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Abstract In this note we discuss the convergence of Newton’s method for minimization. We present exam-
ples in which the Newton iterates satisfy the Wolfe conditions and the Hessian is positive definite at each step
and yet the iterates converge to a non-stationary point. These examples answer a question posed by Fletcher
in his 1987 book Practical methods of optimization.

1. Introduction

The convergence of Newton’s method has always been an important subject in nonlinear
programming [2]. Following this tradition, in this note we analyze the convergence of
Newton’s method to minimize functions f : Rn → R of class C2, i.e. functions with
continuous second order derivatives, without constraints. We discuss the convergence
of the Newton iterates xk given by

∇2 f (xk)sk =−αk∇f (xk), (1)
xk+1 = xk + sk. (2)

At the kth step of this method we solve the linear system ∇2 f (xk)dk = −∇f (xk) for dk
and then pick a positive “step size” αk such that sk = αkdk, f , xk and xk+1 in (2) satisfy
the Wolfe conditions

f (xk+1)− f (xk) ≤ η∇f (xk)tsk, (3)
∇f (xk+1)tsk ≥ β∇f (xk)tsk, (4)

for parameters η and β with 0 < η < β < 1. In this work we also require that

∇2 f (xk) is positive definite for all k. (5)

We are particularly interested in the convergence of the sequence {xk} to non-
stationary points, i.e. points z with ∇f (z) 6= 0. Our motivation comes from a remark
by Fletcher in [2] regarding the relation between the solution of nonlinear systems of
the form F(x) = 0 and minimization, which we restate as:
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If F ′(xk) loses rank in the limit, then convergence of Newton’s method for sys-
tems of equations to a non-stationary point can occur [5]. The situation may
therefore be more severe than with Newton’s method for minimization, for
which no example satisfying (1)–(5) in which xk accumulates at a non-stationary
point has been developed to our knowledge.

Byrd, Marazzi and Nocedal [1] worked on this question and proved this theorem:

Theorem 1. Suppose f ∈C2 and the sequence {xk} satisfies (1)–(5). If

(a) ∇2 f (z) has rank n−1 and
(b) ∇f (z) 6∈ Range(∇2 f (z))

then xk is bounded away from z ut
They then asked if theorem 1 could be proved under weaker assumptions. In this work
we show that both conditions (a) and (b) are needed in theorem 1 and that Newton’s
method for minimization is as vulnerable as Newton’s method for solving equations
regarding convergence to non-stationary points. With this aim, we present two examples
in which the conditions (1)–(5) are satisfied but yet the Newton iterates converge to a
non-stationary point. In the first example the condition (a) is satisfied but (b) is not. In
the second example (a) is violated but (b) holds.

The examples involve only two variables. Their iterates are given by simple expres-
sions and their objective functions are highly oscillatory combinations of polynomials,
sines and logs. We also found examples in which the objective functions are simple
combinations of low degree polynomials and the line searches are exact. They are sim-
ilar to the example in [3]. However, they involve functions of three variables and the
examples presented here are more concise. Actually, the theory developed in [4] sug-
gests that the existence of examples in which the iterates converge to non-stationary
points should not surprise us. However, the existence of the examples presented here,
with simple explicit expressions for the iterates and objective functions, did surprise us.

Counter examples that solve Fletcher’s question are contrived by their very nature.
For instance, in a future work we will present a proof of the following lemma:

Lemma 1. Assume the function f has continuous second order derivatives and the se-
quence xk satisfies (1) – (3) and (5). If a subsequence xki of xk converges to z with
∇f (z) 6= 0 then

limsup
i→∞

αki

f (xki)− f (xki+1)
≤ ‖∇2 f (z)‖

η‖∇f (z)‖2

and, as a consequence, limi→∞ αki = 0. ut
Since in practice we usually try the step size αk = 1 the reader may be tempted to
conclude from lemma 1 that our examples are not “practical”. Indeed, they are not
practical, but not for this reason: using the interpolation techniques described in [4] we
could change f so that αk = 1 does not satisfy the Wolfe conditions and we would be
forced to look for smaller α ′

ks. However, by doing that we would obtain more complex
examples which are not that practical either, because lemma 1 implies that αk would un-
derflow quickly and the dynamics of the iterates would be governed by messy rounding
errors and not by clean mathematical formulae. Therefore, we believe science is better
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served by the simple examples in the next section than by even more contrived and
complex examples that would try to cover all gimmicks one may consider in practical
implementations of Newton’s method.

It is interesting to contrast our examples with Powell’s work [6]. At a first glance,
it may seem that the choice of the first minimizer along the search lines would resolve
the problems posed by our examples. We believe the opposite: criteria like the one in
[6] with no hypothesis about the third order derivatives of f only lead to more contrived
counter examples, with more variables. This belief is based on [4]. In this reference we
present general techniques to produce examples like the ones presented here.

Finally, we would like to mention that although Fletcher’s remark may seem to
address a specific point about the convergence of Newton’s method we believe that a
complete answer to the questions posed by Fletcher, Byrd, Marazzi and Nocedal would
lead to a better understanding of the convergence of this method in general. We have
found improved versions of theorem 1 and we are now working to combine them with
the ideas in [7] in order to present an unified discussion of Fletcher’s remark, theorem
1 and the choice of the size of the perturbation to the Hessian in regularized versions of
Newton’s method.

2. The examples

This section presents two examples of C2 objective functions 1 of two variables and
sequences {xk} and αk that satisfy conditions (1) – (5) and yet limk→∞ xk = 0 and
∇f (0) 6= 0. The iterates xk are the same in both examples. They are

xk =
(

8−k

2−k

)
. (6)

The objective functions f have the form

f (x) = φ(ψ(x)), (7)

with φ and ψ given below. This expression for f is motivated by these equations:

∇f (x) = φ ′(ψ(x))∇ψ(x), (8)
∇2 f (x) = φ ′′(ψ(x))∇ψ(x)∇ψ(x)t +φ ′(ψ(x))∇2ψ(x). (9)

Notice that if we define

αk =−φ ′′(ψ(xk))
φ ′(ψ(xk))

∇ψ(xk)tsk, (10)

then equation (1) for the Newton step is satisfied if ∇2ψ(xk)sk = 0. Equations (7)–(10)
allow the analysis of the effects of the addition to ψ of highly oscillatory functions like
µ given by

µ(0) = 0 and µ(b) =
b3(ln2)2

8π2 sin2
(

π
ln(b2)

ln2

)
for b 6= 0. (11)

1 Actually, the second derivatives of these objective functions are locally Lipschitz continuous in R2 and
analytic outside the x axis.
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This function has continuous second order derivatives at all b ∈R and if we consider a
C2 function h :R→R and add h(b)µ(b) to ψ(a,b) then ∇2ψ(xk) changes by

h(2−k)2−k
(

0 0
0 1

)
, (12)

but ψ(xk) and ∇ψ(xk) do not change, because µ(0) = µ ′(0) = µ ′′(0) = 0,

µ(2−k) = µ ′(2−k) = 0 and µ ′′(2−k) = 2−k for all k ∈N. (13)

Our study of such functions h(b)µ(b) lead to these ψ’s for the examples 1 and 2:

ψ1(a,b) = a+b3−28b3 a+24a2 +3
(
105b3−2

)
µ(b), (14)

ψ2(a,b) = a+b3−11b4 a+8ba2 +
(
181b4−6

)
µ(b). (15)

Finally, we chose these functions φ :

φ1(a) = a+a2 and φ2(a) = a+a3. (16)

The definition of the examples is now complete and it is summarized in table 1.
From here to the end of this section we validate them. We compute the terms in condi-

Table 1. The two examples

Example xk f ψ φ(a) αk ∇f (0) ∇2 f (0)

1
(

8−k

2−k

)
φ(ψ(x)) see (11)–(14) a+a2 see (10)

(
1
0

) (
50 0
0 0

)

2
(

8−k

2−k

)
φ(ψ(x)) see (11)–(15) a+a3 see (10)

(
1
0

) (
0 0
0 0

)

tions (1)–(5) explicitly and show that they are satisfied. We assume that the indexes k
start at k = 1000. As a consequence, ε = 2k ≤ 2−1000 for all k of interest. This ε is tiny
and we suggest that, in order to get the gist of our examples, you look only at leading
order terms in ε in the expression below in a first reading. After you have a global view
of why these expressions make sense it will be easier to come back and fill in the details
regarding the higher order terms. We begin the verification of the examples by using (6)
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and (12)–(15) to deduce that, for xk = (a,b) = (ε3,ε)t = (2−3k,2−k)t ,

sk = xk+1− xk = −ε
8

(
7ε2

4

)
, (17)

ψ1(xk) = 2(1−2ε3)ε3, (18)

∇ψ1(xk) =
(

1+20ε3

3(1−28ε3)ε2

)
, (19)

∇2ψ1(xk) =
(

48 −84ε2

−84ε2 147ε4

)
, (20)

ψ2(xk) = (2−3ε4)ε3, (21)

∇ψ2(xk) =
(

1+5ε4

3(1−12ε4)ε2

)
, (22)

∇2ψ2(xk) = ε
(

16 −28ε2

−28ε2 49ε4

)
. (23)

The evaluation of (20) × (17) and (23) × (17) show that ∇2ψ(xk)sk = 0 in both exam-
ples. Thus, (9) and (10) imply that the iterates follow the Newton steps in (1) (X).

To check the first Wolfe condition (3) and verify that αk is positive, we use the
bound ε ≤ 2−1000 and equations (18) and (21) to obtain

ψ1(xk+1)−ψ1(xk) = 7
9ε3−4

16
ε3 <−7

4
ε3(1− ε) < 0, (24)

ψ2(xk+1)−ψ2(xk) =
381ε4−224

128
ε3 <−7

4
ε3(1− ε) < 0. (25)

The definition of φ1 and φ2 in (16) show that

φ ′′1 (ξ ) = 2 > 0 for ξ ∈R, (26)
φ ′′2 (ξ ) = 6ξ > 0 for ξ > 0. (27)

Equations (18) and (21) and ε ≤ 2−1000 lead to ψ1(xk) > 0 and ψ2(xk) > 0. The bounds
(24)–(25) show that ψ1(xk) and ψ2(xk) decrease with k and, since the second derivatives
in (26)–(27) are positive, (16) yields

1≤ φ ′1(ψ1(xk)) ≤ φ ′1(ψ1(x1)) = 1+2ψ1(x1) =
11
8

, (28)

1≤ φ ′2(ψ2(xk)) ≤ φ ′2(ψ2(x1)) = 1+3ψ2(x1)2 =
18907
16384

<
6
5
. (29)

Equations (17), (19), (22) and ε ≤ 2−1000 imply that

−19
8

ε3(1+ ε) < ∇ψ1(xk)tsk =
196ε3−19

8
ε3 <−19

8
ε3(1− ε) < 0, (30)

−19
8

ε3(1+ ε) < ∇ψ2(xk)tsk =
109ε4−19

8
ε3 <−19

8
ε3(1− ε) < 0. (31)

Thus, (26)–(31) show that αk defined in (10) is positive in both examples (X).
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Combining (8) and (28)–(31) we obtain

−11×19
64

(1+ ε)ε3 < ∇f1(xk)tsk <−19
8

ε3(1− ε), (32)

−3×19
20

(1+ ε)ε3 < ∇f2(xk)tsk <−19
8

ε3(1− ε). (33)

The last two equations, ε ≤ 2−1000 and (24) – (25) imply that

ψ1(xk+1)−ψ1(xk) <
7×64× (1− ε)

4×11×19× (1+ ε)
∇f1(xk)tsk <

1
2

∇f1(xk)tsk,

ψ2(xk+1)−ψ2(xk) <
7×20× (1− ε)

4×3×19× (1+ ε)
∇f2(xk)tsk <

1
2

∇f2(xk)tsk,

because
7×64

4×11×19
≈ 1.13 and

7×20
4×3×19

≈ 0.61

are both bigger than 1/2 and ∇f1(xk)tsk and ∇f2(xk)tsk are negative. Therefore, the
examples satisfy the first Wolfe condition (3) with η = 1/2 (X). To verify the second
Wolfe condition (4), we replace ε by ε/2 in (19) and (22) to compute ∇ψ(xk+1):

∇ψ1(xk+1) =
(

1+ 5
2 ε3

3
8 (2−7ε3)ε2

)
and ∇ψ2(xk+1) =

(
1+ 5

16 ε4

3
16 (4−3ε4)ε2

)
.

We then recall that ε ≤ 2−1000 and use (8), (17), (28) and (29) to obtain

∇f1(xk+1)tsk = φ ′1(xk+1)∇ψ1(xk+1)tsk =−φ ′1(xk+1)
10+7ε3

8
ε3 >−110

64
ε3(1+ ε),(34)

∇f2(xk+1)tsk = φ ′2(xk+1)∇ψ2(xk+1)tsk = φ ′2(xk+1)
ε4−160

128
ε3 >−3

2
ε3. (35)

Therefore, (32) and (33) imply ∇f (xk+1)tsk > 3/4∇f (xk)tsk in both examples. Since
β = 3/4 > η = 1/2, we have verified the second Wolfe condition (4) (X).

We now prove that the hessians ∇2 f (xk) are positive definite. In order to simplify
the algebra, notice that (9) yields

∇2 f (xk) = φ ′(ψ(xk))
(

∇2ψ(xk)+
φ ′′(ψ(xk))
φ ′(ψ(xk))

∇ψ(xk)∇ψ(xk)t
)

.

Since (26)–(29) show that φ ′i (ψ(xk)) > 0, φ ′′1 (ψ(xk))
φ ′1(ψ(xk))

> 1 and φ ′′2 (ψ(xk))
φ ′2(ψ(xk))

> 8ε3, the posi-

tivity of ∇2 f1(xk) and ∇2 f2(xk) follow from the positivity of these matrices:

A1k = ∇2ψ1(xk)+∇ψ1(xk)∇ψ1(xk)t and A2k = ∇2ψ2(xk)+8ε3∇ψ2(xk)∇ψ2(xk)t ,

which we take the liberty to write as

A1k =
(

49+O(ε3) −81ε2 +O(ε3)
−81ε2 +O(ε3) 156ε4 +O(ε5)

)
,

A2k = ε
(

16+8ε2 +O(ε3) −28ε2 +24ε4 +O(ε5)
−28ε2 +24ε4 +O(ε5) 49ε4 +72ε6 +O(ε7)

)
.
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A bit of algebra shows that

Trace(A1k) = 49+O(ε3), Det(A1k) = 1083ε4 +O(ε5),
Trace(A2k) = 16ε +O(ε3), Det(A2k) = 2888ε8 +O(ε9).

Thus, the Hessians are positive and the condition (5) is satisfied (X). The four check
marks above indicate that we have verified that αk is positive and the examples satisfy
the conditions (1)–(5) for η = 1/2 and β = 3/4. Therefore, the examples are valid.
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