Random Graphs I

Y. Kohayakawa (São Paulo)

Chorin, 31 July 2006

Outline of Lecture I

- 1. Probabilistic preliminaries: basics, binomial distribution
- 2. Models of random graphs: the models, monotonicity, equivalence
- 3. Jumbledness and expansion: edge-distribution, expansion
- 4. Threshold phenomena: Thresholds, giant component

Probabilistic preliminaries

 \triangleright Focus on *discrete probability spaces*: (Ω, \mathbb{P})

- $\circ \ |\Omega| < \infty$
- $\circ \ \mathbb{P} \colon \Omega \to [0,1]$
- $\circ \ \sum_{\omega \in \Omega} \mathbb{P}(\omega) = 1$
- $\vartriangleright \text{ Random variable (r.v.): } X: \Omega \to \mathbb{R}$

Expectation and linearity

⊳ Expectation:

$$\mathbb{E}(\mathsf{X}) = \sum_{\omega \in \Omega} \mathsf{X}(\omega) \mathbb{P}(\omega) = \sum_{\mathsf{X}} \mathsf{x} \mathbb{P}(\mathsf{X} = \mathsf{x})$$
(1)

⊳ *Linearity*:

$$\mathbb{E}(\sum_{i} a_{i}X_{i}) = \sum_{i} a_{i}\mathbb{E}(X_{i})$$
(2)

Variance and standard deviation

⊳ Variance:

$$\sigma^{2}(X) = \operatorname{Var}(X) = \mathbb{E}((X - \mathbb{E}(X))^{2}) = \mathbb{E}(X^{2}) - \mathbb{E}(X)^{2}$$
(3)

⊳ Standard deviation:

$$\sigma(X) = \sqrt{Var(X)}$$
(4)

Indicator random variables

- $\triangleright X_E = [event \ E \ holds]$
- $\triangleright X = \sum_{E \in \mathcal{E}} X_E$ [= number of $E \in \mathcal{E}$ that hold]
- $\triangleright \ \mathbb{E}(X) = \sum_{E \in \mathcal{E}} \mathbb{E}(X_E) = \sum_{E \in \mathcal{E}} \mathbb{P}(E \text{ holds})$
- \triangleright Var(X) = $\sum_{(E,E')} Cov(X_E, X_{E'})$
- $\triangleright \text{ Cov}(X, X') = \mathbb{E}(XX') \mathbb{E}(X)\mathbb{E}(X') \text{ [= 0 if } X \text{ and } X' \text{ independent]}$

Markov's and Chebyshev's inequality

 \triangleright Markov: if $X \ge 0$, then for all t > 0 we have

$$\mathbb{P}(X \ge t) \le \frac{1}{t} \mathbb{E}(X).$$
(5)

• **Consequence:** if X is integer-valued, taking t = 1 gives

$$\mathbb{P}(X > 0) = \mathbb{P}(X \ge 1) \le \mathbb{E}(X).$$
(6)

Often, just estimate $\mathbb{E}(X)$ and show that $\mathbb{E}(X) = o(1)$.

Markov's and Chebyshev's inequality

 \triangleright Chebyshev: for all t > 0,

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge t) \le \frac{1}{t^2} \operatorname{Var}(X).$$
(7)

Proof. Apply Markov to
$$Y = (X - \mathbb{E}(X))^2$$
.

 \triangleright Taking $t = \mathbb{E}(X)$, we have

$$\mathbb{P}(X = 0) \le \mathbb{P}(|X - \mathbb{E}(X)| \ge \mathbb{E}(X)) \le \frac{\operatorname{Var}(X)}{\mathbb{E}(X)^2}.$$
(8)

Markov's and Chebyshev's inequality

▷ Cauchy–Schwarz: May obtain small improvement applying CS:

$$\mathbb{P}(X = 0) \le \frac{\operatorname{Var}(X)}{\mathbb{E}(X)^2 + \operatorname{Var}(X)} = \frac{\operatorname{Var}(X)}{\mathbb{E}(X^2)}.$$
(9)

For non-negative integer-valued r.vs:

$$\mathbb{P}(X \ge 1) \ge \frac{\mathbb{E}(X)^2}{\mathbb{E}(X^2)}.$$
 (10)

Proof. Exercise 1.

Basic concentration

If $Var(X) \ll \mathbb{E}(X)^2$, then X is concentrated around its expectation: for any fixed $\varepsilon > 0$,

$$\mathbb{P}[|X - \mathbb{E}(X)| \ge \varepsilon \mathbb{E}(X)] \le \frac{\operatorname{Var}(X)}{\varepsilon^2 \mathbb{E}(X)^2} = o(1). \tag{11}$$

Therefore, have $\mathbb{P}[X = (1 \pm \varepsilon)\mathbb{E}(X)]$ with probability 1 - o(1).

Binomial distribution

 $X \sim Bi(n,p)$: $X = X_1 + \cdots + X_n$, with each $X_i \sim Be(p)$

$$\triangleright \mathbb{P}(X = k) = {\binom{n}{k}}p^k(1-p)^{n-k}$$

 $\triangleright \mathbb{E}(X) = np$

- $\triangleright \mathbb{E}_r(X) = \mathbb{E}[(X)_r] = \mathbb{E}[X(X-1)\dots(X-r+1)] = (n)_r p^r.$ This gives Var(X) = np(1-p).
- \triangleright X concentrated around $\mathbb{E}(X)$ if $np \to \infty$

Poisson distribution

 $X \sim Po(\lambda)$: integer-valued, mean $\lambda > 0$, with

$$\mathbb{P}(X = k) = \frac{1}{k!} e^{-\lambda} \lambda^k$$
(12)

$$\triangleright \ \mathbb{E}_{r}(X) = \mathbb{E}[(X)_{r}] = \lambda^{r}$$
$$\triangleright \ \mathsf{Bi}(n,p) \xrightarrow{d} \mathsf{Po}(\lambda) \text{ if } np \to \lambda \text{ as } n \to \infty$$

Hypergeometric distribution

 $X \sim Hyp(n, b, d)$: $X = |D \cap B|$ when $D \in {[n] \choose d}$ uniformly at random, and $B \subset [n]$ with |B| = b is fixed

$$\triangleright \mathbb{P}(X = k) = {\binom{b}{k}} {\binom{n-b}{d-k}} {\binom{n}{d}}^{-1} = {\binom{d}{k}} {\binom{n-d}{b-k}} {\binom{n}{b}}^{-1}$$
$$\triangleright \mathbb{E}(X) = bd/n$$

Exponential bounds for the binomial

Suppose $X \sim Bi(n, p)$.

Theorem 1. We have

$$\mathbb{P}(X \ge k) \le {\binom{n}{k}} p^k \le \left(\frac{enp}{k}\right)^k.$$
(13)

Proof. Exercise 2.

 \triangleright If $k = \lambda np$, bound is $(e/\lambda)^{\lambda np} = e^{-c_{\lambda}np}$, where $c_{\lambda} = \lambda(\log \lambda - 1)$.

Exponential bounds for the binomial

Suppose $X \sim Bi(n, p)$.

Theorem 2. Let $\mu = \mathbb{E}(X) = np$ and $t \ge 0$. Then

$$\mathbb{P}(X \ge \mu + t) \le \exp\left\{-\frac{t^2}{2(\mu + t/3)}\right\} \tag{14}$$

and

$$\mathbb{P}(X \le \mu - t) \le \exp\left\{-\frac{t^2}{2\mu}\right\}.$$
 (15)

Exponential bounds for the binomial

Suppose $X \sim Bi(n,p)$; $\mu = np$.

Theorem 3. *If* $\varepsilon \leq 3/2$ *, then*

$$\mathbb{P}\left(|X-\mu| \ge \varepsilon\mu\right) \le 2\exp\left\{-\frac{1}{3}\varepsilon^{2}\mu\right\}.$$
 (16)

Exponential bounds for the hypergeometric

Suppose $X \sim Hyp(n, b, d)$.

Theorem 4. We have

$$\mathbb{P}(X \ge k) \le {\binom{d}{k}} \left(\frac{b}{n}\right)^k \le \left(\frac{ebd}{kn}\right)^k.$$
(17)

Proof. Exercise 3.

 \triangleright If $k = \lambda bd/n$, then the bound is $(e/\lambda)^{\lambda bd/n} = e^{-c_{\lambda}bd/n}$, where $c_{\lambda} = \lambda(\log \lambda - 1)$.

16

Exponential bounds for the hypergeometric

Suppose $X \sim Hyp(n, b, d)$.

Theorem 5. Let $\mu = \mathbb{E}(X) = bd/n$ and $t \ge 0$. Then

$$\mathbb{P}(X \ge \mu + t) \le \exp\left\{-\frac{t^2}{2(\mu + t/3)}\right\}$$
(18)

and

$$\mathbb{P}(X \le \mu - t) \le \exp\left\{-\frac{t^2}{2\mu}\right\}.$$
 (19)

Exponential bounds for the hypergeometric

Suppose $X \sim Hyp(n, b, d)$, $\mu = bd/n$.

Theorem 6. *If* $\varepsilon \leq 3/2$ *, then*

$$\mathbb{P}\left(|X-\mu| \ge \varepsilon\mu\right) \le 2\exp\left\{-\frac{1}{3}\varepsilon^{2}\mu\right\}.$$
(20)

Models of random graphs

- ▷ G(n,p): each element of $\binom{[n]}{2}$ is present with probability p, independently of all others
- \triangleright G(n, M): uniform space on $\binom{\binom{[n]}{2}}{M}$
- ▷ $\mathbf{G} = (G_t)_{t=0}^{N}$: random processes $G_0 \subset G_1 \subset \cdots \subset G_N$ $(N = \binom{n}{2})$, with each G_i on [n], say, and G_i obtained from G_{i-1} by the addition of a new random edge. Space has cardinality N!.

Always interested in $n \to \infty$. Use the terms 'almost surely', 'almost every', 'almost always', etc to mean 'with probability $\to 1$ as $n \to \infty$ '.

19

Monotonicity theorems

Definition 7 (Graph property). *A graph property is a family of graphs closed under isomorphism.*

Definition 8 (Increasing and decreasing properties). A graph property is decreasing if the removal of an edge does not destroy the property. A graph property is increasing if the addition of an edge does not destroy the property (vertices are not added).

▷ Examples: being planar, being connected

Monotonicity theorems

Theorem 9. Suppose $0 \le p \le p' \le 1$. If \mathcal{P} is an increasing graph property, then $\mathbb{P}(G(n,p) \in \mathcal{P}) \le \mathbb{P}(G(n,p') \in \mathcal{P})$.

Proof. Exercise 4.

▷ '2-round exposure trick': $G(n, p') = G(n, p) \cup G(n, p'')$ (union of two independent r.gs), with 1 - p' = (1 - p)(1 - p'')

Monotonicity theorems

Theorem 10. Suppose $0 \le M \le M' \le N = \binom{n}{2}$. If \mathcal{P} is an increasing graph property, then $\mathbb{P}(G(n, M) \in \mathcal{P}) \le \mathbb{P}(G(n, M') \in \mathcal{P})$.

Proof. Exercise 5.

Equivalence theorems

Theorem 11. Suppose \mathcal{P} is an increasing property, let $M = M(n) \to \infty$, and suppose $\delta > 0$ is a constant with $(1 + \delta)M/N = (1 + \delta)M/\binom{n}{2} \leq 1$. Set p = p(n) = M/N.

(i) If $\mathbb{P}(G(n,p) \in \mathcal{P}) \to 1$, then $\mathbb{P}(G(n,M) \in \mathcal{P}) \to 1$.

(ii) If $\mathbb{P}(G(n,p) \in \mathcal{P}) \to 0$, then $\mathbb{P}(G(n,M) \in \mathcal{P}) \to 0$.

(iii) If $\mathbb{P}(G(n, M) \in \mathcal{P}) \to 1$, then $\mathbb{P}(G(n, (1 + \delta)p) \in \mathcal{P}) \to 1$.

(iv) If $\mathbb{P}(G(n, M) \in \mathcal{P}) \to 0$, then $\mathbb{P}(G(n, (1 - \delta)p) \in \mathcal{P}) \to 0$.

Proof. Exercise 6.

Jumbledness

Let $G = G^n = (V, E)$ be a graph.

Definition 12 ((p,η)-uniform). Let p and $\eta > 0$ be given. We say that G is (p,η) -uniform if, for all $U, W \subset V$, with $U \cap W = \emptyset$ and |U|, $|W| \ge \eta n$, we have

$$\left|e(\mathbf{U}, \mathbf{W}) - p|\mathbf{U}||\mathbf{W}|\right| \le \eta p|\mathbf{U}||\mathbf{W}|,\tag{21}$$

where e(U, W) denotes the number of edges with one endvertex in U and the other in W.

Jumbledness

Let $G = G^n = (V, E)$ be a graph.

Definition 13 ((p, α)-bijumbled). Let p and $\alpha > 0$ be given. We say that G is (p, α) -bijumbled if, for all U, $W \subset V$, with $U \cap W = \emptyset$ and $1 \leq |U| \leq |W| \leq pn|U|$, we have

$$\left|e(\mathbf{U}, \mathbf{W}) - p|\mathbf{U}||\mathbf{W}|\right| \le \alpha \sqrt{|\mathbf{U}||\mathbf{W}|}.$$
(22)

Particular interest: $\alpha = O(\sqrt{np})$. We often set d = np (and call this the 'average degree', which is, of course, not quite right).

Jumbledness

Theorem 14. Let $G = G^n = (V, E)$ be a (p, α) -bijumbled graph. Then, for all $U \subset V$, we have

$$\left| e(G[U]) - p\binom{|U|}{2} \right| \le \alpha |U|.$$
(23)

Proof. Exercise 7.

Jumbledness

Theorem 15. For every $\eta > 0$ there is C such that if $d = pn \ge C$, then G(n,p) is a.s. (p,η) -uniform.

Proof. Exercise 8.

Theorem 16. For every 0 , the random graph <math>G(n,p) is a.s. $(p, e^{3/2}\sqrt{d})$ -bijumbled, where d = np.

Proof. Exercise 9.

Exercise 10: why do we have the condition $1 \le |U| \le |W| \le pn|U|$ in Definition 13?

Jumbledness

Corollary 17. Suppose $pn \ge C \log n$ for some constant C > 3. Then a.e. G(n,p) satisfies (22) for every pair of disjoint sets $U, W \subset V(G(n,p))$ with $\alpha = e^{3/2}\sqrt{d}$.

Proof (Sketch). Theorem 16 tells us that G(n,p) is a.s. $(p, e^{3/2}\sqrt{d})$ -bijumbled. Now let U and W be such that |W| > d|U|. Then $e^{3/2}\sqrt{d|U||W|} > e^{3/2}d|U|$. In particular, $p|U||W| - e^{3/2}\sqrt{d|U||W|} \le p|U|n - e^{3/2}d|U| < 0 \le e(U, W)$.

As $d = np = C \log n$ and C > 3, we have that $\Delta(G(n, p)) \le 2d$ almost surely. Therefore $e(U, W) \le 2d|U| \le e^{3/2}d|U| \le p|U||W| + e^{3/2}\sqrt{d|U||W|}$.

Expansion results

Definition 18 ((b, f)-expansion). Let B = (U, W; E) be a bipartite graph with vertex classes U and W and edge set E. Let positive reals b and f be given. We say that B is (b, f; U)-expanding if, for every $X \subset U$ with $|X| \leq b$, we have $|\Gamma(X)| \geq f|X|$. If B is both (b, f; U)-expanding and (b, f; W)-expanding, let us say that B is (b, f)-expanding.

As usual, $\Gamma(X)$ is the neighbourhood of X, that is, the set of all vertices adjacent to some $x \in X$.

Expansion results

Let $G = G^n = (V, E)$ be $(p, A\sqrt{d})$ -bijumbled, where d = np. Suppose U and $W \subset V$ are disjoint; let $|W| = \alpha n$. Suppose

$$d_{W}(\mathfrak{u}) = |\Gamma(\mathfrak{u}) \cap W| \ge \rho p|W|$$
(24)

for all $u \in U$.

Theorem 19. For any $\eta > 0$ and any $0 < f \le (\eta \alpha \rho/A)^2 d$, the bipartite graph G[U, W] is $((1 - \eta)\rho|W|/f, f; U)$ -expanding.

Expansion results

Proof. By contradiction: let f be as in the statement. Let $X \subset U$ be such that $|X| \leq (1 - \eta)\rho|W|/f$. Let $Y = \Gamma(X) \cap W$ and suppose |Y| < f|X|.

By the $(p, A\sqrt{d})$ -bijumbledness condition on G, we have

 $e(X,Y) \le p|X||Y| + A\sqrt{d|X||Y|} < p|X|(1-\eta)\rho|W| + A\sqrt{d|X||Y|},$ (25)

and, from (24), we deduce that

$$e(X,Y) = e(X,W) \ge \rho p|W||X|.$$
(26)

Combining (25) and (26), we have $(\eta \rho p |W| |X|)^2 < A^2 d |X| |Y|$. Therefore

$$|Y| > \frac{(\eta \rho p |W||X|)^2}{A^2 d|X|} \ge \left(\frac{\eta \rho \alpha}{A}\right)^2 d|X| \ge f|X|.$$
(27)

As we supposed that |Y| < f|X|, we have a contradiction.

Long paths in expanding bipartite graphs

The following lemma is known as the bipartite version of *Posá's lemma*.

Lemma 20. Let $b \ge 1$ be an integer. If the bipartite graph B is (b, 2)-expanding, then B contains a path P^{4b} on 4b vertices.

Proof. Later we shall see a proof of Posá's original lemma.

The Friedman–Pippenger lemma

Suppose G = (V, E) is (b, f)-expanding: every $X \subset V$ with $|X| \leq b$ is such that $|\Gamma_G(X)| \geq f|X|$.

Theorem 21 (Friedman and Pippenger 1987). Any (2n-2, d+1)-expander contains every tree $T = T^n$ with maximum degree $\Delta(T) \le d$.

Proof. Exercise 11⁺⁺.

Open problem 12: give an efficient algorithm for finding the tree guaranteed in Theorem 21.

Random graphs are fault tolerant

Write $G \rightarrow_{\eta} \mathcal{J}$ if every $H \subset G$ with $|E(H)| \ge \eta |E(G)|$ contains a copy of every $J \in \mathcal{J}$ as a subgraph.

Theorem 22. For any $\eta > 0$ and any Δ , there is C such that a.e. G = G(n,p) with p = C/n satisfies

$$G(n,p) \rightarrow_{\eta} T$$
, (28)

where T is the family of all trees $T = T^t$ with $t \le n/C$ and $\Delta(T) \le \Delta$.

Proof. Exercise 13⁺.

 \triangleright There exist linear fault-tolerant graphs for trees. Exercise 14⁺⁺: how about for even cycles?

Threshold functions

Consider G(n, p) [similar for G(n, M)]. Let \mathcal{P} be an increasing graph property.

Definition 23 (Threshold). The function $p_0 = p_0(n)$ is a threshold function for \mathcal{P} if

$$\lim_{n \to \infty} \mathbb{P}(G(n, p) \text{ has } \mathcal{P}) = \begin{cases} 0 & \text{if } p \ll p_0 \\ 1 & \text{if } p \gg p_0. \end{cases}$$
(29)

⊳ 0-statement, 1-statement

Sharp threshold functions

Let \mathcal{P} be an increasing graph property.

Definition 24 (Sharp and coarse thresholds). The function $p_0 = p_0(n)$ is a sharp threshold function for \mathcal{P} if, for every $\varepsilon > 0$, we have

$$\lim_{n \to \infty} \mathbb{P}(G(n, p) \text{ has } \mathcal{P}) = \begin{cases} 0 & \text{if } p \le (1 - \varepsilon) p_0 \\ 1 & \text{if } p \ge (1 + \varepsilon) p_0. \end{cases}$$
(30)

Coarse threshold: not sharp

Threshold functions, examples

▷ $K^4 \subset G(n,p)$: $p_0 = p_0(n) = n^{-2/3}$ [Exercise 15]. This threshold is coarse [Exercise 16].

$$\triangleright \ G(n,p) \rightarrow (K^3)_2^{\mathsf{v}}: \mathfrak{p}_0 = \mathfrak{n}^{-2/3} \text{ [Exercise 17^{++}]}.$$

- $$\label{eq:G} \begin{split} \triangleright \ G(n,p) & \to \ (K^3)_2^e : \ p_0 = n^{-1/2} \ [\text{Exercise 18}^{++}; > 2 \ \text{colours: Exercise 19}^{++}; \ \text{Open problem 20: conjectured to be sharp for all } k \geq 2; \\ \text{very tough for } k = 2] \end{split}$$
- ▷ $G(n,p) \rightarrow_{1/2+\eta} K^3$: $p_0 = n^{-1/2}$ [Exercise 21⁺⁺; Open problem 22: conjectured to be sharp]

The Bollobás–Thomason theorem

Theorem 25. Let \mathcal{P} be an increasing property. Then \mathcal{P} admits a threshold.

Proof (Sketch). Consider p_{ε} so that $G(n, p_{\varepsilon})$ has \mathcal{P} with probability $\geq \varepsilon$. Let $G = G_1 \cup \cdots \cup G_t$, where each G_i is an independent copy of $G(n, p_{\varepsilon})$. Then G = G(n, p') with $p' \leq tp$. Suppose $t = t(\varepsilon)$ is such that $(1 - \varepsilon)^t \leq \varepsilon$. Then G(n, p') has \mathcal{P} with probability at least $1 - \varepsilon$. This implies the theorem [Exercise 23].

A (very) sharp threshold

Theorem 26. Let

$$p = \frac{1}{n} (\log n + c_n). \quad (31)$$
Then

$$\lim_{n \to \infty} \mathbb{P}(G(n, p) \text{ is connected}) = \begin{cases} 0 & \text{if } \lim_{n \to \infty} c_n = -\infty, \\ e^{-e^{-c}} & \text{if } \lim_{n \to \infty} c_n = c \in \mathbb{R}, \\ 1 & \text{if } \lim_{n \to \infty} c_n = \infty. \end{cases}$$

Proof. Exercise 24⁺⁺.

The Friedgut theorem for sharp thresholds

Theorem 27. Let \mathcal{P} be an increasing graph property with a coarse threshold. Then there exist real constants 0 < c < C and $\beta > 0$, a rational ρ , and a sequence p = p(n) satisfying

$$cn^{-1/\rho} < p(n) < Cn^{-1/\rho}$$
, (33)

such that $\beta < \mathbb{P}[G(n,p) \in \mathcal{P}] < 1 - \beta$ for infinitely many n.

The Friedgut theorem for sharp thresholds

Given a graph M and a disjoint set of n vertices, let M^* be a labelled copy of M placed uniformly at random on one of the n!/(n - |V(M)|)! possible ways.

Theorem 28. Furthermore, there exist α and $\xi > 0$ and a balanced graph M with density ρ for which the following holds: For every graph property \mathcal{G} such that $G(n,p) \in \mathcal{G}$ a.s., there are infinitely many values of n for which there exists a graph G on n vertices for which the following holds:

```
(i) G \in G,

(ii) G \notin P,

(iii) \mathbb{P}(G \cup M^* \in P) > 2\alpha,

(iv) \mathbb{P}(G \cup G(n, \xi p) \in P) < \alpha.
```

The emergence of the giant component

For a graph G, write let $L_k(G)$ for the number of vertices in the kth largest component.

Theorem 29. Let $\varepsilon > 0$ be fixed. For almost every random graph process $\mathbf{G} = (G_t)_{t=0}^N$, the following holds:

- (i) we have $L_1(G_t) = o(n)$ for all $t \le (1/2 \varepsilon)n$,
- (ii) we have $L_1(G_t) \ge cn$ and $L_2(G_t) = o(n)$ for all $t \ge (1/2 + \epsilon)n$, where $c = c(\epsilon)$ is a constant that depends only on ϵ .

Thus, at around time t = n/2, our evolving graph G_t suffers a sudden change in structure: the so called *giant component* emerges.