E}(X)) \leq \frac{\operatorname{Var}(X)}{\mathbb{E}(X)^{2}} \tag{8}
\end{equation*}
$$

Markov's and Chebyshev's inequality

\triangleright Cauchy-Schwarz: May obtain small improvement applying CS:

$$
\begin{equation*}
\mathbb{P}(X=0) \leq \frac{\operatorname{Var}(X)}{\mathbb{E}(X)^{2}+\operatorname{Var}(X)}=\frac{\operatorname{Var}(X)}{\mathbb{E}\left(X^{2}\right)} \tag{9}
\end{equation*}
$$

For non-negative integer-valued r.vs:

$$
\begin{equation*}
\mathbb{P}(X \geq 1) \geq \frac{\mathbb{E}(X)^{2}}{\mathbb{E}\left(X^{2}\right)} \tag{10}
\end{equation*}
$$

Proof. Exercise 1.

Basic concentration

If $\operatorname{Var}(X) \ll \mathbb{E}(X)^{2}$, then X is concentrated around its expectation: for any fixed $\varepsilon>0$,

$$
\begin{equation*}
\mathbb{P}[|X-\mathbb{E}(X)| \geq \varepsilon \mathbb{E}(X)] \leq \frac{\operatorname{Var}(X)}{\varepsilon^{2} \mathbb{E}(X)^{2}}=o(1) . \tag{11}
\end{equation*}
$$

Therefore, have $\mathbb{P}[X=(1 \pm \varepsilon) \mathbb{E}(X)]$ with probability $1-o(1)$.

Binomial distribution

$X \sim \operatorname{Bi}(n, p): X=X_{1}+\cdots+X_{n}$, with each $X_{i} \sim \operatorname{Be}(p)$
$\triangleright \mathbb{P}(\mathrm{X}=\mathrm{k})=\binom{\mathrm{n}}{\mathrm{k}} \mathrm{p}^{\mathrm{k}}(1-\mathrm{p})^{\mathrm{n}-\mathrm{k}}$
$\triangleright \mathbb{E}(X)=n p$
$\triangleright \mathbb{E}_{r}(X)=\mathbb{E}\left[(X)_{r}\right]=\mathbb{E}[X(X-1) \ldots(X-r+1)]=(n)_{r} p^{r}$. This gives $\operatorname{Var}(X)=n p(1-p)$.
$\triangleright X$ concentrated around $\mathbb{E}(X)$ if $n p \rightarrow \infty$

Poisson distribution

$X \sim \operatorname{Po}(\lambda)$: integer-valued, mean $\lambda>0$, with

$$
\begin{equation*}
\mathbb{P}(X=k)=\frac{1}{k!} e^{-\lambda} \lambda^{k} \tag{12}
\end{equation*}
$$

$\triangleright \mathbb{E}_{\mathrm{r}}(\mathrm{X})=\mathbb{E}\left[(\mathrm{X})_{\mathrm{r}}\right]=\lambda^{r}$
$\triangleright \mathrm{Bi}(\mathrm{n}, \mathrm{p}) \xrightarrow{\mathrm{d}} \mathrm{Po}(\lambda)$ if $\mathfrak{n p} \rightarrow \lambda$ as $\mathrm{n} \rightarrow \infty$

Hypergeometric distribution

$X \sim \operatorname{Hyp}(n, b, d): X=|D \cap B|$ when $D \in\binom{[n]}{d}$ uniformly at random, and $B \subset[n]$ with $|B|=b$ is fixed

$$
\begin{aligned}
& \triangleright \mathbb{P}(X=k)=\binom{\mathrm{b}}{\mathrm{k}}\binom{\mathrm{n}-\mathrm{b}}{\mathrm{~d}-\mathrm{k}}\binom{\mathrm{n}}{\mathrm{~d}}^{-1}=\binom{\mathrm{d}}{\mathrm{k}}\binom{\mathrm{n}-\mathrm{d}}{\mathrm{~b}-\mathrm{k}}\binom{\mathrm{n}}{\mathrm{~b}}^{-1} \\
& \triangleright \mathbb{E}(\mathrm{X})=\mathrm{bd} / \mathrm{n}
\end{aligned}
$$

Exponential bounds for the binomial

Suppose $X \sim \operatorname{Bi}(n, p)$.

Theorem 1. We have

$$
\begin{equation*}
\mathbb{P}(X \geq k) \leq\binom{ n}{k} p^{k} \leq\left(\frac{e n p}{k}\right)^{k} . \tag{13}
\end{equation*}
$$

Proof. Exercise 2.
\triangleright If $k=\lambda n p$, bound is $(e / \lambda)^{\lambda n p}=e^{-c_{\lambda} n p}$, where $c_{\lambda}=\lambda(\log \lambda-1)$.

Exponential bounds for the binomial

Suppose $X \sim \operatorname{Bi}(n, p)$.

Theorem 2. Let $\mu=\mathbb{E}(X)=n p$ and $t \geq 0$. Then

$$
\begin{equation*}
\mathbb{P}(X \geq \mu+t) \leq \exp \left\{-\frac{t^{2}}{2(\mu+t / 3)}\right\} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{P}(X \leq \mu-t) \leq \exp \left\{-\frac{t^{2}}{2 \mu}\right\} \tag{15}
\end{equation*}
$$

Exponential bounds for the binomial

Suppose $X \sim \operatorname{Bi}(n, p) ; \mu=n p$.

Theorem 3. If $\varepsilon \leq 3 / 2$, then

$$
\begin{equation*}
\mathbb{P}(|X-\mu| \geq \varepsilon \mu) \leq 2 \exp \left\{-\frac{1}{3} \varepsilon^{2} \mu\right\} \tag{16}
\end{equation*}
$$

Exponential bounds for the hypergeometric

Suppose $X \sim \operatorname{Hyp}(n, b, d)$.

Theorem 4. We have

$$
\begin{equation*}
\mathbb{P}(X \geq k) \leq\binom{ d}{k}\left(\frac{b}{n}\right)^{k} \leq\left(\frac{e b d}{k n}\right)^{k} \tag{17}
\end{equation*}
$$

Proof. Exercise 3.
\triangleright If $k=\lambda b d / n$, then the bound is $(e / \lambda)^{\lambda b d / n}=e^{-c_{\lambda} b d / n}$, where $c_{\lambda}=$ $\lambda(\log \lambda-1)$.

Exponential bounds for the hypergeometric

Suppose $X \sim \operatorname{Hyp}(n, b, d)$.

Theorem 5. Let $\mu=\mathbb{E}(\mathrm{X})=\mathrm{bd} / \mathrm{n}$ and $\mathrm{t} \geq 0$. Then

$$
\begin{equation*}
\mathbb{P}(X \geq \mu+t) \leq \exp \left\{-\frac{t^{2}}{2(\mu+t / 3)}\right\} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{P}(X \leq \mu-t) \leq \exp \left\{-\frac{t^{2}}{2 \mu}\right\} \tag{19}
\end{equation*}
$$

Exponential bounds for the hypergeometric

Suppose $X \sim \operatorname{Hyp}(n, b, d), \mu=b d / n$.

Theorem 6. If $\varepsilon \leq 3 / 2$, then

$$
\begin{equation*}
\mathbb{P}(|X-\mu| \geq \varepsilon \mu) \leq 2 \exp \left\{-\frac{1}{3} \varepsilon^{2} \mu\right\} \tag{20}
\end{equation*}
$$

Models of random graphs

$\triangleright G(n, p)$: each element of $\binom{[n]}{2}$ is present with probability p, independently of all others
$\triangleright G(n, M)$: uniform space on $\binom{\left(\begin{array}{c}{[n]} \\ 2 \\ M\end{array}\right)}{$\hline}
$\triangleright \mathbf{G}=\left(\mathrm{G}_{\mathrm{t}}\right)_{\mathrm{t}=0}^{\mathrm{N}}$: random processes $\mathrm{G}_{0} \subset \mathrm{G}_{1} \subset \cdots \subset \mathrm{G}_{\mathrm{N}}\left(\mathrm{N}=\binom{\mathrm{n}}{2}\right)$, with each G_{i} on $[n]$, say, and G_{i} obtained from G_{i-1} by the addition of a new random edge. Space has cardinality N !.

Always interested in $n \rightarrow \infty$. Use the terms 'almost surely', 'almost every', 'almost always', etc to mean 'with probability $\rightarrow 1$ as $n \rightarrow \infty$ '.

Monotonicity theorems

Definition 7 (Graph property). A graph property is a family of graphs closed under isomorphism.

Definition 8 (Increasing and decreasing properties). A graph property is decreasing if the removal of an edge does not destroy the property. A graph property is increasing if the addition of an edge does not destroy the property (vertices are not added).
\triangleright Examples: being planar, being connected

Monotonicity theorems

Theorem 9. Suppose $0 \leq p \leq p^{\prime} \leq 1$. If \mathcal{P} is an increasing graph property, then $\mathbb{P}(G(n, p) \in \mathcal{P}) \leq \mathbb{P}\left(G\left(n, p^{\prime}\right) \in \mathcal{P}\right)$.

Proof. Exercise 4.
\triangleright '2-round exposure trick': $\mathrm{G}\left(\mathrm{n}, \mathrm{p}^{\prime}\right)=\mathrm{G}(\mathrm{n}, \mathfrak{p}) \cup \mathrm{G}\left(\mathrm{n}, \mathrm{p}^{\prime \prime}\right)$ (union of two independent r.gs), with $1-p^{\prime}=(1-p)\left(1-p^{\prime \prime}\right)$

Monotonicity theorems

Theorem 10. Suppose $0 \leq M \leq M^{\prime} \leq N=\binom{n}{2}$. If \mathcal{P} is an increasing graph property, then $\mathbb{P}(G(n, M) \in \mathcal{P}) \leq \mathbb{P}\left(G\left(n, M^{\prime}\right) \in \mathcal{P}\right)$.

Proof. Exercise 5.

Equivalence theorems

Theorem 11. Suppose \mathcal{P} is an increasing property, let $M=M(n) \rightarrow \infty$, and suppose $\delta>0$ is a constant with $(1+\delta) M / N=(1+\delta) M /\binom{n}{2} \leq 1$. Set $p=p(n)=M / N$.
(i) If $\mathbb{P}(\mathrm{G}(\mathrm{n}, \mathrm{p}) \in \mathcal{P}) \rightarrow 1$, then $\mathbb{P}(\mathrm{G}(\mathrm{n}, \mathrm{M}) \in \mathcal{P}) \rightarrow 1$.
(ii) If $\mathbb{P}(\mathrm{G}(\mathrm{n}, \mathrm{p}) \in \mathcal{P}) \rightarrow 0$, then $\mathbb{P}(\mathrm{G}(\mathrm{n}, \mathrm{M}) \in \mathcal{P}) \rightarrow 0$.
(iii) If $\mathbb{P}(\mathrm{G}(\mathrm{n}, \mathrm{M}) \in \mathcal{P}) \rightarrow 1$, then $\mathbb{P}(\mathrm{G}(\mathrm{n},(1+\delta) \mathfrak{p}) \in \mathcal{P}) \rightarrow 1$.
(iv) If $\mathbb{P}(\mathrm{G}(\mathrm{n}, \mathrm{M}) \in \mathcal{P}) \rightarrow 0$, then $\mathbb{P}(\mathrm{G}(\mathrm{n},(1-\delta) \mathfrak{p}) \in \mathcal{P}) \rightarrow 0$.

Proof. Exercise 6.

Jumbledness

Let $G=G^{n}=(V, E)$ be a graph.

Definition $12((\mathrm{p}, \eta)$-uniform). Let p and $\eta>0$ be given. We say that G is (p, η)-uniform if, for all $\mathrm{U}, \mathrm{W} \subset \mathrm{V}$, with $\mathrm{U} \cap \mathrm{W}=\emptyset$ and $|\mathrm{U}|,|\mathrm{W}| \geq \eta n$, we have

$$
\begin{equation*}
|e(\mathrm{U}, \mathrm{~W})-\mathfrak{p}| \mathrm{U}\|\mathrm{~W}||\leq \mathfrak{q p}| \mathrm{U} \| \mathrm{W}|, \tag{2}
\end{equation*}
$$

where $e(\mathrm{U}, \mathrm{W})$ denotes the number of edges with one endvertex in U and the other in W .

Jumbledness

Let $\mathrm{G}=\mathrm{G}^{\mathfrak{n}}=(\mathrm{V}, \mathrm{E})$ be a graph.

Definition 13 ((p, α)-bijumbled). Let p and $\alpha>0$ be given. We say that G is (p, α)-bijumbled if, for all $\mathrm{U}, \mathrm{W} \subset \mathrm{V}$, with $\mathrm{U} \cap \mathrm{W}=\emptyset$ and $1 \leq|\mathrm{U}| \leq$ $|\mathrm{W}| \leq \mathrm{pn}|\mathrm{U}|$, we have

$$
\begin{equation*}
|e(U, W)-p| U||W|| \leq \alpha \sqrt{|U \| W|} . \tag{22}
\end{equation*}
$$

Particular interest: $\alpha=O(\sqrt{n p})$. We often set $d=n p$ (and call this the 'average degree', which is, of course, not quite right).

Jumbledness

Theorem 14. Let $\mathrm{G}=\mathrm{G}^{\mathfrak{n}}=(\mathrm{V}, \mathrm{E})$ be a (p, α)-bijumbled graph. Then, for all $\mathrm{U} \subset \mathrm{V}$, we have

$$
\begin{equation*}
\left|e(\mathrm{G}[\mathrm{U}])-p\binom{|\mathrm{U}|}{2}\right| \leq \alpha|\mathrm{U}| . \tag{23}
\end{equation*}
$$

[^0]
Jumbledness

Theorem 15. For every $\eta>0$ there is C such that if $d=p n \geq C$, then $\mathrm{G}(\mathrm{n}, \mathrm{p})$ is a.s. (p, η)-uniform.

Proof. Exercise 8.

Theorem 16. For every $0<p=p(n)<1$, the random $\operatorname{graph} G(n, p)$ is a.s. $\left(p, e^{3 / 2} \sqrt{d}\right)$-bijumbled, where $d=n p$.

Proof. Exercise 9.

Exercise 10: why do we have the condition $1 \leq|\mathrm{U}| \leq|\mathrm{W}| \leq \mathrm{pn}|\mathrm{U}|$ in Definition 13?

Jumbledness

Corollary 17. Suppose $\mathrm{pn} \geq \mathrm{Clogn}$ for some constant $\mathrm{C}>3$. Then a.e. $\mathrm{G}(\mathrm{n}, \mathrm{p})$ satisfies (22) for every pair of disjoint sets $\mathrm{U}, \mathrm{W} \subset \mathrm{V}(\mathrm{G}(\mathrm{n}, \mathrm{p}))$ with $\alpha=e^{3 / 2} \sqrt{\mathrm{~d}}$.

Proof (Sketch). Theorem 16 tells us that $G(n, p)$ is a.s. $\left(p, e^{3 / 2} \sqrt{d}\right)$-bijumbled. Now let U and W be such that $|W|>d|u|$. Then $e^{3 / 2} \sqrt{d|U||W|}>$ $e^{3 / 2} \mathrm{~d}|\mathrm{U}|$. In particular, $\mathrm{p}|\mathrm{U}||\mathrm{W}|-e^{3 / 2} \sqrt{\mathrm{~d}|\mathrm{U}||\mathrm{W}|} \leq \mathrm{p}|\mathrm{U}| \mathfrak{n}-e^{3 / 2} \mathrm{~d}|\mathrm{U}|<0 \leq$ e(U,W).

As $\mathrm{d}=\mathrm{np}=\mathrm{C} \log \mathrm{n}$ and $\mathrm{C}>3$, we have that $\Delta(\mathrm{G}(\mathrm{n}, \mathrm{p})) \leq 2 \mathrm{~d}$ almost surely. Therefore $e(U, W) \leq 2 d|u| \leq e^{3 / 2} d|U| \leq p|U||W|+e^{3 / 2} \sqrt{d|U||W|}$.

Expansion results

Definition 18 ((b,f)-expansion). Let $\mathrm{B}=(\mathrm{U}, \mathrm{W} ; \mathrm{E})$ be a bipartite graph with vertex classes U and W and edge set E . Let positive reals b and f be given. We say that B is $(\mathrm{b}, \mathrm{f} ; \mathrm{U})$-expanding if, for every $\mathrm{X} \subset \mathrm{U}$ with $|\mathrm{X}| \leq$ b , we have $|\Gamma(\mathrm{X})| \geq \mathrm{f}|\mathrm{X}|$. If B is both ($\mathrm{b}, \mathrm{f} ; \mathrm{U})$-expanding and $(\mathrm{b}, \mathrm{f} ; \mathrm{W})$ expanding, let us say that B is (b, f)-expanding.

As usual, $\Gamma(X)$ is the neighbourhood of X, that is, the set of all vertices adjacent to some $x \in X$.

Expansion results

Let $G=G^{n}=(V, E)$ be $(p, A \sqrt{d})$-bijumbled, where $d=n p$. Suppose U and $W \subset V$ are disjoint; let $|W|=\alpha n$. Suppose

$$
\begin{equation*}
d_{W}(u)=|\Gamma(u) \cap W| \geq \rho p|W| \tag{24}
\end{equation*}
$$

for all $u \in U$.

Theorem 19. For any $\eta>0$ and any $0<\mathrm{f} \leq(\eta \alpha \rho / \mathrm{A})^{2} \mathrm{~d}$, the bipartite graph $\mathrm{G}[\mathrm{U}, \mathrm{W}]$ is $((1-\mathfrak{\eta}) \rho|\mathrm{W}| / \mathrm{f}, \mathrm{f} ; \mathrm{U})$-expanding.

Expansion results

Proof. By contradiction: let f be as in the statement. Let $X \subset U$ be such that $|X| \leq(1-\mathfrak{\eta}) \rho|W| / f$. Let $Y=\Gamma(X) \cap W$ and suppose $|Y|<f|X|$.

By the ($\mathrm{p}, \mathrm{A} \sqrt{\mathrm{d}}$)-bijumbledness condition on G, we have

$$
\begin{equation*}
e(X, Y) \leq p|X||Y|+A \sqrt{d|X| Y \mid}<p|X|(1-\eta) \rho|W|+A \sqrt{d|X||Y|}, \tag{25}
\end{equation*}
$$

and, from (24), we deduce that

$$
\begin{equation*}
e(X, Y)=e(X, W) \geq \rho p|W| X \mid . \tag{26}
\end{equation*}
$$

Combining (25) and (26), we have ($\eta \rho p|W||X|)^{2}<A^{2} d|X| Y \mid$. Therefore

$$
\begin{equation*}
|Y|>\frac{(\eta \rho p|W||X|)^{2}}{A^{2} d|X|} \geq\left(\frac{\eta \rho \alpha}{A}\right)^{2} d|X| \geq f|X| . \tag{27}
\end{equation*}
$$

As we supposed that $|\mathrm{Y}|<\mathrm{f}|\mathrm{X}|$, we have a contradiction.

Long paths in expanding bipartite graphs

The following lemma is known as the bipartite version of Posa's lemma.

Lemma 20. Let $\mathrm{b} \geq 1$ be an integer. If the bipartite graph B is ($\mathrm{b}, 2$)expanding, then B contains a path $\mathrm{P}^{4 \mathrm{~b}}$ on 4 b vertices.

Proof. Later we shall see a proof of Posá's original lemma.

The Friedman-Pippenger lemma

Suppose $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is (b, f)-expanding: every $\mathrm{X} \subset \mathrm{V}$ with $|\mathrm{X}| \leq \mathrm{b}$ is such that $\left|\Gamma_{\mathrm{G}}(\mathrm{X})\right| \geq \mathrm{f}|\mathrm{X}|$.

Theorem 21 (Friedman and Pippenger 1987). Any (2n-2, d+1)-expander contains every tree $T=T^{n}$ with maximum degree $\Delta(T) \leq d$.

Proof. Exercise 11^{++}.

Open problem 12: give an efficient algorithm for finding the tree guaranteed in Theorem 21.

Random graphs are fault tolerant

Write $G \rightarrow_{\eta} \mathcal{J}$ if every $H \subset G$ with $|E(H)| \geq \eta|E(G)|$ contains a copy of every $\mathrm{J} \in \mathcal{J}$ as a subgraph.

Theorem 22. For any $\eta>0$ and any Δ, there is C such that a.e. $\mathrm{G}=$ $\mathrm{G}(\mathrm{n}, \mathrm{p})$ with $\mathrm{p}=\mathrm{C} / \mathrm{n}$ satisfies

$$
\begin{equation*}
\mathrm{G}(\mathrm{n}, \mathrm{p}) \rightarrow_{\eta} \mathcal{T}, \tag{28}
\end{equation*}
$$

where \mathcal{T} is the family of all trees $T=T^{t}$ with $t \leq n / C$ and $\Delta(T) \leq \Delta$.
Proof. Exercise 13^{+}.
\triangleright There exist linear fault-tolerant graphs for trees. Exercise 14^{++}: how about for even cycles?

Threshold functions

Consider $\mathrm{G}(\mathrm{n}, \mathrm{p})$ [similar for $\mathrm{G}(\mathrm{n}, \mathrm{M})$]. Let \mathcal{P} be an increasing graph property.

Definition 23 (Threshold). The function $p_{0}=p_{0}(n)$ is a threshold function for \mathcal{P} if

$$
\lim _{n \rightarrow \infty} \mathbb{P}(G(n, p) \text { has } \mathcal{P})= \begin{cases}0 & \text { if } p \ll p_{0} \tag{29}\\ 1 & \text { if } p \gg p_{0} .\end{cases}
$$

$\triangleright 0$-statement, 1-statement

Sharp threshold functions

Let \mathcal{P} be an increasing graph property.

Definition 24 (Sharp and coarse thresholds). The function $p_{0}=p_{0}(n)$ is a sharp threshold function for \mathcal{P} if, for every $\varepsilon>0$, we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}(G(n, p) \text { has } \mathcal{P})= \begin{cases}0 & \text { if } p \leq(1-\varepsilon) p_{0} \tag{30}\\ 1 & \text { if } p \geq(1+\varepsilon) p_{0}\end{cases}
$$

Coarse threshold: not sharp

Threshold functions, examples

$\triangleright K^{4} \subset G(n, p): p_{0}=p_{0}(n)=n^{-2 / 3}$ [Exercise 15]. This threshold is coarse [Exercise 16].
$\triangleright \mathrm{G}(\mathrm{n}, \mathrm{p}) \rightarrow\left(\mathrm{K}^{3}\right)_{2}^{\mathrm{V}}: \mathrm{p}_{0}=\mathrm{n}^{-2 / 3}$ [Exercise 17^{++}].
$\triangleright \mathrm{G}(\mathrm{n}, \mathrm{p}) \rightarrow\left(\mathrm{K}^{3}\right)_{2}^{e}: p_{0}=\mathrm{n}^{-1 / 2}$ [Exercise $18^{++} ;>2$ colours: Exercise 19^{++}; Open problem 20: conjectured to be sharp for all $k \geq 2$; very tough for $k=2$]
$\triangleright \mathrm{G}(\mathrm{n}, \mathrm{p}) \rightarrow_{1 / 2+\eta} \mathrm{K}^{3}: \mathrm{p}_{0}=\mathrm{n}^{-1 / 2}$ [Exercise 21^{++}; Open problem 22: conjectured to be sharp]

The Bollobás-Thomason theorem

Theorem 25. Let \mathcal{P} be an increasing property. Then \mathcal{P} admits a threshold.
Proof (Sketch). Consider p_{ε} so that $G\left(n, p_{\varepsilon}\right)$ has \mathcal{P} with probability $\geq \varepsilon$. Let $G=G_{1} \cup \cdots \cup G_{t}$, where each G_{i} is an independent copy of $G\left(n, p_{\varepsilon}\right)$. Then $G=G\left(n, p^{\prime}\right)$ with $p^{\prime} \leq t p$. Suppose $t=t(\varepsilon)$ is such that $(1-\varepsilon)^{t} \leq$ ε. Then $G\left(n, p^{\prime}\right)$ has \mathcal{P} with probability at least $1-\varepsilon$. This implies the theorem [Exercise 23].

A (very) sharp threshold

Theorem 26. Let

$$
\begin{equation*}
p=\frac{1}{n}\left(\log n+c_{n}\right) . \tag{31}
\end{equation*}
$$

Then

$$
\lim _{n \rightarrow \infty} \mathbb{P}(G(n, p) \text { is connected })= \begin{cases}0 & \text { if } \lim _{n} c_{n}=-\infty \tag{32}\\ e^{-e^{-c}} & \text { if } \lim _{n} c_{n}=c \in \mathbb{R} \\ 1 & \text { if } \lim _{n} c_{n}=\infty\end{cases}
$$

Proof. Exercise 24^{++}.

The Friedgut theorem for sharp thresholds

Theorem 27. Let \mathcal{P} be an increasing graph property with a coarse threshold. Then there exist real constants $0<\mathrm{c}<\mathrm{C}$ and $\beta>0$, a rational ρ, and a sequence $p=p(n)$ satisfying

$$
\begin{equation*}
\mathrm{cn}^{-1 / \rho}<\mathrm{p}(\mathrm{n})<\mathrm{Cn}^{-1 / \rho}, \tag{33}
\end{equation*}
$$

such that $\beta<\mathbb{P}[\mathrm{G}(\mathrm{n}, \mathrm{p}) \in \mathcal{P}]<1-\beta$ for infinitely many n .

The Friedgut theorem for sharp thresholds

Given a graph M and a disjoint set of n vertices, let M^{*} be a labelled copy of M placed uniformly at random on one of the $n!/(n-|V(M)|)$! possible ways.

Theorem 28. Furthermore, there exist α and $\xi>0$ and a balanced graph M with density ρ for which the following holds: For every graph property \mathcal{G} such that $\mathrm{G}(\mathrm{n}, \mathrm{p}) \in \mathcal{G}$ a.s., there are infinitely many values of n for which there exists a graph G on n vertices for which the following holds:
(i) $\mathrm{G} \in \mathcal{G}$,
(ii) $\mathrm{G} \notin \mathcal{P}$,
(iii) $\mathbb{P}\left(G \cup M^{*} \in \mathcal{P}\right)>2 \alpha$,
(iv) $\mathbb{P}(G \cup G(n, \xi p) \in \mathcal{P})<\alpha$.

The emergence of the giant component

For a graph G, write let $L_{k}(G)$ for the number of vertices in the kth largest component.

Theorem 29. Let $\varepsilon>0$ be fixed. For almost every random graph process $\mathbf{G}=\left(\mathrm{G}_{\mathrm{t}}\right)_{\mathrm{t}=0}^{\mathrm{N}}$, the following holds:
(i) we have $\mathrm{L}_{1}\left(\mathrm{G}_{\mathrm{t}}\right)=\mathrm{o}(\mathrm{n})$ for all $\mathrm{t} \leq(1 / 2-\varepsilon) \mathrm{n}$,
(ii) we have $\mathrm{L}_{1}\left(\mathrm{G}_{\mathrm{t}}\right) \geq \mathrm{cn}$ and $\mathrm{L}_{2}\left(\mathrm{G}_{\mathrm{t}}\right)=\mathrm{o}(\mathrm{n})$ for all $\mathrm{t} \geq(1 / 2+\varepsilon) \mathrm{n}$, where $\mathrm{c}=\mathrm{c}(\varepsilon)$ is a constant that depends only on ε.

Thus, at around time $t=n / 2$, our evolving graph G_{t} suffers a sudden change in structure: the so called giant component emerges.

[^0]: Proof. Exercise 7.

