
Szemerédi’s Regularity Lemma for Sparse
Graphs

Y. Kohayakawa?
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Abstract. A remarkable lemma of Szemerédi asserts that, very roughly
speaking, any dense graph can be decomposed into a bounded number
of pseudorandom bipartite graphs. This far-reaching result has proved
to play a central rôle in many areas of combinatorics, both ‘pure’ and
‘algorithmic.’ The quest for an equally powerful variant of this lemma for
sparse graphs has not yet been successful, but some progress has been
achieved recently. The aim of this note is to report on the successes so
far.

1 Introduction

Szemerédi’s celebrated proof [39] of the conjecture of Erdős and Turán [10] on
arithmetic progressions in dense subsets of integers is certainly a masterpiece
of modern combinatorics. An auxiliary lemma in that work, which has become
known in its full generality [40] as Szemerédi’s regularity lemma, has turned out
to be a powerful and widely applicable combinatorial tool. For an authoritative
survey on this subject, the reader is referred to the recent paper of Komlós and
Simonovits [29]. For the algorithmic aspects of this lemma, the reader is referred
to the papers of Alon, Duke, Lefmann, Rödl, and Yuster [1] and Duke, Lefmann,
and Rödl [8].

Very roughly speaking, the lemma of Szemerédi says that any graph can be
decomposed into a bounded number of pseudorandom bipartite graphs. Since
pseudorandom graphs have a predictable structure, the regularity lemma is a
powerful tool for introducing ‘order’ where none is visible at first. The notion
of pseudorandomness that appears in the lemma has to do with distribution of
edges. In fact, the bipartite graphs that are used to decompose a given graph
are guaranteed to have its edges uniformly distributed with an error term that
is quadratic in the number of vertices of the graph, but with an arbitrarily small
multiplicative constant. Therefore, we have a handle on the edge distribution of
the original graph as long as it has a quadratic number of edges. If the original
graph has a subquadratic number of edges, however, Szemerédi’s lemma will tell
us nothing. In this note, we focus our attention on certain closely related vari-
ants of the regularity lemma that can handle this ‘sparse’ case with some success.
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An unpublished manuscript of the present author [23] dealt with one such vari-
ant. As mentioned there, these variants were also independently discovered by
Professor V. Rödl.

These sparse versions of the regularity lemma have already been used for
studying extremal properties of graphs [19, 20], of random graphs [21, 22, 24, 26],
and of random sets of integers [27], and also for developing an optimal algorithm
for checking pseudorandomness of graphs [28]. In the sequel, we shall discuss
these applications and we shall also state a few related problems.

Before we close the introduction, let us mention that, since the paper of
Komlós and Simonovits [29] went to press, another nice application of the regu-
larity lemma, together with a new variant, has appeared. Frieze and Kannan [14]
have approached some MAXSNP-hard problems by means of the regularity
lemma. Their method gives polynomial time approximation schemes for many
graph partitioning problems if the instances are restricted to dense ones. Their
paper thus provides yet another motivation for investigating sparse versions of
the fascinating lemma of Szemerédi.

This note is organised as follows. The statement of a version of the regularity
lemma for sparse graphs, Theorem 1, is given in Section 2 below. A variant of
Theorem 1 is also discussed in that section. We then present in Section 3 an
application of Theorem 1 to the study of pseudorandom graphs, highlighting
an algorithmic consequence. In Section 4 we present applications of Theorem 1
to graph theory and to combinatorial number theory. A proof of Theorem 1 is
outlined in Section 5. We close this note with some remarks and open problems.

Caveat. The regularity lemma is a powerful tool, but, naturally, several of its
applications involve many further additional ideas and techniques. Although
crucial in the applications we shall discuss below, the sparse version of this
lemma is still far weaker than one would wish, and one has to fight quite hard
to prove the results in question. Therefore, in this note, we shall not be able
to state precisely how this lemma comes in in the proofs of the theorems under
discussion. However, we shall try to hint what the rôle of the regularity lemma
is in each case.

2 Sparse Variants of the Regularity Lemma

2.1 Preliminary Definitions

Let a graph G = Gn of order |G| = n be fixed. For U , W ⊂ V = V (G), we
write E(U,W ) = EG(U,W ) for the set of edges of G that have one endvertex
in U and the other in W . We set e(U,W ) = eG(U,W ) = |E(U,W )|. Now, let a
partition P0 = (Vi)`1 (` ≥ 1) of V be fixed. For convenience, let us write (U,W ) ≺
P0 if U ∩W = ∅ and either ` = 1 or else ` ≥ 2 and for some i 6= j (1 ≤ i, j ≤ `)
we have U ⊂ Vi, W ⊂ Vj .

Suppose 0 ≤ η ≤ 1. We say that G is (P0, η)-uniform if, for some 0 ≤ p ≤ 1,
we have that for all U , W ⊂ V with (U,W ) ≺ P0 and |U |, |W | ≥ ηn, we have∣∣eG(U,W )− p|U ||W |

∣∣ ≤ ηp|U ||W |. (1)



We remark that the partition P0 is introduced to handle the case of `-partite
graphs (` ≥ 2). If ` = 1, that is, if the partition P0 is trivial, then we are thinking
of the case of ordinary graphs. In this case, we shorten the term (P0, η)-uniform
to η-uniform.

The prime example of an η-uniform graph is of course a random graph Gp =
Gn,p. Note that for η > 0 a random graph Gp with p = p(n) = C/n is almost
surely η-uniform provided C ≥ C0 = C0(η), where C0(η) depends only on η.
Here and in the sequel, we use standard definitions and notation concerning
random graphs. Let 0 < p = p(n) ≤ 1 be given. The standard binomial ran-
dom graph Gp = Gn,p has as vertex set a fixed set V (Gp) of cardinality n and
two such vertices are adjacent in Gp with probability p, with all such adjacen-
cies independent. For concepts and results concerning random graphs, see, e.g.,
Bollobás [3].

2.2 A Regularity Lemma for Sparse Graphs

We first introduce a few further definitions that will allow us to state a version
of Szemerédi’s lemma for sparse graphs. Let a graph G = Gn be fixed as before.
Let H ⊂ G be a spanning subgraph of G. For U , W ⊂ V , let

dH,G(U,W ) =
{
eH(U,W )/eG(U,W ) if eG(U,W ) > 0
0 if eG(U,W ) = 0.

Suppose ε > 0, U , W ⊂ V , and U ∩ W = ∅. We say that the pair (U,W ) is
(ε,H,G)-regular, or simply ε-regular, if for all U ′ ⊂ U , W ′ ⊂W with |U ′| ≥ ε|U |
and |W ′| ≥ ε|W |, we have

|dH,G(U ′,W ′)− dH,G(U,W )| ≤ ε.

We say that a partition Q = (Ci)k0 of V = V (G) is (ε, k)-equitable if |C0| ≤ εn,
and |C1| = . . . = |Ck|. Also, we say that C0 is the exceptional class of Q. When
the value of ε is not relevant, we refer to an (ε, k)-equitable partition as a k-
equitable partition. Similarly, Q is an equitable partition of V if it is a k-equitable
partition for some k. If P and Q are two equitable partitions of V , we say that Q
refines P if every non-exceptional class of Q is contained in some non-exceptional
class of P . If P ′ is an arbitrary partition of V , then Q refines P ′ if every non-
exceptional class of Q is contained in some block of P ′. Finally, we say that an
(ε, k)-equitable partition Q = (Ci)k0 of V is (ε,H,G)-regular, or simply ε-regular,
if at most ε

(
k
2

)
pairs (Ci, Cj) with 1 ≤ i < j ≤ k are not ε-regular. We may now

state an extension of Szemerédi’s lemma to subgraphs of (P0, η)-uniform graphs.

Theorem 1. Let ε > 0 and k0, ` ≥ 1 be fixed. Then there are constants η =
η(ε, k0, `) > 0 and K0 = K0(ε, k0, `) ≥ k0 satisfying the following. For any
(P0, η)-uniform graph G = Gn, where P0 = (Vi)`1 is a partition of V = V (G),
if H ⊂ G is a spanning subgraph of G, then there exists an (ε,H,G)-regular
(ε, k)-equitable partition of V refining P0 with k0 ≤ k ≤ K0. ut

Remark. To recover the original regularity lemma of Szemerédi from Theorem 1,
simply take G = Kn, the complete graph on n vertices.



2.3 A Second Regularity Lemma for Sparse Graphs

In some situations, the sparse graph H to which one would like to apply the
regularity lemma is not a subgraph of some fixed η-uniform graph G. A simple
variant of Theorem 1 may be useful in this case. For simplicity, we shall not state
this variant for ‘P0-partite’ graphs as we did in Section 2.2.

Let a graph H = Hn of order |H| = n be fixed. Suppose 0 < η ≤ 1 and 0 <
p ≤ 1. We say that H is η-upper-uniform with density p if, for all U , W ⊂ V
with U ∩W = ∅ and |U |, |W | ≥ ηn, we have eH(U,W ) ≤ (1 + η)p|U ||W |. In
the sequel, for any two disjoint non-empty sets U , W ⊂ V , let dH,p(U,W ) =
eH(U,W )/2p|U ||W |.

Now suppose ε > 0, U , W ⊂ V , and U ∩W = ∅. We say that the pair (U,W )
is (ε,H, p)-regular, or simply (ε, p)-regular, if for all U ′ ⊂ U ,W ′ ⊂W with |U ′| ≥
ε|U | and |W ′| ≥ ε|W | we have

|dH,p(U ′,W ′)− dH,p(U,W )| ≤ ε.

We say that an (ε, k)-equitable partition P = (Ci)k0 of V is (ε,H, p)-regular,
or simply (ε, p)-regular, if at most ε

(
k
2

)
pairs (Ci, Cj) with 1 ≤ i < j ≤ k are not

(ε, p)-regular. We may now state a version of Szemerédi’s regularity lemma for
η-upper-uniform graphs.

Theorem 2. For any given ε > 0 and k0 ≥ 1, there are constants η = η(ε, k0) >
0 and K0 = K0(ε, k0) ≥ k0 such that any η-upper-uniform graph H with density
0 < p ≤ 1 admits an (ε,H, p)-regular (ε, k)-equitable partition of its vertex set
with k0 ≤ k ≤ K0. ut

Remarks. (i) A further variant of Theorem 1 concerns the existence ε-regular
partitions with respect to a collection of graphs on the same vertex set. Such a
variant is used [20].

(ii) Variants of Theorems 1 and 2 for sparse hypergraphs may be proved
easily. However, we know of no applications of such results. For hypergraph
versions of the regularity lemma, see [4, 12].

3 Checking Pseudorandomness of Graphs

The investigation of explicitly constructible graphs that are ‘random-like’ has
proved to be very fruitful in providing examples for many extremal problems
in graph theory. These graphs have also played a crucial rôle in algorithmic
problems: the use of expanders for amplifying the power of random sources is
but one example.

The study of pseudorandom graph properties, i.e., properties that random
graphs have and somehow capture their ‘random nature,’ can be traced back to
Graham and Spencer [18], Rödl [33], and Frankl, Rödl, and Wilson [13]. Thoma-
son [41, 42] and Chung, Graham, and Wilson [7] present further developments
that have given this subject the status of a solid theory. (We do not go into the



details, but we mention that similar theories for hypergraphs and subsets of Zn
are now available, see Chung and Graham [5, 6].)

In this section, we shall be concerned with a new pseudorandom graph prop-
erty introduced by Rödl. This property characterises quasi-random graphs in
the sense of Chung, Graham, and Wilson [7]. As a consequence of this charac-
terisation, we shall have an optimal algorithm for checking quasi-randomness of
graphs. For the proofs of the results in this section, the reader is referred to [28].

3.1 Preliminary Definitions

Let reals 0 < ε ≤ 1 and 0 < δ ≤ 1 be given. We shall say that a graph G
is (1/2, ε, δ)-quasi-random if, for all U , W ⊂ V (G) with U ∩ W = ∅ and |U |,
|W | ≥ δn, we have ∣∣∣∣eG(U,W )− 1

2
|U ||W |

∣∣∣∣ ≤ 1
2
ε|U ||W |. (2)

If 0 < % ≤ 1 and A are reals, we say that an n-vertex graph J = Jn is
(%,A)-uniform if, for all U , W ⊂ V (J) with U ∩W = ∅, we have∣∣eJ(U,W )− %|U ||W |

∣∣ ≤ A√r|U ||W |, (3)

where r = %n. In the sequel, we may take the graph J to be a Lubotzky–Phillips–
Sarnak Ramanujan graph Xp,q for some values of p and q, see [30]. If J = Xp,q,
we have r = p+ 1 and the graph J is r-regular. Moreover, in this case, inequal-
ity (3) holds with A = 2, and in fact r on the right hand side of (3) may be
replaced by r − 1.

We shall now define a property for n-vertex graphs G = Gn, based on a fixed
(%,A)-uniform graph J = Jn with the same vertex set as G. Let 0 < ε ≤ 1 be a
real. We say that G satisfies property PJ,4(ε) if we have∑

ij∈E(J)

∣∣∣∣|ΓG(i)4 ΓG(j)| − 1
2
n

∣∣∣∣ ≤ 1
2
εne(J), (4)

where, as usual, we write ΓG(x) for the G-neighbourhood of a vertex x of G,
and we write A4 B for the symmetric difference (A \ B) ∪ (B \ A). Moreover,
in (4) and in the sequel, e(J) denotes the number of edges in J . As we shall see
in Section 3.2, inequality (4), which may be checked in time O(n2) if we take J
to be a graph with e(J) = O(n), turns out to be a quasi-random property in the
sense of [7].

For technical reasons, we need to introduce a variant of property PJ,4(ε).
Suppose 0 < γ ≤ 1 and 0 < ε ≤ 1 are two reals and G = Gn is an n-vertex
graph. We shall say that G satisfies property P ′J,4(γ, ε) if the inequality∣∣∣∣|ΓG(i)4 ΓG(j)| − 1

2
n

∣∣∣∣ ≤ 1
2
εn (5)

fails for at most γe(J) edges ij ∈ E(J) of J . As a quick argument shows, prop-
erties PJ,4(ε) and PJ,4(γ, ε) are equivalent under suitable assumptions on the
parameters, see Lemma 5.



3.2 The Equivalence Results

The following three results express the equivalence between quasi-randomness,
in the technical sense of Chung, Graham, and Wilson [7], and property PJ,4.
Loosely speaking, quasi-randomness in the sense of [7] is equivalent to the prop-
erty of being (1/2, o(1), o(1))-quasi-random, which, as the results below show, is
equivalent to property PJ,4(o(1)).

Theorem 3. Let an r-regular (%,A)-uniform graph J = Jn be fixed, where 0 <
% = r/n ≤ 1 and A is an absolute constant. Let constants 0 < ε ≤ 1 and
0 < δ ≤ 1 be given. Then if 0 < ε′ ≤ ε2δ3/8 and r ≥ 210A2ε−2δ−2, we have that
any graph G = Gn on the same vertex set as J satisfying property PJ,4(ε′) is
(1/2, ε, δ)-quasi-uniform. ut

Theorem 4. Let an r-regular (%,A)-uniform graph J = Jn be fixed, where 0 <
% = r/n ≤ 1 and A is an absolute constant. Let constants 0 < γ ≤ 1 and
0 < ε ≤ 1 be given. Then there exist constants 0 < ε0 = ε0(γ, ε) ≤ 1, 0 < δ0 =
δ0(γ, ε) ≤ 1, and r0 = r0(γ, ε) ≥ 1, which depend only on γ and ε, such that any
(1/2, ε′, δ′)-quasi-uniform graph G on the same vertex set as J satisfies property
P ′J,4(γ, ε) as long as ε′ ≤ ε0(γ, ε), δ′ ≤ δ0(γ, ε), and r ≥ r0(γ, ε). ut

Lemma 5. Let a (%,A)-uniform graph J = Jn be given, where 0 < % ≤ 1 and A
is an absolute constant. The following assertions hold.

(i) Let G = Gn be a graph on V (J) satisfying property P ′J,4(γ, ε), where 0 <
γ ≤ 1 and 0 < ε ≤ 1 satisfy γ + ε ≤ 1. Then G has property PJ,4(ε+ γ).

(ii) Let G = Gn be a graph on V (J) satisfying property PJ,4(ε) and suppose
ε ≤ ε′ ≤ 1. Then G satisfies property P ′J,4(ε/ε′, ε′). ut

An immediate corollary to the above results is as follows.

Corollary 6. Given an n-vertex graph G, we can decide in time O(n2) whether
or not G is a quasi-random graph. ut

Previously, the fastest known method for checking quasi-randomness was
based on the quasi-random property PJ,4 with J the complete graph Kn on n
vertices. This gave an algorithm of time complexity O(M(n)), where M(n) =
O(n2.376) is the time needed for multiplying two n by n matrices with 0–1 entries
over the integers.

The Rôle of the Regularity Lemma. Theorem 1 is used in the proof of
Theorem 4. Roughly speaking, one takes a graph G as in the statement of Theo-
rem 4, and assumes that it does not satisfy P ′J,4(γ, ε). One then takes the span-
ning subgraph H of J whose edges are the ‘violating edges’ ij ∈ E(J), where we
call an edge ij violating if (5) fails for ij. Note that a violating edge may be of
two types, corresponding to the two inequalities expressed in (5). Thus, we may
naturally split the edges of H into two groups; say H = H− ∪H+. Assume that,



say, e(H+) ≥ (1/2)e(H) ≥ (γ/2)e(J). We may then apply Theorem 1 to the
pair H+ ⊂ J . Once an H+-dense regular pair (Vi, Vj) is shown to exist, one may
prove that there is a pair (U,W ) of suitably large sets that violate (2). Details
are given in [28].

4 Further Applications

4.1 Applications in Graph Theory

A classical area of extremal graph theory investigates numerical and structural
problems concerning H-free graphs, namely graphs that do not contain a copy
of a given fixed graph H as a subgraph. Let ex(n,H) be the maximal number
of edges that an H-free graph on n vertices may have. A basic question is then
to determine or estimate ex(n,H) for any given H and large n. A solution to
this problem is given by the celebrated Erdős–Stone–Simonovits theorem, which
states that, as n→∞, we have

ex(n,H) =
(

1− 1
χ(H)− 1

+ o(1)
)(

n

2

)
, (6)

where as usual χ(H) is the chromatic number of H. Furthermore, as proved
independently by Erdős and Simonovits, every H-free graph G = Gn that has
as many edges as in (6) is in fact ‘very close’ (in a certain precise sense) to the
densest n-vertex (χ(H)− 1)-partite graph. For these and related results, see, for
instance, Bollobás [2].

Here we are interested in a variant of the function ex(n,H). Let G and H be
graphs, and write ex(G,H) for the maximal number of edges that an H-free sub-
graph of G may have. Formally, ex(G,H) = max{e(J):H 6⊂ J ⊂ G}, where e(J)
stands for the size |E(J)| of J as before. Clearly ex(n,H) = ex(Kn, H).

One problem is, then, to study ex(G,H) when G is a ‘typical’ graph, by
which we mean a random graph. In other words, we wish to investigate the
random variable ex(Gn,p, H).

Let H be a graph of order |H| = |V (H)| ≥ 3 and size e(H) > 0. Let us
write d2(H) for the 2-density of H, that is,

d2(H) = max
{
e(J)− 1
|J | − 2

: J ⊂ H, |J | ≥ 3
}
.

Given a real 0 ≤ ε ≤ 1 and an integer r ≥ 2, let us say that a graph J is ε-quasi
r-partite if J may be made r-partite by the deletion of at most εe(J) of its edges.
A general conjecture concerning ex(Gn,p, H) is as follows (cf. [26]). As is usual
in the theory of random graphs, we say that a property P holds almost surely
or that almost every random graph Gn,p satisfies P if P holds with probability
tending to 1 as n→∞.

Conjecture 7. Let H be a non-empty graph of order at least 3, and let 0 < p =
p(n) ≤ 1 be such that pn1/d2(H) → ∞ as n → ∞. Then the following assertions
hold.



(i) Almost every Gn,p satisfies

ex(Gn,p, H) =
(

1− 1
χ(H)− 1

+ o(1)
)
e(Gn,p). (7)

(ii) Suppose χ(H) ≥ 3. Then for any ε > 0 there is a constant δ = δ(ε) > 0 such
that almost every Gn,p has the property that any H-free subgraph J ⊂ Gn,p
of Gn,p with e(J) ≥ (1− δ) ex(Gn,p, H) is ε-quasi (χ(H)− 1)-partite. ut

Recall that any graph G contains an r-partite subgraph J ⊂ G with e(J) ≥
(1 − 1/r)e(G). Thus the content of Conjecture 7(i) is that ex(Gn,p, H) is at
most as large as the right-hand side of (7). There are a few results in support of
Conjecture 7(i).

Any result concerning the tree-universality of expanding graphs, or else a
simple application of Theorem 2, gives Conjecture 7(i) for forests. The cases
in which H = K3 and H = C4 are essentially proved in Frankl and Rödl [11]
and Füredi [15], respectively, in connection with problems concerning the ex-
istence of some graphs with certain extremal properties. The case in which H
is a general cycle was settled by Haxell, Kohayakawa, and  Luczak [21, 22] (see
also Kohayakawa, Kreuter, and Steger [25]), and the case in which H = K4 was
settled by Kohayakawa,  Luczak, and Rödl [26]. Conjecture 7(ii) in the case in
which 0 < p ≤ 1 is a constant follows easily from Szemerédi’s original regular-
ity lemma. Theorem 2 and a lemma from Kohayakawa,  Luczak, and Rödl [27]
concerning induced subgraphs of bipartite graphs may be used to verify Conjec-
ture 7 for H = K3 in full, and, more generally, Conjecture 7 may be proved for
the case in which H is a cycle by making use of a lemma in Kohayakawa and
Kreuter [24].

We must at this point mention that beautiful and very general results con-
cerning Ramsey properties of random graphs in the spirit of Conjecture 7 were
proved by Rödl and Ruciński [35, 36]. These authors used the original lemma
of Szemerédi. A related result, of a much more restricted scope but apparently
not accessible through the techniques in [35, 36], is proved in Kohayakawa and
Kreuter [24]. Theorem 2 is crucial in [24].

The Rôle of the Regularity Lemma. A moment’s thought reveals that The-
orem 1 is immediately applicable to the situation given in Conjecture 7. Indeed,
we have a subgraph J of a random and hence η-uniform graph Gn,p at hand and
therefore we may invoke Theorem 1 to obtain an (ε, J,Gn,p)-regular partition P
of V = V (Gn,p), for any constants ε > 0 and k0. If we further know that

e(J) ≥
(

1− 1
χ(H)− 1

+ δ

)
e(Gn,p),

where δ > 0 is some constant, it is a simple matter to find a set of h = |H|
classes Vi in the partition P that ‘form a copy of H’ (here we need to have ε
suitably small and k0 suitably large with respect to δ). If we are dealing with 0 <
p ≤ 1 that is a constant, independent of n, then we are finished, since these h



classes may be shown to span a copy of H. If p = p(n)→ 0 as n→∞, however,
we are stuck, since this last statement does not necessarily hold. In [21, 22, 24,
26], we are forced to take different approaches, all of them based on more involved
applications of our sparse variants of the regularity lemma. We shall not go into
the details. We shall, however, discuss a conjecture (cf. [26]) from which, if true,
one may deduce Conjecture 7 through the standard approach described above.

Suppose H has vertices v1, . . . , vh (h ≥ 3) and let 0 < p = p(m) ≤ 1 be given.
Let also V = (Vi)hi=1 be a family of h pairwise disjoint sets, each of cardinality m.
Suppose reals 0 < ε ≤ 1 and 0 < γ ≤ 1 and an integer T are given. We say that
an h-partite graph F with h-partition V (F ) = V1 ∪ · · · ∪ Vh and size e(F ) =
|F | = T is an (ε, γ,H; V, T )-graph if the pair (Vi, Vj) is (ε, F, p)-regular and has
p-density γ ≤ dF,p(Vi, Vj) ≤ 1 whenever vivj ∈ E(H).

Conjecture 8. Let constants 0 < α ≤ 1 and 0 < γ ≤ 1 be given. Then there
exist constants ε = ε(α, γ) > 0 and C = C(α, γ) such that, if p = p(m) ≥
Cm−1/d2(H), the number of H-free (ε, γ,H; V, T )-graphs is at most

αT
((h

2

)
m2

T

)
for all T and all sufficiently large m. ut

If H above is a forest, Conjecture 8 holds trivially, since, in this case, all
(ε, γ,H; V, T )-graphs contain a copy of H. A lemma in Kohayakawa,  Luczak,
and Rödl [27] may be used to show that Conjecture 8 holds for the case in
which H = K3. The general case of cycles is established in Kohayakawa and
Kreuter [24].

Remark. Other graph theoretical applications of the regularity lemma for sparse
graphs are given in Haxell and Kohayakawa [19] and Haxell, Kohayakawa, and
 Luczak [20]. These applications concern Ramsey and anti-Ramsey properties of
random and pseudorandom graphs.

4.2 An Application in Combinatorial Number Theory

We now turn to a problem concerning arithmetic progressions of integers. Here
we are interested in the existence of a ‘small’ and ‘sparse’ set R ⊂ [n] =
{1, . . . , n} with the property that every subset A ⊂ R that contains a fixed
positive fraction of the elements of R contains also a 3-term arithmetic progres-
sion. The measure of sparseness here should reflect the fact that R is locally
poor in 3-term arithmetic progressions. Clearly, a natural candidate for such a
set R is an M -element set RM uniformly selected from all the M -element subsets
of [n], where 1 ≤ M = M(n) ≤ n is to be chosen suitably. The main result of
Kohayakawa,  Luczak, and Rödl [27] confirms this appealing and intuitive idea.

For integers 1 ≤ M ≤ n, let R(n,M) be the probability space of all the
M -element subsets of [n] equipped with the uniform measure. In the sequel,
given 0 < α ≤ 1 and a set R ⊂ [n], write R →α 3 if any A ⊂ R with |A| ≥ α|R|



contains a 3-term arithmetic progression. The main result of [27] may then be
stated as follows.

Theorem 9. For every constant 0 < α ≤ 1, there exists a constant C = C(α)
such that if C

√
n ≤ M = M(n) ≤ n then the probability that RM ∈ R(n,M)

satisfies RM →α 3 tends to 1 as n→∞. ut

Note that Theorem 9 is, in a way, close to being best possible: if M = M(n) =
bε
√
nc for some fixed ε > 0 then the number of 3-term arithmetic progressions

in RM ∈ R(n,M) is, with large probability, smaller than 2ε2|RM |, and hence
all of them may be destroyed by deleting at most 2ε2|RM | elements from RM ;
in other words, with large probability the relation RM →α 3 does not hold
for α = 1− 2ε2.

Theorem 9 immediately implies the existence of ‘sparse’ sets S = Sα such
that S →α 3 for any fixed 0 < α ≤ 1. The following result makes this assertion
precise.

Corollary 10. Suppose that s = s(n) = o(n1/8) and g = g(n) = o(log n) as n→
∞. Then, for every fixed α > 0, there exist constants C and N such that for
every n ≥ N there exists S ⊂ [n] satisfying S →α 3 for which the following three
conditions hold.

(i) For every k ≥ 0 and ` ≥ 1 the set {k, k+`, . . . , k+s`} contains at most three
elements of S.

(ii) Every set {k, k+`, . . . , k+m`} with k ≥ 0, ` ≥ 1, and m ≥
√
n log n contains

at most Cm/
√
n elements of S.

(iii) If F = F(S) is the 3-uniform hypergraph on the vertex set S whose hyper-
edges are the 3-term arithmetic progressions contained in S, then F has no
cycle of length smaller than g. ut

In words, conditions (i) and (ii) above say that the set S intersects any arith-
metic progression in a small number of elements. In particular, S contains no
4-term arithmetic progressions. Condition (iii) is more combinatorial in nature,
and says that the 3-term arithmetic progressions contained in S form, locally, a
tree-like structure, which makes the property S →α 3 somewhat surprising.

Let us remark that the following extension of Szemerédi’s theorem related
to Corollary 10 was proved by Rödl [34], thereby settling a problem raised by
Spencer [38]. Let k, g ≥ 3 be fixed integers and 0 < α ≤ 1 a fixed real. Theo-
rem 4.3 in [34] asserts that then, for any large enough n, there exists a k-uniform
hypergraph F on [n], all of whose hyperedges are k-term arithmetic progressions,
such that F contains no cycle of length smaller than g but each subset A ⊂ [n]
with |A| ≥ αn contains a hyperedge of F . For other problems and results in this
direction, see Graham and Nešetřil [16], Nešetřil and Rödl [31], and Prömel and
Voigt [32]. Note that Corollary 10 strengthens the above result of [34] in the case
in which k = 3.



The Rôle of the Regularity Lemma. A weak version of Roth’s theorem [37],
namely, a version stating that any sequence of integers with positive upper den-
sity contains a 3-term arithmetic progression, may be proved by means of a more-
or-less direct application of the regularity lemma, see, e.g., Erdős, Frankl, and
Rödl [9] and Graham and Rödl [17]. Since Theorem 9 above deals with sparse
sets of integers, a similar approach makes results such as Theorem 2 come into
play. The difficulties that arise are, however, quite substantial. We close by men-
tioning that an application of a variant of Theorem 2 and the proof of Conjec-
ture 8 for H = K3 are at the heart of the proof of Theorem 9.

5 Proof of Theorem 1

We now proceed to outline the proof Theorem 1, but, before we proceed, we
stress that the argument below follows the one of Szemerédi [40] very closely. In
particular, as in [40], the following ‘defect’ form of the Cauchy–Schwarz inequal-
ity will be important.

Lemma 11. Let reals y1, . . . , yv ≥ 0 be given. Suppose 0 ≤ % = u/v < 1 and∑
1≤i≤u yi = α%

∑
1≤i≤v yi. Then

∑
1≤i≤v

y2
i ≥

1
v

(
1 + (α− 1)2

%

1− %

){ ∑
1≤i≤v

yi

}2

. ut

We now fix G = Gn and put V = V (G). Also, we assume that P0 = (Vi)`1 is a
fixed partition of V , and that G is (P0, η)-uniform for some 0 ≤ η ≤ 1. Moreover,
we let p = p(G) be as in (1). The following ‘continuity’ results for dH,G and d2

H,G

may be proved in a straightforward manner.

Lemma 12. Let 0 < δ ≤ 10−2 be fixed. Let U , W ⊂ V (G) be such that (U,W ) ≺
P0, and δ|U |, δ|W | ≥ ηn. If U∗ ⊂ U , W ∗ ⊂ W , |U∗| ≥ (1− δ)|U |, and |W ∗| ≥
(1− δ)|W |, then

(i) |dH,G(U∗,W ∗)− dH,G(U,W )| ≤ 5δ,
(ii) |dH,G(U∗,W ∗)2 − dH,G(U,W )2| ≤ 9δ. ut

In the sequel, a constant 0 < ε ≤ 1/2 and a spanning subgraph H ⊂ G
of G is fixed. Also, we let P = (Ci)k0 be an (ε, k)-equitable partition of V =
V (G) refining P0, where 4k ≥ ε−5. Moreover, we assume that η ≤ η0 = η0(k) =
1/k4k+1 and that n = |G| ≥ n0 = n0(k) = k41+2k.

We now define an equitable partition Q = Q(P ) of V = V (G) from P as
follows. First, for each (ε,H,G)-irregular pair (Cs, Ct) of P with 1 ≤ s < t ≤
k, we choose X = X(s, t) ⊂ Cs, Y = Y (s, t) ⊂ Ct such that (i) |X|, |Y | ≥
ε|Cs| = ε|Ct|, and (ii) |dH,G(X,Y )− dH,G(Cs, Ct)| ≥ ε. For fixed 1 ≤ s ≤ k, the
sets X(s, t) in

{X = X(s, t) ⊂ Cs: 1 ≤ t ≤ k and (Cs, Ct) is not (ε,H,G)-regular}



define a natural partition of Cs into at most 2k−1 blocks. Let us call such blocks
the atoms of Cs. Now let q = 4k and set m = b|Cs|/qc (1 ≤ s ≤ k). Note
that b|Cs|/mc = q as |Cs| ≥ n/2k ≥ 2q2. Moreover, for later use, note that m ≥
ηn. We now let Q′ be a partition of V = V (G) refining P such that (i) C0 is a
block of Q′, (ii) all other blocks of Q′ have cardinality m, except for possibly one,
which has cardinality at most m− 1, (iii) for all 1 ≤ s ≤ k, every atom A ⊂ Cs
contains exactly b|A|/mc blocks of Q′, (iv) for all 1 ≤ s ≤ k, the set Cs contains
exactly q = b|Cs|/mc blocks of Q′.

Let C ′0 be the union of the blocks of Q′ that are not contained in any class Cs
(1 ≤ s ≤ k), and let C ′i (1 ≤ i ≤ k′) be the remaining blocks of Q′. We are
finally ready to define our equitable partition Q = Q(P ): we let Q = (C ′i)

k′

0 . The
following lemma is easy to check.

Lemma 13. The partition Q = Q(P ) = (C ′i)
k′

0 defined from P as above is a
k′-equitable partition of V = V (G) refining P , where k′ = kq = k4k, and |C ′0| ≤
|C0|+ n4−k. ut

In what follows, for 1 ≤ s ≤ k, we let Cs(i) (1 ≤ i ≤ q) be the classes of Q′

that are contained in the class Cs of P . Also, for all 1 ≤ s ≤ k, we set C∗s =⋃
1≤i≤q Cs(i). Now let 1 ≤ s ≤ k be fixed. Note that |C∗s | ≥ |Cs| − (m − 1) ≥
|Cs| − q−1|Cs| ≥ |Cs|(1 − q−1). As q−1 ≤ 10−2 and q−1|Cs| ≥ m ≥ ηn, by
Lemma 12 we have, for all 1 ≤ s < t ≤ k,

|dH,G(C∗s , C
∗
t )− dH,G(Cs, Ct)| ≤ 5q−1 (8)

and
|dH,G(C∗s , C

∗
t )2 − dH,G(Cs, Ct)2| ≤ 9q−1. (9)

As in [40], we define the index ind(R) of an equitable partition R = (Vi)r0 of V =
V (G) to be

ind(R) =
2
r2

∑
1≤i<j≤`

dH,G(Vi, Vj)2.

Note that trivially 0 ≤ ind(R) < 1. The next two lemmas show that, for Q =
Q(P ) defined as above, we have ind(Q) ≥ ind(P )+ε5/100. The proof of the first
lemma is based on the Cauchy–Schwarz inequality.

Lemma 14. Suppose 1 ≤ s < t ≤ k. Then

1
q2

q∑
i, j=1

dH,G(Cs(i), Ct(j))2 ≥ dH,G(Cs, Ct)2 −
ε5

100
. ut

The inequality in Lemma 14 may be improved if (Cs, Ct) is an (ε,H,G)-
irregular pair. The following lemma, which is proved by invoking the defect form
of the Cauchy–Schwarz inequality, Lemma 11, makes this precise.



Lemma 15. Let 1 ≤ s < t ≤ k be such that (Cs, Ct) is not (ε,H,G)-regular.
Then

1
q2

q∑
i, j=1

dH,G(Cs(i), Ct(j))2 ≥ dH,G(Cs, Ct)2 +
ε4

40
− ε5

100
. ut

The following result, which is the main lemma in the proof of Theorem 1,
follows from Lemmas 14 and 15.

Lemma 16. Suppose k ≥ 1 and 0 < ε ≤ 1/2 are such that 4k ≥ 1800ε−5. Let
G = Gn be a (P0, η)-uniform graph of order n ≥ n0 = n0(k) = k42k+1, where
P0 = (Vi)`1 is a partition of V = V (G), and assume that η ≤ η0 = η0(k) =
1/k4k+1. Let H ⊂ G be a spanning subgraph of G. If P = (Ci)k0 is an (ε,H,G)-
irregular (ε, k)-equitable partition of V = V (G) refining P0, then there is a k′-
equitable partition Q = (C ′i)

k′

0 of V such that (i) Q refines P , (ii) k′ = k4k,
(iii) |C ′0| ≤ |C0|+ n4−k, and (iv) ind(Q) ≥ ind(P ) + ε5/100. ut

Proof of Theorem 1. (Outline) Let ε > 0, k0 ≥ 1, and ` ≥ 1 be given. We may
assume that ε ≤ 1/2. Pick s ≥ 1 such that 4s/4` ≥ 1800ε−5, s ≥ max{2k0, 3`/ε},
and ε4s−1 ≥ 1. Let f(0) = s, and put inductively f(t) = f(t− 1)4f(t−1) (t ≥ 1).
Let t0 = b100ε−5c and set N = max{n0(f(t)): 0 ≤ t ≤ t0} = f(t0)42f(t0)+1,
K0 = max{6`/ε,N}, and η = η(ε, k0, `) = min{η0(f(t)): 0 ≤ t ≤ t0} = 1/4f(t0+
1) > 0. It is now straightforward to check that η and K0 as defined above will do.
As in [40], the proof is simply based on the fact that the index of any partition
is bounded, whereas, as stated in Lemma 16(iv), the index increases by a fixed
amount every time we suitably refine an irregular partition. We omit the details.

ut

6 Final Remarks and Open Problems

It would be of interest to elucidate the algorithmic aspects of Theorem 1. For
instance, can one find the partition guaranteed to exist in that result in time, say,
O(n2), if we are concerned with subgraphs H of r-regular η-uniform graphs G =
Gn, where r is a constant independent of n? If this turns out to be the case,
many algorithms developed in [1, 8] may be improved to optimal algorithms.

We hope that the above applications of the regularity lemma for sparse graphs
reveal the potential of such variants of Szemerédi’s lemma. The applications also
illustrate that the ‘right’ variant has not yet been found, since the successes are
somewhat modest when compared with what the original lemma can achieve in
the dense case. The problem of finding the ‘right’ variant of Szemerédi’s lemma
for the sparse case is certainly of great interest.
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