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Abstract. For any integer h > 2, a set A of integers is called a Bh-set if all sums a1 + . . . + ah,

with a1, . . . , ah ∈ A and a1 6 . . . 6 ah, are distinct. We obtain essentially sharp asymptotic bounds

for the number of Bh-sets of a given cardinality that are contained in the interval {1, . . . , n}. As a

consequence of these bounds, we determine, for any integer m 6 n, the cardinality of the largest

Bh-set contained in a typical m-element subset of {1, . . . , n}.

1. Introduction

Let h > 2 be an integer. We call a set A of integers a Bh-set if all sums of the form a1 + . . .+ah,

where a1, . . . , ah ∈ A satisfy a1 6 . . . 6 ah, are distinct. The study of Bh-sets goes back to the

work of Sidon [36], who, motivated by the study of certain trigonometric series, considered infinite

sequences k1 < k2 < . . . for which the number of representations of each integer M as ki + kj , with

i 6 j, is uniformly bounded. In particular, Sidon asked (see also [14]) to determine the maximum

number of elements in such a sequence that are not larger than a given integer n, when the upper

bound on the number of representations as above is one. For each h > 2 and n, let [n] := {1, . . . , n},
and define

Fh(n) = max{|A| : A ⊂ [n] is a Bh-set}.

In other words, Sidon was interested in the asymptotic behavior of the function F2. (This is why

B2-sets are now usually referred to as Sidon sets.) The results of Chowla, Erdős, Singer, and

Turán [6, 14, 13, 37] yield that F2(n) = (1 + o(1))
√
n, which answers the question of Sidon. The

asymptotic behavior of the function Fh in the case h > 2 is less well understood, even though

the problem of estimating it has received considerable amount of attention. Bose and Chowla [3]

showed that Fh(n) > (1 + o(1))n1/h for each h > 3. On the other hand, an easy counting argument

gives that for all h and n,

Fh(n) 6 (h · h! · n)1/h 6 hn1/h.
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Successively better bounds of the form Fh(n) 6 chn
1/h for sufficiently large n were given in [5, 7,

12, 19, 26, 27, 29, 35]. Currently, the best bounds are due to Green [15], who proved that

c3 < 1.519, c4 < 1.627 and ch 6
1

2e

(
h+

(
3

2
+ o(1)

)
log h

)
,

where o(1) is some function tending to 0 as h→∞. For a wealth of material on Bh-sets, the reader

is referred to the classical monograph of Halberstam and Roth [16] and to the more recent survey

of O’Bryant [31].

In this work, we shall be interested in the problem of enumerating Bh-sets. Let Zhn be the family

of all Bh-sets contained in [n]. In 1990, Cameron and Erdős [4] proposed the problem of estimating

|Z2
n|, that is, the number of Sidon sets contained in [n]. Recalling the definition of Fh(n) and

observing that the property of being a Bh-set is preserved under taking subsets, one easily obtains

2Fh(n) 6 |Zhn | 6
Fh(n)∑
t=0

(
n

t

)
. (1)

Since (1 + o(1))n1/h 6 Fh(n) 6 hn1/h, one deduces from (1) that

(1 + o(1))n1/h 6 log2 |Zhn | 6 chn1/h log n, (2)

where ch is some positive constant.

The logarithmic gap between the lower and the upper bounds in (2) was first closed in the case

of Sidon sets [23], that is, when h = 2, and subsequently [10] for arbitrary h.

Theorem 1 ([23, 10]). For every h > 2, there exists a constant Ch such that |Zhn | 6 2Chn
1/h

holds

for all n.

Another proof of Theorem 1 in the case h = 2 was later given by Saxton and Thomason [33]

(see [28] for a similar result for [n]d, d > 2). Let us also mention that Saxton and Thomason [33]

proved that, perhaps somewhat surprisingly, we have log2 |Z2
n| > (1.16 + o(1))F2(n).

In fact, both [23] and [10] considered a somewhat refined version of the original question posed

by Cameron and Erdős. This refinement was motivated by the problem of estimating the maximum

size of a Bh-set contained in a random set of integers, which was the main focus of these two papers;

for details, we refer the reader to §1.1. For a nonnegative integer t, let Zhn(t) be the family of all

Bh-sets contained in [n] that have precisely t elements. The main results of [10, 23] are estimates

on the cardinality of Zhn(t) for a wide range of t.

In order to establish a lower bound for |Zhn(t)|, in [10] we exhibited two large subfamilies of Zhn(t).

One of them is constructed using a standard deletion argument. The resulting family is very large,

but the construction works only if t 6 εhn
1/(2h−1) for some constant εh > 0. The second one is

built using a certain blow-up operation. The resulting family is much smaller, but the construction

is valid for all t 6 Fh(n). The lower bounds on |Zhn(t)| that are implied by the existence of these

two families can be summarized as follows.

Proposition 2 ([10]). The following holds for every h > 2.
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(i) For every δ > 0, there exists a constant ε = ε(h, δ) > 0 such that for each t 6 εn1/(2h−1),

|Zhn(t)| > (1− δ)t
(
n

t

)
.

(ii) There is a constant ch > 0 such that for every t 6 Fh(n),

|Zhn(t)| >
(chn
th

)t
.

In fact, the deletion argument yielding (i) in Proposition 2 can be pushed a little further using

the following idea of Kohayakawa, Kreuter, and Steger [22]. Instead of exhibiting a t-element Bh-set

in a random subset of [n] with of t+ o(t) elements, one may find it in a much larger random subset

of [n] with the help of an extension of the powerful result of Ajtai, Komlós, Pintz, Spencer, and

Szemerédi [1] on uncrowded hypergraphs due to Duke, Lefmann, and Rödl [11]. Similar ideas were

used by the authors in the context of Sidon sets [23]. We postpone the proof of Proposition 3 to

Appendix A.

Proposition 3. For every h > 2 and ε > 0, there are positive constants ch and Ch such that for

all sufficiently large n and t satisfying εn1/(2h−1) 6 t 6 ch(n log n)1/(2h−1),

|Zhn(t)| > exp

(
−Cht

2h−1

n

)t
·
(
n

t

)
.

The assertions of Propositions 2 and 3 may be summarized as follows. If t � n1/(2h−1),

then Bh-sets constitute a sizeable (1 − o(1))t-proportion of all t-element subsets of [n] and if

t � (n log n)1/(2h−1), then we only know that this proportion is at least (merely) (c′h/t
h−1)t for

some constant c′h > 0. It turns out that the ratio of |Zhn(t)| to
(
n
t

)
undergoes a dramatic change

when t is around (n log n)1/(2h−1). A fairly straightforward corollary of the so-called container the-

orems proved independently by Balogh, Morris, and Samotij [2] and by Saxton and Thomason [33]

(applied to the 2h-uniform hypergraph of solutions to the equation a1 + . . . + ah = b1 + . . . + bh

which are contained in [n]) is that when t � n1/(2h−1), then |Zhn(t)| 6
(
o(1)

)t(n
t

)
. The main

result of [10] is that a much stronger estimate, |Zhn(t)| 6 (chn/t
h)t for some constant ch > 0,

holds under the stronger assumption that t > n1/(h+1)(log n)2, which matches the lower bound

given by Proposition 2. We conjectured in [10] that this best-possible estimate continues to hold

(up to a to(t) multiplicative factor) under the much weaker (and almost optimal) assumption that

t > n1/(2h−1)+o(1). In the current work, we prove this conjecture, determining |Zhn(t)| up to a

multiplicative factor of to(t) for almost all t.

Theorem 4 (Main result). For every h > 2 and ε > 0 and all sufficiently large integers n and

t > n1/(2h−1)+ε, we have

|Zhn(t)| 6
(

n

th−ε

)t
. (3)

As a consequence of Theorem 4 and Proposition 2, we have the following corollary.
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Figure 1. The graph corresponding to the piece-wise linear function bh(a) of Theorem 6.

Corollary 5. Fix any ε > 0. The asymptotic behavior of |Zhn(t)| is given by

log |Zhn(t)| =


(
1 + o(1)

)
t log(n/t) if t� n1/(2h−1),

t log
(
n/th−ε

)
if t > n1/(2h−1)+ε.

Note that there is an nε gap in the threshold above as well as in the actual asymptotic estimate.

It would be interesting to obtain precise asymptotics for the logarithm of |Zhn(t)| for all t > n1/(2h−1)

(see Conjecture 27).

1.1. Largest Bh-sets contained in random sets of integers. In recent years, a major trend

in probabilistic combinatorics has been to prove ‘sparse random’ analogues of classical results in

extremal combinatorics and additive number theory. This trend was initiated around twenty years

ago with the work of Haxell, Kohayakawa,  Luczak, and Rödl [17, 18, 24, 25] and recently culminated

in the breakthrough work of Conlon and Gowers [8] and Schacht [34], which provides general tools

for ‘transferring’ extremal and structural results from the dense to the sparse random environment.

This trend provides strong motivation for our work on Sidon sets and Bh-sets, including this paper,

owing to the fact that estimating |Zhn(t)| is very closely tied to the problem of determining the

maximum size of a Bh-set contained in a sparse random set of integers.

Given a set R of integers, let Fh(R) denote the maximum size of a Bh-set contained in R. Note

that this definition generalizes the one made earlier, as Fh(n) = Fh([n]). Let [n]m be a uniformly

chosen random m-element subset of [n]. We want to study the distribution of the random variable

Fh([n]m) for all m. A standard deletion argument implies that with probability tending to 1 as

n→∞, or asymptotically almost surely (a.a.s. for short), we have

Fh([n]m) = (1 + o(1))m if m = m(n)� n1/(2h−1).

On the other hand, the transference theorems of Schacht [34] and Conlon and Gowers [8] imply

that, a.a.s.,

Fh([n]m) = o(m) if m = m(n)� n1/(2h−1).

These two observations were the starting point in [10, 23], where much more precise information on

Fh([n]m) was provided. As a consequence of Theorem 4, we may now describe the exact behavior

(up to no(1) factors) of Fh([n]m) for the whole range of m.
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Theorem 6. Let h > 2 be given and set, for any a ∈ [0, 1],

bh(a) =


a, if 0 6 a 6 1/(2h− 1),

1/(2h− 1), if 1/(2h− 1) 6 a 6 h/(2h− 1),

a/h, if h/(2h− 1) 6 a 6 1.

Then for every m = m(n) = na we have, a.a.s.,

Fh([n]m) = nbh(a)+o(1).

Proof sketch. The upper bound on Fh([n]m) follows from a simple counting argument, namely, for

any t, the probability that Fh([n]m) > t is at most

|Zhn(t)| ·
(
n− t
m− t

)(
n

m

)−1

.

Our main result, Theorem 4, shows that for any t > n1/(2h−1)+ε (ε > 0), the above expression

becomes o(1) when m < th−δ (δ = δ(ε) > 0). This translates to the claimed upper bound on

Fh([n]m) when m = na for some h/(2h − 1) 6 a 6 1. When m 6 n1/(2h−1), the claimed upper

bound follows from the trivial bound Fh([n]m) 6 m. Finally, when m = na for some 1/(2h− 1) 6

a 6 h/(2h− 1), the claimed upper bound follows from the monotonicity of bh(a) with respect to a.

The lower bounds on Fh([n]m) asserted in the theorem were already proved in [10, Theorem 2.5]

and therefore we omit their proofs here. �

2. Proof outline

We devote this section to an overview of the high level structure of the proof of our main result,

Theorem 4.

Let us start by recalling the general strategy for proving upper bounds on |Zhn(t)| that was used

in [10, 23]. The high-level idea there was to bound the number of sets of size t− s one can add to

a given Bh-set of size s (the ‘seed’ set) so that the resulting t-element set still has the Bh property

(here, one has to consider a suitable size s for the seed set). Having achieved this, one may derive

a bound on |Zhn(t)| by summing over the choices one has for the seed set.

It will be convenient to explain the high level view of the proof strategy for the case h = 3 and

leave the several details and additional complications of the general case for later sections. Keep

in mind that this section is very informal and often these intuitive descriptions only serve as rough

approximations of rather long and technical definitions and proofs.

Collision graph and independent sets. Observe that if two distinct elements x, y ∈ [n] \ S
satisfy

x− y = a1 + a2 − b1 − b2, for some {a1, a2}, {b1, b2} ∈
(
S

2

)
, (4)

then S ∪ {x, y} is clearly not a B3-set and hence x and y cannot simultaneously belong to any

T ∈ Z3
n(t) with T ⊃ S. This motivates our next definition.

Definition 7 (Collision graph CG
(3)
S ). Let S be a B3-set. Denote by CG

(3)
S the graph on the vertex

set [n] whose edges are all pairs of distinct elements x, y ∈ [n] that satisfy (4).
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The above observation is equivalent to noting that T \ S must be an independent set in the

collision graph CG
(3)
S . Therefore, the number of extensions of S to a B3 set of cardinality t is

not larger than the number of independent sets in CG
(3)
S with cardinality t − |S|. The number of

such independent sets can be bounded with the use of the following lemma, implicit in the work

of Kleitman and Winston [20] (see also the survey [32]), which provides an upper bound on the

number of independent sets in graphs that have many edges in each sufficiently large vertex subset.

A proof of this lemma is given in [10].

Lemma 8. Let G be a graph on N vertices, let q be an integer, and let 0 6 β 6 1 and R be real

numbers satisfying

R > e−βqN. (5)

Suppose that

eG(A) > β

(
|A|
2

)
for every A ⊂ V (G) with |A| > R. (6)

Then, for all integers m > 0, the number of independent sets of cardinality q +m in G is at most(
N

q

)(
R

m

)
. (7)

Lemma 8 effectively reduces the problem of counting extensions of S into larger B3-sets to the

problem of verifying that CG
(3)
S satisfies condition (6) for appropriately chosen q, m, R, and β. To

get the most out of Lemma 8 we take q � m and R = n/t2−3ε.

It is not very difficult to show that for every suitably large set A ⊂ [n] \ S there are many

quadruples (x, y, {a1, a2}, {b1, b2}) with x and y ∈ A that satisfy the equality in (4). This, however,

does not immediately imply that e
CG

(3)
S

(A) is large because a single edge of CG
(3)
S may correspond

to many different quadruples. This is where the notion of boundedness (roughly described below)

comes into play.

Bounded sets (Def. 22). A key concept used by our method is that of a bounded set. Roughly

speaking, we call a B3-set S bounded if, for every 0 6= w ∈ Z, the number of representations of w of

the form w = a1 + a2 − b1 − b2, with a1, a2, b1, b2 ∈ S, can be “controlled”. More specifically, there

exists a very dense graph G with vertex set S such that it is possible to find strong upper bounds

on the number of representations as above which also satisfy {a1, a2}, {b1, b2} ∈ E(G). (The actual

definition is somewhat more involved, but for the purpose of this outline, we shall keep things

informal.)

Our so-far informal definition implies that for a bounded set S, and any fixed pair (x, y) ∈ S2,

with x 6= y, the number of quadruples (x, y, {a1, a2}, {b1, b2}) that satisfy (4) with {a1, a2}, {b1, b2} ∈
E(G) is also bounded. The main goal then, is to establish lower bounds on the number of such

quadruples. Before that, we must show that every B3-sets extends some bounded set S.

Containers method [2, 33] (Thm. 9). Let us fix ε > 0 and t > n1/5+ε (as in the statement

of Theorem 4 with h = 3). Consider the family F = F(t) = Fsmall(t) ∪ Flarge(t) of pairs of sets

(S, S̃) defined as follows:
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(1) Flarge(t) consists of all pairs (S, S̃) where S ⊂ [n] is a bounded B3-set with precisely t1−ε

elements, and

S̃ =
{
x ∈ [n] \ S : S ∪ {x} is a B3-set

}
.

(2) Fsmall(t) consists of all pairs (S, S̃) where S ⊂ [n] is a bounded B3-set with fewer than t1−ε

elements, and

S̃ =
{
x ∈ [n] \ S : S ∪ {x} is a B3-set which is not bounded

}
.

We first show that for every T ∈ Z3
n(t) there exists some rather large set S∗ ⊂ T which is bounded.

If T ∈ Z3
n(t) contains a bounded set S∗ with |S∗| > t1−ε, then there exists (S, S̃) ∈ Flarge(t) such

that S ⊂ S∗ ⊂ T ⊂ S ∪ S̃. On the other hand, if all bounded sets contained in T have cardinality

smaller than t1−ε, then there must exist some (S, S̃) ∈ Fsmall(t) for which S ⊂ T ⊂ S ∪ S̃ (indeed,

any maximal bounded subset S ⊂ T can be taken). This argument shows that it is possible to

obtain upper bounds for |Z3
n(t)| by estimating, for each pair (S, S̃) ∈ F , how many T ∈ Z3

n(t)

satisfy S ⊂ T ⊂ S ∪ S̃.

Estimating the density of CG
(3)
S by counting paths in an auxiliary graph (Thm. 21).

We will use an auxiliary bipartite graph H with color classes A and [3n], in which (x,w) ∈ A× [3n]

is an edge of H if and only if there exists an edge {a1, a2} ∈ G such that w = x+ a1 + a2.

Simpler case. For (S, S̃) ∈ Flarge(t), one can prove a lower bound on the number of quadruples

as follows. Since G is dense, the number of edges of H is

|A| · e(G) > R · 1

2

(
|S|
2

)
=

n

2t2−3ε

(
t1−ε

2

)
� n.

In particular, the average degree in the class [3n] is larger than, say, 100. For every w ∈ [3n] with

degree d > 2 we can form
(
d
2

)
quadruples of the form (x, y, {a1, a2}, {b1, b2}) that satisfy

x+ a1 + a2 = w = y + b1 + b2

with {a1, a2}, {b1, b2} ∈ G (and thus (4) is satisfied). A simple application of the Cauchy–Schwarz

inequality can be used to give a lower bound on the number of quadruples and such a bound is

sufficient (in the sense of Lemma 8) to settle the case when (S, S̃) ∈ Flarge(t).
Difficult case (Lemma 20). The case when (S, S̃) ∈ Fsmall(t) is substantially more difficult.

Since S itself is small, even if G was the complete graph on S, it is possible that R · e(G) = o(n)

and the auxiliary graph H defined above is therefore too sparse to be useful. Our strategy for this

case involves studying the additive structure of S̃. Indeed, we are able show that there is some

rather small set W = W (S) ⊂ [3n] such that for every x ∈ S̃ there are many w ∈ W such that

w = x+ a1 + a2 for some {a1, a2} ∈ G. This means that either

(a) |S̃| is small and, given that we need to count sets T with S ⊂ T ⊂ S ∪ S̃, we may bound

the number of extensions trivially by
( |S̃|
t−|S|

)
or

(b) |S̃| is large, which means that the induced subgraph H[S̃ ∪W ] is such that the average

degree of W is large, and thus the argument used in the simpler case above applies. Indeed

when |S̃| is large we invoke Theorem 9 below (see (9)).

7



For the general case h > 3, the boundedness condition becomes substantially more technical (in

particular, we now have to deal with hypergraphs). The proofs are also more difficult, in particular

due to the fact that for the case h = 3, one can leverage the definition of a B3-set to control the

alternating sums of length four. On the other hand, for larger values of h, the generalization of (4)

requires us to control alternating sums of length 2(h−1). The gap between h and 2(h−1) becomes

non-trivial after h > 3 and demands a much more careful treatment. Moreover, the estimates on

quadruples as outlined above are in reality quite involved, and we devote the entirety of Section 6

to establishing them.

2.1. Notation. For an integer x and a set A ⊂ Z, let us use the following notation:

x�A = x+
∑
a∈A

a and x�A = x−
∑
a∈A

a.

Moreover, for a hypergraph H with V (H) ⊂ Z, and integer x, let

x�H =
{
x� e : e ∈ E(H)

}
. (8)

We shall often let H in the above definition be the complete k-uniform hypergraph with vertex

set S, writing

x�

(
S

k

)
.

We sometimes write |G| or |H| to denote the number of edges in a graph G or in a hypergraph H.

We also abuse the notation and denote by e ∈ G (e ∈ H) the fact that e is an edge of the graph

(hypergraph). For the sake of clarity of our presentation, we write ‘k-graph’ instead of ‘k-uniform

hypergraph’. More notation will be introduced and used locally when needed.

2.2. Proof summary. Recall that given S ⊂ [n], we have defined the collision graph CG
(3)
S as the

graph with vertex set [n] whose edges are all pairs of distinct elements x, y ∈ [n] that satisfy (4).

More generally, for all h ≥ 2, the edges of CG
(h)
S are formed by all pairs of distinct x, y ∈ S that

satisfy

x�A = y �B for some A,B ∈
(

S

h− 1

)
.

As we have already observed above, if T is a Bh-set, then for every S ⊂ T , the set T \ S is

independent in the graph CG
(h)
S . We shall show that Theorem 4 follows from Lemma 8 and the

following statement, whose proof constitutes most of the remainder of this paper.

For convenience, from now on we will omit the superscript in CG
(h)
S .

Theorem 9. For every h > 2 and δ ∈ (0, 1/2) the following is true for all sufficiently large n.

Suppose that n1/(2h−1)+δ 6 t 6 2hn1/(2h−1)+δ.

There exists a family F of pairs of sets (S, S̃) with S, S̃ ⊂ [n] and |S| 6 t1−δ that has the following

property. For every T ∈ Zhn(t), there is (S, S̃) ∈ F such that S ⊂ T ⊂ S ∪ S̃ and the graph CGS

satisfies

eCGS (A) >
1

t1−δ/2

(
|A|
2

)
for every A ⊂ S̃ with |A| > n

th−1−8h2δ
. (9)

Moreover, for each set S, there is at most one S̃ such that (S, S̃) ∈ F , and thus |F| < nt
1−δ

.
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We postpone the (fairly straightforward) derivation of Theorem 4 to §5.2 and focus on Theo-

rem 9 instead. First, we need several additional definitions which generalize the concepts already

introduced in [9].

In analogy with the simplified outline given earlier in this section for h = 3, we would like to

generalize the concept of boundedness in terms of a dense (h − 1)-graph G ⊂
(
S
h−1

)
whose edges

satisfy a certain condition. It turns out that hypergraphs of all uniformities {2, 3, . . . , h − 1} will

be needed in the course of the proof. Therefore, the definitions that follow include such a sequence

of hypergraphs.

Definition 10 (Representation count). For a k-graph G and an `-graph H with V (G), V (H) ⊂ [n]

and an integer z, we let RG,H(z) be the number of pairs (e, f) ∈ G ×H that satisfy

z = e� f and e ∩ f = ∅.

Moreover, let

‖RG,H‖ = max
z
RG,H(z).

For brevity, we shall often write RG for RG,G .

Remark 11. If S is a Bh-set, then for any k and ` with k + ` 6 h we must have
∥∥R(Sk),(

S
`)

∥∥ = 1.

Indeed, if there were some w for which R(Sk),(
S
`)

(w) > 2, then one could obtain distinct a1, . . . , ak,

b1, . . . , b` ∈ S, and distinct c1, . . . , ck, d1, . . . , d` ∈ S such that

a1 + · · ·+ ak − (b1 + · · ·+ b`) = w = c1 + · · ·+ ck − (d1 + · · ·+ d`).

Since S is obviously a Bk+`-set as well, the last equality implies

{a1, . . . , ak, d1, . . . , d`} = {b1, . . . , b`, c1, . . . , ck},

which forces {a1, . . . , ak} = {c1, . . . , ck} and {b1, . . . , b`} = {d1, . . . , d`}, thus showing that the

representations are in fact identical (up to a permutation of the labels).

Definition 12 (Collision multigraph). Given an (h− 1)-graph G with V (G) ⊂ [n], let C̃GG be the

multigraph on the vertex set [n], where the multiplicity of each pair x, y ∈ [n] equals RG(x− y).

Observe that for every S ⊂ [n] and every (h− 1)-graph G with V (G) = S, the set of pairs with

non-zero multiplicity in C̃GG is a subgraph of CGS (and in fact, it is equal to CGS when G is the

complete (h− 1)-graph on S). Moreover, for every A ⊂ [n],

e
C̃GG

(A) 6 ‖RG‖ · eCGS (A), (10)

where e
C̃GG

(A) counts pairs of vertices of A with their multiplicities in C̃GG . In view of (10), a

natural approach to proving a strong lower bound on eCGS (A) is to construct an (h − 1)-graph G
with V (G) = S for which the ratio e

C̃GG
(A)/‖RG‖ is large.

Since there seems to be no easy way of controlling ‖RG‖ ‘directly’, similarly as in [9], we shall

instead maintain an upper bound on the moment generating function of RG , defined as follows.

9



Definition 13 (Moment generating function of RG,H). Given a k-graph G and an `-graph H with

V (G), V (H) ⊂ [n] and a positive real λ, we let

QG,H(λ) =
kn∑

z=−`n
exp
(
λ ·RG,H(z)

)
. (11)

Note that the range of the above sum includes all z for which RG,H(z) 6= 0. Note also that

RG,H(z) = RH,G(−z) and thus QG,H = QH,G .

One reason why we are interested in the moment generating function is the following trivial

relationship between RG,H and QG,H(λ).

Remark 14. For every λ > 0,

‖RG,H‖ = max
z
RG,H(z) 6

1

λ
logQG,H(λ). (12)

To explore the above relationship between ‖RG,H‖ and QG,H(λ) we will develop some auxiliary

results in Sections 3.

Even though we are mainly interested in ‖RG‖ when G is an (h− 1)-graph, it will be necessary

to involve hypergraphs of different uniformities since the smaller hypergraphs are needed in several

parts of the proof, as can be evidenced by the following observation.

Observation 15. Let G ⊂
(
S
h−1

)
, x ∈ [n] \ S, and Ĝ ⊂

(S∪{x}
h−1

)
be such that G = Ĝ[S]. Denote

by Nx the neighborhood of x in Ĝ, that is
{
f \ {x} : f ∈ Ĝ, x ∈ f

}
. Then, for any integer z,

RĜ(z) = RG(z) +RG,Nx(z + x) +RNx,G(z − x). (13)

Indeed, from Definition 10 of RĜ(z) we have,

RĜ(z) = RG(z)+∣∣{(e, f) ∈ G × (Ĝ \ G) : e� f = z, e ∩ f = ∅
}∣∣+∣∣{(e, f) ∈ (Ĝ \ G)× G : e� f = z, e ∩ f = ∅
}∣∣+∣∣{(e, f) ∈ (Ĝ \ G)2 : e� f = z, e ∩ f = ∅

}∣∣.
The last term is zero since e, f ∈ Ĝ \ G must be such that x ∈ e ∩ f . We also have

RG,Nx(z + x) =
∣∣{(e, f ′) ∈ G ×Nx : e� f ′ = z + x, e ∩ f ′ = ∅

}∣∣
=
∣∣{(e, f) ∈ G × (Ĝ \ G) : e� f = z, e ∩ f = ∅

}∣∣.
Similarly we obtain the term RNx,G(z − x) in (13).

The above observation indicates that in order to estimate ‖RG‖ for an (h − 1)-graph it may

be necessary to also estimate ‖RG,H‖ with H of smaller uniformity. Inductively, bounds for the

representation count among hypergraphs of all possible uniformities in {2, . . . , h− 1} are needed.

This motivates the following definition. First, given a positive integer m, let Hm denote the mth

harmonic number, that is,

Hm =
m∑
j=1

1

j

10



and recall that 0 6 Hm − logm 6 1 for every m.

Definition 16. Let h and n > 2 be integers, let α ∈ [0, 1), and let λ > 0. We shall say that a set

S ∈ Zhn satisfies property Ph(λ, α) if there exist hypergraphs G(k) ⊂
(
S
k

)
for each k ∈ [h − 1] such

that

(a) |G(k)| > (1− 2kα)

(
|S|
k

)
and

(b) for all k and ` ∈ [h− 1],

QG(k),G(`)(λ · ξk+`) 6 (2hn+ 1) · exp(H|S|), (14)

where

ξj = (2 log n)−j for all integers j. (15)

Remark 17. Note that if G(1), . . . ,G(h−1) satisfy condition (b) of the above definition, then

‖RG(k),G(`)‖
(12)

6
logQG(k),G(`)(λ · ξk+`)

λ · ξk+`

(14)

6
H|S| + log(2hn+ 1)

λ · ξk+`
6

2 log n

λ · ξk+`

(15)
=

1

λ · ξk+`+1
.

In words, λ is a parameter that can be adjusted to directly control the bounds on the maximum

representation counts.

Finally, given a set S ⊂ [n] satisfying Ph(λ, α), we let

S̃λ,α =
{
x ∈ [n] \ S : S ∪ {x} is a Bh-set that does not satisfy Ph(λ, α)

}
. (16)

2.3. Organization of the proof. In Section 3 we prove two technical lemmas that explain how

adding a single vertex (together with edges containing it) to a hypergraph affects the moment

generating function QG,H. We then show in Section 4 that each pair of sets (S, S̃λ,α) defined in (16)

possesses a certain additive structure. In Section 5 we state a technical result, Theorem 21, which

asserts that for every sufficiently dense hypergraph H ⊂
(
S
h−1

)
, the multigraph C̃GH has many

edges in each large subset of S̃λ,α. We then use this technical theorem to prove Theorem 9. A fairly

straightforward derivation of our main result, Theorem 4, from Theorem 9 is presented in §5.2.

The fairly long and technical proof of Theorem 21 is postponed to Section 6. The flow of the proof

of Theorem 4 is given in Figure 2.

3. Extension lemmas

In this section we prove two technical lemmas that we shall later use to bound the moment

generating functions QG(k),G(`)(·). The first lemma shows that if we extend two hypergraphs G and

H to form Ĝ and Ĥ by adding to them a single vertex, then we may bound the increase of the

moment function, QĜ,Ĥ(λ)−QG,H(λ), in terms of the increases of the moment function caused by

extending G and H separately, that is, QĜ,H(λ)−QG,H(λ) and QG,Ĥ(λ)−QG,H(λ), provided that

the neighborhoods of the new vertex in G and H are two ‘well-behaved’ hypergraphs N and M,

respectively.

Lemma 18. Let k and ` > 2 be integers and let λ > 0. Suppose that

• G is a k-graph and N is a (k − 1)-graph with V (G) = V (N ) ⊂ [n],

11



Theorem 4

Theorem 9 Lemma 23

Theorem 21 Lemma 20

Lemma 25 Lemma 18 Lemma 19

Figure 2. A diagram illustrating the flow of the proof of our main result.

• H is an `-graph and M is an (`− 1)-graph with V (H) = V (M) ⊂ [n],

• ‖RN ,H‖, ‖RG,M‖ 6 1/λ,

• x is an arbitrary element of [n] not in V (G) ∪ V (H).

Then the hypergraphs Ĝ and Ĥ defined by

Ĝ = G ∪
{
{x} ∪ e : e ∈ N

}
and Ĥ = H ∪

{
{x} ∪ f : f ∈M

}
satisfy

QĜ,Ĥ(λ)−QG,H(λ) 6 2
((
QĜ,H(λ)−QG,H(λ)

)
+
(
QG,Ĥ(λ)−QG,H(λ)

))
. (17)

Proof. With the same argument used in Observation 15 one can establish that

RĜ,Ĥ(z) = RG,H(z) +RN ,H(z − x) +RG,M(z + x) (18)

for every integer z. Now, let

N(z) = RN ,H(z − x) = RĜ,H(z)−RG,H(z),

M(z) = RG,M(z + x) = RG,Ĥ(z)−RG,H(z)
(19)

and observe that

QĜ,H(λ)−QG,H(λ) =

kn∑
z=−`n

exp
(
λ ·RG,H(z)

)
·
(

exp
(
λ ·N(z)

)
− 1︸ ︷︷ ︸

a

)
, (20)

QG,Ĥ(λ)−QG,H(λ) =

kn∑
z=−`n

exp
(
λ ·RG,H(z)

)
·
(

exp
(
λ ·M(z)

)
− 1︸ ︷︷ ︸

b

)
. (21)

Since (18) holds, we have

exp
(
λ ·RĜ,Ĥ(z)

)
= exp

(
λ ·RG,H(z)

)
· exp

(
λ ·N(z)

)
· exp

(
λ ·M(z)

)
, (22)

12



and hence,

QĜ,Ĥ(λ)−QG,H(λ) =
kn∑

z=−`n
exp

(
λ ·RG,H(z)

)
·
(

exp
(
λ ·N(z)

)
· exp

(
λ ·M(z)

)
− 1︸ ︷︷ ︸

ab+a+b

)
.

Therefore, in order to establish (17), it is enough to show that for every z,

exp
(
λ ·N(z)

)
· exp

(
λ ·M(z)

)
− 1︸ ︷︷ ︸

ab+a+b

6 2 ·
(

exp
(
λ ·N(z)

)
− 1︸ ︷︷ ︸

a

+ exp
(
λ ·M(z)

)
− 1︸ ︷︷ ︸

b

)
.

To prove the above inequality, first let a = exp
(
λ ·N(z)

)
− 1 and b = exp

(
λ ·M(z)

)
− 1 and notice

that the inequality becomes ab+ a+ b 6 2(a+ b), or simply ab 6 a+ b.

Our assumption that ‖RN ,H‖, ‖RG,M‖ 6 1/λ, together with (19) imply that

0 6 λN(z) = λRN ,H(z − x) 6 λ ‖RN ,H‖ 6 1,

and similarly, 0 6 λM(z) 6 1. This means that a, b ∈ [0, e − 1] ⊂ [0, 2]. In particular, a + b 6 4.

Consquently, by the AM–GM inequality: ab 6
(
a+b

2

)2
= (a+ b)a+b

4 6 a+ b. �

Our second lemma shows how one can extend a hypergraph by adding one vertex together with

edges containing it in a way that causes only a minor increase in the moment function.

Lemma 19. Let k > 2 and ` > 1 be integers and let λ > 0. Suppose that

• G is a k-graph and N is a (k − 1)-graph with V (G) = V (N ) ⊂ [n],

• H is an `-graph and V (H) ⊂ [n] is a B`-set1,

• ‖RN ,H‖ 6 1/λ.

Then for every integer M > 1, there exists a set Γ ⊂ [kn] with |Γ| 6 M such that for any

x ∈ [n] \ V (G), the k-graph Ĝ on V (G) ∪ {x} defined by

Ĝ = G ∪
{
{x} ∪ e : e ∈ N and x� e 6∈ Γ

}
(23)

satisfies

QĜ,H(λ) 6 QG,H(λ) ·
(

1 +
2λ|H||N |

M

)
.

Proof. For integers w and z, define

I(w, z) = 1
[
z = w � f for some f ∈ H

]
.

and

uw =
kn∑

z=−`n
exp

(
λ ·RG,H(z)

)
I(w, z). (24)

Set

Γ =

{
w ∈ [kn] : uw >

|H| ·QG,H(λ)

M

}
. (25)

Claim 1. |Γ| 6M .

1If ` = 1, then this condition is vacuous as every set of numbers is a B1-set.
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Proof. Observe first that, for every z, ∑
w∈[kn]

I(w, z) 6 |H|.

Indeed, each value w such that I(w, z) = 1 has some associated fw ∈ H satisfying w� fw = z, and

since we clearly cannot have fw = fw′ for distinct w,w′, the inequality follows. Therefore,∑
w∈[kn]

uw =

kn∑
z=−`n

exp
(
λ ·RG,H(z)

) ∑
w∈[kn]

I(w, z) 6 |H| ·QG,H(λ).

On the other hand, as Γ ⊂ [kn], ∑
w∈[kn]

uw > |Γ| ·
|H| ·QG,H(λ)

M
.

Combining the two previous inequalities completes the proof of the claim. �

Let

Nx = {e ∈ N : x⊕ e 6∈ Γ} (26)

and consider the k-graph Ĝ defined in (23), namely

Ĝ = G ∪
{
{x} ∪ e : e ∈ Nx

}
.

Observe that for any integer z,

RĜ,H(z) 6 RG,H(z) +RNx,H(z − x).

It follows that

exp
(
λ ·RĜ,H(z)

)
6 exp

(
λ ·RG,H(z)

)
· exp

(
λ ·RNx,H(z − x)

)
6 exp

(
λ ·RG,H(z)

)
· (1 + 2λ ·RNx,H(z − x)) ,

(27)

where the last inequality follows from the fact that ex 6 1+2x for all x ∈ [0, 1] and our assumption

that

λ ·RNx,H(z − x) 6 λ · ‖RNx,H‖ 6 λ · ‖RN ,H‖ 6 1.

Moreover,

RNx,H(z − x) 6
∑
e∈Nx

∑
f∈H

1
[
z = (x� e)� f

]
=
∑
e∈Nx

I(x� e, z),

where the last equality follows because V (H) is a B`-set and hence for given x, e, and z, there is

at most one f ∈ H such that z = (x� e)� f . Consequently, from (27), we have

exp
(
λ ·RĜ,H(z)

)
6 exp

(
λ ·RG,H(z)

)
·

(
1 + 2λ

∑
e∈Nx

I(x� e, z)

)
.

Summing the above inequality over all z ∈ [−`n, kn], and recalling (24) yields

QĜ,H(λ) 6 QG,H(λ) + 2λ
∑
e∈Nx

ux�e.
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From the definitions of Γ and Nx (see (25) and (26)) we finally conclude that

QĜ,H(λ) 6 QG,H(λ) ·
(

1 +
2λ|H||Nx|

M

)
6 QG,H(λ) ·

(
1 +

2λ|H||N |
M

)
. �

4. The additive structure of (S, S̃λ,α)

In this section we show that if S satisfies property Ph(λ, α) of Definition 16, then the pair (S, S̃λ,α)

possesses some stringent additive structure. In particular, one can partition S̃λ,α into
⋃h−1
k=2 S̃λ,α,k in

such a way that the number of elements of the form x� e, with x ∈ S̃λ,α,k and e ∈
(
S
k−1

)
, belonging

to a fairly small set Γk = Γk(S) is disproportionally large. In later sections, we shall exploit this

structure to derive a strong lower bound on e
C̃GH

(A) for all sufficiently large A ⊂ S̃λ,α and every

sufficiently dense H ⊂
(
S
h−1

)
.

Our argument in the next lemma can be summarized as follows. Since S has property Ph(λ, α),

there are some G(1), . . . ,G(h−1) with vertex set S satisfying (a) and (b) of Definition 16. Given an

x ∈ S̃λ,α, using Lemmas 18 and 19 from Section 3, we shall extend each G(k) to a Ĝ(k) ⊂
(S∪{x}

k

)
so that condition (b) of Definition 16 is satisfied. By the definition of S̃λ,α (see (16)), some Ĝ(k)

must fail condition (a). In particular, the degree of x in the construction must be small. By the

definition of the extension (see (23)) we derive the conclusion of the lemma.

Lemma 20. Let λ ∈ (0, 1], let α ∈ [0, 1], and suppose that a set S ∈ Zhn satisfies property Ph(λ, α).

Then there exist sets Γ2, . . . ,Γh−1 ⊂ [hn] with the following properties:

(i) |Γk| 6 (|S|+ 1)k+h−1 · λ, for every k ∈ {2, . . . , h− 1}.
(ii) For every x ∈ S̃λ,α there is some k ∈ {2, . . . , h− 1} such that∣∣∣∣x� ( S

k − 1

)
∩ Γk

∣∣∣∣ > 2k−1α

(
|S|
k − 1

)
.

Proof. Let λ, α, and S be as in the statement of the lemma and fix arbitrary hypergraphs

G(1), . . . ,G(h−1) that satisfy conditions (a) and (b) of Definition 16. In particular, it follows from

Remark 17 that for every k ∈ {2, . . . , h− 1} and ` ∈ [h− 1], we have ‖RG(k−1),G(`)‖ 6 1/(λ · ξk+`),

and hence we may apply Lemma 19 with

G = G(k), N = G(k−1), H = G(`), λ = λ · ξk+`, M = 8(|S|+ 1)k+` · λ · ξk+`

to obtain a set Γk,` ⊂ [kn] with

|Γk,`| 6 8(|S|+ 1)k+` · λ · ξk+` (28)

such that for any x ∈ [n] \ S the k-graph Ĝ(k)
` (x) defined by

Ĝ(k)
` (x) = G(k) ∪

{
{x} ∪ e : e ∈ G(k−1) and x� e 6∈ Γk,`

}
(29)

satisfies

QĜ(k)` (x),G(`)(λ · ξk+`) 6 QG(k),G(`)(λ · ξk+`) ·

(
1 +
|G(`)| · |G(k−1)|
4(|S|+ 1)k+`

)

6 QG(k),G(`)(λ · ξk+`) ·
(

1 +
1

4(|S|+ 1)

)
.

(30)
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For each k ∈ {2, . . . , h− 1}, we let

Γk =
h−1⋃
`=1

Γk,` (31)

and observe that (28) implies that condition (i) from the statement of this lemma is satisfied; see

the definition of ξj in (15).

Now, fix some x ∈ S̃λ,α, let Ĝ(1) = G(1) ∪
{
{x}
}

, and define for each k ∈ {2, . . . , h− 1},

Ĝ(k) =
h−1⋂
`=1

Ĝ(k)
` (x)

(29)
= G(k) ∪

{
{x} ∪ e : e ∈ G(k−1) and x� e 6∈ Γk

}
. (32)

Since S ∪ {x} is a Bh-set, then ‖RĜ(k),Ĝ(`)‖ 6 1 for every k, ` ∈ [h − 1] satisfying k + ` 6 h and

therefore

QĜ(k),Ĝ(`)(λ · ξk+`) 6 (2hn+ 1) · exp(λ · ξk+`)
(15)

6 (2hn+ 1) · e 6 (2hn+ 1) · exp(H|S|+1),

as we have assumed that λ 6 1. It follows from (30), and the fact that Ĝ(k) ⊂ Ĝ(k)
` (x), that for

every k, ` ∈ {2, . . . , h− 1},

QĜ(k),G(`)(λ · ξk+`) 6 QĜ(k)` ,G(`)(λ · ξk+`) 6 QG(k),G(`)(λ · ξk+`) ·
(

1 +
1

4(|S|+ 1)

)
. (33)

Since QG,H(·) = QH,G(·), the same bound above applies to QG(k),Ĝ(`)(λ · ξk+`). Consequently,

Lemma 18 implies that for all k, ` ∈ {2, . . . , h− 1},

QĜ(k),Ĝ(`)(λ · ξk+`) 6 QG(k),G(`)(λ · ξk+`) ·
(

1 +
1

|S|+ 1

)
—by condition (b) of Def. 16—

6 (2hn+ 1) · exp(H|S|) ·
(

1 +
1

|S|+ 1

)
6 (2hn+ 1) · exp(H|S|+1).

(34)

In other words, the hypergraphs Ĝ(1), . . . , Ĝ(h−1) satisfy condition (b) of Definition 16 with S re-

placed by S ∪ {x}. Since x ∈ S̃λ,α, the set S ∪ {x} does not satisfy property Ph(λ, α) and hence

condition (a) of Definition 16 has to be violated, that is, there must be some k ∈ [h− 1] for which

|Ĝ(k)| < (1− 2kα)
(|S|+1

k

)
. Together with the fact that |G(k)| > (1− 2kα)

(|S|
k

)
, we have

|Ĝ(k)| − |G(k)| < (1− 2kα)

(
|S|+ 1

k

)
− (1− 2kα)

(
|S|
k

)
= (1− 2kα)

(
|S|
k − 1

)
. (35)

This is clearly not true if k = 1, as |Ĝ(1)| = |G(1)|+ 1, hence let us consider k ∈ {2, . . . , h− 1}. By

the definition of Ĝ(k) in (32),

|Ĝ(k)| − |G(k)| = |G(k−1)| − |{e ∈ G(k−1) : x� e ∈ Γk}| = |G(k−1)| −
∣∣(x� G(k−1)

)
∩ Γk

∣∣,
where in the last equality we used the fact that S is a Bk−1-set and therefore no two distinct

e, e′ ∈ G(k−1) may satisfy x � e = x � e′. Since G(k−1) satisfies condition (a) of Definition 16, we
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have

|Ĝ(k)| − |G(k)| > (1− 2k−1α)

(
|S|
k − 1

)
−
∣∣(x� G(k−1)

)
∩ Γk

∣∣. (36)

Combining (35) and (36) yields∣∣∣∣x� ( S

k − 1

)
∩ Γk

∣∣∣∣ > ∣∣(x� G(k−1)
)
∩ Γk

∣∣ > 2k−1α

(
|S|
k − 1

)
,

which yields condition (ii) of this lemma, as x was arbitrary. �

5. Proof of the main result

In this section we derive our main result, Theorem 4, from the main result of the previous two

sections, Lemma 20, and the following technical statement, Theorem 21 below, which provides

lower bounds on e
C̃GH

(A) for various sets A and (h − 1)-graphs H. As an attentive reader will

surely notice, the assumptions of Theorem 21 are suited for invoking the theorem with A ⊂ S̃λ,α,`

and Γ = Γ` from Lemma 20. We postpone the proof of Theorem 21 to Section 6.

Theorem 21. Let h > 2, ` ∈ [h − 1], β ∈ (0, 1], n be a sufficiently large integer, and d >

(128h log2 n)`+2. Let S ∈ Zhn , with β |S| > n1/(100h2), and H ⊂
(
S
h−1

)
, with

|H| >
(

1− βh

(log2 n)7h2

)(
|S|
h− 1

)
. (37)

Suppose that the sets A ⊂ [n] and Γ ⊂ [hn] satisfy∑
a∈A

∣∣∣∣a� (S`
)
∩ Γ

∣∣∣∣ > max

{
β

(
|S|
`

)
· |A|, d · |Γ|

}
. (38)

Then

e
C̃GH

(A) >
βh · d

(log2 n)7h2
|A|
(
|S|
h− 1

)
. (39)

We are now ready to prove Theorem 9, which implies an upper bound on |Zhn(t)| for t in a

narrow range around n1/(2h−1)+o(1). It is then easy to show that this bound extends to all t

satisfying n1/(2h−1)+o(1) 6 t 6 Fh(n); see §5.2.

Before we embark on the proof of Theorem 9, let us formally define the notion of bounded

Bh-sets.

Definition 22 (Bounded Bh-sets). Let h > 2 and ρ > 0 be given. A set S ⊂ [n] satisfies property

Ph(ρ) if it satisfies, for all i ∈ {0, 1, . . . , d1/ρe}, property Ph(λi, αi), where

λi = n−iρ, α0 =
1

2h(log2 n)7h2
, and αj+1 =

(αj/2)h

(log2 n)7h2
for j = 0, 1, . . . , d1/ρe − 1. (40)

The reason for having such a range of parameters (λi, αi) in the definition of boundedness will

become aparent in §5.1.2.

5.1. Proof of Theorem 9. Let h, δ, n, and t be given as in the statement of Theorem 9. We

shall construct a family F = F(t) = Fsmall(t) ∪ Flarge(t) of pairs of sets (S, S̃) with the property
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that every T ∈ Zhn(t) satisfies S ⊂ T ⊂ S ∪ S̃ for some (S, S̃) ∈ F and, more importantly, such that

every pair (S, S̃) satisfies (9). To this end, let

ρ =
δ

4

(
1

2h− 1
+ δ

)
. (41)

Note that αi = (log n)−Θ(1) for every i ∈ {0, 1, . . . , d1/ρe} since δ, h, and ρ are absolute constants.

Define Flarge(t) to be the set of all pairs (S, S̃) such that the following hold:

(I ) S ∈ Zhn .

(II ) |S| = t1−δ.

(III ) There exists G ⊂
(
S
h−1

)
satisfying (cf. (a) and (b) of Definition 16):

• |G| > (1− 2h−1α0)
( |S|
h−1

)
.

• QG,G(λ0ξ2h−2/2) 6 (2hn+ 1) exp
(
H|S|

)
.

(IV ) The set S̃ is defined as

S̃ =
{
x ∈ [n] \ S : S ∪ {x} is a Bh-set

}
. (42)

Define Fsmall(t) to be the set of all pairs (S, S̃) such that the following hold:

(i) S satisfies Ph(ρ).

(ii) n1/(8h2) 6 |S| < t1−δ.

(iii) The set S̃ is defined as

S̃ =
{
x ∈ [n] \ S : S ∪ {x} is a Bh-set which does not satisfy Ph(ρ)

}
. (43)

Claim 2. For every T ∈ Zhn(t), there exists (S, S̃) ∈ F such that S ⊂ T ⊂ S ∪ S̃.

Proof. Given a T ∈ Zhn(t), let S be the family of all subsets of T that satisfy Ph(ρ) and have at

least n1/(8h2) elements. We first show that S 6= ∅. For that, observe that one can form a B2h−2-

set X ⊂ T by greedily picking elements from T one-by-one until no more elements can be selected.

The elements that cannot be added to X are of the form

x1 + · · ·+ x2h−2 − (y1 + · · ·+ y2h−3)

with xi ∈ X for all i ∈ [2h − 2] and yj ∈ X for all j ∈ [2h − 3]. Hence, if X was obtained by

the greedy procedure, we must have |X|4h−5 > |T |. In particular, |X| > t1/(4h−5) > n1/(8h2). For

every k = 1, . . . , h − 1, let G(k) =
(
X
k

)
. Since X is a B2h−2-set, it follows by Remark 11 that

‖RG(k),G(`)‖ = 1 when k + ` 6 2h− 2. Therefore, for each λ ∈ (0, 1], and k, ` ∈ [h− 1],

QG(k),G(`)(λ) 6 2hneλ < (2hn+ 1) · exp(H|X|).

It follows that X satisfies Ph(λ, α) for any λ 6 1 and any α > 0. In particular, it satisfies Ph(ρ),

which shows that X ∈ S.

Pick some largest S ∈ S. If |S| < t1−δ, then let S̃ be the set defined in (43) so that (S, S̃) ∈
Fsmall(t). Since S is the largest subset of T which satisfies Ph(ρ) we clearly have T \ S ⊂ S̃, which

is the conclusion of the claim. Hence we may assume, for the remainder of the proof of the claim,

that |S| > t1−δ.
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We shall now construct a subset S′ ⊂ S and G ⊂
(
S′

h−1

)
that satisfy (I )–(III ) with S replaced

by S′. By assumption, S satisfies Ph(ρ) and hence, in particular, S ∈ Ph(λ0, α0). Therefore, there

exists a G(h−1)
0 ⊂

(
S
h−1

)
satisfying the conditions of Definition 16 with λ = λ0 and α = α0. Consider

an arbitrary subset S′ ∈
(
S
t1−δ

)
and let G = G(h−1)

0 [S′]. Since |S′| > |S|1−δ, then H|S| 6 2H|S′| and

consequently,

QG,G(λ0ξ2h−2) 6 QG(h−1)
0 ,G(h−1)

0

(λ0ξ2h−2) 6 (2hn+ 1) exp(2H|S′|).

Using the Cauchy-Schwarz inequality, we have

QG,G(λ0ξ2h−2/2) =

(h−1)n∑
z=−(h−1)n

exp
(
λ0ξ2h−2 ·RG(z)

)1/2
6

((
(2h− 2)n+ 1

) (h−1)n∑
z=−(h−1)n

exp
(
λ0ξ2h−2 ·RG(z)

))1/2

=
((

(2h− 2)n+ 1
)
QG,G(λ0ξ2h−2)

)1/2

6 (2hn+ 1) exp
(
H|S′|

)
.

As the choice of S′ above was arbitrary, we may select S′ which maximizes |G|. By averaging over

all sets of cardinality |S′| = t1−δ, we have

|G| >
∣∣G(h−1)

0

∣∣( t− (h− 1)

|S′| − (h− 1)

)(
t

|S′|

)−1

> (1− 2h−1α0)

(
|S′|
h− 1

)
.

Consequently, S′ and its corresponding S̃′, defined as in (42), form a pair (S′, S̃′) ∈ Flarge(t). Since

T ⊃ S is a Bh-set, it follows that T \ S′ ⊂ S̃′. This completes the proof of the claim. �

So far we have constructed a family F that satisfies the first assertion of the theorem. It remains

to show that the second assertion also holds, that is, that for all (S, S̃) ∈ F , the graph CGS

satisfies (9). In order to prove it, we shall consider two cases, depending on whether (S, S̃) ∈
Flarge(t) or (S, S̃) ∈ Fsmall(t).

5.1.1. Case when (S, S̃) ∈ Flarge(t). Our definition of Flarge(t) (see (I )–(IV )) guarantees the

existence of an (h − 1)-graph G ⊂
(
S
h−1

)
that satisfies (III ). Let A ⊂ S̃ be an arbitrary set with

|A| > n

th−1−8h2δ
. We shall apply2 Theorem 21 with

` = h− 1, β = 1, H = G, Γ = [hn], d = |A|
(
|S|
h− 1

)
/(hn). (44)

Indeed, the conditions of the theorem are satisfied because of the following:

• For every a ∈ A, we have a�
(
S
h−1

)
⊂ [hn] = Γ.

• |A|
(
|S|
h− 1

)
>

n

th−1−8h2δ

(
t1−δ

h− 1

)h−1

> ntδ and thus d > tδ � (128h log2 n)h+1.

• We have |S| = t1−δ > n1/(4h) and thus β|S| > n1/(100h2).

2It is possible to use a direct argument for this case, as described in the outline of Section 2, however, we instead use
Theorem 21 to reduce the length of the proof.
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• Since |G| > (1 − 2h−1α0)
( |S|
h−1

)
, it follows from (40) that H = G satisfies (37), as 2h−1α0 =

1

2(log2 n)7h2
< βh

(log2 n)7h2
.

Hence,

e
C̃GG

(A) > (log n)−O(1) · d|A|
(
|S|
h− 1

)
(44)

>
1

hn · (log n)O(1)
|A|2

(
|S|
h− 1

)2

.

On the other hand, from (III ) and Remark 14 we conclude that

‖RG‖ =
2

λ0ξ2h−2
logQG,G(λ0ξ2h−2/2) 6

2 log
(

(2hn+ 1) exp
(
H|S|

))
λ0ξ2h−2

(15)
= (log n)O(1).

Therefore,

eCGS (A) >
e

C̃GG
(A)

‖RG‖
>

|S|2h−2

n · (log n)O(1)
|A|2. (45)

We claim that (45) implies

eCGS (A) >
|A|2

|S|
> tδ−1

(
|A|
2

)
,

which gives the conclusion of the theorem. For this it is enough to show that for all sufficiently

large n,

|S|2h−1 > n1+δ.

As we have |S| = t1−δ, δ < 1/2, and t > n1/(2h−1)+δ, the above inequality follows by taking the

logarithm of both sides and observing that

(1− δ)(2h− 1)

(
1

2h− 1
+ δ

)
log n > (1− δ)(1 + 3δ) log n > (1 + δ) log n.

This completes the proof of Theorem 9 in the case (S, S̃) ∈ Flarge(t).

5.1.2. Case when (S, S̃) ∈ Fsmall(t). Recalling the definition of Fsmall(t), we can naturally parti-

tion S̃ as

S̃ =

d1/ρe⋃
i=1

S̃i,

where S̃i is the set of all x ∈ S̃ such that i is the smallest index for which S ∪ {x} does not satisfy

Ph(λi, αi). Note that S̃i ⊂ S̃λi,αi , where S̃λi,αi is the set introduced by Definition 16.

Claim 3. S̃d1/ρe = ∅.

Proof. This is true because λd1/ρe is so small that the bound on Q is trivially true even for complete

hypergaphs. More formally, assume for the sake of a contradiction that x ∈ S̃d1/ρe. For any k ∈
[h− 1], let K(k) =

(S∪{x}
k

)
and observe that since λd1/ρe 6 n

−1, then for all k, ` ∈ [h− 1],

λd1/ρe · ‖RK(k),K(`)‖ 6 n−1 ·
(
|S|+ 1

)k+`−1
6 n−1 · t(1−δ)(2h−2) < 1.

Consequently,

QK(k),K(`)(λd1/ρeξk+`) =

`n∑
w=−kn

exp
(
λd1/ρeξk+`RK(k),K(`)(w)

)
<

`n∑
w=−kn

e 6 (2hn+ 1)e.
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It follows that the family of hypergraphs K(k), k ∈ [h− 1], satisfies the conditions of Definition 16

with λ = λd1/ρe and α = αd1/ρe. Therefore S ∪ {x} ∈ Ph(λd1/ρe, αd1/ρe) and thus x /∈ S̃d1/ρe, which

is a contradiction. �

Now for each i ∈ {0, 1, . . . , d1/ρe−1} we apply Lemma 20 with λ = λi and α = αi to obtain sets

Γi,2, . . . ,Γi,h−1 ⊂ [hn] satisfying the following:

• |Γi,k| 6 (|S|+ 1)h+k−1 · λi for every k ∈ {2, . . . , h− 1}.
• For every x ∈ S̃i there is a k ∈ {2, . . . , h− 1} such that∣∣∣∣x� ( S

k − 1

)
∩ Γi,k

∣∣∣∣ > 2k−1αi

(
|S|
k − 1

)
.

We then further partition

S̃i =
h−1⋃
k=2

S̃i,k,

where x ∈ S̃i,k if k is the smallest index for which the second condition above holds.

Choose an arbitrary set A ⊂ S̃ with |A| > n

th−1−8h2δ
. Let i ∈ {0, 1, . . . , d1/ρe − 1} and k ∈

{2, . . . , h− 1} be such that Ai,k = A ∩ S̃i,k satisfies

|Ai,k| >
|A|

(h− 2)d1/ρe
= Ω

(
n

th−1−8h2δ

)
. (46)

Finally, let H denote the (h − 1)-graph G(h−1) whose existence is guaranteed by the fact that S

satisfies Ph(λi+1, αi+1). (Note that in view of Claim 3, we must have i 6 d1/ρe − 1, so this is

indeed well-defined.) Here is the point in the proof where we actually need the variety of (λ, α)

pairs for which the set S must satisfy Ph(λ, α). Indeed, we use Ph(λi, αi) to obtain the sets Γi,k

(k = 2, . . . , h− 1), and Ph(λi+1, αi+1) to obtain H. This is simply due to the fact that the density

of H must be so large, that the (h − 1)-graph one can obtain through Ph(λi, αi) would not be

sufficient to satisfy the conditions of Theorem 21. In effect, we are allowing a slightly worse upper

bound on ‖RH‖ for the benefit of a denser H.

Recall from Definition 16 that

• |H| > (1− 2h−1αi+1)

(
|S|
h− 1

)
and

• QH,H
(
λi+1ξ2h−2

)
6 (2hn+ 1) exp(H|S|), which by Remark 14 means that

‖RH‖ 6
log
(

(2hn+ 1) exp
(
H|S|

))
λi+1ξ2h−2

(15)
=

(log n)O(1)

λi+1
. (47)

We shall now apply Theorem 21 with

` = k − 1, A = Ai,k, β = αi, H as above,

Γ = Γi,k, d = 2k−1αi|Ai,k|
(
|S|
k − 1

)
/|Γi,k|.

First, let us verify that the conditions of the theorem are satisfied for our choice of parameters:

• For every a ∈ Ai,k ⊂ S̃i,k, we have
∣∣a� ( S

k−1

)
∩ Γi,k

∣∣ > 2k−1αi
( |S|
k−1

)
> β

( |S|
k−1

)
.
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• We also have∑
a∈Ai,k

∣∣∣∣a� ( S

k − 1

)
∩ Γi,k

∣∣∣∣ > 2k−1αi |Ai,k|
(
|S|
k − 1

)
= d |Γi,k|.

• Since |Γi,k| 6 (|S|+ 1)h+k−1 · λi, we see that d satisfies

d = 2k−1αi |Ai,k|
(
|S|
k − 1

)
/|Γi,k|

(46)

> (log n)−O(1) · n|S|k−1

th−1−8h2δ(|S|+ 1)h+k−1λi

Since |S| < t 6 2hn1/(2h−1)+δ and λi 6 1, we have

d > (log n)−O(1) · n

t2h−1−8h2δ
> (log n)−O(1) · n4h2δ/(2h−1) � (128h log2 n)k+1.

• The set S, by the definition of Fsmall(t), has cardinality at least n1/(8h2) and therefore

β|S| � n1/(100h2).

• By our choice of β and the fact that |H| > (1 − 2h−1αi+1)
( |S|
h−1

)
, it follows from (40) that

H satisfies (37). Indeed,

2h−1αi+1 =
2h(αi/2)h

2(log2 n)7h2
=

βh

2(log2 n)7h2
. (48)

Hence, by Theorem 21,

e
C̃GH

(Ai,k) > (log n)−O(1) · d |Ai,k|
(
|S|
h− 1

)
.

Recalling (47), we conclude that

eCGS (A) > eCGS (Ai,k) >
e

C̃GH
(Ai,k)

‖RH‖
> (log n)−O(1) · λi+1 · d

(
|S|
h− 1

)
|Ai,k|

= (log n)−O(1) · λi+1|S|h+k−2

|Γi,k|
|Ai,k|2

> (log n)−O(1) · λi+1

λi |S|
|Ai,k|2

= (log n)−O(1) · n
−ρ

|S|

(
|A|
2

)
,

(49)

where we used the definition of λi, λi+1 in (40) and the fact that |Ai,k| = Ω
(
|A|
)
. From the fact

that |S| < t1−δ, and n−ρ > t−δ/4 (see (41) and recalling that t > n1/(2h−1)+δ), we obtain

eCGS (A) >
1

t1−3δ/4(log n)O(1)

(
|A|
2

)
� 1

t1−δ/2

(
|A|
2

)
.

This concludes the proof of Theorem 9.

5.2. Deriving Theorem 4 from Theorem 9. Our proof of Theorem 4 has two independent parts.

First, we derive the claimed bound on |Zhn(t)| only for t in a narrow interval around n1/(2h−1)+ε.

Second, we extend this bound to all larger t using the following statement, Lemma 23 below, which

was already implicitly proved in [10, Section 5]. For completeness, we include the proof of Lemma 23

in Appendix A.
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Lemma 23. Let h > 2 and suppose that N > 2hn. Then, for every t,

|ZhN (t)| > |Zhn(t)| ·
(
N

2hn

)t
.

Proof of Theorem 4. Suppose that h > 2, fix some ε > 0 and let δ be a sufficiently small positive

constant. For any sufficiently large n, define

`h(n) = n1/(2h−1)+δ.

We will first show that

|Zhn(t)| 6
(

n

th−ε/2

)t
for all `h(n) 6 t 6 2h`h(n). (50)

To this end, invoke Theorem 9 to obtain a family F with the property that every T ∈ Zhn(t) satisfies

S ⊂ T ⊂ S ∪ S̃ for some (S, S̃) ∈ F and such that every (S, S̃) ∈ F has |S| 6 t1−δ and satisfies (9).

We may bound |Zhn(t)| from above by the sum, over all (S, S̃) ∈ F , of the number Fh(S, S̃, t) of

Bh-sets of cardinality t that contain S and are contained in S ∪ S̃.

Fix an arbitrary (S, S̃) ∈ F . If |S̃| < n

th−1−8h2δ
, then condition (9) is vacuous, but on the other

hand,

Fh(S, S̃, t) 6

( n

th−1−8h2δ

t− |S|

)
when |S̃| < n

th−1−8h2δ
. (51)

Otherwise, when |S̃| > n

th−1−8h2δ
, as Fh(S, S̃, t) is at most the number of (t− |S|)-element indepen-

dent sets in CGS [S̃], we invoke Lemma 8 with

G = CGS [S̃], N = |S̃|, R =
n

th−1−8h2δ
,

β =
1

t1−δ/2
, q = dβ−1 log ne, and m = t− q − |S|.

(52)

Note that the conditions of the lemma are satisfied by our choice of parameters as

R =
n

th−1−8h2δ
� 1 > e−βqn > e−βqN

and condition (9) implies that G satisfies (6). It follows from Lemma 8 that

Fh(S, S̃, t) 6

(
|S̃|
q

)(
R

t− q − |S|

)
when |S̃| > n

th−1−8h2δ
. (53)

As q � t/(log n) and |S̃| 6 n, in view of both (51) and (53), we have

Fh(S, S̃, t) 6 eo(t)
( n

th−1−8h2δ

t

)
6
( n

th−8h2δ

)t+o(t)
.

Since |S| 6 t1−δ for each (S, S̃) ∈ F ,

|Zhn(t)| =
∑

(S,S̃)∈F

Fh(S, S̃, t) 6 nt
1−δ
( n

th−8h2δ

)t+o(t)
=
( n

th−8h2δ

)t+o(t)
.

Consequently, (50) holds provided that δ = δ(ε) is sufficiently small.
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We now extend the upper bound given in (50) to all t up to Fh(n). Suppose that 2h`h(n) < t 6

Fh(n) and let N be the largest integer such that t > `h(N). Note that t < `h(N +1) < `h(N)+1 <

2h`h(N) and `h(2hn) < 2h`h(n) < t, thus N > 2hn. From (50), we conclude that

|ZhN (t)| 6
(

N

th−ε/2

)t
.

Lemma 23 then implies that(
N

th−ε/2

)t
> |ZhN (t)| > |Zhn(t)| ·

(
N

2hn

)t
.

Consequently,

|Zhn(t)| 6
(

n

th−ε

)t
for all t with `h(n) 6 t 6 Fh(n), provided that n is sufficiently large. �

6. Proof of Theorem 21

Let S, A, Γ, and H be as in the statement of Theorem 21. Recall that our goal is to construct

many quadruples (a1, a2, e1, e2) ∈ A2 ×H2 with

a1 � e1 = a2 � e2 and e1 ∩ e2 = ∅. (54)

We shall reduce this task to the task of counting certain paths in a pair of bipartite graphs sharing

one color class. Our argument will have two parts. In the first part, termed the pre-processing stage,

we construct the aforementioned pair of bipartite graphs from the sets S, A, and Γ. Significant effort

is put into making these two graphs highly degree-regular. In the second part, we count certain

paths in these graphs, which we term special and semi-special, that correspond to quadruples

(a1, a2, e1, e2) that satisfy (54). Our counting arguments rely heavily on the degree-regularity

inherited from the pre-processing stage.

6.1. A warm-up. This section is fairly technical and thus it might be helpful to start with a

simpler setup. Unfortunately, this simplified setup is unrealistic for our application. However, it

will allow us to demonstrate some subtleties of the proof. Suppose in this simplification that H
is the complete (h − 1)-graph on S and that, moreover, we allow e1 ∩ e2 6= ∅ in the quadruples

(a1, a2, e1, e2) that we are counting.

Consider a bipartite graph J with color classes A and Γ, where (a,w) ∈ A × Γ is an edge of J

whenever w = a+ s1 + · · ·+ s` with all si ∈ S. Observe that if (a1, w) and (a2, w) both belong to

J , then we have a quadruple (a1, a2, e
(`)
1 , e

(`)
2 ) ∈ A2 ×

(
S
`

)2
with a1 � e

(`)
1 = w = a2 � e

(`)
2 .

In particular, when ` = h − 1, we may simply count paths of length two in J which start and

end in A in order to estimate the number of quadruples of the desired type. Establishing a lower

bound is fairly easy since we know, from the theorem’s hypotheses, that the average degree in

Γ is somewhat large, and therefore we can apply the Cauchy–Schwarz inequality to estimate the

number of 2-paths in J with central vertex in Γ. Indeed, the left-hand side of (38) equals e(J) and
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therefore, the number of 2-paths is at least∑
w∈Γ

(
degJ(w)

2

)
= Θ(1)

∑
w∈Γ

degJ(w)2 > Θ(1)
e(J)2

|Γ|
(38)

> Θ(1)βd |A|
(
|S|
h− 1

)
.

Note that the right-hand side of the above inequality is somewhat larger than the lower bound

stated in the theorem (which is natural, considering we simplified the setup).

We now need to handle the case when ` < h− 1. To that end, we shall show how to extend the

auxiliary graph J and how to map certain types of paths in this extended graph into quadruples

in A2 ×
(
S
h−1

)2
. An important observation, which we prove in detail later, is that since a typical

a ∈ A has about β
(|S|
`

)
neighbors in J , there must be some subset Z ⊂

{
a � e : a ∈ A, e ∈

(
S
`−1

)}
such that for each z ∈ Z there are, say, at least β

1000 |S| elements s ∈ S with z + s ∈ Γ. Let us

extend J by including Z as a third color class (making it a tripartite graph) and adding the edges

(z, w) ∈ Z × Γ such that w = z + s for some s ∈ S. In this extended graph J , consider a path

P starting with an edge (a1, b1) from A to Γ, then a zig-zag b1, z1, b2, z2, . . . , bh−`−1, zh−`−1, bh−`

between Γ and Z, then finally an edge (bh−`, a2) from Γ to A (see Figure 4).

Observe that the edges in the path P correspond to a set of 2h− 2 elements from S. Indeed, the

first edge (a1, b1) is ‘generated’ by ` elements of S, while each of the 2h−2`−2 edges in the zig-zag

between Γ and Z are generated by single elements; finally, (bh−`, a2) is generated by ` elements.

Regrouping these elements yields two (h− 1)-tuples e1, e2 such that a1 � e1 = a2 � e2.

To summarize, we can define an auxiliary graph and count certain types of paths in it with the

purpose of extracting estimates on the number of quadruples (a1, a2, e1, e2) ∈ A2 ×
(
S
h−1

)2
. In the

full proof, we have to deal with the following complications:

(1 ) We must have e1 ∩ e2 = ∅.
(2 ) Both (h−1)-tuples e1, e2 must belong toH, which is very dense but not necessarily complete.

We address both of these issues in §6.2 by pre-processing the auxiliary graph.

To deal with (1 ), we count paths by starting at an arbitrary edge from A to Γ and appending

edges to the path one by one, provided that each such edge is valid, that is, the generator(s) of

the edge being added are distinct from all the previous generators. This is fairly straightforward

for all the edges in the zig-zag between Γ and Z, since each edge has a single element from S as

their generator. Only at the very last edge of the path, from Γ to A, is there a potential problem,

namely, such edges are generated by ` elements from S, and it is possible that too many such `-sets

contain some generator that already appeared in the path. This issue is handled by introducing

the concept of congestion, and bounding it in the processed auxiliary graph.

We establish a lower bound on the number of paths as above by using the minimum degree of

the vertices in each class to determine how many valid edges there are at each step. On the other

hand, we use the maximum degree of each class to estimate from above how many paths have,

say, e1 /∈ H. To ensure that there are many paths that satisfy (2 ) it will therefore be important

to have minimum and maximum degrees as close as possible. Hence, one of the objectives of the

pre-processing Lemma 25 is to find a relatively dense subgraph with balanced degrees.
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Figure 3. A congested vertex.

6.2. Pre-processing stage. In this subsection we introduce some key definitions and state the

pre-processing lemma. In the next subsection, we use this lemma to establish Theorem 21. The

proof of the pre-processing lemma is quite technical and is postponed until §6.4.

Roughly speaking, in the pre-processing stage we obtain a pair of bipartite graphs sharing a class

with the property that both graphs are highly degree-regular in the shared class. This regularity is

useful when we need to count, with great accuracy, certain special paths in §6.3.

Define, for any S,X, Y ⊂ Z and k > 1, the bipartite graph

CS,k(X,Y ) =

{
(a, b) ∈ X × Y : b = a� e for some e ∈

(
S

k

)}
. (55)

Definition 24 (Congestion). For k, S, X, and Y as above, d > 1, and s ∈ S, we say that a

vertex y ∈ Y is (d, s)-congested in CS,k(X,Y ) if there are at least d tuples e ∈
(
S
k

)
such that s ∈ e

and y � e ∈ X. We simply say that y ∈ Y is d-congested in CS,k(X,Y ) if it is (d, s)-congested in

CS,k(X,Y ) for some s ∈ S (see Figure 3).

Lemma 25. Let h > 2, ` ∈ [h − 1], β ∈ (0, 1), n be a sufficiently large integer, and d >

(128h log2 n)`+2. Suppose that S ∈ Zhn , with |S| > 2h, X ⊂ [n], and Γ0 ⊂ [hn] are such that

C0 = CS,`(X,Γ0) satisfies

|C0| > max

{
β

(
|S|
`

)
· |X|, d · |Γ0|

}
. (56)

Then for some 1 6 k 6 `, condition (1 ) below holds.

(1 ) There exist sets Γ̄, Z ⊂ Z and numbers δ1 and δ2 such that the graphs C1 = CS,k(X, Γ̄) and

C2 = CS,1(Z, Γ̄) satisfy the following conditions:

(1-a) No vertex of Γ̄ is

⌈
δ1

16h log2 n

⌉
-congested in C1.
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(1-b) For all b ∈ Γ̄,

d

(4 log2 n)(128h log2 n)`−k
6 δ1 6 degC1(b) 6 2δ1.

(1-c) For all b ∈ Γ̄,

4h 6 δ2 6 degC2(b) 6 8δ2.

(1-d) For all z ∈ Z, we have

degC2(z) >
β |S|

(log2 n)5(256h2 log2 n)`−k
.

(1-e) |C1| >
|C0|

12(log2 n)3 · (128h |S| log n)`−k
.

6.3. Completing the proof of Theorem 21. Recall that we are tasked with counting the num-

ber Q of quadruples (a1, a2, e1, e2) ∈ A2×H2 that satisfy (54). We will recast this goal in terms of

counting the number of certain paths in an auxiliary graph.

The following notation will be convenient in the arguments that follow. For a fixed Bk-set S,

∀(x, y) ∈ CS,k(X,Y ), ey−x = eS,k,y−x ∈
(
S

k

)
is the unique k-set satisfying y = x� e, (57)

where CS,k(X,Y ) is the graph defined in (55). Since S and k will be understood from context, we

will use the short version ey−x.

Let h, `, β, n, d, S, A, H, and Γ satisfy all the requirements in the statement of Theorem 21.

We shall invoke Lemma 25 with h, `, β, n, d, S, X = A, and Γ0 = Γ. Note that the assumptions

of Theorem 21 match those of Lemma 25, namely, we have d > (128h log2 n)`+2, β > 0, X ⊂ [n],

S ∈ Zhn , |S| � 2h, Γ0 ⊂ [hn], and C0 = CS,`(X,Γ0) satisfies

|C0| =
∑
x∈X

∣∣∣∣x� (S`
)
∩ Γ

∣∣∣∣ > max

{
β

(
|S|
`

)
· |X|, d · |Γ|

}
,

where the inequality follows by the exact same requirement imposed by Theorem 21 on A = X.

Lemma 25 then implies that there exist k ∈ [`], sets Γ̄, Z ⊂ Z, and numbers δ1 and δ2 such that all

conditions in (1 ) hold.

6.3.1. The case k = h−1. It will be easier and instructive to deal first with the case k = ` = h−1.

Here we will only need the graph C1 = CS,`(A, Γ̄).

Consider the map φ that takes each 2-path (a1, b, a2) in C1, with a1, a2 ∈ A, to the quadruple

(a1, a2, eb−a1 , eb−a2). First note that φ is one-to-one. Indeed, for any 2-path (a1, c, a2), we have

eb−a1 = ec−a1 if and only if b = a1 � eb−a1 = a1 � ec−a1 = c. Therefore, one possible way to obtain

a lower bound on the number of quadruples satisfying (54) is to establish how many b ∈ Γ̄ are such

that b = a1 � e1 = a2 � e2 with e1, e2 ∈ H and e1 ∩ e2 = ∅. This task is divided in two steps:

• We first estimate from below the number of 2-paths (a1, a1�e1 = a2�e2, a2) with e1∩e2 = ∅.
We will refer to such paths as semi-special.

• We then bound from above the number of those 2-paths counted before for which either

e1 /∈ H or e2 /∈ H.
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Let us now perform the first step above. We start building the 2-path by taking an arbitrary

edge (a1, b) ∈ C1. Then we need to choose a2 ∈ NC1(b) such that eb−a2 ∩ eb−a1 = ∅ (recall the

notation (57)). Consider the set

Eb :=
{
eb−a2 : a2 ∈ NC1(b)

}
Condition (1-a) states that no vertex of Γ̄ is

⌈
δ1

16h log2 n

⌉
-congested in C1 = CS,h−1(A, Γ̄). Recalling

Definition 24, this implies that for every s ∈ S, the number of (h − 1)-tuples in Eb containing s

is at most δ1
16h log2 n

. Since there are h − 1 values s ∈ eb−a1 ⊂ S, it follows that there are at least

|Eb| − (h− 1) δ1
16h log2 n

elements eb−a2 ∈ Eb such that eb−a2 ∩ eb−a1 = ∅. Since |Eb| = degC1(b) and,

by condition (1-b), we have degC1(b) > δ1, it follows that there are more than δ1/2 choices for a2.

In total, we have found more than

|C1|
δ1

2

(1-e)

>
δ1 |C0|

12(log2 n)3
>

δ1 |A|
12(log2 n)3

β

(
|S|
h− 1

)
(58)

semi-special paths.

Now we must exclude all the 2-paths (a1, b, a2) counted above such that either eb−a1 /∈ H or

eb−a2 /∈ H. For a fixed e ∈
(
S
h−1

)
\ H, the number of paths with eb−a1 = e is at most |A| · (2δ1).

Indeed, if we first choose a1 ∈ A, then b = a� e is determined and by condition (1-b), there are at

most degC1(b) 6 2δ1 choices for a2 ∈ NC1(b). The case when eb−a2 = b is symmetric, and therefore

there are at most

4δ1 |A| ·
∣∣∣∣( S

h− 1

)
\ H
∣∣∣∣ (37)

6 4δ1 |A| ·
βh

(log2 n)7h2

(
|S|
h− 1

)
2-paths which fail to satisfy eb−a1 , eb−a2 ∈ H. Therefore,

Q
(58)

>
δ1 |A|

12(log2 n)3
β

(
|S|
h− 1

)
− 4δ1 |A| ·

βh

(log2 n)7h2

(
|S|
h− 1

)
>

βδ1

24(log2 n)3
|A|
(
|S|
h− 1

)
,

which yields the conclusion of the theorem since δ1 > d
4 log2 n

(see (1-b)).

6.3.2. General case. Since the simpler case when k = ` = h − 1 was handled in our warm-up

(§6.3.1), we assume from now on that

k < h− 1 and k 6 ` 6 h− 1.

Let us define an auxiliary tripartite graph G with parts A, Γ̄, Z defined as follows. We place a copy

of C1 between A and Γ̄ and a copy of C2 between Z and Γ̄. Formally, we have

V (G) = (A× {1}) ∪ (Γ̄× {2}) ∪ (Z × {3}),

E(G) =
{(

(a, 1), (b, 2)
)

: (a, b) ∈ C1

}
∪
{(

(y, 2), (z, 3)
)

: (z, y) ∈ C2

}
,

but we will drop this cumbersome definition and simply assume that V (G) = A ∪ Γ̄ ∪Z where the

elements of these three sets come from three disjoint copies of Z.

Definition 26 (Special path; see Figure 4). A special path in G is a path of the form

P = (a1, b1, z1, b2, z2, . . . , bh−k, a2)
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Figure 4. A special path in G.

such that, letting

e1(P ) = eb1−a1 ∪ {bi+1 − zi : i ∈ [h− k − 1]},

e2(P ) = ebh−k−a2 ∪ {bi − zi : i ∈ [h− k − 1]},

the following hold:

(SP-1 ) a1, a2 ∈ A,

(SP-2 ) bi ∈ Γ̄, for i = 1, . . . h− k,

(SP-3 ) zi ∈ Z, for i = 1, . . . , h− k − 1,

(SP-4 ) |e1(P ) ∪ e2(P )| = 2(h− 1),

(SP-5 ) e1(P ) ∈ H, e2(P ) ∈ H.

Note that if a1, a2 ∈ A are connected by a special path P , then

a1 � e1(P ) = a1 � eb1−a1︸ ︷︷ ︸
b1

+(b2 − z1) + (b3 − z2) + · · ·+ (bh−k − zh−k−1)

a2 � e2(P ) = a2 � ebh−k−a2︸ ︷︷ ︸
bh−k

+(b1 − z1) + (b2 − z2) + · · ·+ (bh−k−1 − zh−k−1).
(59)

Hence,

a1 � e1(P ) =
h−k∑
i=1

bi −
h−k−1∑
i=1

zi = a2 � e2(P ).

Together with the condition |e1(P )∪e2(P )| = 2(h−1) of (SP-4 ), which implies that e1(P )∩e2(P ) =

∅, and condition (SP-5 ), we see that (a1, a2, e1(P ), e2(P )) ∈ A2 ×H2 is a quadruple that satisfies

(54). On the other hand, a quadruple (a1, a2, e1, e2) ∈ A2 ×H2 corresponds to at most(
(h− 1)!

)2
< h2h

special paths between a1 and a2 with e1(P ) = e1 and e2(P ) = e2. Indeed, after fixing orderings e1 =

(e1,1, . . . , e1,h−1) and e2 = (e2,1, . . . , e2,h−1), the path P = (a1, b1, z1, b2, z2, . . . , bh−k, a2) defined
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below is special (provided that it appears in the graph G):

(a1, b1 = a1 + e1,1 + · · ·+ e1,k),

(b1, z1 = b1 − e2,1),

(z1, b2 = z1 + e1,k+1),

...

(bh−k−1, zh−k−1 = bh−k−1 − e2,h−k−1),

(zh−k−1, bh−k = zh−k−1 + e1,h−1),

(bh−k, a2 = bh−k + e2,h−k + e2,h−k+1 + · · ·+ e2,h−1).

Consequently, letting N be the number of special paths, we have

Q > N

h2h
. (60)

Our goal is now to provide a lower bound for N . To that end, we will proceed similarly to the

warm-up case above, in two steps:

• We first estimate from below the number N∗ of paths that satisfy (SP-1 )–(SP-4 ) but not

necessarily (SP-5 ). We shall call such paths semi-special.

• We then bound from above the number of semi-special paths P such that either e1(P ) /∈ H
or e2(P ) /∈ H.

The first edge of a semi-special path could be any (a1, b1) ∈ C1, hence there are |C1| choices. Our

choice of z1 must be such that z1 ∈ NC2(b1) and b1 − z1 /∈ eb1−a1 . According to condition (1-c),

we have degC2(b1) > δ2 > 4h, and hence there are more than δ2/2 choices for z1. Similarly, we

must have b2 ∈ NC2(z1) and b2 − z1 /∈ eb1−a1 ∪ {b1 − z1}. According to condition (1-d), and the

assumption that β |S| > n1/(100h2), we have

degC2(z1) >
β |S|

(log2 n)5(256h2 log2 n)`−k
>

n1/(100h2)

(log n)Θ(1)
� 4h

and hence there are more than degC2(z1)/2 choices for b2. Continuing in this fashion, we construct a

path arriving at bh−k ∈ Γ̄ which needs to be extended to some a2 ∈ NC1(bh−k), under the restriction

ebh−k−a2 ∩
(
eb1−a1 ∪ {b1 − z1, b2 − z1, b2 − z2, b3 − z2, . . . , bh−k − zh−k−1}

)︸ ︷︷ ︸
e′

= ∅.

Consider the set

Ebh−k :=
{
ebh−k−a2 : a2 ∈ NC1(bh−k)

}
.

Condition (1-a) states that no vertex of Γ̄ is
⌈

δ1
16h log2 n

⌉
-congested in C1 = CS,k(A, Γ̄). Recalling

Definition 24, this implies that for all s ∈ S, the number of k-tuples in Ebh−k containing s is at

most δ1
16h log2 n

. Since there are fewer than 2h elements s ∈ e′ ⊂ S, it follows that there are at least

|Ebh−k | −
δ1

8 log2 n
tuples ebh−k−a2 ∈ Ebh−k such that ebh−k−a2 ∩ e′ = ∅. Since |Ebh−k | = degC1(bh−k)

and, by condition (1-b), we have degC1(bh−k) > δ1, it follows that more than δ1/2 elements a2 ∈
NC1(bh−k) may be selected for the final vertex of the path. The above argument shows that:
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• The number of choices for (a1, b1) is |C1|.
• Each element z1, . . . , zh−k−1 can be chosen from among at least δ2/2 alternatives.

• Each element bi, i ∈ {2, 3, . . . , h − k} can be chosen from among at least degC2(zi−1)/2 >
β |S|

2·(log2 n)5(256h2 log2 n)`−k
alternatives.

• There are at least δ1/2 choices for the final vertex a2.

Consequently,

N∗ > |C1|
(
δ2

2
· β |S|

2 · (log2 n)5(256h2 log2 n)`−k

)h−k−1

· δ1

2
.

From (1-e) we obtain

|C1| >
|C0|

12(log2 n)3(128h |S| log2 n)`−k

(56)

>
Ω(1) · β |A|

(|S|
`

)
|S|`−k(log2 n)3+`−k =

Ω(1) · β |A| |S|k

(log2 n)3+`−k .

Therefore, it follows that

N∗ > Ω(1)
βh−k |A| |S|h−1δ1δ

h−k−1
2

(log2 n)3+`−k+(5+`−k)(h−k−1)

>
βhδ1δ

h−k−1
2

(log2 n)6h2
|A|
(
|S|
h− 1

)
,

(61)

where in the last inequality we used the fact that

3 + `− k + (5 + `− k)(h− k − 1) < (5 + `− k)(h− k) < (5 + h)h < 6h2,

and since this inequality is strict, the constant factors of the first inequality in (61) are easily

absorbed by (log2 n)6h2−(3+`−k+(5+`−k)(h−k−1)).

Next we will bound the number of semi-special paths P such that e1(P ) /∈ H. Here we will rely

on the almost regularity of the auxiliary graph to show that such semi-special paths are unusual.

Fix an arbitrary e ∈
(
S
h−1

)
\ H and one of the (h− 1)! orderings of its elements, say (e1, . . . , eh−1).

Pick an element a1 ∈ A to be the first vertex of the path and notice that b1 = a1 + e1 + · · ·+ ek is

determined. According to condition (1-c), there are at most 4δ2 choices for z1 ∈ NC2(b1). Once z1

is chosen, the value of b2 must satisfy b2 = z1 + ek+1, and so, continuing this construction process,

we eventually arrive at bh−1. From bh−1, condition (1-b) shows that we have at most 2δ1 candidates

for a2 ∈ A. To summarize, the number of semi-special paths P such that e1(P ) /∈ H is at most∣∣∣∣( S

h− 1

)
\ H
∣∣∣∣(h− 1)!|A|(4δ2)h−k−12δ1

(37)

6 O(1) ·
βh
( |S|
h−1

)
(log2 n)7h2

|A| δ1δ
h−k−1
2

(61)
= o(N∗). (62)

Since the same is true for the number of semi-special paths P such that e2(P ) /∈ H, we conclude

that N > N∗

2 and thus

Q
(60)

>
N∗

2h2h
>

1

2h2h

βhδ1δ
h−k−1
2

(log2 n)6h2
|A|
(
|S|
h− 1

)
>

βhd

(log2 n)7h2
|A|
(
|S|
h− 1

)
,

where in the last inequality we used condition (1-b), that is, the fact that

δ1 >
d

(4 log2 n)(128h log2 n)`−k
> d(128h log2 n)−h.
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This completes the proof of Theorem 21. �

6.4. Proof of Lemma 25. The following proof, although extensive, is far from deep. It is essen-

tially a recipe for obtaining (almost) degree-regular subgraphs and getting rid of some degeneracy

which is present here in the form of congestion (see Def. 24). The length of the argument is sim-

ply due to the fact that once a subgraph is taken to force degrees in one class to behave well, it

affects the degrees in the other class, so that we need to take several ‘regularization’ steps in the

appropriate order to obtain the desired graph.

Proof of Lemma 25. We start this proof by letting k ∈ [`] be the smallest integer such that the

following holds:

• There exist Γ ⊂ Z and

α > β · (256h2 log2 n)k−`, D > d · (128h log2 n)k−`, (63)

such that C = CS,k(X,Γ) satisfies

|C| > max

{
α

(
|S|
k

)
· |X|, D · |Γ|, |C0|

(128h |S| log n)`−k

}
. (64)

Note that such a minimum value of k must exist, since for k = `, all these conditions are satisfied

by the assumptions of the lemma on Γ = Γ0, α = β, and D = d. We then fix k, Γ, α, D, and C as

above and define

Γcong =

{
b ∈ Γ: b is

⌈
degC(b)

32h log2 n

⌉
-congested in C

}
. (65)

Claim 4. We have

|CS,k(X,Γcong)| < |C|
2
. (66)

Proof. First notice that if k = 1, then no vertex can be d-congested in C for any d > 1. Hence, the

only vertices in Γcong are those b ∈ Γ with degC(b) 6 32h log2 n. Since D > d · (128h log2 n)k−` >

(128h log2 n)k+2, we have

|CS,k(X,Γcong)| =
∑

b∈Γcong

degC(b) 6 32h log2 n · |Γcong| 6 32h log2 n · |Γ| 6
D

4
· |Γ|

(64)

6
|C|
4
,

which establishes the claim for k = 1. Hence let us assume that k > 2 and, for the sake of a

contradiction, that (66) fails. We will show that this assumption contradicts the minimality of k.

For every b ∈ Γcong, let sb ∈ S be a canonical choice of an element such that b is
(⌈ degC(b)

32h log2 n

⌉
, sb
)
-

congested in C. Let
Γ
cong
+ =

{
b ∈ Γcong : degC(b) > D/4

}
,

Γ′ =
{
b− sb : b ∈ Γ

cong
+

}
,

C′ = CS,k−1(X,Γ′).

(67)

Note that by construction, for any y = b−sb ∈ Γ′, there must be at least d = ddegC(b)/(32h log2 n)e
distinct tuples e1, . . . , ed ∈

(
S
k

)
such that sb ∈ ei and b � ei ∈ X for all i = 1, . . . , d. Hence,

setting fi = ei\{sb} for each i, we obtain a collection of d distinct (k−1)-tuples such that y�fi ∈ X
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for all i. Since S is a Bk−1-set, this implies that degC′(y) > d. In general, we then have

∀y ∈ Γ′, degC′(y) > max
b∈Γ

cong
+

y=b−sb

{⌈
degC(b)

32h log2 n

⌉}
(67)

>
D

128h log2 n
. (68)

For each y ∈ Γ′, there are at most |S| representations of the form y = b − sb with b ∈ Γ
cong
+ .

Therefore the maximum in the above inequality may be replaced by the average over all b ∈ Γ
cong
+

such that y = b− sb, yielding

|C′| =
∑
y∈Γ′

degC′(y) >
∑
y∈Γ′

1

|S|
∑

b∈Γ
cong
+

y=b−sb

degC(b)

32h log2 n

=
1

32h |S| log2 n

∑
b∈Γ

cong
+

degC(b) =
|CS,k(X,Γcong

+ )|
32h |S| log2 n

.

Since we assumed the converse of (66), it follows from (64) and the definitions of Γcong and Γ
cong
+

that

|CS,k(X,Γcong
+ )| = |CS,k(X,Γcong)| − |CS,k(X,Γcong \ Γ

cong
+ )|

(67)

>
|C|
2
− D

4
|Γ|

(64)

>
|C|
4
.

We conclude that

|C′| > |C|
128h |S| log2 n

> α

(
|S|
k

)
· |X|/(128h |S| log2 n) = α′

(
|S|
k − 1

)
· |X|,

where

α′ :=
α
(|S|
k

)
128h |S|

( |S|
k−1

)
log2 n

>
α(|S| − k + 1)

128hk |S| log2 n
>

α

256h2 log2 n
.

Together with (68), we obtain

|C′| > max

{
α′
(
|S|
k − 1

)
· |X|, D

128h log2 n
|Γ′|, |C|

128h |S| log2 n

}
,

which contradicts the minimality of k (see (64)). �

Define for all j > 0,

Γj =
{
b ∈ Γ \ Γcong : degC(b) ∈ [2j , 2j+1 − 1]

}
. (69)

Since the maximum degree in C is bounded by |S|k and S is a Bh-set, implying that |S|k 6 |S|h−1 �
n, we have Bj = ∅ for j > log2 n. Pick 0 6 j∗ 6 log2 n such that |CS,k(X,Γj∗)| is maximum and let

Γ∗ = Γj∗ . We then have

Γ∗ ⊂ Γ \ Γcong, ∀b ∈ Γ∗, degC(b) ∈ [2j
∗
, 2j
∗+1 − 1], and |CS,k(X,Γ∗)|

(66)

>
|C|

2 log2 n
. (70)

Thus,
D |Γ|

2 log2 n

(64)

6
|C|

2 log2 n
6 |CS,k(X,Γ∗)| 6 (2j

∗+1 − 1) · |Γ∗| 6 2j
∗+1 · |Γ|,
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which implies that 2j
∗
> D/(4 log2 n). Let δ1 = 2j

∗
and observe that

δ1 >
D

4 log2 n
and ∀b ∈ Γ∗, degC(b) ∈ [δ1, 2δ1 − 1]. (71)

Claim 5. For any Γ̄ ⊂ Γ∗, we have

|CS,k(X, Γ̄)| > |Γ̄|
4 |Γ∗| log2 n

|C|.

Proof. We have

2δ1 |Γ∗|
(71)

> |CS,k(X,Γ∗)|
(70)

>
|C|

2 log2 n

and

|CS,k(X, Γ̄)|
(71)

> δ1 |Γ̄|.

The lower bound on δ1 obtained from the first inequality, when substituted into the second inequal-

ity immediately yields the claim. �

Claim 6. Any subset Γ̄ ⊂ Γ∗ satisfies conditions (1-a) and (1-b).

Proof. In view of (71), condition (1-b) follows immediately for any subset of Γ∗. We now check

that condition (1-a) is also satisfied. Recall (65) and (70). By definition, every b ∈ Γ̄ ⊂ Γ \ Γcong

is not
⌈ degC(b)

32h log2 n

⌉
-congested in C. Since degC1(b) = degC(b) 6 2δ1, it follows that b is also not⌈

δ1
16h log2 n

⌉
-congested in C1 = CS,k(X, Γ̄). �

In view of Claim 6, it suffices to construct subsets Z ⊂ Z and Γ̄ ⊂ Γ∗ that will satisfy properties

(1-c)–(1-e). The next claim will bring us closer to that goal.

Claim 7. There are sets Γ̄ ⊂ Γ∗ and Z ⊂ Z with |Γ̄| > |Γ∗|
3(log2 n)2

and an integer δ2 such that

conditions (1-c) and (1-d) hold.

Proof. Consider the auxiliary (k + 1)-partite graph with parts

X0 = X, X1 = X0 + S, . . . Xk−1 = Xk−2 + S, Xk = Γ∗

and edges joining a ∈ Xi and b ∈ Xi+1 whenever b − a ∈ S, for i ∈ {0, . . . , k − 1}; see Figure 5.

Let us call a path of length m ∈ [k] in this graph proper if it is of the form (x0, x1, . . . , xm) with

xi ∈ Xi for all i ∈ {0, 1, . . . ,m} and, moreover, the differences xi − xi−1 are all distinct for i ∈ [m].

Notice that for each vertex b ∈ Xk, there are exactly k! degC(b) proper paths of length k ending

at b. Indeed, since S is a Bk-set, for each a ∈ NC(b) ⊂ X = X0 there exists a unique e ∈
(
S
k

)
such that b = a � e. Any ordering (e1, . . . , ek) of e corresponds to the proper path (a, a + e1, a +

e1 + e2, . . . , b). Conversely, if (a, x1, . . . , xk−1, b) is a proper path, then a ∈ NC(b) and the set of

consecutive differences in the path gives an ordering of some e ∈
(
S
k

)
such that a� e = b. We will

use this fact shortly.

For each u ∈ Xk−1, let Pu denote the number of proper paths (of length k− 1) ending at u. For

each j > 0, let

Xk−1,j =
{
u ∈ Xk−1 : Pu ∈ [2j , 2j+1 − 1]

}
. (72)
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Figure 5. The auxiliary (k + 1)-partite graph with parts X0, X1, . . . , Xk.

Since S is a Bk-set, we have Pu 6 |S|k−1 < n for all u ∈ Xk−1. Hence, Xk−1,j = ∅ whenever

j > log2 n and therefore

Xk−1 =

log2 n⋃
j=0

Xk−1,j .

For every b ∈ Xk, let π(b) ∈ [log2 n] be the index such that among all the proper paths (of length k)

ending at b, the largest number visits the set Xk−1,π(b). In particular, more than k! degC(b)/ log2 n

proper paths ending at b have a final edge of the form (u, b) for some u ∈ Xk−1,π(b).

Let j′ be such that π−1(j′) has maximum size. For brevity, let U = Xk−1,j′ and V = π−1(j′).

By construction, we have that, for every v ∈ V , the number of proper paths passing through U and

ending at v is at least
k! degC(v)

log2 n
. (73)

We will prove that

degCS,1(U,V )(v) > 16h for every v ∈ V. (74)

Suppose for the sake of a contradiction, that for some v ∈ V , the above inequality fails. By (73),

there must be some u ∈ U such that at least

k! degC(v)

16h log2 n

proper paths end in (u, v). However, as we will show, this implies that v is (d, v − u)-congested

in C with d > degC(v)
16h log2 n

, which contradicts the fact that V ⊂ Xk = Γ∗ is disjoint from Γcong.

To show that v is congested, note that for each proper path (x0, . . . , xk−2, u, v), the k-set e =

{x1 − x0, . . . , xk−2 − xk−3, u − xk−2, v − u} ∈
(
S
k

)
satisfies v − u ∈ e and v � e = x0 ∈ X0 = X.
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Since the same k-set can be obtained by at most (k− 1)! proper paths ending in (u, v), there must

be at least k! degC(v)
(k−1)!16h log2 n

such k-sets, which proves that v is (d, v − u)-congested as claimed. The

obtained contradiction proves that (74) holds.

Since we chose V = π−1(j′) of maximum size, we have

|V | > Xk

log2 n
=
|Γ∗|

log2 n
.

Define, for every m > 0

Vm =
{
v ∈ V : degCS,1(U,V )(v) ∈ [16h · 2m, 16h · 2m+1 − 1]

}
(75)

and similarly as before, notice that Vm = ∅ for m > log2 n > log2 |S|. Observe also that (74) implies

that

V =

log2 n⋃
m=0

Vm.

Now, pick an m′ with 0 6 m′ 6 log2 n such that

|Vm′ | >
|V |

log2 n
>

|Γ∗|
(log2 n)2

. (76)

Using Claim 5, (73), and (76), we obtain that the total number N of proper paths (of length k)

whose final edge is a pair in U × Vm′ satisfies

N >
∑
v∈Vm′

k! degC(v)

log2 n
>

k!

log2 n
· |CS,k(X,Vm′)| >

k!

log2 n
· |Vm′ |

4|Γ∗| log2 n
|C|

(76)

>
k! |C|

4(log n)4
. (77)

Since there are fewer than

|X| |S|k−1

proper (k − 1)-paths, by (72) and our choice of U = Xk−1,j′ , we must have

2j
′ |U | 6

∑
u∈U

Pu 6 |X| |S|k−1.

Since

N 6
∑
u∈U

Pu degCS,1(U,Vm′ )
(u) 6 2j

′+1
∑
u∈U

degCS,1(U,Vm′ )
(u),

it follows that

1

|U |
∑
u∈U

degCS,1(U,Vm′ )
(u) >

N

2j′+1|U |
>

N

2 |X| |S|k−1

(77)

>
k! |C|

8(log2 n)4|X| |S|k−1

(64)

>
k!α

(|S|
k

)
· |X|

8(log2 n)4|X| |S|k−1
� α |S|

(log2 n)5
.

(78)

We are now ready to construct the sets Z ⊂ U , Γ̄ ⊂ Vm′ . Set

δ2 = 4h · 2m′ . (79)

We begin by setting Z = U , Γ̄ = Vm′ and then successively remove vertices:

• z ∈ Z such that degCS,1(Z,Γ̄)(z) <
α |S|

(log2 n)5
and
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• b ∈ Γ̄ such that degCS,1(Z,Γ̄)(b) < δ2.

From (63) we have α > β · (256h2 log2 n)k−` and from (79), we have δ2 > 4h. Moreover, by the

definition of Vm′ in (75), we have degCS,1(Z,Γ̄)(b) 6 8δ2 for all b ∈ Γ̄ ⊂ Vm′ . Consequently, if the

sets obtained from the above iterative process are not empty, they must satisfy (1-c) and (1-d).

We shall show an explicit lower bound on |Γ̄|.
Note that the total number of edges lost because a vertex z ∈ Z was deleted is bounded by

|U | · α |S|
(log2 n)5

(78)
� |CS,1(U, Vm′)|

The number of edges lost due to a vertex b ∈ Γ̄ being deleted is bounded by

|Vm′ | δ2

(75),(79)
<

∑
v∈Vm′

degCS,1(U,Vm′ )
(v)

4
6
|CS,1(U, Vm′)|

4
.

We conclude that fewer than |CS,1(U, Vm′)|/3 edges were lost in total. Therefore

|Γ̄| · 8δ2 >
∑
b∈Γ̄

degCS,1(Z,Γ̄)(b) = |CS,1(Z, Γ̄)| >
2 |CS,1(U, Vm′)|

3

(75),(79)

>
2 |Vm′ | · 4δ2

3
.

It follows that

|Γ̄| > |Vm
′ |

3

(76)

>
|Γ∗|

3(log2 n)2
.

This completes the proof of the claim. �

Let Γ̄ be the set whose existence is asserted by Claim 7. By Claim 6, it satisfies (1-a)–(1-d). By

Claim 5,

|C1| = |CS,k(X, Γ̄)| > |C|
12(log2 n)3

(64)

>
|C0|

12(log2 n)3 · (128h |S| log n)`−k
,

which establishes (1-e) and completes the proof of the pre-processing lemma. �

7. Concluding Remarks

In this paper, we have established essentially tight bounds for the number of Bh-sets contained

in the set {1, . . . , n} of almost every given cardinality t. There remains, however, a small ‘threshold

gap’, that is, an interval of values of t for which the precise asymptotics of |Zhn(t)| is not determined

here. This interval is of the form [ε(n log n)1/(2h−1), n1/(2h−1)+ε], where ε = ε(n) is some function

of n that slowly converges to 0 as n→∞. Outside this interval, the value of |Zhn(t)| is determined

within an nεt multiplicative factor (and more precisely for t sufficiently far from the endpoints of

that interval).

There are therefore two directions in which our result could be refined. The first of them would

be to improve the upper bound on |Zhn(t)| from (n/th+o(1))t to (f(n)n/th)t for some small explicit

function f(n); our methods give f(n) = nc/ log logn for some small positive constant c. The second

direction would be to narrow the threshold gap.

It is conceivable that our methods could be used to obtain somewhat stronger upper bounds,

however it would most likely require a great deal of effort. In order to improve our estimates, one

needs to ‘balance’ the values of αs and λs better. The sequence of λs must be longer so that the
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ratio of consecutive values allows to obtain better bounds in (49). At the same time, the sequence

of αs has to decrease quickly enough so that condition (37) in Theorem 21 is satisfied when we

apply it in the proof of Theorem 9; see (48).

As for narrowing the gap, one could adapt the proof given in §5.1 by requiring A to be larger,

therefore allowing t to be smaller. The cost one would pay for that is a weaker upper bound

on |Zhn(t)|, which would be a result of applying Lemma 8 with larger values of R. The obtained

upper bounds would still be similar to those proved by Theorem 4. In view of the lower bound of

Proposition 2 (i) and Proposition 3, it is clearly not possible to reduce t below (n log n)1/(2h−1).

A careful analysis of our proof shows that (45) is where a lower bound on t of that form is required.

More precisely, for our application of Lemma 8 to work, we need q = o(t), |S| = o(t), and βq =

Ω(log n). For that reason, t must be at least n1/(2h−1)(log n)Θ(1) for (45) to yield anything useful.

In fact, it seems that any proof based on Lemma 8 would require a threshold gap with factor at

least log n. Still, we believe that the following is true:

Conjecture 27. For every h > 2, there exists a constant Ch such that

|Zhn(t)| 6
(
Chn

th

)t
for every n and t satisfying t > Ch(n log n)1/(2h−1).

Another interesting question is whether Theorem 9 is needed at all. It is conceivable that the

set S̃ is always small (in the sense that (9) is vacuous). Although proving such a statement would

not in itself improve the bounds we obtained in this paper, it would help to understand better the

structure of Bh-sets.

7.1. Related work. Some recent results in extremal combinatorics have used the so-called con-

tainers method based on the main results of [2, 33]. This method was recently applied by Morris

and Saxton [30] to show that for every integer h > 2, the number of C2h-free graphs with vertex

set [n] is at most 2O(n1+1/h), which extends the results of [20, 21]. In fact, they proved that for

every m � n1+1/(2h−1)(log n)2, the number fn,m(C2h) of C2h-free graphs with vertex set [n] that

have exactly m edges satisfies

fn,m(C2h) 6

(
Cnh+1

mh
·
(

log
nh+1

mh

)h−1
)m

. (80)

The problems of counting C2h-free graphs and Bh-sets seem to be related. Given a t-element

Bh-set T ⊂ [n], one may define an auxiliary bipartite graph GT on [hn]×{1, 2} by placing an edge

between (x, 1) and (y, 2) whenever y−x (mod n) is an element of T . This graph GT has htn edges

and is ‘essentially’ C2h-free3. In particular, the bound (80) may be viewed as an analogue of our

Theorem 4. However, we are not aware of any rigorous connection between these two results.

One might still ask whether the argument of [30] could be adapted to our setting. As in most ap-

plications of the containers method, the heart of [30] is proving a sufficiently strong supersaturation

3The graph GT contains Θ(nth) copies of C2h which correspond to ‘trivial’ equalities of the form a1 + . . . + ah =
aπ(1) + . . .+ aπ(h), where π is some permutation of [h].
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result for copies of C2h in n-vertex graphs with more that Dn1+1/h edges; see [30, Theorem 1.5].

It is conceivable that one could obtain some supersaturation theorem for solutions to the equation

a1 + . . . + ah = b1 + . . . + bh in subsets of [n] with more than Dn1/h elements using the methods

of [30]. However, a supersaturation statement that would be necessary for our application does

not seem to follow from [30, Theorem 1.5] as it is unclear how to ‘translate’ condition (b) there to

our setting. We did not pursue this direction further, mainly because our research leading to the

current work was carried out largely in parallel to [30].

The obvious advantage of the approach of Morris and Saxton is that their upper bound on fn,m(C2h)

is larger than the (theoretical) lower bound4 of
(
cnh+1/mh

)m
only by a factor of

(
log(nh+1/mh)

)(h−1)m
.

On the other hand, our approach has the advantage of being entirely self-contained, since it relies

merely on Lemma 8, which is a simple result on graphs as opposed to the much more involved

hypergraph version of that result proved in [2, 33].
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11. R. A. Duke, H. Lefmann, and V. Rödl, On uncrowded hypergraphs, Random Structures Algorithms 6 (1995),

209–212.

12. A. G. D’yachkov and V. V. Rykov, Bs-sequences, Mat. Zametki 36 (1984), 593–601.

13. P. Erdős, On a problem of Sidon in additive number theory and on some related problems. Addendum, J. London

Math. Soc. 19 (1944), 208.
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Appendix A. Omitted proofs

Our proof of Proposition 3 will use the following result of Duke, Lefmann, and Rödl [11], which

strengthens the powerful result of Ajtai, Komlós, Pintz, Spencer, and Szemerédi [1]. Recall that

a hypergraph is called simple if each pair of its edges intersects in at most one vertex.

Theorem 28. For every r > 3, there exists a positive constant δ such that the following holds.

Every simple r-uniform hypergraph H with N vertices and average degree at most dr−1 contains an

independent set of cardinality α(H), where

α(H) > δ · (log d)1/(r−1)

d
·N.

Proof of Proposition 3. Suppose that h > 2, fix a positive ε, and let δ be the constant whose

existence is guaranteed by Theorem 28 invoked with r = 2h. Let

Ch = max

{
log(e/ε)

ε2h−1
,

(
8

δ

)2h−1
}

and ch = (8h2Ch)−1/(2h−1).

Suppose that

εn1/(2h−1) 6 t 6 ch(n log n)1/(2h−1)

and let

m = n1/(2h−1) exp
(
Cht

2h−1/n
)
.

The claimed lower bound on |Zhn(t)| will follow once we show that a uniformly chosen random

m-element subset R ⊂ [n] contains a t-element Bh-set with probability at least 1/2. Indeed, we

will then have

|Zhn(t)| >
1
2 ·
(
n
m

)(
n−t
m−t
) =

1

2
·
(
m

t

)−1(n
t

)
>
(em
t

)−t(n
t

)

=

(
en1/(2h−1)

t
· exp

(
Cht

2h−1

n

))−t(
n

t

)
>

(
exp

(
−2Cht

2h−1

n

))t(
n

t

)
;

the last inequality follows as Ch > ε−(2h−1) log(e/ε). It therefore suffices to prove that the proba-

bility that R contains a t-element Bh-set is at least 1/2, as discussed above.

To this end, observe first that

m 6 n1/(2h−1) exp
(
Ch · c2h−1

h log n
)

= n1/(2h−1)+1/(8h2) � n2/(4h−3).

In particular, letting X be the number of solutions to the equation a1 + . . . + ah = b1 + . . . + bh

with |{a1, . . . , ah, b1, . . . , bh}| < 2h that are contained in R, we have

E[X] 6 K ·
2h−1∑
k=3

nk−1
(m
n

)k
6 2K · m

2h−1

n
� m,

where K is a constant depending only on h. Moreover, letting Y be the number of solutions

(a1, . . . , ah, b1, . . . , bh) to the above equation with 2h distinct coordinates, all belonging to the
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random set R, we have

E[Y ] 6 n2h−1 ·
(m
n

)2h
=
m2h

n
.

Finally, letting Z be the number of pairs (a1, . . . , ah, b1, . . . , bh) and (a′1, . . . , a
′
h, b
′
1, . . . , b

′
h) of solu-

tions with 2h distinct coordinates that satisfy |{a1, . . . , ah, b1, . . . , bh}∩ {a′1, . . . , a′h, b′1, . . . , b′h}| > 2

and are both contained in the random set R, we have

E[Z] 6 K ·
2h−1∑
k=2

n4h−2−k
(m
n

)4h−k
6 2K · m

4h−2

n2
� m.

It follows from Markov’s inequality that

P(X > 3E[Y ] or X > 12E[X] or Z > 12E[Z]) < 1/2. (81)

Let G be the 2h-uniform hypergraph with vertex set [n] whose edges are all {a1, . . . , ah, b1, . . . , bh}
with 2h distinct elements such that a1 + . . . + ah = b1 + . . . + bh. It follows from (81) that, with

probability at least 1/2, there is S ⊂ [n] with |S| = m/2 such that the subhypergraph H = G[S]

induced on S is simple, has at most 3m2h/n edges, and such that, moreover, there is no solution to

a1 + · · ·+ ah = b1 + · · ·+ bh with {a1, . . . , ah, b1, . . . , bh} a subset of S with less than 2h elements.

In particular, as the average degree d of H satisfies

d2h−1 =
2h · e(H)

v(H)
6

12hm2h−1

n
6

(
4m

n1/(2h−1)

)2h−1

,

whence d ≤ 4m/n1/(2h−1). Note that 4m/n1/(2h−1) = exp(Cht
2h−1/n). Therefore, Theorem 28

implies that

α(H) > δ
n1/(2h−1)

4m

(
log

4m

n1/(2h−1)

)1/(2h−1) m

2
>
δ

8
C

1/(2h−1)
h t > t.

Since every independent set of H is a Bh-set (as R′ does not contain any solutions with repeated

coordinates), this completes the proof. �

Proof of Lemma 23. Fix some h > 2 and suppose that n and N are integers satisfying N > 2hn.

We shall show that there exists a subset U ⊂ [N ] and a projection π : U → [n] such that the

following holds:

(a) If A ⊂ [n] is a Bh-set, then any set B ⊂ π−1(A) with |B ∩ π−1(x)| = 1 for every x ∈ A is

also a Bh-set.

(b) For every x ∈ [n], we have |π−1(x)| > N/(2hn).

Observe that the existence of such U and π immediately implies the assertion of the lemma. Indeed,

for every A ∈ Zhn(t), we may construct at least (N/(2hn))t different B ∈ ZhN (t) by choosing for

each x ∈ A one of at least N/(2hn) elements of π−1(x) to be included in B. Moreover, each B

constructed in this way satisfies π(B) = A.

In order to define the projection π and its domain U ⊂ [N ], we first partition [N ] into intervals

Ij =

(
j

n
N,

j + 1

n
N

]
∩ Z, j = 0, . . . , n− 1.
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Furthermore, we subdivide each of the intervals above into h subintervals of (almost) equal lengths,

namely,

Ij,k =

((
j

n
+

k

hn

)
N,

(
j

n
+
k + 1

hn

)
N

]
∩ Z, j = 0, . . . , n− 1 and k = 0, . . . , h− 1.

We then define the domain of π by

U =

n−1⋃
j=0

Ij,0.

The projection π is then defined by letting π(x) = j + 1, where j is the unique index such that

x ∈ Ij,0. Condition (b) is clearly satisfied as for every j,

|Ij,0| >
⌊
N

hn

⌋
>

N

2hn
,

where the last inequality follows from our assumption that N > 2hn.

It remains to prove that condition (a) is also satisfied. Let A ⊂ [n] be a Bh-set and let B ⊂
π−1(A) be a set satisfying |B ∩ π−1(A)| = 1. This ensures that π|B is a bijection between B and

A. Let (b1, . . . , bh) ∈ Bh be an arbitrary h-tuple with b1 6 . . . 6 bh and let ` be the unique index

such that b1 + . . .+ bh ∈ I`. We claim that `+ h = π(b1) + . . .+ π(bh). Indeed, for each i ∈ [h], let

ji = π(bi)− 1, so that bi ∈ Iji,0, and observe that

b1 + . . .+ bj ∈
(
j1 + . . .+ jh

n
N,

j1 + . . .+ jh + 1

n
N

]
∩ Z = Ij1+...+jh .

Since A is a Bh set and π is one-to-one, it follows that no other h-tuple (b′1, . . . , b
′
h) ∈ Bh with

b′1 6 . . . 6 b′h can satisfy π(b′1) + . . . + π(b′h) = ` + h. In particular, no other h-tuple (b′1, . . . , b
′
h)

with b′1 6 . . . 6 b′h satisfies b′1 + . . . + b′h ∈ I` and hence B must be a Bh-set (recall that ` is the

unique index such that b1 + . . .+ bh ∈ I`). �
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