
On the Evolution of Random Boolean Functions

B. Bollobás1, 2, Y. Kohayakawa1, 2 and T.  Luczak1, 3

1 Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, England

2 Department of Mathematics,
Louisiana State University, Baton Rouge, LA 70803, USA

3 Department of Discrete Mathematics,
Adam Mickiewicz University, ul. Matejki 48/49, Poznań, Poland

Abstract. Let a random induced subgraph Qp = Qn,p of the cube Qn be chosen by letting P(v ∈ V (Gp)) = p,

all such events being independent. We show that the component structure of Qp undergoes a ‘phase transition’ at

around p = 1/n, as conjectured by Weber. We show that if p = (1 + ε)/n and ε > 0 is fixed then a.e. Qp contains

a ‘giant’ component of order (η + o(1))pN , where η = η(ε) > 0 is computed explicitly. This result is the natural

analogue of a theorem of Ajtai, Komlós and Szemerédi concerning the behaviour of random spanning subgraphs

of Qn. We also show that the second largest component of a.e. Qp is of order O(n10).

1. Introduction

In this note we study random Boolean functions, i.e. random functions that are defined on the cube Qn and

take values in {0, 1}. Rather trivially, by identifying ϕ : Qn → {0, 1} with Wϕ = ϕ−1(1), a random Boolean

function may be regarded as a random subset W ⊂ V (Qn) of the vertex set of the cube. More interestingly,

one sees that certain natural properties of ϕ are directly reflected in the graph-theoretic properties of the

graph Gϕ = Qn[Wϕ] induced by Wϕ in the cube. Let us give some examples.

Suppose we can cover Gϕ with ` subcubes Qi (1 ≤ i ≤ `), every Qi being contained in Gϕ. We then see

that ϕ can be expressed as a disjunctive normal form (DNF) with ` conjunctions, that is it can be expressed

by a DNF of complexity , or length, `. The natural problem of determining the minimal complexity of a DNF

representing ϕ has been studied in detail; see for instance Glagolev [9], Saposhenko ([11]–[14]) and Weber

([16]–[21]).

Another graph-theoretic property of Gϕ ⊂ Qn that is of interest is the size of the edge-boundary
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of Wϕ; more specifically, if we fix the cardinality of Wϕ, we want to know whether there is a coordinate i

(1 ≤ i ≤ n) such that the number ∂i(Wϕ) of edges in the ith direction between vertices of Wϕ and its

complement ϕ−1(0) = Qn \Wϕ is large in terms of |Wϕ| (see [10]). This question has to do with the strength

of the influence of individual variables on the function ϕ. (The variable corresponding to i above has large

influence on the behaviour of ϕ, since the fact that ∂i(Wϕ) is large corresponds to the fact that the value

of ϕ is highly sensitive to the value of the variable i.)

Finally, one rather basic question about Gϕ concerns its connectedness: if we pick a random Boolean

function ϕ, what is the probability that Gϕ is connected? Or more generally, what can we say about the

number of components of a typical Gϕ?

Before we proceed, let us introduce the probabilistic model of Boolean functions that we shall use;

terms like ‘typical’ will then have a precise meaning. For given n ≥ 1 and 0 ≤ p ≤ 1, our space of

Boolean functions Gind(Qn, p) has as its members all the induced subgraphs of Qn, and a random element Qp

of Gind(Qn, p) can be generated by simply letting v ∈ V (Qp) with probability p, all these events being

independent. Thus if G0 is an induced subgraph of the cube and its order |G0| is u, then

P(Qp = G0) = pu(1− p)N−u,

where N = 2n. Toman [15] proved that the critical value for the connectedness of Qp is 1/2: for fixed values

of p, a.e. Qp is connected if p > 1/2 and it is a.s. disconnected if p < 1/2. For the critical case p = 1/2,

Saposhenko ([12], [14]) and Weber [17] proved that a.e. Qp has one large component L, and all the vertices

of Qp outside L are isolated, and moreover their number is, in the limit as n → ∞, distributed according

to the Poisson distribution with parameter 1/2, and hence the probability that Q1/2 is connected tends

to e−1/2. (Considerable strengthenings of these results have been obtained by Dyer, Frieze and Foulds [6].)

Now, Weber [22] extended this result about the structure of Q1/2 as follows. He proved that if 0 <

p < 1/2 is fixed then a.e. Qp has one large component L of order |Qp| − (1 + o(1))p(2q)n, where q = 1− p,
and asymptotically there are p(2q)n small components of order between 1 and b1/ log(1/q)c. In fact, in

view of certain results concerning the random spanning subgraphs Qp ∈ G(Qn, p), one is inclined to expect

considerably sharper results, namely a rather abrupt ‘phase transition’. (The random graphs Qp ⊂ Qn are

obtained by independent selections of the edges of Qn with probability p.) Erdős and Spencer [7] observed

that if p = (1 − ε)/n and ε > 0 is fixed, then all components of Qp have order o(N). On the other hand,

verifying a conjecture stated in [7], Ajtai, Komlós and Szemerédi [1] proved the following beautiful and

surprising and result. If p = (1 + ε)/n and ε > 0 is fixed, then a.e. Qp contains a ‘giant’ component of order

at least cN , where c = c(ε) > 0. This theorem has been extended considerably in [4], where, among others,

it is shown that if p = (1 + ε)/n and 60(log n)3/n ≤ ε = ε(n) = o(1), then the largest component of Qp has

order about 2εN almost surely. Furthermore, the second largest component of a.e. Qp has order O(nε−2),

and hence apart from the giant all components of a.e. Qp are very small indeed. From the results above, we

see that the component structure of Qp changes very suddenly at around the critical point p = 1/n.

As pointed out by Weber [22], a phase transition analogous to the one experienced by Qp cannot take

place in Qp before p = 1/n, if it happens at all: if ε > 0 is fixed and p = (1 − ε)/n then a.e. Qp is such

that all its components have at most cn vertices for some c = c(ε). Weber also conjectured that a phase
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transition does occur at p = 1/n. Our aim in this note is to prove this conjecture. Among others, we shall

show that if ε > 0 is fixed then for p = (1 + ε)/n a.e. Qp ∈ Gind(Qn, p) is such that its largest component

has (η + o(1))pN vertices, where η = η(ε) > 0 depends only on ε. (We shall compute η = η(ε) explicitly.)

Also, we shall show that the second largest component of a.e. Qp has order polynomial in n.

The techniques we shall use here will resemble the ones from [4]. However, besides some subtle differ-

ences, there are some major ones and in fact we shall not have one of the main lemmas of that note: the

method we used there to prove the rather powerful gap result does not work here, and hence we shall have

to do quite a bit of work in order to get around this difficulty (cf. Lemma 5). Once this problem is overcome,

we shall have no problems in proving the existence of the giant. In fact, much in the same way as in [4],

we shall prove the existence of the giant component by first showing that a.e. Qp has quite a few vertices in

large components, and then by noticing that such components merge together very easily with the addition

of very few vertices to Qp.

Another pitfall arising from the fact that we cannot prove a good gap result will be that the order of the

second largest component cannot be estimated easily; we shall have to deal with this problem in a completely

different way (cf. the proof of Theorem 9).

This note is organised as follows. In Section 2 we give some preliminary lemmas concerning the distri-

bution of the vertices of Qp between its large and small components. In the following section we prove the

key lemma, Lemma 5, and also show that the vertices in large components are ‘everywhere dense’ in the

cube. In Section 4 we prove our main results: the one concerning the existence of the giant (Theorem 8),

and the one on the second largest component (Theorem 9). We close this note with some remarks and open

problems.

2. Preliminaries

In this section we shall estimate the number of vertices of Qp that belong to largish components. Let n ≥
2 and 0 ≤ p ≤ 1 be given. We shall make use of the branching process Π0 = Π0(p) = (Zt)

∞
t=0 that

can be described as follows. In Π0, we start with one particle that generates offspring according to the

binomial distribution Bi(n, p) with parameters n and p, and all other particles generate offspring according

to Bi(n − 1, p). Let the probability that Π0 does not die out be π0 = π0(p). (For a brief discussion on

branching processes see [4], Section 2.) Now, let p = (1 + ε)/n where ε > 0 is fixed. We shall show that

a.e. Qp ∈ Gind(Qn, p) has (π0(p) + o(1))pN vertices in components of order at least n1/2.

In order to estimate the probability that a fixed vertex v ∈ Qp belongs to a component of order at

least n1/2, we shall simulate the branching process Π0(p) in the cube. Let us fix v ∈ Qn. We shall now

describe an algorithm that generates a random connected induced subgraph Hp(v) of Qn that contains v.

Note that, since we are generating an induced subgraph, it trivially suffices to specify its vertices.

Let n0 = dn1/2e. We start by letting Hp(v) be the single vertex v. Note that the edges incident to a

fixed vertex of the cube are naturally ordered by the coordinates to which they correspond, and hence so are

its neighbours. Let the neighbours of v be in their natural ordering v1, . . . , vn. We examine the vertices vi in

turn, one at a time, and insert them in Hp(v) with probability p, and leave them out with probability 1− p.
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Possibly all the vi are chosen not to be put in Hp(v), and in this case our algorithm terminates and it

outputs the single vertex v as Hp(v). Assume that when looking at vi we do choose to have it in Hp(v). In

this case, we insert the pair (vi, v) at the back of a queue, and check whether the order |Hp(v)| of Hp(v) is

now n0; if this is the case, we abort the procedure and output this Hp(v). If that is not the case we pass on

to consider vi+1 if i < n, and if i = n we proceed as follows.

Pick the first pair (w, u) in the queue. We now consider all the vertices adjacent to w, except u, in

their natural order. Suppose we are examining x. We insert x in Hp(v) with probability p and leave it out

with probability 1 − p. Suppose we do choose to have x in Hp(v). Then we insert the pair (x,w) at the

back of the queue, and check whether we now have |Hp(v)| = n0 or Hp(v) ceased to be acyclic. If either

of those conditions holds, we abort the procedure and output this Hp(v); if |Hp(v)| < n0 and Hp(v) is still

acyclic, we pass on to consider the next vertex x′ adjacent to w if such exists, and if not we collect another

pair (w′, u′) from the front of the queue and repeat the above procedure with this new pair. If the queue

happens to be empty, we abort the procedure and output the current Hp(v).

Note that a vertex of the cube may be considered up to n0 − 1 times in our algorithm, but at most one

vertex of Hp(v) has been considered more than once. More precisely, we see that Hp(v) contains a vertex

that was considered more than once only if Hp(v) has a cycle, and in fact if Hp(v) does contain a vertex w

looked at more than once, then w was the last vertex put into Hp(v), and any cycle contained in Hp(v) goes

through w. Note also that if H0 is an induced tree of Qn that has order not greater than n0 and v ∈ H0,

then there is only one way in which our algorithm can generate H0. We shall need the following lemma.

Lemma 1. Let v be any vertex of Qn. Let 0 < p ≤ 2/n be fixed and write n0 = dn1/2e.
(i) The probability that Hp(v) is acyclic and has fewer than n0 vertices is less than 1− π0(p).

(ii) The probability that Hp(v) contains a cycle is O(n−1/2).

(iii) The probability that Hp(v) is acyclic and has order n0 is at least

π0(p) +O(n−1/2).

Proof. (i) Recall that our algorithm simulates the branching process Π0(p) up to a certain stage, and it only

generates an Hp(v) that is acyclic and has fewer than n0 vertices if the corresponding branching process dies

out, which happens with probability 1− π0(p).

(ii) Let 2 ≤ k ≤ n0/2. Lemma 8 of [4] tells us that the number of cycles of length 2k of Qn that contain

a fixed vertex of the cube is bounded from above by(
2k

k

)
k!nk = O

[(
4kn

e

)k]
.

Let us assume that our algorithm has generated an Hp(v) that contains a cycle C = C2k of length 2k, and

let the last vertex added to Hp(v) be w ∈ C. Let us first consider the case in which C does not contain v. In

this case, each vertex of C has been examined by our algorithm exactly once, except possibly for w, which

might have examined up to n0 − 1 ≤ n1/2 times. Hence the probability that there is such a C contained

in Hp(v) is at most

2kn0

(
2k

k

)
k!nk · (2/n)2k−12n−1/2 = O(kn1/2(16k/en)k),
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and summing these probabilities over k, we see that the probability that our algorithm has generated anHp(v)

containing a cycle that does not pass through v is at most O(1/n).

Let us now consider the case in which we have generated an Hp(v) that contains a cycle C = C2k of

length 2k that goes through v. In this case, each vertex of C has been examined by our algorithm exactly

once, except for v, which has not been examined at all, and possibly w, which might have been examined

up to n0 − 1 ≤ n1/2 times. Hence, the probability that such a C exists is bounded above by

2k

(
2k

k

)
k!nk · (2/n)2k−22n−1/2 = O(kn3/2(16k/en)k),

and summing over k, we see that the probability that our algorithm has generated an Hp(v) containing a

cycle that does pass through v is at most O(n−1/2), and this completes the proof of (ii).

(iii) This follows from (i) and (ii).

We can now estimate from below the probability that a fixed vertex v ∈ Qp is in a component of order

at least n0 = dn1/2e, and this lower bound will tell us that there are quite a few vertices in such components.

Corollary 2. Let p = (1 + ε)/n where 0 < ε ≤ 1 is fixed, and set n0 = dn1/2e.
(i) For any fixed vertex v of Qn, we have that

P (|Cv| ≥ n0 | v ∈ Qp) ≥ π0(p) +O(n−1/2),

where Cv = Cv(Q
p) is the component of Qp containing v.

(ii) The number of vertices of Qp that belong to components of order at least n0 is a.s. at least (π0(p) +

o(1))pN .

Proof. (i) Assume that v ∈ Qp. Let W ⊂ Qn be the first min{|Cv|, n0} vertices reached by the canonical

breadth-first search run on Cv starting at v. Let the subgraph Qp[W ] of Qp induced by W be denoted by Hv.

Clearly |Cv| ≥ n0 if and only if |Hv| ≥ n0. We shall show that the probability that Hv is acyclic and has at

least n0 vertices is at least π0(p) + o(1), which shows (i).

Let H0 ⊂ Qn be an acyclic induced subgraph of the cube that contains v and has order n0. Recall that

there is only one way in which our probabilistic algorithm can generate H0 as its output Hp(v). It is easily

seen that there is an integer L = L(H0) ≥ 0 such that

P(Hp(v) = H0) = P(Hv = H0)(1− p)L ≤ P(Hv = H0),

and hence (i) follows from Lemma 1(iii) by summing over all possible H0.

(ii) This will follow from the fact that the events {v ∈ Qp and |Cv| ≥ n0}, v ∈ Qn, are essentially

independent. By (i) above, if X = X(Qp) is the number of vertices in components of order smaller than n0 =

dn1/2e, then its expectation E(X) is at most (1 − π0(p) − O(n−1/2))pN . In order to prove our lemma, we

shall show that X is concentrated around its expectation. For a vertex v ∈ Qn, let Cv denote the component

of Qp containing v and set

Xv =

{
1 if |Cv| < n0
0 otherwise;
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thus X =
∑
Xv. Note that the r.v. Xv depends only on the vertices of the cube Qn that are at distance at

most n0 − 1 from v, and hence if the Hamming distance between v and w ∈ Qn is at least 2n0 − 1, then Xv

and Xw are independent. We can now easily show that the variance of X is very small. Clearly p0 = P(Xv =

1) is independent of v and moreover

σ2(X) = E(X2)− E(X)2 =

[∑
(v,w)

P(XvXw = 1)

]
− p20N2,

where the sum is over all ordered pairs (v, w) ∈ E = Qn × Qn. Given two vertices v and w of Qn, denote

their Hamming distance by dH(v, w). Set

E0 = {(v, w) ∈ Qn ×Qn : dH(v, w) ≤ 2n0 − 2},

and E1 = E \ E0. Note that |E0| ≤ N
(
n

2n0

)
and hence very crudely |E0| ≤ N1+o(1). Then

σ2(X) ≤
∑

(v,w)∈E1

p20 +
∑

(v,w)∈E0

1− p20N2

≤ (N2 −N1+o(1))p20 +N1+o(1) − p20N2

≤ N1+o(1).

The result now follows from Chebyshev’s inequality.

Let us now turn our attention to the number of vertices in small components. We shall show that

essentially all the vertices that do not belong to components of order at least n0 = dn1/2e are in components

of order at most ω(n), where ω(n)→∞ arbitrarily slowly.

Lemma 3. Let p = (1 + ε)/n where 0 < ε ≤ 1 is fixed. Let ω(n)→∞ as n→∞.

(i) For any vertex v ∈ Qn, we have that

P (|Cv| ≤ ω(n) | v ∈ Qp) ≥ 1− π0(p) + o(1),

where Cv = Cv(Q
p) is the component of Qp containing v.

(ii) A.e. Qp is such that the number of vertices in components of order not greater than ω(n) is at least (1−
π0(p) + o(1))pN .

Proof. (i) We may and shall assume that ω(n) < n0 = dn1/2e for all n. We shall again use the probabilistic

algorithm described at the beginning of this section. Recall that if H0 is an induced acyclic subgraph of the

cube that contains v and has order at most n0, then there is only one way in which we can obtain H0 as the

output of our algorithm. Also, for such an H0, there is an integer L = L(H0) such that

P(Cv(Q
p) = H0) ≥ P(Cv(Q

p) = H0)(1− p)L = P(Hp(v) = H0).

Summing over all induced acyclic subgraphs v ∈ H0 ⊂ Qn of order at most ω(n), we see that the probability

that Cv(Q
p) is acyclic and has order at most ω(n) is bounded from below by the probability that our

algorithm generates as an output an acyclic Hp(v) with order at most ω(n). Lemma 3(i) now follows from

the claim below.
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Claim. We have that

P0 = P {Hp(v) is acyclic and |Hp(v)| ≤ ω(n)} ≥ 1− π0(p) + o(1).

Let us start the proof of our claim by noticing that our algorithm generates an acyclic output Hp(v)

with order at most ω(n) if and only if our simulation of the process Π0(p) = (Zt)
∞
0 dies out with total

progeny Z =
∑
Zt at most ω(n), and we were not forced to create a cycle during the simulation. Hence

P0 ≤ P(Z ≤ ω(n)) ≤ P0 + P(Hp(v) contains a cycle),

and therefore P0 ≥ P(Z ≤ ω(n)) +O(n−1/2), by Lemma 1(ii). It now suffices to show that

P(Z ≤ ω(n)) ≥ 1− π0(p) + o(1),

but this is standard (cf. the proof of Lemma 22 in [4]).

(ii) This follows easily from the fact that the events {v ∈ Qp and |Cv(Qp)| ≤ ω(n)}, v ∈ Qn, are

essentially independent if ω(n) is small. (Cf. the proof of Corollary 2(ii) above.)

Putting together Corollary 2(ii) and Lemma 3(ii), we have the following result.

Corollary 4. Let p = (1 + ε)/n where 0 < ε ≤ 1 is fixed, and let ω(n) → ∞ as n → ∞. Then a.e. Qp

has (1+o(1))pN vertices, from which (π0(p)+o(1))pN belong to components of order at least n1/2, and (1−
π0(p) + o(1))pN belong to components of order at most ω(n).

We shall need to improve the above corollary in order to prove that a giant component exists in a.e. Qp;

roughly speaking, components of order n1/2 are too small for us. Recall that the way in which we shall

show that a giant component exists is by merging largish components into a unique very large one with the

addition of a few vertices to Qp. For this proof to work, the largish components have to be of order nC for

some large enough fixed C.

3. The vertices in the large components

In this section we shall look more closely at the vertices in ‘largish’ components. We know from Corollary 4

that there are (π0(p) + o(1))pN vertices in a.e. Qp that belong to components of order at least n1/2. The

result below improves this substantially, by allowing us to replace n1/2 by any polynomial of n. As remarked

in the introduction, it is this lemma that substitutes the gap result from [4].

Lemma 5. Let p = (1 + ε)/n where 0 < ε ≤ 1 is fixed, and let an integer C ≥ 1 be given. Then there is a

constant α = α(ε, C) > 0 such that for any v ∈ Qn we have

P
[
|Cv| ≥ α(n1/2/ log n)C

∣∣∣ v ∈ Qp] ≥ π0(p) + o(1),

where Cv = Cv(Q
p) denotes the component of Qp that contains v.

Proof. We shall prove our lemma by induction on C. If C = 1 then the result holds by Corollary 2(i), and

hence we proceed to the induction step. Let 0 < ε ≤ 1 and C ≥ 2 be fixed, and assume that our result holds

for C − 1 and for all 0 < ε ≤ 1.
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For a vertex v ∈ Qn let us denote by Gvind(Qn, p) ⊂ Gind(Qn, p) the set of the Qp ∈ Gind(Qn, p) such

that v ∈ Qp. Let v ∈ Qn be fixed. We shall generate a random Qp ∈ Gvind(Qn, p) in an indirect way, and

then prove that the component Cv = Cv(Q
p) of Qp containing v is large with high probability. Indeed,

to take full advantage of independence we shall generate Qp ∈ Gvind(Qn, p) in two rounds. More precisely,

let p2 = 1/n log n, and set p1 = (p − p2)/(1 − p2) so that p = p1 + p2 − p1p2. A way of generating

a random Qp ∈ Gvind(Qn, p) is to pick Gi ∈ Gvind(Qn, pi) (i = 1, 2) randomly, and then let Qp be such

that V (Qp) = V (G1) ∪ V (G2).

Now, a way of generating G1 ∈ Gvind(Qn, p1) consists in choosing a random ordering v2, . . . , vN of the

vertices of Qn − v and then inserting v2 ∈ H with probability p1 and leaving it out with probability 1− p1,

then doing the same with v3 and so on. If we are interested in knowing whether or not our G1 will be such

that Cv(G1) has order at least n0 = dn1/2e, we may choose the ordering v2, v3, . . . so that we examine

as few vertices of Qn as possible and when, in the process of generating G1, it becomes clear whether or

not |Cv(G1)| ≥ n0, we may stop. More precisely, let us consider the following simple probabilistic algorithm

that generates a random connected induced subgraph Jp1(v) of Qn containing v. For a subset S ⊂ Qn of

the vertices of the cube let us denote the vertices of Qn \ S that are adjacent to some vertex of S by δ+(S).

We start by letting Jp1(v) be the single vertex v, and set A = {v}. We now iterate the following

procedure. Set B = δ+(V (Jp1)) \ A. If B is empty we abort the process and output the current Jp1(v).

Suppose B is not empty, and let w be the first vertex of B in the lexicographic order. We now insert w

into A, and add it into Jp1(v) with probability p1 and leave it out with probability 1 − p1. (Thus A is the

set of vertices of Qn that our algorithm has examined up to the current stage.) If w is not added into Jp1(v)

then we restart this iterative procedure by updating B. Suppose we have decided to have w in Jp1(v). If with

the addition of w our Jp1(v) became of order n0, we abort the algorithm and output this Jp1(v), otherwise

we continue iterating this procedure by updating B.

We shall generate our G1 by first executing our algorithm above and then deciding whether or not the

vertices in Qn \ A should be in G1, where A is the set of vertices examined by our algorithm. We want to

show that we succeed in generating a Qp with Cv(Q
p) of large order with high probability. Let us assume

that we have run our algorithm and it has generated J0 = Jp1(v) of order n0; moreover, let us denote by A0

the set of the vertices of Qn that have been examined by our algorithm. Note that

P(|J0| = n0) = P(|Cv(G1)| ≥ n0 | v ∈ G1),

and hence, by Corollary 2(i), we have that J0 = Jp1(v) has n0 vertices with probability at least π0(p1)+o(1),

which equals π0(p) + o(1) since p1 = (1 + ε+ o(1))/n.

Let V (J0) = {vi : 1 ≤ i ≤ n0}. By a simple result of Bondy [5] (see also [3], Chapter 2), there is a

set I ⊂ [n] with |I| = n0 − 1 such that all the sets vi ∩ I (1 ≤ i ≤ n0) are distinct. Let us define n0 pairwise

disjoint subcubes of Qn, each containing exactly one vertex of J0. We set

Qi = {w ∈ Qn : w ∩ I = vi ∩ I}

for 1 ≤ i ≤ n0. Note that the dimension of the Qi is

m0 = n− n0 + 1 = (1 + o(1))n.
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Let us denote by V0 the set of the vertices of
⋃
Qi that are adjacent to some vertex of J0. Note that V0 is

the union of the sets Vi given by

Vi = V0 ∩ V (Qi) = {w ∈ Qi : w is adjacent to vi},

i = 1, . . . , n0. Let us also note that the vertices in A0 examined by our algorithm is such that A0∩V (Qi) ⊂ Vi.
For all i we clearly have |Vi| = m0 and hence |V0| = n0m0, since the Vi = V0 ∩ V (Qi) are pairwise disjoint.

Let us now randomly choose a subset V ′0 of V0 by letting for all w ∈ V0

P(w ∈ V ′0) = p2 = 1/n log n,

all these events being mutually independent. Also, let us set V ′i = Vi∩V ′0 . Note that E(|V ′0 |) = n0m0/n log n ≥
(1+o(1))n1/2/ log n and E(|V ′i |) = m0/n log n = (1+o(1))/ log n. Rather crudely we see that with probability

1− o(1) we have that

|V ′0 | ≥ (1/2)n1/2/ log n

and

ni = |V ′i | ≤ n1/2

for all i = 1, . . . , n0. Let us assume that the set V ′0 we have randomly chosen does satisfy the two conditions

above. Let us now define a collection of
∑
ni pairwise disjoint subcubes Qij of dimension m1 = m0−bn1/2c =

(1 + o(1))n. Let us write

V ′i = {vij : 1 ≤ j ≤ ni}

for all i. From the neighbours of vi in Qi, let us arbitrarily choose bn1/2c vertices to form a set Wi ⊂ Vi ⊂ Qi
so that V ′i ⊂Wi. Set Ii = I ∪

⋃
w∈Wi

w4 vi. Finally we define

Qij = {w ∈ Qi : w ∩ Ii = vij ∩ Ii}

for all i and j. Let us now randomly pick Qpij ∈ G
vij
ind(Qij , p). Let us denote by Cij the component of Qpij

that contains vij . By the induction hypothesis, there is a constant α′ > 0 such that

P(|Cij | ≥ α′(n1/2/ log n)C−1) ≥ π0(p) + o(1).

Let the r.v. Xij be the indicator function of the event |Cij | ≥ α′(n1/2/ log n)C−1, and set X =
∑
i,j Xij .

Recalling that |V ′0 | =
∑
ni ≥ (1/2)n1/2/ log n, we have

E(X) ≥ (π0(p) + o(1))(1/2)n1/2/ log n,

and by standard estimates for the tail of the binomial distribution we have that

X ≥ (π0(p)/3)n1/2/ log n

with probability 1− o(1). Thus we have that

|Cv(Qp)| ≥ (π0(p)α′/3)(n1/2/ log n)C

almost surely, and therefore we can take α(ε, C) = π0(p)α′/3. This completes the induction step and hence

the proof of our lemma.

An immediate corollary of the above lemma and the results in the previous section is the following.
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Corollary 6. Let p = (1 + ε)/n where 0 < ε ≤ 1 is fixed, and let an integer C ≥ 1 be given. Then

a.e. Qp ∈ Gind(Qn, p) has (π0(p) + o(1))pN vertices in components of order at least nC .

Proof. By Lemmas 3(i) and 5, we have that

P
[
n1/3 < |Cv(Qp)| < nC

∣∣∣ v ∈ Qp] = o(1).

Let X = X(Qp) count the number of vertices of Qn that belong to Qp and such that the component Cv =

Cv(Q
p) of Qp containing v has order |Cv| strictly between n1/3 and nC . Then the expectation E(X) of X

is o(pN) = o(N/n) and hence a.e. Qp ∈ Gind(Qn, p) is such that X = o(N/n), by Markov’s inequality. Now

our result follows from Corollary 4.

Let us now look at the distribution of the vertices in components of large order.

Lemma 7. Let p = (1 + ε)/n where 0 < ε ≤ 1 is fixed, and let an integer C ≥ 1 be given. Then there is a

constant β = β(ε, C) > 0 such that for a.e. Qp ∈ Gind(Qn, p) all vertices of Qn are at Hamming distance at

most 3 of a component of Qp of order at least βnC .

Proof. Let 0 < ε ≤ 1 and C ≥ 1 be given. Let us fix v ∈ Qn, which we may assume without loss of generality

to be the empty set. Let k = d(n2 log n)1/3e and set m = n − k. We now define s =
(
k
3

)
pairwise disjoint

subcubes of Qn, all of them at distance 3 from v. Let the subsets of cardinality 3 of [k] be v1, . . . , vs and

then let

Qi = {w ∈ Qn : w ∩ [k] = vi}

for i = 1, . . . , s. Note that the Hamming distance of Qi to v is 3, and that it is realised by the vertex vi ∈ Qi.
Note also that the dimension of the Qi is m = (1 + o(1))n, and hence that p = (1 + ε)/n > (1 + ε/2)/m.

Now, by Lemma 5, we have that

P(vi ∈ Qp and |Cvi(Qp)| ≥ αmC) ≥ (π0 + o(1))p > π0/n

for some constants α = α(ε, C) > 0 and π0 = π0(ε) > 0. Since

αmC = (1 + o(1))αnC > (α/2)nC ,

the probability that v fails to be at distance at most 3 ¿from a component of Qp of order at least (α/2)nC

is at most (
1− π0

n

)s
≤ exp

(
−π0
n

(
k

3

))
≤ exp{(π0/6)n log n} = o(N−1).

Hence, if we let β = β(ε, C) = α(ε, C)/2, a.e. Qp is such that all vertices of Qn are at distance at most 3

from a component of Qp of order at least βnC , as required.
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4. The emergence of the giant component

In this section we shall prove the main result of this note, namely that a.e. Qp contains a component of

order (c + o(1))pN if p = (1 + ε)/n and ε > 0 is fixed, i.e. a giant component. Moreover, we shall see that

this giant component is unique: this will not only follow easily ¿from our estimates on the constant c above,

but we shall in fact prove that the second largest component of a.e. such Qp has order smaller than n10 (cf.

Theorem 9).

Theorem 8. Let p = (1+ε)/n where 0 < ε ≤ 1 is fixed. Then a.e. Qp ∈ Gind(Qn, p) has a unique component,

say L, of order (π0(p) + o(1))pN , whilst all others are of order o(N). Furthermore, we a.s. have that all

vertices of Qn are at Hamming distance at most 3 from L.

Proof. Let p2 = n−2, and set p1 to be such that p = p1 + p2 − p1p2. Clearly p1 = (1 + ε + o(1))/n. Let us

generate a random element Qp of Gind(Qn, p) by randomly selecting Gi ∈ Gind(Qn, pi) (i = 1, 2) and then

letting V (Qp) = V (G1)∪V (G2). By Corollary 6 and Lemma 7 we know that a.e. Qp1 ∈ Gind(Qn, p1) is such

that (i) the number of vertices of Qp1 in components of order at least n21 is

(π0(p1) + o(1))p1N = (π0(p) + o(1))pN

and (ii) all the vertices of Qn are at distance at most 3 from a vertex of Qp1 whose component has order at

least n21.

Let us call a component of G1 = Qp1 large if its order is at least n21. Note that the existence of

a component L satisfying the conditions of our theorem follows if we prove that with the addition of the

vertices of G2 to G1 all large components of G1 belong to a single component, and hence our task now is to

show that such large components do merge together easily.

Let us fix H = G1 = Qp1 for which (i) and (ii) above hold. Let the number of large components in H

be `. Assume that we can split the large components of H into two classes such that there are no paths

in Qp, and hence in G2, between vertices that belong to components in different classes. Let the number of

components in one of the classes be k, and assume that k ≤ `/2. Let the set of the vertices in the components

in one class be S and the corresponding set for the other class be T . Clearly we have that |S| and |T | are at

least as large as kn21.

Recall that all vertices of Qn are at distance at most three from S ∪ T . Arguing in the same manner

as in the proof of Theorem 25 in [4], we can show that there is a collection of at least kn14/6 internally

vertex-disjoint paths of Qn between S and T , all of them of length at most 7. By our assumption on Qp,

none of the paths above are paths in G2. Note that this happens with probability at most

P0 = (1− n−12)kn
14/6 ≤ e−kn

2/6.

However, the number of partitions of the large components of H into two classes with one of them having k

members is clearly at most
(
N/n21

k

)
. Now note that

b`/2c∑
k=1

P0

(
N/n21

k

)
≤
b`/2c∑

1

Nke−kn
2/6 ≤

b`/2c∑
1

[
Ne−n

2/6
]k

= o(1),
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completing the proof that a.e. Qp is such that all large components of H belong to a single component.

Let us now look at the order of the other components of Qp. Assume n1/2 ≥ ω(n)→∞ is fixed, and let

us first note that clearly the order of a.e. Qp is (1 + o(1))pN . Moreover, we also know from Corollary 4 that

a.s. (π0(p)+o(1))pN of the vertices ofQp belong to components of order at least n1/2 while (1−π0(p)+o(1))pN

belong to components of order at most ω(n). Since we do know that a.e. Qp has a component L of order at

least (π0(p) + o(1))pN , we conclude that only o(N) vertices of Qn − L may belong to components of order

greater than ω(n), and hence the second largest component of Qp is a.s. of order o(N), as required.

Let us now improve the statement concerning the order of the second largest component of Qp given in

the above theorem. To do so, we shall make use of the fact that the giant component L of Qp is, as we saw

above, ‘everywhere dense’ in Qn in the sense that all vertices of Qn lie very close to L.

Theorem 9. Let p = (1 + ε)/n where 0 < ε ≤ 1 is fixed. Then a.e. Qp ∈ Gind(Qn, p) is such that its second

largest component has order at most 3n9(log n)3(log log n)2.

Proof. We shall again generateQp in two rounds. Let p2 = 1/n log n, and let p1 be such that p = p1+p2−p1p2.

Then we can generate Qp ∈ Gind(Qn, p) by randomly choosing Gi ∈ Gind(Qn, pi) (i = 1, 2), and then

letting V (Qp) = V (G1) ∪ V (G2). Since p1 = (1 + ε + o(1))/n, we know by Theorem 8 that G1 has a

component L of order (π0(p1) + o(1))p1N = (π0(p) + o(1))pN such that all vertices of Qn are at Hamming

distance at most 3 from it; let us fix H = G1 satisfying these conditions. Let us partition the vertices of Qn

into four pairwise disjoint classes by letting Vi be the set of the vertices of Qn that are at Hamming distance i

from L, where 0 ≤ i ≤ 3. Let us generate G2 in three stages. We randomly pick Wi ⊂ Vi for i = 1, 2 and 3 so

that P(v ∈Wi) = p2, and all these events are mutually independent. We then let G3, G2 and Qp = G1 be the

induced subgraphs of Qn given by V (G3) = V (H)∪W3, V (G2) = V (G3)∪W2 and Qp = G1 = V (G2)∪W1.

Let us first look at G3. Let J ⊂ Qn[V3] be a component of G3[V3∩V (G3)], the graph induced by V3∩V (G3)

in G3, and assume that the order |J | of J is at least 2n5(log n)2 log log n. Let us consider the neighbours

of J in G2 that belong to V2, that is ΓG2(V (J)) ∩ V2.

Since the order of J is large, we have that the number of cube-neighbours of J that belong to V2 is large

as well. More precisely, as |J | ≥ 2n5(log n)2 log log n, we see rather crudely that

|ΓQn(V (J)) ∩ V2| ≥ 2n4(log n)2 log log n.

Hence we have that

E(|ΓG2(V (J)) ∩ V2|) ≥ E(|ΓQn(V (J)) ∩W2|) ≥ 2n3(log n) log log n,

and so, by well-known estimates for the tail of the binomial distribution,

P
(
|ΓG2(V (J)) ∩ V2| < n3(log n) log log n

)
< exp

{
−n3(log n)(log log n)/8

}
.

Since triviallyG3 has at mostN/(2n5(log n)2 log log n) < N components of order at least 2n5(log n)2 log log n,

we see that a.e. G2 satisfies the following property: if K is a component of G2 such that V (K) ∩ V3 induces

at least one component of order at least 2n5(log n)2 log log n, then |V (K) ∩ V2| ≥ n3(log n) log log n.
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Let us assume that our G2 does satisfy the property above. Let K ⊂ Qn[V2 ∪V3] be a component of G2

of order at least 3n9(log n)3(log log n)2. We claim that a.s. K and L will belong to the same component

in Qp, which we recall is given by V (Qp) = V (G2) ∪W1. Note that our theorem immediately follows from

this claim. Indeed, if K 6= L is a component of our Qp then it is clearly contained in Qn[V2 ∪ V3], and hence

is a component of G2.

To prove our claim, let us first show that |V (K) ∩ V2| ≥ n3(log n) log log n. Assume that this is not the

case. Let the components of the graph induced by V (K) ∩ V3 in Qn be J1, . . . , Js where s ≥ 1. Note that

clearly s ≤ n|V (K) ∩ V2|, and hence

max |Ji| ≥ (|K| − |V (K) ∩ V2|)/s

≥ 3n9(log n)3(log log n)2 − n3(log n) log log n

n4(log n) log log n

≥ 2n5(log n)2 log log n.

But then, by our assumption on G2, if |Jj | = max |Ji| then

|V (K) ∩ V2| ≥ |ΓG2(V (Jj)) ∩ V2| ≥ n3(log n) log log n,

which is a contradiction. Let us now continue with the proof of our claim.

Let the maximal cardinality of a collection of internally vertex-disjoint paths of Qn of length two from K

to L be t. Note that rather crudely we have t ≥ n2(log n) log log n, since every vertex of V (K) ∩ V2 is at

Hamming distance 2 from L. Therefore the probability that K and L do not get joined through a vertex

of W1 is at most (
1− 1

n log n

)t
≤
(

1− 1

n log n

)n2(logn) log logn

< exp(n log log n).

However, the number of components of G2 is trivially at most N , and hence all components K as above get

merged into L almost surely.

Let us remark that with some more care, one can prove that the order L2(Qp) of the second largest

component of Qp is a.s. at most ω(n)n7, where ω(n) → ∞ arbitrarily slowly. However, since we believe

that L2(Qp) = O(n), we restricted ourselves to giving the weaker result above, whose proof is correspondingly

simpler. Let us close this section by putting the above theorems together.

Theorem 10. Let p = (1+ε)/n where 0 < ε ≤ 1 is fixed. Let η = η(ε) be the unique solution of x+e−(1+ε)x =

1 in the interval 0 < x < 1. Then a.e. Qp ∈ Gind(Qn, p) is such that

L1(Qp) = (η + o(1))pN,

and furthermore

L2(Qp) ≤ 3n9(log n)3(log log n)2.

Proof. This follows from Theorems 8 and 9 and Lemma 5 in [4].
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5. Concluding remarks and open problems

We have seen that if p = (1 + ε)/n and ε > 0 is fixed then a.e. Qp ∈ Gind(Qn, p) has a giant component.

In view of the results in [4], it is natural to ask whether the giant component exists when ε = ε(n) → 0

moderately slowly, say, if εn1/2 → ∞. The best way of approaching this problem would be to prove a gap

result similar to the one given in [4]. Unfortunately the techniques used in that note break down here, as we

have already mentioned. However, one may check that the method used in this note do give the following

result.

There is a function δ(n) = o(1) such that if ε = ε(n) = n−1/3+δ(n) and p = (1 + ε)/n, then the largest

component of a.e. Qp ∈ Gind(Qn, p) has order (2 + o(1))εpN , while the second largest component has order

polynomial in n.

We omit the details of the proof of the above assertion because they are somewhat technical, and it

seems unlikey that this value of ε gives the actual point of emergence of the giant component in Qp. Let us

finally recall that we have shown that a.e. Qp is such that its second largest component has order O(n10),

and in view of the well-known results on the second largest component of Gn,p ∈ G(Kn, p) (see [2]) and the

results in [4], it seems very likely to us that the following holds.

Conjecture 11. Let p = (1 + ε)/n where ε > 0 is fixed. Then the second largest component of a.e. Qp ∈
Gind(Qn, p) has order (1 + o(1))γn, where γ = γ(ε) > 0 depends only on ε > 0. Furthermore, γ = γ(ε)

decreases as ε increases.
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Amsterdam 1987, pp. 17–40.
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