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A Mountain Pass Lemma and its implications regarding the
uniqueness of constrained minimizers

Abstract We present a version of the classical Mountain Pass Lemma and explain how to combine it with
constraint qualifications to prove that nonlinear programming problems have a unique local minimizer.

1. Introduction

This work presents metric and differential criteria to decide whether the nonlinear programming problem

min f (x) (1.1)
subject to g(x) ∈ G

has a unique local minimizer. Our approach is general in the sense that the domain of the functions f and g and
the set G may be a subset of a Banach space or a more general metric space. We discuss uniqueness in depth and
generality and provide tools to verify it in specific problems.

Knowing that problem (1.1) has a unique local solution is helpful when we handle it numerically, because
if one has this information then he can choose a simpler and more efficient algorithm to solve it. Uniqueness
is also important from the modeling point of view. It gives us more assurance that our model is well posed and
describes accurately the real world, where we often expect the solutions to be unique and clearly defined. For
these practical reasons the statisticians and economists who wrote [32], [39] and [50] developed and studied
criteria to prove the uniqueness of local solutions in the context of likelihood maximization and successfully
applied their criteria to significant problems in their fields. This paper generalizes and explains the mathematics
behind their results, but to appreciate the effectiveness of their approach you should read at least [32].

Uniqueness of local minimizers is related to the connectedness of the sets

f<c = {x with f (x)< c} and f≤c = {x with f (x)≤ c},

where the concept of connectedness is formalized in the usual topological sense:

Definition 1.1 Let F be a topological space. We say that C ⊂ F is connected if for any pair of open sets A and
B such that C ⊂ A∪B and A∩B∩C = /0 we have that either A∩C = /0 or B∩C = /0.

We propose the Connection Lemma as a tool to analyze the connectedness of the sets f<c. This lemma is an
adaptation of the classical Mountain Pass Lemma. The next theorems relate the uniqueness of local minimizers,
the connectedness of the sets f<c and the Connection Lemma:
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Theorem 1.1 Let F be a metric space and let f : F → ℝ be continuous with strict local minimizers. If the sets
f≤c are compact then f has a unique local minimizer if and only if the sets f<c are connected. ⊓⊔

Theorem 1.2 Let F be a connected metric space and let f : F → ℝ be continuous with strict local minimizers.
If the sets f≤c are compact then the sets f<c are connected if and only if f has no Connection Points. ⊓⊔

A local minimizer x is strict if it lies in an open set A such that f (y)> f (x) for all y ∈ A−{x}. The vast majority
of nonlinear programming problems are formulated in metric spaces and this is the level of generality of this
work. The results presented here can be extended to more general topological spaces in a natural way, but we
only discuss such extensions briefly in the last section in order to make the paper more readable and focused.

To understand theorem 1.2 you must learn what Connection Points are. You can think of them as points
whose existence is proved by the Connection Lemma. The exact meaning is not relevant for the moment. Just be
sure you understand that

If the local minimizers are strict and the sets f≤c are compact then

A unique local minimizer ⇐⇒ The sets f<c are connected ⇐⇒ No Connection Points. (1.2)

Under the hypothesis of the theorems above we can prove the uniqueness of local minimizers by showing that
there are no Connection Points. This is the Connection Point argument for uniqueness and in the rest of this
article we expand and explore it in detail. We prove and generalize the theorems above and explain the need for
their hypothesis. We also provide tools to apply these theorems in typical constrained problems.

We introduce Connection Points in this work, but the applied paper [32] that motivated us presents a correct
intuitive Connection Point argument and its authors understand the spirit of the Connection Lemma. Unfortu-
nately, they focus on positive definite Hessians and talk superficially about Morse Theory, in what we now see
as a red herring. While chasing this red herring we found the work of Hofer [22], [23], Fang [17], Ghoussoub
& Preiss [18], Pucci & Serrin [43], [44], [45] and Ekeland & Ghoussoub [15] and realized that the Mountain
Pass Lemma is a powerful tool prove the uniqueness of local minimizers. We then formulated our Connection
Lemma based on their versions of the Mountain Pass Lemma. As a result, some of our theorems differ from
theirs only in technical details, but our proofs and focus are different. We are concerned with the uniqueness of
local minimizers for nonlinear programming problems; they follow Birkhoff [4], Ljusternik [29] [30] and Morse
[37] and want to prove the existence of multiple solutions for variational problems.

The Connection Lemma is a slightly different version of the Mountain Pass Lemma, which is usually ex-
plained in terms of paths connecting points a and b which have f (a) and f (b) below a critical level c. Many
authors consider the complete metric space

Γ (a,b) = {x ∈C([0,1],F) such that x(0) = a and x(1) = b}

and use Ekeland’s variational principle to analyze the minimizers of the functional Φ : Γ (a,b)→ ℝ given by

Φ(x) = max
t∈[0,1]

f (x(t)).

From this analysis they prove the existence of Mountain Passes (see [7]). We propose an alternative view. For
us the Mountain Pass Lemma is only incidentally related to paths. What really matters is connectedness, not
path connectedness. Actually, Mountain Passes are truly a topological phenomenom and hypothesis like the
Palais-Smale Condition are nothing but differential lenses to observe them.

We organized this paper in an increasing order of generality and complexity. Section 2 is about the uniqueness
of local minimizers in ℝn. We state lemmas and theorems and show how they can be combined with constraint
qualifications in order to prove the uniqueness of local minimizers for nonlinear programming problems in
a finite number of variables. Section 2 motivates and prepares you for the more abstract approach of the next
sections. It shows that there are two branches in the analysis of uniqueness of local minimizers: (i) functions with
at least one disconnected level set, which certainly have multiple local minimizers (ii) functions with connected
level sets may have multiple local minimizers, but their analysis is a bit simpler. In section 3 we handle case
(i) for Banach spaces and section 4 covers complete metric spaces. The basic result in these sections is the
Connection Lemma. In section 5 we analyze functions with connected level sets. Finally, in section 6 we prove
all lemmas and theorems and present some results in more general topological spaces.



A Mountain Pass Lemma and its implications regarding the uniqueness of constrained minimizers 3

2. Uniqueness of local minimizers in ℝn

In this section we present basic principles to decide whether the classical nonlinear programming problem

min f (x) (2.1)
subject to hi(x) = 0, i = 1, . . .m,

g j(x)≤ 0, j = 1, . . . , p

has a unique local minimizer in the feasible region F . We assume that f is bounded below in F , ie., there exists
µ such that f (x) ≥ µ for all x ∈ F . Our goal is to motivate the abstract sections that follow and provide useful
results for readers which are only concerned with this problem and do not have the interest or the knowledge to
consider more general ones.

We believe the uniqueness question should be approached in two steps: first we must find out whether the
sets f<c = {x ∈ F with f (x)< c} are connected. If f<c is disconnected then there exist disjoint open sets A1 and
A2 such that f<c ⊂ A1∪A2 and f has one local minimizer in A1 and another in A2. Therefore, if some set f<c is
disconnected then f has multiple local minimizers. Once we pass this test we can handle the case in which all
sets f<c are connected.

The Connection Lemma is a fundamental tool to analyze the connectedness of the sets f<c. In its simplest
form it is exactly the same as the Mountain Pass Lemma and they can be stated as follows:

Lemma 2.1 If the continuous function f : ℝ→ ℝ has two local minimizers u and w then it also has a local
maximizer v ∈ (u,w). ⊓⊔

People working in partial differential equations and Hamiltonian systems use the local information that u and w
are local minimizers and the Mountain Pass Lemma to prove the existence of v, which corresponds to yet another
solution for their variational problems. Ambrosetti and Rabinowitz introduced the Mountain Pass Lemma in [1]
with this kind of application in mind and it was generalized in [15], [16], [17], [18], [22], [23], [43], [44], [45]
and [48] with the same purpose.

We use the Connection Lemma in the other way around: if we prove that f has no local maximizers then
lemma 2.1 tells us that f has at most one local minimizer. This can be very hard, but [32] and [39] present
concrete situations in which it can be done in F =ℝn. However, in general the point v whose existence is proved
by the Connection Lemma is not a local maximizer. In favorable situations it will be what Katriel, motivated by
Hofer [23], defined as a Mountain Pass Point in [26]:

Definition 2.1 Let F be a topological space and f : F → ℝ a function. The point x ∈ F with c = f (x) is a
Mountain Pass Point if for every neighborhood N of x the set f<c

∩
N is disconnected. ⊓⊔

Our approach is slightly different from Hofer’s and Katriel’s. We are concerned with the connectedness of
the sets f<c and its relation to the uniqueness of local minimizers. Our work is based on these definitions:

Definition 2.2 Let F be a topological space and A, B and C be subsets of F. We say that C = A∪B is a partition
of C if A and B are disjoint and not empty. If A and B are open we say that C = A∪B is an open partition and if
A and B are closed we say that C = A∪B is a closed partition. ⊓⊔

Definition 2.3 Let F be a topological space and f : F → ℝ a function. The point x ∈ F is a Connection Point if
there exists an open partition f< f (x) = A∪B such that x ∈ A∩C (A is the closure of A). ⊓⊔

u v w �
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�
�

u v w

Fig. 1 The strict minimizers u and w and the Connection Point v.
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Figure 1 presents the typical Connection Point: a local maximizer in ℝ or a saddle in ℝn for n > 1. Every
Connection Point x is a Mountain Pass Point: if N is a neighborhood of x then we can partition f<c ∩N as
(N∩A)∪ (N∩B). However, there are examples of Mountain Pass Points which are not Connection Points.

Connection Points do not tell the whole story about the uniqueness of local minimizers. Figure 2 shows why
the requirement of strict minimizers is essential in theorems 1.1 and 1.2. There are no Connection Points in this
figure. However, in the left plot the sets f<c are connected and the degenerate local minimizers form a connected
set with a compact closure which is attached to f<c. The right plot contains an interval of local minimizers x
with f (x) = c connecting distinct components of f<c.

c

u v1 v2

A single global minimizer u and the Terrace (v1,v2):
connected level sets but multiple local minimizers.

c

u v1 v2 w

The components A1 = (−∞,v1) and A2 = (v2,+∞) of
f (x)< c and the Bridge B = (v1,v2) connecting them.

Fig. 2 A Terrace and a Bridge.

Figures 1 and 2 describe the worst scenarios for continuous function with compact level sets. We now present
technical definitions to analyze them:

Definition 2.4 Let F be a topological space and f : F → ℝ a function. The set P is a Plateau for f at level c if

(i) P⊂ f−1(c),
(ii) P is connected,

(iii) P has at least two elements.
(iv) The elements of P are local minimizers of f ,

Definition 2.5 A Plateau P for f at level c is a Terrace if P∩ f<c ∕= /0.

Definition 2.6 Let f<c = A1 ∪A2 be an open partition with A1 ∩A2 = /0. We say that B = f≤c−A1 ∪A2 is a
Bridge if there are no sets B1 and B2 such that B = B1∪B2 and

(
A1∪B1

)
∩
(
A2∪B2

)
= /0.

The interval T = (v1,v2) in the left plot in Figure 2 is the simplest kind of Plateau: a path formed by local
minimizers. The Plateau T is a Terrace because T touches f<c. The interval B= (v1,v2) in the right plot in Figure
2 is a Bridge. It connects the components A1 and A2 of f<c and cannot be split in two parts B1 and B2 such that
A1∪B1 and A2∪B2 yield a closed partition of f≤c.

The Bridges and Terraces above are the simplest ones to visualize. However, using Baire’s theorem we can
prove the existence of a Plateau P ⊂ ℝ2 such that P is compact and contains no continuous paths (see [51]). In
any case problems with Bridges and Plateaus are odd1 and we must expect to have difficulties when trying to
solve them numerically, as illustrated in the next lemma:

Lemma 2.2 Let X be a metric space and let f : X → ℝ be a continuous function. If A is a Bridge or Plateau
then there exists an injective function p : (0,1)→ A. Therefore, A has at least the cardinality of ℝ. In particular,
if f has a Bridge or Terrace at level c then the set of non strict local minimizers for (1.1) at level c has at least
the cardinality of ℝ.

Terraces destroy the first equivalence in relation (1.2) and Bridges invalidate the second. In reality, for con-
tinuous functions with compact level sets we have that:

A unique local minimizer ⇍⇒ The sets f<c are connected ⇍⇒ no Connection Points,

1 [27], [28], [36] and [52] illustrate how complex Bridges and Plateaus can be.
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but we can still relate Bridges and Connection Points to the change in connectedness of the level sets 2:

Theorem 2.1 Let f : ℝn→ ℝ be a continuous function. If the sets f<c are bounded, there exists a ∈ℝ such that
f<a is disconnected and c ∈ (a,+∞] such that f<c is connected then f has a Connection Point or a Bridge in
f−1([a,c)). ⊓⊔

As a consequence of the existence of Bridges and Terraces, in order to use Connection Point arguments to prove
the uniqueness of local minimizers we show that f satisfies the following:

Definition 2.7 Let F be a topological space and let f : F → ℝ be a continuous function. We say that f satisfies
the Connectedness Alternative if it has a global minimizer z and at least one of these alternatives holds:

(i) z is the only local minimizer,
(ii) f has a Connection Point,

(iii) f has a Bridge,
(iv) For every c ∈ ℝ the sets f<c and f≤c are connected. There is a local minimizer w ∕= z and for all such w’s

(a) If f (w)> f (z) then w is contained in a Terrace.
(b) If f (w) = f (z) then f−1( f (z)) is a Plateau.

A typical theorem would then look like this one:

Theorem 2.2 If f : ℝn → ℝ is continuous and the sets f≤c are bounded then f satisfies the Connectedness
Alternative. ⊓⊔

Cases (iii) and (iv) in the Connectedness Alternative are pathological. They do not happen if f has strict local
minimizers. Therefore, the hard part in using theorem 2.2 to prove that (i) holds in specific problems is to rule
out the existence of Connection Points (ii). As a consequence, simple criteria to decide whether a given point x
is a Connection Point are essential to use theorem 2.2. We now present such criteria. The simplest one is this:

Lemma 2.3 Let f : ℝn→ℝ be a function with continuous derivatives. If x is a Connection Point then ∇f (x) = 0.
If ∇f (x) = 0, f is C2 and two eigenvalues of ∇2 f (x) are negative then x is not a Connection Point. ⊓⊔

We emphasize that the number of positive or zero eigenvalues is irrelevant in this lemma. Theorem 2.2 and
lemma 2.3 are analogous to the second order condition for minimization. The condition “∇2 f (x) with at least
two negative eigenvalues” that guarantees that x is not a Connection Point looks like the condition “∇2 f (x) with
at least one negative eigenvalue” that guarantees that x is not a local minimizer. In order to extend the analogy
with minimization to constrained problems we consider the dual cone associated problem (2.1):

Cd(x) =

{
m

∑
i=1

ηi∇hi(x)−
p

∑
j=1

γ j∇g j(x) for ηi ∈ ℝ and γ j ≥ 0 with γ jg j(x) = 0

}
. (2.2)

We can then state a first order condition to rule out Connection Points for constrained problems:

Theorem 2.3 Suppose the functions f , hi and g j in problem (2.1) have continuous first order derivatives and let
F be its feasible region. If the point x0 ∈ F satisfies the Mangasarian Fromovitz constraint qualification and is a
Connection Point for f constrained to F then ∇f (x0) ∈Cd(x0). ⊓⊔

Second order conditions for Connection Points under Mangasarian Fromovitz are more complicated, as they
already are for minimization. Consider this two dimensional example:

Example 2.1 The nonlinear programming problem in two variables given by

min f (x,y) = 4x−2y2,

subject to g1(x,y) = −x ≤ 0,

g2(x,y) = −x+ y2 ≤ 0

2 See [15], [17], [18], [23], [43], [44] and [45] for analogous theorems involving Mountain Pass Points.
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has a convex feasible region F = {(x,y) with x ≥ y2} and the point p = (0,0) satisfies the Slater Constraint
Qualification (see [3]), which implies Mangasarian Fromovitz. Moreover, for γ1 = 3 and γ2 = 1,

∇f (p) =−γ1∇g1(p)− γ2∇g2(p) (2.3)

and
d′
(
∇

2 f (p)+ γ1∇
2g1(p)+ γ2∇

2g2(p)
)

d =−2∥d∥2

for all d in the subspace orthogonal to ∇g1(p) and ∇g2(p). However, p is a global minimizer because if x ≥ y2

then f (x,y)≥ 4y2−2y2 ≥ 0 = f (p). ⊓⊔

This example shows that it is possible to have minimizers with negative eigenvalues in the Lagrangian’s
Hessian for some combinations (2.3) under Mangasarian Fromovitz. By adding an extra dimension we get an
analogous example for Connection Points:

Example 2.2 The nonlinear programming problem in three variables given by

min f (x,y,z) = 2z− x2−2y2,

subject to g1(x,y,z) = −z ≤ 0,

g2(x,y,z) = −z+ y2 ≤ 0

has a convex feasible region F = {(x,y,z) with z≥ y2} and the point p = (0,0,0) satisfies the Slater Constraint
Qualification. Moreover, for γ1 = γ2 = 1,

∇f (p) =−γ1∇g1(p)− γ2∇g2(p)

and
d′
(
∇

2 f (p)+ γ1∇
2g1(p)+ γ2∇

2g2(p)
)

d =−2∥d∥2

for all d in the two dimensional subspace orthogonal to ∇g1(p) and ∇g2(p). However, p is a Connection Point
because if f (x,y,z)< 0 and g2(x,y,z)≤ 0 then

−x2 = f (x,y,z)+2g2(x,y,z)< 0⇒ x ∕= 0

and the set {(x,y,z) with f (x,y,z) < 0 = f (p)} has two connected components, one containing the points with
x > 0 and the other the points with x < 0. ⊓⊔

The next theorem shows that the Connection Point x0 with a Hessian with two negative eigenvalues in the
tangent cone in the example above occurs because the derivative of g = (g1,g2) at x0 is singular.

Theorem 2.4 Suppose the functions fi and g j in problem (2.1) have continuous second order derivatives and
let F be its feasible region. If x0 ∈ F is such that the vectors

D = {∇hi(x0) , i = 1, . . . ,m}
∪{

∇g j(x0) , j = 1, . . . , p with g j(x) = 0
}

are linearly independent, ∇f (x) = ∑
m
i=1 ηi∇hi(x0)−∑

p
j=1 γ j∇g j(x0) , with γ j ≥ 0 and γ j∇g j(x0) = 0, and there

exists a two dimensional subspace V ⊂ ℝn such that

d′v = 0 and v′
{

∇
2 f (x0)−

m

∑
i=1

ηi∇
2hi(x0)+

p

∑
j=1

γ j∇
2g j(x0)

}
v < 0

for all v ∈V −{0} and d ∈ D then x0 is not a Connection Point for f constrained to F. ⊓⊔

Theorems 2.3 and 2.4 provide local criteria to rule out the existence of Connection Points. To use them
we need global topological criteria to verify that the Connectedness Alternative in definition 2.7 holds. A good
global criteria was introduced by Palais and Smale in [40] for manifolds modeled in Hilbert Spaces. We are
interested in the constrained problems (2.1), which under Mangasarian Fromovitz may have a feasible region F
that is not a manifold. In our case what matters is the distance of the gradient to the dual cone in (2.2) and we
suggest the following notion of derivative:
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Definition 2.8 Let F be the feasible region of problem (2.1) and Cd the dual cone in (2.2). We define the con-
strained derivative of f at x ∈ F by cdf (x) = dist(∇f (x),Cd(x)). ⊓⊔

We can then state the corresponding version of the Palais-Smale Condition for constrained problems:

Definition 2.9 Let F be the feasible region of problem (2.1). Given c ∈ ℝ, we say that this problem satis-
fies the Palais-Smale condition at level c if every sequence {xn,n ∈ ℕ} ⊂ F such that limn→∞ f (xn) = c and
limn→∞ cdf (xn) = 0 has a convergent subsequence. ⊓⊔

The Palais-Smale Condition is satisfied by functions with bounded level sets. It leads to global criteria to
verify the Connectedness Alternative:

Theorem 2.5 Suppose the functions f , hi and g j in problem (2.1) have continuous derivatives and f is bounded
below in the feasible region F. If F is connected, the problem satisfies the Palais-Smale condition for all c ∈ ℝ
and the Mangasarian-Fromovitz constraint qualification holds for all x ∈ F then f constrained to F satisfies the
Connectedness Alternative in definition 2.7. ⊓⊔

Combining theorems 2.3, 2.4 and 2.5 when we know that f has no Bridges or Terraces in F we get a
reasonable technique to prove that problem (2.1) has a unique local solution: we use theorems 2.3 and 2.4 to
rule out the existence of Connection Points and then conclude that alternative (i) in definition 2.7 must hold. The
applicability of this technique to the particular problem we care about depends on the details of the problem.
References [32] and [39] exemplify how this can be done in important problems in statistics and economics.
However, in general problems it is already hard to show that F is connected.

3. The Connection Lemma in Banach Spaces

In this section we generalize the criteria presented in the previous section to prove that certain points are not
Connection Points for problems

min f (x) (3.1)
subject to x ∈C and g(x) ∈ G

in which the function f is defined in a Banach space X and g is a function from X to a Banach space Y . We assume
that C and G are closed and convex and the functions f and g are strictly differentiable at x0 ∈C∩ g−1(G), in
the following sense:

Definition 3.1 Let X and Y be Banach spaces, f a function from X to Y and D : X → Y a continuous linear
transformation. D is a strict derivative of f at x0 ∈ X if for every ε > 0 there exists δ > 0 such that

x,y ∈ Bδ (x0)⇒∥ f (y)− f (x)−D(y− x)∥ ≤ ε∥y− x∥.

We say that f is strictly differentiable at x0 if there exists a strict derivative for f at x0. ⊓⊔

Here Bδ (x0) denotes the closed ball with center x0 and radius δ . When x0 = 0 we write simply Bδ .
This section is based on the work of Ljusternik [31], Bartle & Graves [2], [19], [20], Michael [34] and [35]

and Borwein [5]. The early work of Ljusternik and Graves were translated to a modern language and generalized
in the work of Dontchev [12], [13] and Borwein & Dontchev [6] and lead to the concept of metric regularity,
which is related to constraint qualifications in the work of Borwein [5], Ioffe [24] and Cominetti [8]. The theory
presented here is analogous to the ones for minimization in the references above. It is also based upon Robinson’s
Constraint Qualification [47]

g(x0) ∈ core(G−dg(x0)(C− x0)) (3.2)

and Rockafellar’s [46] characterization of Clarke’s tangent cone:

Definition 3.2 Let X be a Banach space and C ⊂ X. Given x0 ∈C we say that d is tangent to C at x0 if for every
ε > 0 there exist δ ,λ > 0 such that if ∥x− x0∥ ≤ δ and t ∈ [0,λ ] then dist(x+ td,C)≤ εt. We denote by TC (x0)
the set of vectors tangent to C at x0. ⊓⊔

Our theory starts with this primal theorem:
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Theorem 3.1 Let X and Y be Banach spaces and let C ⊂ X and G ⊂ Y be closed and convex. Suppose the
functions g : X → Y and f : X → ℝ are continuous in X and have strict derivatives df (x0) and dg(x0) at x0 ∈
F = C∩ g−1(G) and g(x0) ∈ core(G−dg(x0)(C− x0)). If x0 is a Connection Point for f constrained to F and
d ∈ TC (x0)∩dg(x0)

−1(TG (g(x0))) then df (x0)d ≥ 0. ⊓⊔

The dual result corresponding to theorem 3.1 is stated in terms of the sets

A+ = {x∗ ∈ X∗ such that x∗(a)≥ 0 for all a ∈ A }

We can then use theorem 3.1 above and theorem 6.3 in [5] to deduce this theorem:

Theorem 3.2 Let X and Y be Banach spaces. Suppose C⊂X and G⊂Y are closed and convex, g : X→Y and f :
X →ℝ are continuous in X and strictly differentiable at x0 ∈C∩g−1(G) and g(x0) ∈ core(G−dg(x0)(C− x0)).
If x0 is a Connection Point for f constrained to C∩g−1(G) then df (x0) ∈ TC (x0)

++dg(x0)
∗TG (g(x0))

+. ⊓⊔

Theorems 3.1 and 3.2 provide first order primal and dual criteria to show that x0 is not a Connection Point.
These criteria are analogous to the ones for minimization. Example 2.2 shows that second order criteria to prove
that a point is not a Connection Point should require more from the problem. As a consequence, general second
order theorems about Connection Points look like this one:

Theorem 3.3 Let X and Y be Banach spaces, f ∈ C2(X ,ℝ), g ∈ C2(X ,Y ) and let C ⊂ X and G ⊂ Y be closed
and convex. Suppose x0 ∈C∩g−1(G) is such that g(x0) ∈ core(G−dg(x0)(C− x0)) and df (x0) = dg(x0)

∗
γ +µ

for µ ∈ TC (x0)
+ and γ ∈ TG (g(x0))

+. If there exist d1,d2,s11,s12,s22 ∈ X such that d1 and d2 are linearly
independent and, for 1≤ i≤ j ≤ 2,

di ∈ (C− x0)∩ (x0−C), (3.3)
si j ∈ TC (x0)∩ (−TC (x0)) , (3.4)

dg(x0)di ∈ (G−g(x0))∩ (g(x0)−G), (3.5)

dg(x0)si j +d2g(x0)(di,d j)/2 ∈ TG (g(x0))∩ (−TG (g(x0))) (3.6)

and d2f (x0)(d,d) < γ(d2g(x0)(d,d)) for d ∈ Span{d1,d2}−{0} then x0 is not a Connection Point for f con-
strained to C∩g−1(G). ⊓⊔

This theorem illustrates why ruling out Connection Points is easier than classical variational analysis. A
Morse Theorist would read this theorem as “If x0 has Morse index at least two then it is not a Connection Point”.
He would be correct, but in order to proceed with his theory he would usually restrict himself to Hilbert spaces
and functions f with Fredholm second derivatives (see [21] and [49]).

As in the previous section, we need a global criteria to use theorems 3.1, 3.2 and 3.3 in order to prove that
f has a unique local minimizer using the Connectedness Alternative in definition 2.7. We propose the following
definitions of derivative and Palais Smale condition for problem (3.1):

Definition 3.3 Let F be the feasible region of problem (3.1). The constrained derivative of f at x ∈ F is

cdf (x) = sup
d∈TC(x)∩(dg(x)−1(TG(g(x)))) with ∥d∥=1

−df (x)d.

⊓⊔

Definition 3.4 Let F be the feasible region of problem (3.1). Given c ∈ ℝ, we say that this problem satis-
fies the Palais-Smale condition at level c if every sequence {xn,n ∈ ℕ} ⊂ F such that limn→∞ f (xn) = c and
limn→∞ cdf (xn) = 0 has a convergent subsequence. ⊓⊔

Definition 3.4 is different from definition 2.8 due to technical details about metric projections in Banach spaces
discussed by Penot in [42]. However, their essence is the same and they are equivalent in reflexive Banach spaces.

Lemma 3.1 If X is reflexive and problem (3.1) satisfies Robinson’s Constraint Qualification (3.2) at x0 then

cdf (x0) = dist
(
df (x0), TC (x0)

++dg(x0)
∗TG (g(x0))

+) .
⊓⊔
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Finally, the Palais-Smale Condition leads to global criteria to verify the Connectedness Alternative:

Theorem 3.4 Suppose the sets C and G in problem (3.1) are closed and convex, the functions f and g have
continuous Fréchet derivatives and f is bounded below in the feasible region F. If F is connected, the problem
satisfies the Palais-Smale condition for all c ∈ ℝ and Robinson’s Constraint Qualification (3.2) for all x ∈ F
then f constrained to F satisfies the Connectedness Alternative in definition 2.7. ⊓⊔

4. The Connection Lemma in Complete Metric Spaces

The previous sections presented local criteria to decide whether a given point x0 ∈ F is a Connection Point
and global criteria that imply the Connectedness Alternative. These criteria follow the nonlinear programming
tradition and impose conditions on the derivatives of f . In this section we show that we can obtain similar results
replacing derivatives by the “weak slope”. The concept of weak slope is due to Degiovanni and Marzochi [11]
and Katriel [26] and is discussed in depth by Corvellec et. al. [9] and Ioffe & Schwartzman [25]. As discussed
in [10], the “weak slope” is a tool to apply the concept of deformation, which in turn is related to the gradient
flow and the early work of Marston Morse [38]. In formal terms, the “weak slope” is defined by:

Definition 4.1 Let X be a metric space, f : X→ℝ a function and u ∈ X. Denote by ∣df ∣(u) the supremum of the
σ ’s in [0,+∞) such that there exists δ > 0 and a continuous function ϕ : Bδ (u)× [0,δ ]→ X satisfying

dist(ϕ(v, t),v)≤ t and f (ϕ(v, t))≤ f (v)−σt (4.1)

for all (v, t) ∈ Bδ (u)× [0,δ ]. The extended number ∣df ∣(u) is called the weak slope of f at u. ⊓⊔

The next lemma relates the constrained derivative in definition 3.3 to the weak slope:

Lemma 4.1 Let X and Y be Banach spaces and let C ⊂ X and G⊂Y be closed and convex. Suppose f : X →ℝ
and g : X→Y are continuous and strictly differentiable at x0 ∈C∩g−1(G). If g(x0) ∈ core(G−dg(x0)(C− x0))
and fF is restriction of f to C∩g−1(G) then ∣dfF ∣(x0)≥ cdf (x0). ⊓⊔

This section explains that weak slopes and Connection Points work well together in complete metric spaces.
Our first result is analogous to theorem 3.1 from last section:

Lemma 4.2 Let F be a complete metric space and suppose that F is locally connected at x0. If f : X → ℝ is
continuous and x0 ∈ F is a Connection Point then ∣df ∣(x0) = 0. ⊓⊔

The Palais Smale condition has a natural generalization to metric spaces (see [9] and [25]):

Definition 4.2 Let F be a metric space and f : X → ℝ a continuous function. We say that f satisfies the Metric
Palais Smale Condition at level c if every sequence {xk,k∈ℕ}⊂X such that f (xk) converges to c and ∣df ∣(xk)→
0 has an accumulation point. ⊓⊔

Based on the work of Corvellec, Degiovanni and Marzocchi [9] we can state the Connection Lemma for complete
metric spaces:

Lemma 4.3 Let F be a complete metric space and f : F → ℝ a continuous function. If f<a is disconnected and
there exists c ∈ (a,+∞] such that the set f<c is connected and f satisfies the Metric Palais Smale Condition for
all b ∈ [a,c) then f has a Connection Point or a Bridge in f−1([a,c)). ⊓⊔

This lemma is the basic result upon which the theory in the previous sections is built.
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5. Functions with connected level sets

As we saw in section 2, we should consider two situations when analyzing the uniqueness of constrained mini-
mizers: (i) the sets f<c = {x ∈ F with f (x)< c} are connected for all c, (ii) some sets f<c are disconnected. The
previous sections show that case (ii) can be approached via Connection Points and Bridges. In this section we
analyze case (i). We show that in this case if f does not have a unique local minimizer then it has a complex set
of local minimizers, as described in item (iv) of the Connectedness Alternative in definition 2.7.

We use the following definition:
Definition 5.1 Let F be a metric space and x ∈C ⊂ F. We define

C(x,C) =
∪

A⊂C connected with x∈A

A.

⊓⊔
In words, C(x,C) is the union of all connected subsets of C which contain x. It is clear that x ∈ C(x,C) and that
C(x,C) is connected. We then consider the following set:

Definition 5.2 Let F be a metric space and f : F→ℝ. We denote by f min
c the set of local minimizers x of f such

that f (x) = c. ⊓⊔
If x ∈ f min

c and C(x, f min
c )∩ f<c ∕= /0 then C

(
x, f min

c
)

is a Terrace (see definition 2.5). This is the usual situation
for local minimizers when the sets f<c are connected. The exceptional x’s belong to

Dc =
{

x ∈ f min
c such that C(x, f min

c )∩ f<c = /0
}
. (5.1)

The next lemma shows that if the level sets are connected and the metric Palais Smale condition holds then the
sets Dc are actually empty:

Lemma 5.1 Let F be a metric space, f : F → ℝ a continuous function and c > infx∈F f (x). If f min
c is compact

and Dc ∕= /0 then f≤c is disconnected. ⊓⊔
We can then state the the main theorem in this section:
Theorem 5.1 Let F be a metric space and f : F → ℝ a continuous function. If f is bounded below and, for all
c ∈ ℝ, the set f<c is connected and f satisfies the metric Palais Smale Condition at level c, then either f has
unique local minimizer or it satisfies item (iv) in definition 2.7. ⊓⊔

6. Proofs

In this section we prove the lemmas and theorems stated in the previous sections. The section has six subsections.
Each subsection starts with the proofs of the theorems in the corresponding section and ends with the proofs of
the lemmas in this section.

6.1 Proofs for section 1.

Proof of theorem 1.1 Since X is compact, f satisfies the metric Palais Smale at all levels and the sets f min
c

in definition 5.2 are relatively compact. Moreover, since the local minimizers of f are strict there are no Plateaus
or Terraces, because lemma 2.2 shows that Plateaus contain infinite non strict local minimizers. This rules out
possibility (iv) in the Connectedness Alternative in definition 2.7. If all sets f<c are connected then theorem
5.1 and the observations above show that f has a unique local minimizer. On the other hand, if the set f<c is
disconnected then there exists an open partition f<c = A1∪A2 and, by the compactness of f≤c, f has at least one
local minimizer in A1 and another in A2. ⊓⊔

Proof of theorem 1.2 As in the previous proof, f has a lower bound, satisfies the metric Palais-Smale
condition at all levels, has no Bridges, Plateaus or Terraces and the sets f min

c are relatively compact. This rules
out possibilities (iii) and (iv) in the Connectedness Alternative in definition 2.7. Therefore, if the sets f<c are
connected then theorem 5.1 and the observations above show that f has no Connection Points. On the other
hand, lemma 6.8 shows that f has the extension property for all levels and if f<a is disconnected for some a then
the hypothesis that F is connected and lemma 6.7 with c =+∞ show that f has a Connection Point. ⊓⊔
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6.2 Proofs for section 2.

Proof of theorem 2.1. Theorem 2.1 is a corollary of theorem 2.2 and definition 2.7. ⊓⊔
Proof of theorem 2.2. ℝn is a complete metric space and if f : ℝ→ ℝ is continuous and has bounded level

sets then it is bounded below and for all c it satisfies the metric Palais Smale Condition 4.2 and the sets f min
c in

definition 5.2 are relatively compact. If all sets f<c are connected then theorem 5.1 implies that f satisfies item
(i) or (iv) in definition 2.7. If some level set f<c is disconnected then lemma 6.7 shows that f satisfies item (ii)
or (iii) in definition 2.7. ⊓⊔

Proof of theorem 2.3. The Mangasarian-Fromovitz condition is equivalent to Robinson’s condition (3.2) for
problem (2.1) and theorem 2.3 is a particular case of theorem 3.2. ⊓⊔

Proof of theorem 2.4. In order to simplify the notation let us assume that g j(x0) = 0 for all j. Let q : ℝn→
ℝm+p be given by q(x) = (h1(x), . . . ,hm(x),g1(x), . . . ,gp(x))′ and let dq(x0) denote its jacobian matrix at x0. Take
a basis {v1,v2} of V . The linear independence hypothesis implies that, for 1 ≤ i ≤ j ≤ 2, there exists si j ∈ ℝn

such that

dq(x0)si j =−
1
2

⎛⎜⎜⎜⎜⎜⎝
vi∇

2h1(x0)v j
. . .

vi∇
2hm(x0)v j

vi∇
2g1(x0)v j
. . .

vi∇
2gp(x0)v j

⎞⎟⎟⎟⎟⎟⎠
Theorem 2.4 follows from theorem 3.3 with X =ℝn, G = {(y,w) ∈ ℝm×ℝp with y = 0 and w≤ 0} , Y =ℝm+p,
C = ℝn, µ = 0, γ : ℝm+p→ ℝ given by γ(x) = ∑

m
i=1 ηixi−∑

p
j=1 γ jxm+ j, dk = vk and si j as above. ⊓⊔

Proof of theorem 2.5. The Mangasarian-Fromovitz condition is equivalent to Robinson’s condition (3.2) for
problem (2.1) and theorem 2.3 is a particular case of theorem 3.4. ⊓⊔

Proof of lemma 2.1. The proof of lemma 2.1 is left to the reader. ⊓⊔
Proof of lemma 2.3. The situation described in lemma 2.3 can be modeled as problem 2.1 with by adding a

variable xn+1 and the constraint xn+1 = 0. Lemma 2.3 then follows from theorem 2.4. ⊓⊔
Proof of lemma 2.2 Let B be a Bridge as in definition 2.6. We claim that for every r ∈ (0,1) the set

Sr = {x ∈ B with dist(x,A1) = r dist(x,A2)}

is not empty. In fact, if Sr were empty then the sets

B1 = {x ∈ B with dist(x,A1)< r dist(x,A2)} and B2 = {x ∈ B with dist(x,A1)> r dist(x,A2)}

would be such that
B1∩B2 ⊂ Sr = /0 =

(
B1∩A2

)
=
(
B2∩A1

)
and this contradicts definition 2.6. Therefore, for every r ∈ (0,1) we can choose p(r) in Sr in order to obtain the
function claimed in lemma 2.2.

If P is a Plateau, then using its connectivity, the fact that P contains at least two points and the same argument
above we can build the desired injective function p. ⊓⊔

6.3 Proofs for section 3.

The main tool in this subsection is a version of Ljusternik’s [31] implicit function theorem. In problem (3.1),
if x0 ∈ F = C∩ g−1(G), y0 = g(x0) ∈ G, d ∈ TC (x0) and dg(x0)d ∈ TG (y0) then an implicit function argument
shows that if x is close to x0 then there exists a continuous path η(x, t) ⊂ F which is approximately tangent to
d for each t. If df (x0)d is negative then, for c = f (x0), these paths can be used to connect all points in F ∩ f<c
near x0 to a single point x ∈ F ∩ f<c. As a consequence, x0 is not a Connection Point by the following lemma:

Lemma 6.1 Let F be a topological space, f : F → ℝ a continuous function and x0 ∈ F with f (x0) = c. If there
exist a neighborhood N of x0, a connected set C⊂ f<c and, for every x ∈ N∩ f<c, a connected set Cx ⊂ f<c such
that x ∈Cx and Cx∩C ∕= /0 then x0 is not a Connection Point. ⊓⊔
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The second order theory is similar. An implicit function argument shows that if there exists a two dimensional
subspace D in the tangent space T to F = C∩ g−1(G) in which d2f (x0)(., .)− γ

(
d2g(x0)(., .)

)
is negative and

d2g(x0)(D,D) ⊂ dg(x0)T then there exists a (deformed) circle C ⊂ F near D such that f (x) < c = f (x0) in C
and we can connect each x near x0 in F ∩ f<c to C via a path contained in F ∩ f<c and lemma 6.1 implies that x0
is not a Connection Point.

In the rest of this subsection we formalize this intuitive introduction. The essence of our arguments is known
since the work of Ljusternik in the 1930’s, but our presentation uses Michael’s Selection Theorem [35], which
was developed in the 1950’s. Michael himself has used his theorem to extend the results of Bartle and Graves
and more recently Páles [41] and Borwein & Dontchev [6] have also used similar arguments. We add a few
details to this previous work in order to prove the theorems in section 3. We borrow the following definition and
lemma from Borwein [5]:

Definition 6.1 Let X and Y be Banach spaces and V a metric space. We say that g : X ×V → Y is partially
strictly differentiable in x at (x0,v0) ∈ X ×V if the partial Fréchet derivative dg(x)x0,v0 exists and for every
ε > 0 there exists δ > 0 such that if v,x,y ∈ Bδ (x0) then ∥g(y,v)−g(x,v)−dg(x)x0,v0 (y− x)∥ ≤ ε∥y−x∥. ⊓⊔
Lemma 6.2 Let X and Y be Banach spaces and let C⊂X and G⊂Y be closed and convex and V a metric space.
Suppose g : X×V →Y is continuous in X and partially strictly differentiable in x at (x0,v0)∈ (C×V )∩g−1(G).
If g(x0,v0) ∈ core(G−dxg(x0,v0)(C− x0)) then there exists ρ,δ > 0 such if x ∈C∩Bδ (x0) and v ∈ Bδ (v0) then

dist(x,R(v))≤ ρ dist(g(x,v), G) , (6.1)

where
R(v) = {c ∈C with g(c,v) ∈ G} . (6.2)

⊓⊔
Borwein’s result, Michael’s Selection Theorem and the next lemma lead to our implicit function theorem 6.1

stated below. After presenting these lemma and theorem we prove the theorems and lemmas in section 3.

Lemma 6.3 Let X and Y be Banach spaces, V a metric space and U,C ⊂ X and G ⊂ Y , with U open. Let
r : V → ℝ, c : V → X and ϕ : X×V → Y be continuous functions. Define

R(v) = {c ∈C with ϕ(c,v) ∈ G} (6.3)

and suppose that there exists ρ ∈ ℝ such that, for all c ∈U ∩C and v ∈V ,

dist(c,R(v))≤ ρ dist(ϕ(c,v), G) . (6.4)

Consider the multi valued function A : V ⇉ X given by

A(v) = {c(v)} if r(v)≤ 0 and A(v) =U ∩R(v)∩ int
(
Br(v)(c(v))

)
if r(v)> 0. (6.5)

If the sets A(v) are not empty then B : V ⇉ X defined by B(v) = A(v) is lower semi continuous. ⊓⊔
Theorem 6.1 Let X and Y be Banach spaces. Suppose C ⊂ X and G⊂ Y are closed and convex and g : X → Y
is continuous in X and strictly differentiable at x0 ∈C∩g−1(G). If g(x0) ∈ core(G−dg(x0)(C− x0)) then there
exist δ ,ρ > 0 such that for every metric space M and continuous function h : M → C∩Bδ (x0) there exists a
continuous function h̃ : M→C such that g

(
h̃(m)

)
∈ G for m ∈M and

∥h̃(m)−h(m)∥ ≤ ρ dist(g(h(m)),G) . (6.6)

⊓⊔
Corollary 6.1 Let X and Y be Banach spaces. Suppose C ⊂ X and G⊂ Y are closed and convex and g : X → Y
is continuous in X and strictly differentiable at x0 ∈C∩g−1(G). If g(x0) ∈ core(G−dg(x0)(C− x0)) then there
exist δ ,ρ > 0 such that for every metric space M and continuous functions hx : M→C∩Bδ (x0) and hy : M→
G∩Bδ (g(x0)) there exist continuous functions h̃x : M→C and h̃y : M→ G such that, for all m ∈M,

g
(
h̃x(m)

)
= h̃y(m), (6.7)

∥ h̃x(m)−hx(m)∥+∥ h̃y(m)−hy(m)∥ ≤ ρ ∥g(hx(m))−hy(m)∥. (6.8)

⊓⊔
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Corollary 6.2 Let X and Y be Banach spaces. Suppose C ⊂ X and G⊂ Y are closed and convex and g : X → Y
is continuous in X and strictly differentiable at x0 ∈ F =C∩g−1(G). If g(x0) ∈ core(G−dg(x0)(C− x0)) then
given ε > 0 there exists δ > 0 such that for all x1,x2 ∈ F ∩Bδ (x0) there exists a continuous ϕ : [0,1]→C with

∥ϕ(t)− tx2− (1− t)x1∥+∥g(ϕ(t))− tg(x2)− (1− t)g(x1)∥ ≤ ε t (1− t)∥x2− x1∥. (6.9)

and g(ϕ(t)) ∈ G for t ∈ [0,1]. ⊓⊔

Proof of Theorem 3.1. Theorem 3.1 follows from definition 4.1, lemma 4.2 and the next lemma and theorem,
which will be proved below:

Lemma 6.4 Let X and Y be Banach spaces. Suppose C ⊂ X and G ⊂ Y are closed and convex. If the function
g : X→Y is continuous and strictly differentiable at x0 ∈C∩g−1(G) and g(x0)∈ core(G−dg(x0)(C− x0)) then
there exists δ0 > 0 such that if δ ∈ (0,δ0) then C∩g−1(G)∩Bδ (x0) is path connected. ⊓⊔

Theorem 6.2 Let X and Y be Banach spaces. Suppose C ⊂ X and G⊂ Y are closed and convex and g : X → Y
and f : X → ℝ are continuous in X and have strict derivatives df (x0) and dg(x0) at x0 ∈ F = C∩ g−1(G). If
g(x0) ∈ core(G−dg(x0)(C− x0)) and there exists d ∈ TC (x0) such that ∥d∥= 1 and dg(x0)d ∈ TG (g(x0)) then
the weak slope of f constrained to F at x0 is at least −df (x0)d. ⊓⊔

Proof of theorem 3.2. If we take K = TC (x0) and S = TG (g(x0)) then theorem 3.1 implies that

df (x0) ∈
(

K∩dg(x0)
−1(S)

)+
.

The fourth line of the proof of corollary 6.2 in page 35 of [5] and equation (67) in the statement of theorem 6.3
in page 34 of [5] show that df (x0) ∈ K++dg(x0)

∗ S+. ⊓⊔
Proof of theorem 3.3. Let us write F = C ∩ g−1(G), y0 = g(x0), c = f (x0), S = Span(s11,s12,s22) and

D = Span(d1,d2). Equation (3.4) implies that S⊂ TC (x0)∩(−TC (x0)) and equation (3.6) shows that there exists
a symmetric quadratic function Q : D×D→ S with Q(di,d j) = si j for 1≤ i≤ j ≤ 2 and

dg(x0)Q(d,d)+d2g(x0)(d,d)/2 ∈ TG (y0)∩ (−TG (y0)) .

If K is convex and x ∈ K then K− x⊂ TK (x). Thus, equations (3.3) – (3.6) imply that D⊂ TC (x0)∩ (−TC (x0))
and dg(x0)D⊂ TG (y0)∩ (−TG (y0)) and the positivity of µ in TC (x0). The the positivity of γ in TG (y0) yield

µ(d) = µ(Q(d,d)) = γ(dg(x0)d) = γ(dg(x0)Q(d,d)+d2g(x0)(d,d)/2) = 0. (6.10)

By the hypothesis, d2f (x0)(d,d)< γ(d2g(x0)(d,d)) for d ∈ D−{0} and there exists κ ∈ (0,1) such that,

d2f (x0)(d,d)− γ
(
d2g(x0)(d,d)

)
≤−8κ∥d∥2. (6.11)

We now use the equations above and corollaries 6.1 and 6.2 to define ε,σ ∈ (0,1), a continuous function ψ :
D∩Bσ → X , and for each x ∈ Bσ (x0), continuous functions ϕx : [0,1]→ X and ωx : [0,1]→ X such that for
d ∈ D∩Bσ −{0}, t ∈ [0,1] and x ∈ F ∩ f<c∩Bεσ2(x0),

ψ(d) ∈ F ∩ f<c, ϕ(x, t) ∈ F ∩ f<c, ωx(t) ∈ F ∩ f<c, (6.12)
ϕx(0) = x, ωx(0) = ϕx(1), ωx(1) = ψ(dx), (6.13)

where dx ∈ D has norm σ . The set H = ψ(D∩Bσ −{0}) is connected and H ⊂ F ∩ f<c. Moreover, if x ∈
F ∩ f<c∩Bεσ2(x0) then the path {ϕx(t), t ∈ [0,1]}∪{ωx(t), t ∈ [0,1]} connects x to H via F ∩ f<c. Therefore,
if we find functions ψ , ϕx and ωx as above then theorem 3.3 will follow from lemma 6.1.

We now explain how to build ψ , ϕx and ωx. According to corollaries 6.1 and 6.2 there exists δ ,ρ > 0 such
that for every metric space M and continuous functions hx : M → C∩Bδ (x0) and hy : M → G∩Bδ (y0) there
exist continuous functions h̃x : M→C and h̃y : M→ G such that (6.7) and (6.8) are satisfied for m ∈M and if
x,y ∈C∩g−1(G)∩Bδ (x0) then there exists a continuous path πx,y : [0,1]→C∩g−1(G) such that

∥πx,y(t)− ty− (1− t)x∥ ≤ t(1− t)∥x− y∥. (6.14)
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Let us define

ξ f (x,w) = f (x+w)− f (x)−df (x)w−d2f (x0)(w,w)/2, (6.15)

ξg(x,w) = g(x+w)−g(x)−dg(x)w−d2g(x0)(w,w)/2. (6.16)

The continuity of f ’s and g’s second derivatives and the fact that Q is a quadratic in the finite dimensional space
D imply that there exists λ > 1 and ν ∈ (0,δ ) such that if x,y ∈ Bν(x0) and d,e ∈ D then

∥df (x)∥+∥dg(x)∥ ≤ λ , (6.17)
∥Q(d,d)−Q(e,e)∥ ≤ λ∥d− e∥(∥d∥+∥e∥) , (6.18)

∥df (x)−df (y)∥+∥dg(x)−dg(y)∥ ≤ λ∥y− x∥. (6.19)

Using the constant κ in (6.11) let us define

ε =
min{1,κ}

90(1+ρ)λ 2 . (6.20)

The hypothesis on di and si j and lemma 6.5 (presented at the end of this subsection) applied to the subspaces

Sx =

{
∑

1≤i≤ j≤2
ai jQ(di,d j), ai j ∈ ℝ

}
⊂ X ,

Sy =

{
∑

1≤i≤ j≤2
ai j
(
dg(x0)Q(di,d j)+d2g(x0)(di,d j)/2

)
, ai j ∈ ℝ

}
⊂ Y

imply that there exists a positive σ such that

σ ≤min
{

ν ,
ε

6(λ + ε)2

}
(6.21)

and if x ∈ Bσ (x0), w ∈ Bσ and d ∈ D∩Bσ then the following bounds are satisfied:

dist((x+d) + Q(d,d),C) ≤ ε∥d∥2, (6.22)

dist
(
(g(x)+dg(x0)d) +

(
dg(x0)Q(d,d)+d2g(x0)(d,d)/2

)
, G
)
≤ ε∥d∥2, (6.23)

∥ξ f (x,w)∥+∥ξg(x,w)∥ ≤ ε∥w∥2. (6.24)

Let M be the metric space (C∩Bσ (x0))× (D∩Bσ ). Using (6.22), Lemma 6.3 with X = X , Y = X , V = M,
U = X , C = C, G = C, r(x,d) = 2ε∥d∥2, c(x,d) = x+ d +Q(d,d) and ϕ(c,x,d) = c and Michaels’s selection
theorem with the multi valued function T : M ⇉ X given by T (x,d) = B2ε∥d∥2(x+d +Q(d,d))∩C we obtain a
continuous function χ : M→ X such that

∥χ(x,d)∥ ≤ 2ε∥d∥2, (6.25)
hx(x,d) = x+d +Q(d,d)+χ(x,d) ∈C. (6.26)

Analogously, there exists a continuous υ : M→ Y such that

∥υ(x,d)∥ ≤ 2ε∥d∥2, (6.27)

hy(x,d) = g(x)+dg(x0)d +d2g(x0)(d,d)/2+dg(x0)Q(d,d)+υ(x,d) ∈ G. (6.28)

To evaluate the bound (6.8), notice that w = Q(d,d)+χ(x,d) satisfies

∥w∥ ≤ ∥Q(d,d)∥+∥χ(x,d)∥ ≤ (λ + ε)∥d∥2, (6.29)

∥x+d− x0∥ ≤ σ +∥d∥ ≤ 2σ and

g(hx(x,d))−hy(x,d) = g(x+d)+dg(x+d)w+d2g(x0)(w,w)/2+ξg (x+d,w)−hy(x,d) =

= ξg(x,d)+(dg(x+d)−dg(x0))Q(d,d)+dg(x+d)χ(x,d)+ξg (x+d,w)−υ(x,d)+d2g(x0)(w,w)/2.
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Now using (6.19)–(6.25), (6.27) and remembering that λ > 1 and ∥d∥ ≤ σ ≤ ε/6(λ + ε)2, we get that

∥g(hx(x,d))−hy(x,d)∥ ≤
(

ε +2σλ
2 +2λε + ε(λ + ε)2∥d∥2 +2ε +λ (λ + ε)2 ∥d∥2

)
∥d∥2

and
∥g(hx(x,d))−hy(x,d)∥ ≤ 7λε∥d∥2. (6.30)

Equations (6.8) and (6.30) and the way δ was defined show that there exist continuous function h̃x : M→C and
h̃y : M→ G such that h̃y(x,d) = g

(
h̃x(x,d)

)
and

∥h̃x(x,d)−hx(x,d)∥+∥h̃y(x,d)−hy(x,d)∥ ≤ 7λρε∥d∥2. (6.31)

As a consequence of the last line, if we define

χ̃(x,d) = h̃x(x,d)− x−d−Q(d,d), (6.32)

υ̃(x,d) = h̃y(x,d)−g(x)−dg(x0)d−d2g(x0)(d,d)/2−dg(x0)Q(d,d) (6.33)

then using (6.25) – (6.33) we obtain

∥χ̃(x,d)∥ ≤ 8λρε∥d∥2 and ∥υ̃(x,d)∥ ≤ 8λρε∥d∥2, (6.34)

h̃x(x,d) = x+d +Q(d,d)+ χ̃(x,d), (6.35)

h̃y(x,d) = g(x)+dg(x0)d +d2g(x0)(d,d)+dg(x0)Q(d,d)/2+ υ̃(y,d). (6.36)

We claim that if ∥x− x0∥ ≤ σ and ∥d∥ ≤ σ ,

(dg(x)−dg(x0))d = 0 (6.37)

and κ is the constant in (6.11) then
f (h̃x(x,d))≤ f (x)−2κ∥d∥2. (6.38)

In fact, equation (6.35) show that, for w as in (6.29),

f
(
h̃x(x,d)

)
= f (x)+df (x)(d +Q(d,d)+ χ̃(x,d))+d2f (x0)(w+d,w+d)/2+ξ f (x,w+d).

It follows from (6.37) that

f
(
h̃x(x,d)

)
= f (x)+df (x0)(d +Q(d,d))+d2f (x0)(d,d)/2+ξ (x,w+d) (6.39)

where

ξ (x,w) = df (x) χ̃(x,d)+(df (x)−df (x0))Q(d,d)+
(
d2f (x0)(w+d,w+d)−d2f (x0)(d,d)

)
/2+ξ f (x,w+d).

The bounds (6.17) – (6.24), (6.29) and (6.34) lead to ∥w+d∥ ≤ ∥w∥+∥d∥ ≤ 2∥d∥ and

∥ξ (x,w)∥ ≤
(
8λ

2
ρε +λ

2
σ +3λ

2(λ + ε)∥d∥+4ε
)
∥d∥2 ≤ 2κ∥d∥2. (6.40)

Moreover, equation (6.10) leads to

df (x0)(d +Q(d,d)) = µ (d +Q(d,d))+γ (dg(x0)(d +Q(d,d))) = γ (dg(x0)Q(d,d)) =−γ
(
d2g(x0)(d,d))

)
/2.

Equation (6.38) follows from (6.11) and (6.39) – (6.40) and the last equation.
Since (6.37) is satisfied for all d when x = x0, equation (6.38) shows that ψ(d) = h̃x(x0,d) is such that

f (ψ(d)) ≤ f (x0)− 2κ∥d∥2 < c for d ∈ D∩Bσ . Therefore, ψ is as promised in (6.12). Since D has dimen-
sion two, for every x ∈ Bσ (x0) there exists d = dx with ∥dx∥ = σ satisfying (6.37). If follows from (6.38)
that ϕx(t) = h̃x(x, tdx) is such that f (ϕx(t)) < c if f (x) < c. Moreover, equations (6.34) and (6.35) show that
ϕx(0) = h̃x(x,0) = x. Therefore, ϕx is also as promised in (6.12) – (6.13).
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Finally, we define and ωx(t) = πϕx(1),ψ(dx)(t), where πx,y is the path in (6.14). By the way πx,y was defined
ωx(t) satisfies (6.13) and ωx(t) ∈ F for t ∈ [0,1]. To complete this proof we now show that if f (x) < c and
∥x− x0∥ ≤ εσ2 then f (ωx(t))< c for t ∈ [0,1]. In fact, the bounds (6.19) and (6.38) lead to

f (ωx(t)) ≤ f (ψ(dx))+λ∥ωx(t)−ψ(dx)∥
≤ f (x)−2κσ

2 +λ∥ωx(t)− tψ(dx)− (1− t)ϕx(1)∥+λ (1− t)∥ϕx(1)−ψ(dx)∥

and (6.14) leads to

f (ωx(t))≤ c−2κσ
2 +λ (1− t2)∥ϕx(1)−ψ(dx)∥= c−2κσ

2 +λ∥h̃x(x,dx)− h̃x(x0,dx)∥. (6.41)

Equations (6.34) and (6.35) and the assumption that ∥x− x0∥ ≤ εσ2 and ∥dx∥= σ lead to

∥h̃x(x,dx)− h̃x(x0,dx)∥ ≤ ∥x− x0∥+∥χ̃(x,dx)∥+∥χ̃(x0,dx)∥ ≤ 15λ (1+ρ)εσ
2.

This equation, (6.20) and (6.41) show that f (ωx(t))≤ c−κσ2 and ωx is as claimed in (6.12). ⊓⊔
Proof of theorem 3.4. Let fF be the restriction of f to the feasible region F . Lemma 4.1 and the hypothesis

that fF satisfies the Palais Smale condition in definition 3.4 imply that fF satisfy the Metric Palais Smale condi-
tion in definition 4.2 for all c ∈ℝ. As a consequence, lemmas 6.9 and 6.18 show that fF satisfies the Topological
Palais Smale condition and the sets f min

c in definition 5.2 are relatively compact for all c. If f<a is connected for
all a then theorem 5.1 shows that fF satisfies item (i) or (iv) in the Connectivity Alternative. On the other hand,
if f<a is disconnected for some a then lemma 6.8 and lemma 6.7 with c =+∞ show that fF satisfies item (ii) or
item (iii) of the Connectivity Alternative. Either way fF satisfies the Connectivity Alternative. ⊓⊔

Proof of theorem 6.1. The function θ : X×X → Y given by θ(x,v) = g(v)+dg(x0)(x− v) is continuous in
X×X and partially strictly differentiable in x at (x0,x0), with partial derivative in x given by dxθ(x0,x0) = dg(x0).
Therefore,

θ(x0,x0) = g(x0) ∈ core(G−dg(x0)(C− x0)) = core(G−dxθ(x0,x0)(C− x0))

and lemma 6.2 applied to g = θ and V = X yields µ,σ > 0 such that

dist(x,R(v))≤ µ dist(g(v)+dg(x0)(x− v), G) (6.42)

for
R(v) = { c ∈C with g(v)+dg(x0)(c− v) ∈ G } (6.43)

and x ∈C∩Bσ (x0) and v ∈ Bσ (x0). Since g is strictly differentiable at x0 there exists τ ∈ (0,σ/4) such that if
∥x− x0∥ ≤ 4(1+µ)τ and ∥w− x0∥ ≤ 4(1+µ)τ then

∥g(w)−g(x)−dg(x0)(w− x)∥ ≤ 1
2(1+µ)

∥w− x∥. (6.44)

The continuity of g yields δ ∈ (0,τ) such that if ∥x− x0∥ ≤ 4(1+µ)δ then

χ(x) = dist(g(x),G)≤ τ

2(1+µ)
. (6.45)

Given a metric space M and a continuous function h : M→C∩Bδ (x0) we define h0 = h as the first element
of a Cauchy sequence {hk,k ∈ ℕ} in the complete metric space Cb(M,C) which converges to a function h̃ as
claimed in theorem 6.1. The following equations are obvious for k = 0 and m ∈M:

dist( g(hk(m)), G) ≤ 2−k
χ(h(m)), (6.46)

∥hk(m)−h(m)∥ ≤ 2
(

1−2−k
)
(1+µ)χ(h(m)). (6.47)

We now define hk+1 assuming that (6.46) – (6.47) are satisfied. Notice that the use of (6.43) – (6.44) with x
replaced by hk(m) is justified because (6.45) and (6.47) yield

∥hk(m)− x0∥ ≤ ∥hk(m)−h(m)∥+∥h(m)− x0∥ ≤ 2(1+µ)× τ

2(1+µ)
+δ = τ +δ < 4τ < σ . (6.48)
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The sets U = int(Bσ (x0)), V = M and the functions

c(m) = hk(m), (6.49)

r(m) = 2−k (1+µ)χ(h(m)), (6.50)
ϕ(x,m) = g(hk(m))+dg(x0)(x−hk(m)) . (6.51)

satisfy the hypothesis of lemma 6.3, because (6.42) implies (6.4) and we claim that the sets A in (6.5) corre-
sponding to c, r and ϕ above are not empty. In fact, if R(m) is the set corresponding to c, r and ϕ in (6.3) and if
r(m)> 0 then (6.46) shows that

dist(c(m),R(m)) = dist(hk(m),R(m))≤ µdist(ϕ(hk(m)),G)≤ µ2−k
χ(h(m))< 2−k (1+µ)χ(h(m)) = r(m).

and there exists x ∈ R(m) with ∥x−c(m)∥< r(m). This x belongs to the set A(m) in (6.5). The sets B(m) = A(m)
are closed and convex and we conclude from lemma 6.3 and Michael’s Selection Theorem that there exists a
continuous function hk+1 : M→C such that

∥hk+1(m)− c(m)∥= ∥hk+1(m)−hk(m)∥ ≤ r(m) = 2−k (1+µ)χ(h(m)), (6.52)
ηk(m) = g(hk(m))+dg(x0) (hk+1(m)−hk(m)) ∈ G.

Adding (6.52) to (6.47) we conclude that (6.47) holds for k+ 1 and (6.48) allows us to use (6.44) to conclude
that g(hk+1(m)) = ηk(m)+ξk(m) with

∥ξk(m)∥ ≤ 1
2(1+µ)

∥hk+1(m)−hk(m)∥ ≤ 2−(k+1)
χ(h(m)).

Combining the last two equations and the fact that ηk(m) ∈ G we obtain (6.46) for k + 1. The bound (6.52)
shows that hk is a Cauchy sequence. This completes the inductive construction of hk, which converge to h̃ such
that h̃(m) ∈ G by (6.46) and, by (6.47),

∥h̃(m)−h(m)∥ ≤ 2(1+µ)χ(h(m)) = 2(1+µ)dist(g(h(m)),G) .

The bound (6.6) follows from this equation with ρ = 2(1+µ). ⊓⊔
Proof of corollary 6.1. Let us define y0 = g(x0). The function γ : X ×Y → Y given by γ(x,y) = g(x)− y is

continuous and strictly partially differentiable at (x0,y0) and satisfies dxγ(x0,y0) = dg(x0) and dyγ(x0,y0) =−I.
Therefore, the hypothesis y0 ∈ core(G−dg(x0)(C− x0)) implies that

0 ∈ core({0}−dyγ(x0,y0)(G− y0)−dxγ(x0,y0)(C− x0))

Theorem 6.1 for X = X ×Y with the norm ∥(x,y)∥ = ∥x∥+ ∥y∥, Y = Y , C = C×G, G = {0}, g = γ , yields
δ ′,ρ > 0 such that for any metric space M and continuous functions h : M→ (C×G)∩Bδ ′((x0,y0)) there exists
a continuous h̃ : M→C×G such that

g
(
h̃x(m)

)
− h̃y(m) ∈ {0}, (6.53)

∥h̃x(m)−hx(m)∥+∥h̃y(m)−hy(m)∥ ≤ ρ∥g(hx(m))−hy(m)∥. (6.54)

Taking δ = δ ′/2 we have that (C∩Bδ (x0))× (G∩Bδ (y0)) ⊂ (C×G)∩Bδ ′((x0,y0)) and if hx and hy are con-
tinuous functions from M to C∩Bδ (x0) and G∩Bδ (y0) respectively then the range of h(m) = (hx(m),hy(m)) is
contained in (C×G)∩Bδ ′((x0,y0)). Thus theorem 6.1 shows that there exist h̃x : M→C and h̃y : M→ G that
satisfy (6.53) and (6.54) for all m. Equations (6.7) and (6.8) follow from (6.53) and (6.54) and we are done. ⊓⊔

Proof of corollary 6.2. Let δ ′ and ρ be the numbers yielded by corollary 6.1. By the strict differentiability
of g at x0 there exists δ ∈ (0,δ ′) such that if x,y ∈ Bδ (x0) then g(x1),g(x2) ∈ Bδ (g(x0)) and

4ρ∥g(x)−g(y)−dg(x0)(x− y)∥ ≤ ε∥x− y∥. (6.55)

Given x1,x2 ∈C∩Bδ (x0), let us now define M = [0,1], hx(t) = tx2 +(1− t)x1 and hy(t) = tg(x2)+(1− t)g(x1),
apply corollary 6.1 and take ϕ(t) = h̃x(t). Equation (6.8) shows we will done if we prove that

2ρ∥ψ(t)∥ ≤ εt (1− t)∥x2− x1∥, (6.56)



18 W. F. Mascarenhas

for ψ(t) = g(hx(t))−hy(t). To verify this bound, notice that

ψ(t) = t (g(hx(t))−g(x2)− (1− t)dg(x0)(x1− x2))+(1− t)(g(hx(t))−g(x1)− tdg(x0)(x2− x1))) . (6.57)

The bound (6.55) for x = hx(t) = x2 +(1− t)(x1− x2) and y = x2 implies that

4ρ∥g(hx(t))−g(x2)− (1− t)dg(x0)(x1− x2)∥ ≤ ε(1− t)∥x1− x2∥. (6.58)

The same argument with x = hx(t) = x1 + t(x2− x1) and y = x1 yields

4ρ∥g(hx(t))−g(x1)− tdg(x0)(x2− x1))∥ ≤ εt∥x1− x2∥.

The bound (6.56) follows from (6.57) – (6.58) and the last equation. ⊓⊔
Proof of theorem 6.2. Let us write y0 = g(x0) and let δ and ρ be given by theorem 6.1. For ζ ∈ ℝ, define

Mζ =
(
C∩Bζ (x0)

)
× [0,ζ ]. Given ε > 0, we will find τ > 0 and a function ϕε : Mτ →C∩g−1(G) such that

∥ϕε(x, t)− x∥ ≤ t and f (ϕε(x, t))≤ f (x)+(df (x0)d + ε) t. (6.59)

By definition 4.1, this proves that ∣df ∣(x0)≥−df (x0)d. Let us define

ξ f (x,w) = f (x+w)− f (x)−df (x0)w,
ξg(x,w) = g(x+w)−g(x)−dg(x0)w.

The continuity of g, the strict differentiability of f and g at x0 and the hypothesis that d ∈ TC (x0) and dg(x0)d ∈
TG (y0) imply that there exists σ ∈ (0,δ ) such that if x ∈ Bσ (x0), y ∈ Bσ (y0) and t ∈ [0,σ ] then

dist(x+ td,C)+dist(y+ t dg(x0)d,G) ≤ µt, (6.60)
∥ξg(x,w)∥+∥ξ f (x,w)∥ ≤ µ∥w∥, (6.61)

for
µ =

ε

20(1+ρ)(1+∥dg(x0)∥)(1+∥df (x0)∥)
. (6.62)

The argument used to derive (6.25) – (6.28) yields continuous functions hx : Mσ →C and υ : Mσ → G with

∥hx(x, t)− x− td∥ ≤ 2µt and ∥υ(y, t)− y− t dg(x0)d∥ ≤ 2µt. (6.63)

By the continuity of g there exists τ ∈ (0,σ) such that if ∥x−x0∥ ≤ τ then ∥g(x)−y0∥ ≤ σ . Let h̃x : Mτ →C and
h̃y : Mτ → G be functions obtained applying corollary 6.1 with hx constrained to Mτ and hy : Mτ → G∩Bσ (x0)
given by hy(x, t) = υ(g(x), t). Let us now estimate the right hand side of (6.8) for (x, t) ∈Mτ :

∥g(hx(x, t))−hy(x, t)∥≤ ∥g(hx(x, t))−g(x+td)∥+∥g(x+td)−g(x)−tdg(x0)d∥+∥hy(x, t)−g(x)−t dg(x0)d∥

≤ (∥dg(x0)∥+1)∥hx(x, t)− x− td∥+∥ξg(x, td)∥+∥υ(g(x), t)−g(x)− t dg(x0)d∥
and equations (6.61) – (6.63) lead to

∥g(hx(x, t))−hy(x, t)∥ ≤
ε

4(1+ρ)(1+∥df (x0)∥)
t

and (6.8) leads to
∥h̃x(x, t)−hx(x, t)∥ ≤

ε

4(1+∥df (x0)∥)
t. (6.64)

Defining

α = 2µ +
ε

4(1+∥df (x0)∥)
,

t̃ = (1−α)t and ϕε : Mτ →C∩g−1(G) by ϕε(x, t) = h̃x(x, t̃) we get from (6.63) – (6.64) that

∥ϕε(x, t)− x− t̃d∥ ≤ ∥h̃x(x, t̃)−hx(x, t̃)∥+∥hx(x, t̃)− x− t̃d∥ ≤ α t̃. (6.65)
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This implies that ∥ϕε(x, t)− x∥ ≤ (1+α) t̃ = (1−α2)t and ϕε satisfies the first bound in (6.59). To prove the
second bound, notice that µ < ε/2, α (∥df (x0)∥+1)< ε/2 and (6.61) and (6.65) show that

f (ϕε(x, t))− f (x) = f (x+ t̃d)− f (x)+df (x0)(ϕε(x, t̃)− x− t̃d)+ξ f (x+ t̃d,ϕε(x, t̃)− x− t̃d)
≤ t̃ df (x0)d +∥ξ f (x, t̃d)∥+(∥df (x0)∥+1)∥ϕε(x, t̃)− x− t̃d∥
≤ t̃ (df (x0)d +µ +α (∥df (x0)∥+1))≤ t (df (x0)d + ε) .

This proves the second bound in (6.59). ⊓⊔
Proof of lemma 3.1. Let A be the closed convex cone A = TC (x0)∩dg(x0)

−1 TG (g(x0)). Theorem 6.3 in page
34 of [5] states that A+ = TC (x0)

++dg(x0)
∗TG (g(x0))

+. According to definition 3.3, this lemma will be proved
if we show that

sup
d∈A∩B1

−df (x0)d = dist
(
df (x0), A+

)
. (6.66)

Applying corollary 3.2 in page 91 of [42] with C = A+ and w = df (x0) and using the reflexivity of X we obtain
y ∈ A∩B1 and x ∈ A+ such that x(y) = 0 and

dist
(
df (x0), A+

)
= ∥x−df (x0)∥= y(x−df (x0)) = x(y)−df (x0)y =−df (x0)y≤ sup

d∈A∩B1

−df (x0)d.

On the other hand, if x ∈ A+ then

∥x−df (x0)∥= sup
d∈B1

(x(d)−df (x0)d )≥ sup
d∈A∩B1

(x(d)−df (x0)d)≥ sup
d∈A∩B1

−df (x0)d.

Therefore,
dist
(
df (x0), A+

)
= inf

x∈A+
∥df (x0)− x∥ ≥ sup

d∈A∩B1

−df (x0)d.

The last three equations imply (6.66). ⊓⊔
Proof of lemma 6.1. The proof is by contradiction. If x0 is a Connection Point then there is an open partition

f<c = A1 ∪A2 with x0 ∈ A1 ∩A2. This implies that there exist a1 ∈ N ∩A1 and a2 ∈ N ∩A2. The set Ca1 ∪C
is connected because Ca1 and C are connected and Ca1 ∩C ∕= /0. Since f<c = A1 ∪A2 is an open partition and
C ⊂ f<c, this implies that C ⊂Ca1 ∪C ⊂ A1. By the same reason, C ⊂ A2. This contradicts the fact that A1 and
A2 are disjoint. ⊓⊔

Proof of lemma 6.2. This lemma is a particular version of theorem 4.2 in page 23 of [5]. ⊓⊔
Proof of Lemma 6.3. We show that if limk→∞ vk→ v∞ and x∞ ∈ B(v∞) then there exists a subsequence vnk of

vk and xnk ∈ B(vnk) such that limk→∞ xnk = x∞. If r(v∞) = 0 the only element of B(v∞) is x∞ = c(v∞) then for any
choice xk ∈ B(vk) the sequence {xk,k ∈ℕ} converges to x∞, because r(vk)→ r(v∞) = 0, c(vk)→ c(v∞) = x∞ and
∥xk−c(vk)∥ ≤ r(vk). On the other hand, if r(v∞)> 0 then given x∞ ∈ B(v∞) there exists a sequence {zm,m ∈ℕ}
with zm ∈ A(v∞) and limk→∞ zm = x∞. We take a random xk0 ∈ A(v0) and k0 = 0 as the first member of an
increasing sequence {kn,n ∈ℕ} of indices that will yield the xkn ∈ B(vkn) converging to x∞. Let us then suppose
that we have defined k0, . . . ,kn−1 with xk j ∈ A(k j) and

∥xk j − x∞∥ ≤ δ j =
1

j+1
(
1+∥xk0 − x∞∥

)
. (6.67)

Let mn be such that if m≥ mn then
2∥zmn − x∞∥< δn+1. (6.68)

By the continuity of ϕ at (zmn ,v∞) there exists pn ≥ kn−1 such that if k ≥ pn then

2ρ∥ϕ(zmn ,vk)−ϕ(zmn ,v∞)∥< δn+1. (6.69)

Definitions (6.3) – (6.4) imply that ϕ(zmn ,v∞) ∈ G. Thus, dist(ϕ(zmn ,v∞),G) = 0 and (6.4) yields

dist(zmn ,R(vk))≤ ρdist(ϕ(zmn ,vk), G)≤ ρ∥ϕ(zmn ,vk)−ϕ(zmn ,v∞)∥+ρdist(ϕ(zmn ,v∞), G) =

ρ∥ϕ(zmn ,vk)−ϕ(zmn ,v∞)∥



20 W. F. Mascarenhas

for k ≥ pn. Definition (6.3) implies that for each k ≥ k0 there exists yk ∈C such that

ϕ(yk,vk) ∈ G and ∥yk− zmn∥ ≤ ρ∥ϕ(zmn ,vk)−ϕ(zmn ,v∞)∥. (6.70)

The last equation and (6.68) (6.69) imply that for all k ≥ pn

∥yk− x∞∥ ≤ ∥yk− zmn∥+∥zmn − x∞∥ ≤ δn+1. (6.71)

Since zmn ∈ A(v∞) we have that r(v∞)−∥zmn−c(v∞)∥> 0. We also have that zmn ∈U , which is open. Therefore,
dist(zmn ,A

c)> 0 and we can take k = kn ≥ pn such that

ρ∥ϕ(zmn ,vkn)−ϕ(zmn ,v∞)∥+(r(v∞)− r(vkn))+∥c(v∞)− c(vkn)∥< µm, (6.72)

for

µm = min
{

1
2

dist(zmn ,U
c) , r(v∞)−∥zmn − c(v∞)∥

}
,

because the left hand side of (6.72) converges to 0 as kn → ∞ and µm > 0. As a consequence of the last two
equations and (6.70), xkn = ykn satisfies

∥xkn − c(vkn)∥ ≤ ∥ykn − zmn∥+∥zmn − c(v∞)∥+∥c(v∞)− c(vkn)∥< r(vkn).

This shows that xkn ∈ Br(vkn )
(c(vkn)) by (6.5). The same equations show that

dist(xkn ,U
c)≥ dist(zmn ,U

c)−∥xkn − zmn∥ ≥ 2µm−ρ∥ϕ(zmn ,vkn)−ϕ(zmn ,v∞)∥ ≥ µm > 0.

Therefore, xkn ∈ U ∩Br(vkn )
(c(vkn))∩R(vkn) = A(vkn). Finally, the second inequality in (6.71) shows that xkn

satisfies (6.67) and the inductive construction of xkn is complete. ⊓⊔
Proof of lemma 6.4. Let δ ′ be the number and ϕ the function yielded by corollary 6.2 with ε = 1/2. By the

continuity of g there exists δ0 ∈ (0,δ ′) such that if ∥x− x0∥ ≤ δ0 then g(x) ∈ Bδ ′(g(x0)). If ∥x− x0∥ ≤ δ ≤ δ0
then equation (6.9) implies that ∥ϕ(t)− tx0− (1− t)x∥ ≤ t (1− t)∥x0− x∥/2. As a consequence,

∥ϕ(t)− x0∥ ≤ (1− t)(1+ t/2)∥x0− x∥ ≤ (1− t/2)∥x− x0∥

and ϕ(t) ∈ Bδ (x0). Therefore, for every δ ∈ (0,δ0) the set Nδ =C∩g−1(G)∩Bδ (x0) is such that if x ∈ Nδ then
there exists a continuous path contained in Nδ connecting x to x0. ⊓⊔

Lemma 6.5 Let X be a Banach space, C⊂X and x0 ∈C. If S⊂ TC (x0) is a finite dimensional subspace of X then
given ε > 0 there exists δ such that for all x∈Bδ (x0) and d ∈ S with ∥d∥≤ δ we have dist(x+d,C)≤ ε∥d∥. ⊓⊔

Proof of lemma 6.5. Since S is finite dimensional, given ε > 0 there exists V = {v1, . . . ,vn}⊂ S with ∥vi∥= 1
such that if d ∈ S then there exists vd ∈ V such that 2∥d−∥d∥vd∥ ≤ ε∥d∥. Since V is finite and V ⊂ TC (x0),
there exists δ such that if ∥x− x0∥ ≤ δ , t ∈ [0,δ ] and v ∈ V then 2dist(x+ tv,G) < εt. Now given d ∈ S with
∥d∥ ≤ δ and x ∈ Bδ (x0) we have

2dist(x+d,G)≤ 2∥d−∥d∥vd∥+2dist(x+∥d∥vd ,G)≤ ε∥d∥+ ε∥d∥= 2ε∥d∥.

Therefore, if x ∈ Bδ (x0), d ∈ S and ∥d∥ ≤ δ then dist(x+d,G)≤ ε∥d∥. ⊓⊔
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6.4 Proofs for section 4.

Instead of dealing only with metric spaces, we present here a more general theory, for normal spaces, i.e., spaces
in which closed sets can be separated by open sets. We do not require these spaces to be Hausdorff. If F is
normal then the Hausdorff property is not important for our purposes because we can argue using the closure x
of the point x instead of x itself. Normality, however, is essential because we often need to replace the condition
A∩B∩C = /0 in definition 1.1 by A∩B = /0 when C is closed:

Lemma 6.6 Let F be a normal topological space. If C ⊂ F is closed then C is disconnected if and only if there
exist open sets B1 and B2 such that B1∩B2 = /0, C ⊂ B1∪B2, B1∩C ∕= /0 and B2∩C ∕= /0. ⊓⊔

These are the properties and results about normal spaces which we will use:

Definition 6.2 Let F be a topological space and f : F→ℝ. We say that f has the Extension Property at level c if
for every closed partition f≤c =U1∪U2 there exists a decreasing sequence {cn,n ∈ ℕ} ⊂ ℝ with limn→∞ cn = c
and open partitions f<cn = A1n∪A2n with U1 ⊂ A1n, U2 ⊂ A2n and A1n∩A2n = /0. ⊓⊔

In words, f has the Extension Property at level c if every closed partition of f≤c can be extended to open partitions
of f<c+ε for ε arbitrarily small. This is all there is to the Connection Lemma in topological spaces and we claim
that the same holds for the Mountain Pass Lemma. Here is the general Connection Lemma:

Lemma 6.7 Let F be a topological space and f : F→ℝ a continuous function. If f<a is disconnected and there
exists c ∈ (a,+∞] such that the set f<c is connected and f has the Extension Property for b ∈ [a,c) then f has a
Connection Point or a Bridge in f−1([a,c)). ⊓⊔

The hard part in using the Connection Lemma 6.7 is, of course, verifying that f has the Extension Property. In
Morse Theory and Mountain Pass articles that assume differentiability the extension property is derived from the
properties of the flow of the gradient field. Roughly, they consider a solution ψ(x, t) of the differential equation

∂ψ

∂t
(x, t) =−∇f (ψ(x, t)) and ψ(x,0) = x,

take Ain = {x ∈ F with ψ(x,1/n) ∈Ui} in definition 6.2 and use the Extension Property in one way or another.
They need the Palais Smale condition to handle the zeroes of the gradient, which lead to stationary points in the
gradient flow. References [9], [15], [25] do the same in Complete Metric Spaces using the weak slope. Therefore,
the known versions of the Palais Smale Condition can be interpreted as requirements under which it is possible
to define a well behaved gradient flow outside neighborhoods of a set of critical points. We propose something
similar for topological spaces:

Definition 6.3 Let F be a topological space c ∈ℝ and f : F→ℝ. We say that K ⊂ F is f c-compact if for every
closed set C ⊂ K with infx∈C f (x)> c there exists d > c such that C ⊂ f>d . ⊓⊔

Definition 6.4 Let F be a topological space, f : F→ℝ a continuous function and c ∈ℝ. We say that f satisfies
the Topological Palais Smale Condition at level c ∈ ℝ if there exists a f c-compact set Kc such that for every
open set A⊃ Kc there exists d > c and a continuous function ψ : f<d× [0,1]→ F such that, for x ∈ f<d ,

ψ(x,0) = x, (6.73)
f (ψ(x, t)) ≤ f (x) for all t ∈ [0,1], (6.74)

f (ψ(x,1))≥ c⇒ ψ(x, t) ∈ A for all t ∈ [0,1]. (6.75)

⊓⊔

If f is continuous then every compact set is f c-compact and condition 6.4 is satisfied if f≤d is compact
and c < d (take Kc = f≤d and ψ(x, t) = x). In the differentiable setting we could take Kc as the set of critical
points x ∈ f−1(c) and [9], [15] and [25] explain how to extend this idea to complete metric spaces. We believe
definition 6.4 captures the minimal features of the other Palais Smale Conditions which allow as to prove the
existence of critical points in a topological setting. As the other definitions, it requires a flow with no stationary
points outside neighborhoods of a critical f c-compact set. It is justified by the following lemma:
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Lemma 6.8 Let F be a normal topological space, c ∈ ℝ and f : F → ℝ a continuous function. If f satisfies the
Topological Palais Smale Condition at level c then it has the Extension Property at this level. ⊓⊔

Therefore, when combined with lemma 6.7 the Topological Palais Smale Condition leads to the same results
obtained under the usual Palais Smale Condition. Moreover, the following lemma shows that the topological
condition is implied by the differentiable ones when derivatives (or their generalizations) are available:

Lemma 6.9 Let F be a complete metric space and f : F → ℝ a continuous function. If f satisfies the Metric
Palais Smale Condition 4.2 at level c then it also satisfies the Topological Palais Smale Condition at this level,
with a set Kc compact and contained in f−1(c) and f min

c ⊂ Kc. ⊓⊔

(The set f min
c in the previous lemma is defined in (5.2))

Finally, we have two useful properties of the Topological Palais Smale condition.

Lemma 6.10 Let F be a topological space and f : F → ℝ a continuous function. If µ = infx∈F f (x)>−∞ and
f satisfies the Topological Palais Smale Condition for µ then Kµ ∩ f−1(µ) ∕= /0. ⊓⊔

Lemma 6.11 Let F be a normal topological space. Suppose f : F→ℝ is continuous and satisfies the Topologi-
cal Palais Smale Condition at level c. If f≤c is disconnected then there exists b > c such that f<a is disconnected
for all a ∈ (c,b). ⊓⊔

The proof of the results for normal spaces will presented in the next subsection. We are now ready to prove
the results for complete metric spaces.

Proof of lemma 4.1. Lemma 4.1 follows from theorem 6.2 in the previous subsection and definition
3.3. ⊓⊔

Proof of lemma 4.2. We show that if ∣df ∣(x0) > 0 then x0 is not a Connection Point. In this case there
exist positive σ and δ and a function ϕ : Bδ (x0)× [0,δ ]→ X satisfying (4.1). By the continuity of f there
exists ρ ∈ (0,δ ) such that x ∈ Bρ(x0)⇒ f (x)< c+σδ/2 and by the local connectivity of X at x0 there exists a
connected neighborhood N of x0 contained in Bρ(x0). The continuity of ϕ implies that C = ϕ(N,δ ) is connected.
If x ∈C then x = ϕ(w,δ ) for w ∈ N and (4.1) implies that

f (x) = f (ϕ(w,δ ))≤ f (w)−σδ ≤ c+σδ/2−σδ ≤ c−σδ/2.

Thus C⊂ f<c and every x∈N∩ f<c can be connected to C through the path Cx = {ϕ(x, t), t ∈ [0,δ ]} and Cx⊂ f<c
by the second inequality in (4.1). Lemma 6.1 shows that x0 is not a Connection Point. ⊓⊔

Proof of lemma 4.3. This lemma follows from lemmas 6.9 and 6.7, which are proved in the next section. ⊓⊔

6.4.1 Proofs of the results for normal spaces

Proof of lemma 6.6. It is clear that if B1 and B2 are as in the hypothesis then C is disconnected On the other
hand, if C is disconnected then there exist open sets A1 and A2 such that

A1∩A2∩C = /0, C ⊂ A1∪A2, A1∩C ∕= /0 and A2∩C ∕= /0.

We now explain how to build sets B1 and B2 as in the hypothesis from A1 and A2. Let us denote the complement
of Ai by Ac

i . Since C ⊂ A1∪A2 we have that C∩Ac
1 ⊂ A2∩Ac

1. Analogously C∩Ac
2 ⊂ A1∩Ac

2. Thus

(C∩Ac
1)∩ (C∩Ac

2)⊂ (A2∩Ac
1)∩ (A1∩Ac

2) = /0 (6.76)

and the closed sets C∩Ac
1 and C∩Ac

2 are disjoint. By the normality of F there exist open sets B1 and B2 with

B1∩B2 = /0, C∩Ac
1 ⊂ B2 and C∩Ac

2 ⊂ B1. (6.77)

The identity C∩A1∩A2 = /0 leads to

C = (C∩ (A1∩A2))∪ (C∩ (A1∩A2)
c) =C∩ (A1∩A2)

c =C∩ (Ac
1∪Ac

2) = (C∩Ac
1)∪ (C∩Ac

2)⊂ B2∪B1.

Moreover, equation (6.77) implies that

B2∩C ⊃C∩Ac
1∩C =C∩Ac

1 ⊃C∩A2∩Ac
1 = (C∩A2∩Ac

1)∪ (C∩A2∩A1) = (C∩A2)∩ (Ac
1∪A1) =C∩A2.
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and
B2∩C = B2∩ (Ac

2∪A2)∩C = (B2∩Ac
2∩C)∪ (B2∩A2∩C)⊂ (B2∩B1)∪ (A2∩C) = A2∩C.

Thus, B2∩C = A2∩C and, analogously, B1∩C = A1∩C. These identities and (6.77) prove lemma 6.6. ⊓⊔
Proof of lemma 6.7. Since f<a is open and disconnected there exists an open partition f<a = A∪C. If

A∩C ∕= /0 then any z ∈ A∩C is a Connection Point at level a and we are done. To complete this proof we assume
that there are no Connection Points in f−1([a,c)) and that A∩C = /0 and show that there exists a bridge in
f−1([a,c)). We start by noticing that (A,C,a) is a member of the class T of triples (U,V,b) such that

b ∈ [a,c), (6.78)
f<b =U ∪V, (6.79)

U ∩V = /0, (6.80)
A⊂U and C ⊂V (6.81)

and U and V are open. Consider the partial order ⪯ in T given by

(U1,V1,b1)⪯ (U2,V2,b2) ⇔ (b1 ≤ b2, U1 ⊂U2 and V1 ⊂V2) . (6.82)

We claim that every chain for⪯ has an upper bound. In fact, given a chain ℭ= {(Uλ ,Vλ ,bλ ), λ ∈Λ} in (T ,⪯)
define b∞ = supλ∈Λ bλ and

U∞ =
∪

λ∈Λ

Uλ and V∞ =
∪

λ∈Λ

Vλ .

It is clear that f<b∞
=U∞∪V∞, U∞ and V∞ are open and U∞∩V∞ = /0. This implies that U∞∩V∞ =U∞∩V∞ = /0. The

open partition f<b∞
=U∞∪V∞ shows that b∞ < c, because f<c is connected and f<b∞

is not. If b∞ ∈ {bλ , λ ∈Λ}
then (bλ ,Uλ ,Vλ ) for λ such that bλ = b∞ is an upper bound for the chain. Thus, we can assume that b∞ > bλ for
all λ . Notice that there is no z ∈U∞ ∩V∞ with f (z) = b∞ (such z would be a Connection Point). We now show
that U∞ ∩V∞ = /0 by taking z ∈U∞ and showing that z ∕∈ V∞. In fact, we may assume that f (z) < b∞ and then
there exist α such that f (z)< bα , because b∞ > bλ for all λ . Equation (6.79) implies that z ∈Uα ∪Vα , However,
z ∕∈Vα because U∞∩Vα ⊂U∞∩V∞ = /0. Thus, z∈Uα and z ∕∈V∞ because Uα is open and Uα ∩V∞ ⊂U∞∩V∞ = /0.
Therefore, U∞∩V ∞ = /0 and (U∞,V∞,b∞) is an upper bound for the chain ℭ.

The last paragraph and Zorn’s lemma yield a maximum element (U∗,V∗,b∗) for ⪯. If B = f≤b∗ −
(
U∗∪V ∗

)
could be decomposed as B = Bu∪Bv in such way that

(
U∗∪Bu

)
∩
(
V ∗∪Bv

)
= /0 then applying f ’s Expansion

Property for U =U∗∪Bu and V =V ∗∪Bv would yield d ∈ (b,c) and open sets Ud and Vd such that (Ud ,Vd ,d)
would contradict the maximality of (U∗,V∗,b∗). Therefore, there are no Bu and Bv as above and B is a Bridge. ⊓⊔

Proof of lemma 6.8. This proof uses lemmas 6.12 and 6.13, which are proved at the end of this subsection.
Let A1 and A2 be open sets with f≤c ⊂ A1 ∪A2 and A1 ∩A2 = /0 and Kc the f c-compact set definition 6.4. The
set R = Kc−A1 ∪A2 is also f c-compact and R∩ f≤c = /0. Therefore, there exists s > c such that R ⊂ f>s. The
open set A = f>s ∪A1 ∪A2 contains Kc. Thus, the Topological Palais Smale Condition yields d ∈ (c,s) and a
continuous function ψ : f<d × [0,1]→ X which satisfies (6.73) – (6.75). To complete this proof we show that
ϕ(x) = ψ(x,1) and, for i = 1,2,

Bi = {x ∈ X with ψ(x, t) ∈ Ai for t ∈ [0,1]}∩ f<d , (6.83)

satisfy (6.87)–(6.89). Lemma 6.13 shows that B1 and B2 are open. By taking t = 0 in the definitions of B1 and
B2 and using (6.73) we conclude that B1 ⊂ A1, B2 ⊂ A2. Taking t = 1 in these definitions we get (6.87).

To verify (6.88) notice that if x ∈ A1 ∩ f≤c then (6.74) implies that ψ(x, t) ∈ f≤c ⊂ A1 ∪A2 for all t. Since
ψ(x,0) = x ∈ A1, Cx = {ψ(x, t), t ∈ [0,1]} is connected and A1 ∩A2 = /0 we must have Cx ⊂ A1. In particular,
ϕ(x) = ψ(x,1) ∈ A1. Therefore, (6.88) holds.

Finally, to prove (6.89), let us take x ∈ f<d with f (ϕ(x)) ≥ c. In this case (6.75) shows that ψ(x, t) ∈ A =
f>c∪A1∪A2 for all t. Moreover, (6.74) shows that f (ψ(x, t))< d < s for all t and, by definition of s, ψ(x, t) ∕∈ f>c
for all t. Therefore, ψ(x, t) ∈ A1 ∪A2 for all t. By the same connectivity argument of the last paragraph we
conclude that either (i) ψ(x, t) ∈ A1 for all t or (ii) ψ(x, t) ∈ A2 for all t. Equation (6.83) shows that in case (i)
x ∈ B1 and in case (ii) x ∈ B2. This proves (6.89). ⊓⊔

Proof of lemma 6.9. Our proof uses theorem (2.14) in [9]. The f c-compact set Kc is defined as

Kc =
{

x ∈ f−1(c) with ∣df ∣(x) = 0
}
.

It is compact and contained in f−1(c) and f min
c ⊂ Kc. Theorem (2.14) in [9] can then be stated as:
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Theorem 6.3 (by Corvellec, Degiovanni and Marzocchi) Let X be a complete metric space, f : X → ℝ a con-
tinuous function and c ∈ ℝ. If f satisfies the Metric Palais Smale Condition at level c then given ε > 0 and a
neighborhood B of Kc and λ > 0 there exists ε > 0 and φ : X× [0,1]→ X continuous with

dist(φ(x, t),x) ≤ λ t, (6.84)
f (φ(x, t)) ≤ f (x), (6.85)

∣ f (u)− c∣ ≥ ε ⇒ φ(u, t) = u,
u ∈ f≤c+ε −B⇒ f (φ(x,1))≤ c− ε. (6.86)

⊓⊔

Given an open set A⊃ Kc we apply theorem 6.3 with B = {x ∈ X with dist(x,Kc)< δ }, δ = dist(Kc,X−A)/3,
ε = 1 and λ = δ and obtain ε and φ as in (6.84) – (6.86). Take d = c+ ε and ψ as the restriction of φ to
f<d × [0,1]. Equation (6.84) shows that ψ satisfies condition (6.73) in definition 6.4 and equation (6.85) yields
(6.74). Finally, (6.86) shows that if f (ψ(x,1)) ≥ c then x ∈ B. The definition of B and equations (6.84) imply
that, for t ∈ [0,1] and x ∈ A,

dist(ψ(x, t),Kc)≤ 2δ < 3δ = dist(X−A,Kc) .

Since Kc⊂A, the last inequalities imply that ψ(x, t)∈A for t ∈ [0,1]. In resume, we have shown that f (ψ(x,1))≥
c⇒ ψ(x, t) ∈ A for t ∈ [0,1]. This is the last requirement in definition 6.4 and this proof is complete. ⊓⊔

Proof of lemma 6.10. We argue by contradiction to show that a= infx∈Kµ
f (x) = µ (To handle the degenerate

case Kµ = /0 take a= µ+1). In fact, if a> µ then the f c-compactness of Kµ yields s∈ (µ,a) such that Kµ ⊂ f>s.
Taking the open set A = f>s, the Topological Palais Smale Condition yields d and ψ satisfying (6.73)–(6.75).
However, taking b = min{d,s} we have that b > µ = infx∈F f (x) and there exists x ∈ F with f (x) ∈ (µ,b).
By (6.74) the point z = ψ(x,1) satisfies f (z) < b ≤ s. Therefore, z ∕∈ A = f>s and (6.75) implies that f (z) =
f (ψ(x,1))< µ . This contradicts the minimality of µ and our argument is complete. ⊓⊔

Proof of lemma 6.11 This proof uses lemma 6.6 and lemma 6.13, which is stated and proved at the end of
this subsection. Since F is normal and f≤c is disconnected, lemma 6.6 yields disjoint open sets U1 and U2 and
f≤c ⊂U1∪U2. The set C = Kc− (U1∪U2) is f c-compact and f (x) > c for x ∈C. Therefore, there exists e > c
such that C ⊂ f>e and the open set A = U1 ∪U2 ∪ f>e contains Kc. Let ψ and d be the corresponding function
and number given by definition 6.4. Take b = min{d,e}. For each a ∈ (c,b), x ∈ f<a and t ∈ [0,1], equation
(6.74) shows that ψ(x, t) ∕∈ f<d . As a consequence, equation (6.75) implies that if x ∈ f<a and ψ(x,1) ≥ c
then x ∈ B1 ∪ B2, where Bi = {x ∈ f<a with ψ(x, t) ∈Ui for t ∈ [0,1]}. The sets Bi are open by lemma 6.13
applied to X = f<d and Y = [0,1]. Defining ϕ(x) = ψ(x,1), the sets Ci = ϕ−1(Ui∩ f<c) are also open and so are
Di = Bi∪Ci. It is clear that f<a = D1∪D2 and D1∩D2 = /0, because B1∩B2 = B1∩C2 =C1∩B2 =C1∩C2 is a
direct consequence of the way these sets were defined. Therefore, f<a is disconnected. ⊓⊔

Lemma 6.12 Let F be a normal topological space, f : F → ℝ a continuous function and c ∈ ℝ. If for every
pair A1, A2 of open sets with f≤c ⊂ A1∪A2 and A1∩A2 = /0 there exist d > c and open sets B1 ⊂ A1∩ f<d and
B2 ⊂ A2∩ f<d and a continuous function ϕ : f<d → F such that

ϕ(B1)⊂ A1 and ϕ(B2)⊂ A2, (6.87)
ϕ(A1∩ f<c)⊂ A1 and ϕ(A2∩ f<c)⊂ A2, (6.88)

and, for x ∈ f<d ,
f (ϕ(x))≥ c ⇒ x ∈ B1∪B2, (6.89)

then f has the Extension Property at level c. ⊓⊔

Proof of lemma 6.12. Let f≤c =U1∪U2 be a closed partition of f≤c. The normality of X yields disjoint open
sets F1 ⊃U1 and F2 ⊃U2. Normality also implies that there exist disjoint open sets A1 ⊃U1 and G1 ⊃ X −F1.
This implies that A1∩ (X−F1) = /0 and then A1 ⊂ F1. For the same reason there exists an open set A2 ⊃U2 with
A2 ⊂ F2. Therefore, A1∩A2 ⊂ F1∩F2 = /0 and the hypothesis yields d > c, B1, B2 and ϕ as in (6.87) – (6.89).

The sets
C1 = A1∩ f<c and C2 = A2∩ f<c (6.90)
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are open and disjoint. By the continuity of ϕ , the sets

D1 = ϕ
−1(C1) and D2 = ϕ

−1(C2) (6.91)

are also open and disjoint. Equations (6.89) and (6.90) and the fact that f<c ⊂ A1∪A2 lead to

f<d ⊂ E1∪E2, (6.92)

for
E1 = B1∪D1 and E2 = B2∪D2. (6.93)

According to (6.87), ϕ(B1)⊂ A1. This implies that B1∩D2 = /0, because ϕ(D2)⊂C2 ⊂ A2 and A2∩ϕ(B1) = /0.
For the same reason B2∩D1 = /0. Therefore, E1∩E2 = /0 and since these sets are open

E1∩E2 = E1∩E2 = /0. (6.94)

The sequence cn = ((n+1)c+d)/(n+2) is decreasing, cn ∈ (c,d) and limn→∞ cn = c. We now show that

A1n = E1∩ f<cn and A2n = E2∩ f<cn (6.95)

satisfy the requirements of definition 6.2. We start by noticing that (6.92) and cn < d yield

A1n∪A2n = (E1∪E2)∩ f<cn ⊃ f<d ∩ f<cn = f<cn .

On the other hand, (6.95) shows that A1n∪A2n ⊂ f<cn . Therefore, the requirement A1n∪A2n = f<cn is satisfied.
To prove that U1 ⊂ A1n, consider x ∈U1 ⊂ f≤c. If f (ϕ(x))≥ c then (6.89) leads to

x ∈ (B1∪B2)∩U1 ⊂ B1∩ f≤c ⊂ A1n.

If f (ϕ(x)) < c then (6.90) implies that ϕ(x) ∈ C1, because (6.88) shows that ϕ(x) ∈ A1. Therefore x ∈ D1 =
ϕ−1(C1) and x ∈ (B1 ∪D1)∩ f≤c ⊂ (B1 ∪D1)∩ f<cn = A1n. This shows that the requirements U1 ⊂ A1n and
U2 ⊂ A2n are satisfied too. Now, (6.95) shows that A1n ⊂ E1 and (6.94) implies that A1n ∩E2 = /0. Equation
(6.95) also shows that A1n ⊂ f<cn ⊂ f<d and (6.92) combined with A1n ∩E2 = /0 yield A1n ⊂ E1. For the same
reasons, A2n ⊂ E2. Finally, E1∩E2 = /0 implies the last requirement: A1n∩A2n = /0. ⊓⊔

Lemma 6.13 Let X be a topological space and Y a compact set. If ψ : X ×Y → X is continuous and A ⊂ X is
open then B = {x ∈ X with ψ(x,y) ∈ A for all y ∈ Y} is also open. ⊓⊔

Proof of lemma 6.13. We show that the complement of B, Bc = {x ∈ X such that ψ(x,y) ∈ Ac for some y ∈ Y},
is closed. To do that we take a net {xγ ,γ ∈Γ } ⊂ Bc converging to x∞ ∈ X and show that x∞ ∈ Bc. For every γ ∈Γ

there exists yγ ∈ Y such that ψ(xγ ,yγ) ∈ Ac. Since Y is compact {yγ ,γ ∈ Γ } has a subnet converging to some
y∞ ∈ Y . Without loss of generality we may assume that {yγ ,γ ∈ Γ } itself is this subnet. Since ψ is continuous
and Ac is close, {ψ(xγ ,yγ),γ ∈ Γ } ⊂ Ac converges to ψ(x∞,y∞) ∈ Ac. Therefore x∞ ∈ Bc and we are done. ⊓⊔

6.5 Proofs for section 5.

As for the proofs about metric spaces, here we develop the theory in the more abstract frame of normal topolog-
ical spaces, which may not be Hausdorff. At the end of this subsection we prove the following lemmas:

Lemma 6.14 Let F be a topological space and x ∈C ⊂ F. If C(x,C)⊂C then C(x,C) is closed. In particular,
if C is closed then C(x,C) is closed. ⊓⊔

Lemma 6.15 Let F be a topological space. If A⊂ B⊂ F and x ∈ A then C(x,A)⊂ C(x,B). ⊓⊔

Lemma 6.16 Let F be a topological space. If A⊂ B⊂ F and C(x,B)⊂ A then C(x,A) = C(x,B). ⊓⊔

Lemma 6.17 Let F be a normal topological space and let D ⊂ F be closed and compact. If x,y ∈ D and
y ∕∈ C(x,D) then there exist disjoint open sets A and B with D⊂ A∪B, C(x,D)⊂ A and y ∈ B. ⊓⊔
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Lemma 6.18 Let F be a normal topological space, f : F→ℝ a continuous function and c > infx∈F f (x). If f min
c

is compact and there exist x ∈ f min
c and disjoint open sets A and C such that f<c ⊂ A and C

(
x, f min

c
)
⊂C then

f≤c is disconnected. ⊓⊔

Proof of theorem 5.1 for normal spaces. Lemma 6.10 shows that the set f min
µ in definition 5.2 is not

empty for µ = infx∈F f (x). Therefore, f has at least one global minimizer. If f has only one local minimizer
then it satisfies item (i) in the connectivity alternative and we are done. Let us then assume that f has multiple
local minimizers. Lemma 6.11 shows that the sets f≤c are connected for all c ∈ ℝ. Therefore f min

µ = f≤µ is
connected. If f min

µ has more than one element then it is a Plateau according to definition 2.4 and item (iv).(b) in
the Connectivity alternative is satisfied. If w is another local minimizer with c= f (w)> µ then C(x, f min

c )∩ f<c ∕=
/0 because x ∕∈Dc = /0. The set C

(
x, f min

c
)

is a Terrace and w satisfies item (iv).(a) in the Connectivity alternative.
⊓⊔

Proof of lemma 5.1. If x ∈ Dc then f<c∩C(x, f min
c ) = /0 and C(x, f min

c ) ⊂ f min
c because f min

c ⊂ f min
c ∪ f<c.

and lemma 6.14 shows that C
(
x, f min

c
)

is closed. The normality of F yields disjoint open sets A ⊃ f<c and
C ⊃ C

(
x, f min

c
)
. and lemma 5.1 follows from lemma 6.18. ⊓⊔

Proof of lemma 6.14. We claim that if y ∈ C(x,C) then y ∈ C(x,C) because U = {y} ∪C(x,C) ⊂ C is
connected and contains y. In fact, let A and B be open sets such that U ⊂ A∪B, A∩B∩U = /0 and x ∈ A. By the
connectivity of C(x,C) we have C(x,C) ⊂ A. This shows that B∩C(x,C) = /0 and y ∕∈ B because y ∈ C(x,C).
Therefore, y ∈ A, B∩U = /0 and U is indeed connected. Finally, C(x,C)⊂C implies that C(x,C)⊂C and if C is
closed then C =C and the first part of this proof implies that C(x,C) is closed. ⊓⊔

Proof of lemma 6.15. If x ∈ C(x,A) then there exists a connected set C ⊂ A with x,y ∈C. Since A ⊂ B we
have that C ⊂ B and y ∈ C(x,B). ⊓⊔

Proof of lemma 6.16. Lemma 6.15 shows that C(x,A)⊂C(x,B). On the other hand, if y∈C(x,B) then there
exists C ⊂ B connected with x,y ∈C. This implies that C ⊂ C(x,B)⊂ A, y ∈ C(x,A) and C(x,B)⊂ C(x,A). ⊓⊔

Proof of lemma 6.17. Consider the set

D(x,D) = {y ∈ D such that if A and B are open and disjoint, D⊂ A∪B and C(x,D)⊂ A then y ∈ A} .

This set is closed in D because if y ∈ D−D(x,D) then there exist disjoint open sets A and B with C(x,D) ⊂ A
and y ∈ B and B∩D is a neighborhood of y in D contained in D−D(x,D). Since D is closed in F , D(x,D) is
also closed in F . It is also clear from the definition of D(x,D) that C(x,D)⊂D(x,D).

Lemma 6.17 is logically equivalent to the statement D(x,D)⊂ C(x,D). Since x ∈D(x,D)⊂D, to prove this
statement we show that D(x,D) is connected. The normality of F , the fact that D(x,D) is closed and lemma
6.6 show that to verify this connectivity it is enough to assume that R and S are disjoint open sets with x ∈ R
and D(x,D) ⊂ R∪S and prove that D(x,D)∩S = /0. Since C(x,D) ⊂ D(x,D) we have C(x,D) ⊂ R∪S and the
connectivity of C(x,D) and x ∈ R imply that C(x,D)⊂ R.

We now show that D(x,D)∩S = /0. The set K = D− (R∪S) is closed. Since D is compact K is also compact.
Since K ⊂ D−D(x,D), if y ∈ K then y ∈ D−D(x,D) and there exist open sets Ay and By such that

C(x,D)⊂ Ay, y ∈ By, D⊂ Ay∪By, and Ay∩By = /0. (6.96)

The By cover K. Let By1 , . . . ,Byn be a finite sub covering and define B =
∪

i=1,...,n Byi and A =
∩

i=1,...,n Ayi . The
equations in (6.96) lead to

C(x,D)⊂ A, K ⊂ B, D⊂ A∪B, and A∩B = /0. (6.97)

By definition of K we have D⊂ K∪R∪S. Combining this with D⊂ A∪B and A∩K ⊂ A∩B = /0 we obtain

D⊂ (B∪ (A∩S)) ∪ (A∩R) . (6.98)

We have seen above that C(x,D) ⊂ R and (6.97) shows that C(x,D) ⊂ A. Therefore, C(x,D) ⊂ A∩R. This
identity combined with the open partition (6.98) and the definition of D(x,D) imply that D(x,D)⊂ A∩R. Since
R∩S = /0 we conclude that D(x,D)∩S = /0 and this proof is complete. ⊓⊔

Proof of lemma 6.18. The set B = (F −A−C)∩ f min
c is closed and compact. Using the identity f≤c =

f min
c ∪ f<c the reader can verify that f min

c =
(

A∩ f min
c

)
∪D for D = B∪

(
C∩ f min

c
)
⊂ f min

c and C
(
x, f min

c
)
⊂ D.
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Moreover, D = f min
c −A is closed and it follows from lemma 6.16 that C(x,D) = C

(
x, f min

c
)
⊂C. Therefore, if

y ∈ B then y ∕∈ C(x,D) and lemma 6.17 yields disjoint open sets Uy ⊃ C(x,D) and Vy ∋ y such that D⊂Uy∪Vy.
The open sets

{
Vy,y ∈ B

}
cover the compact set B. Let Vy1 , . . . ,Vyn be a finite sub covering. The sets

U =
∩

i=1,...,n

Uyi and V =
∪

i=1,...,n

Vyi

are open and disjoint, D ⊂U ∪V , C(x,D) ⊂U and B ⊂ V . To complete this proof we show that the open sets
G = A∪V and H =U ∩C are disjoint, G∩ f≤c ∕= /0 and H∩ f≤c ∕= /0 and f≤c ⊂G∪H. In fact, G∩ f≤c ∕= /0 since
f<c ⊂ G and f<c ∕= /0 because c > infx∈F f (x). The intersection H ∩ f≤c is not empty because C(x,D)⊂ H. The
set G∩H is empty because A∩C = /0, V ∩U = /0 and

G∩H = (A∪V )∩ (U ∩C) = (A∩C∩U)∪ (V ∩U ∩C) = /0∪ /0 = /0.

Finally, f≤c ⊂ A∪B∪
(
C∩ f min

c
)
= A∪D, B ⊂ V and D ⊂U ∪V and (i) If x ∈ A then x ∈ G, (ii) If x ∈ B then

x ∈V and x ∈ G and (iii) If x ∈C∩ f min
c then x ∈ D⊂U ∪V . If x ∈V then x ∈ G. If x ∕∈V then x ∈U ∩C = H.

The items (i),(ii) and (iii) show that f≤c ⊂ G∪H and we are done . ⊓⊔
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Sr. 6, 3 no. 3, 345-362, 1994.
18. N. Ghoussoub and Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. Henri
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27. B. Knaster and C. Kuratowski, A connected and connected im kleinen point set which contains no perfect subset. Bull. Amer.

Math. Soc. Volume 33, Number 1, 106-109, 1927.
28. B. Knaster and C. Kuratowski, Sur les ensembles connexes, Fundamenta Mathematicae, vol. 2, pp. 206-255, 1921.
29. L. Ljusternik and L. Schnirelmann, Sur le problème de trois géodesiques fermmés sur les surfaces de genre 0. C.R. Acad. Sci.
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