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ABSTRACT

We initiate an investigation of sublinear algorithms for geo-
metric problems in two and three dimensions. We give opti-
mal algorithms for intersection detection of convex polygons
and polyhedra, point location in two-dimensional Delaunay
triangulations and Voronoi diagrams, and ray shooting in
convex polyhedra, all of which run in time O(y/n), where n
is the size of the input. We also provide sublinear solutions
for the approximate evaluation of the volume of a convex
polytope and the length of the shortest path between two
points on the boundary.

Categories and Subject Descriptors

F.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; F.2.2 [Nonnu
merical Algorithms and Problems|: Geometrical prob-
lems and computations; 1.3.5 [Computational Geometry
and Object Modeling]: Geometric algorithms, languages,
and systems

General Terms
Algorithms theory

Keywords

Sublinear algorithms, approximate shortest paths, polyhe-
dral intersection

1. INTRODUCTION

An outgrowth of the recent work on property-testing, the
study of sublinear algorithms has emerged as a field unto
itself and great strides have been made in the context of
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graph and combinatorial problems [27]. Large geometric
datasets often call for algorithms that examine only a small
fraction of the input, but it is fair to say that sublinear com-
putational geometry is still largely unchartered territory. If
preprocessing is allowed, then of course this is an entirely dif-
ferent story [3, 20]. For example, checking whether a point
lies in a convex 3-polyhedron can be done in logarithmic
time with linear preprocessing. However, little of this tech-
nology is of any use with massive datasets, since examining
the whole input—Ilet alone preprocessing it—is out of the
question. Sublinear algorithms have been given for dynamic
problems [15] or in situations where a full multidimensional
data structure is available [9]. There has also been work on
geometric property testing, both in an approximate [10, 11,
16] and exact [21] setting.

In this paper, sublinearity is understood differently. The
input is taken to be in any standard representation with
no extra assumptions. For example, a planar subdivision
or a polyhedron is given in classical edge-based fashion (eg,
DCEL, winged-edge), with no eztra preprocessing. This im-
plies that we can pick an edge at random in constant time,
but we cannot sample randomly among the neighbors of a
given vertex in constant time. Our motivation is two-fold:
(i) we seek the minimal set of computational assumptions
under which sublinearity is achievable; (ii) the assumptions
should be realistic and nonrestrictive. Note, for example,
that sublinear separation algorithms for convex objects are
known [6, 13], but all of them require preprocessing, so they
fall outside our model. Under these conditions one might
ask whether there exist any interesting “offline” problems
that can be solved in sublinear time. The answer is yes.
Note that randomization is a necessity because, in a deter-
ministic setting, most problems in computational geometry
require looking at the entire input. There has been some
(but little) previous work on sublinear geometric algorithms
as we define them, specifically point location in two- and
three-dimensional Delaunay triangulations of sets of random
points [12, 24]. As far as we know, however, these are the
only works that fall inside of our model. Here is a summary
of our results. In all cases, n denotes the input size and all
polyhedra are understood to be in R2:

e Anoptimal O(y/n ) time algorithm for checking whether
two convex polyhedra intersect. The algorithm reports
an intersection point if they do and a separating plane
if they don’t.

e Optimal O(y/n) time algorithms for point location in



two-dimensional Delaunay triangulations and Voronoi
diagrams, and ray shooting in convex polyhedra.

In contrast with property-testing, it is important to note
that our algorithms never err. All the algorithms are of
the Las Vegas type, and randomization affects the running
time but not the correctness of the output.! In [12] Devroye,
Miicke, and Zhu showed that a simple technique for point lo-
cation in two-dimensional Delaunay triangulations, namely
random sampling then walking from the nearest sample to
the query, has expected running time O(n1/3) for n random
input points and a random query. This does not contra-
dict the optimality of our O(n'/?) bound because the points
must be chosen randomly in [12].

We also consider optimization problems for which approx-
imate solutions are sought. We give:

e An O(¢7'y/n) time algorithm for approximating the
volume of a convex polytope with arbitrary relative
error € > (.

e An O(e~%*\/n)+ f(e /%) time algorithm for approx-
imating the length of the shortest path between two
points on the boundary of a convex polyhedron with
arbitrary relative error £ > 0. Here, f(n) denotes the
complexity of the ezact version of problem. This im-
plies that the complexity of our algorithm is O(1/n),
for any fixed ¢ > 0.

The shortest path problem for polyhedral surfaces has
been extensively studied, drawing its motivation from ap-
plications in route planning, injection molding, computer
assisted surgery [1, 18, 23]. In the convex case (the one
at hand), an O(n> logn) algorithm was given by Sharir and

Schorr [29], later improved by Mitchell et al. [22] to O(n? log n)

and by Chen and Han [7] to O(n?); therefore, it is known
that f(n) = O(n?). More recently, Kapoor [19] has an-
nounced a proof that f(n) = O(nlog® n), which would make
our algorithm run in time O(e~%/*\/n). This improves on
Agarwal et al.’s algorithm [2], which runs in O(n loge™! +
€~3) time , for any & > 0.

Our method makes progress on an important geometric
problem of independent interest.

e Given a convex polytope P of n vertices, how many
vertices must an enclosing polytope @ have if it is to
approximate any (large enough) shortest path on 9P
with relative error at most e? We reduce to O(e~%*)
the best previous bound of O(¢~*?), due to Agarwal
et al. [2].

A Flavor of the Techniques

As a warmup exercise, consider the classical successor
searching problem: Given a sorted (doubly-linked) list of n
keys and a number z, find the smallest key y > z (the succes-
sor of x) in the list or report that none exists. Although we
could not find a reference, the following algorithm is prob-
ably folklore. Choose /n list elements at random, and find
the predecessor and successor of x among those (perhaps
only one exists). This provides an entry point into the list,

1Throughout this paper, unless specified otherwise, the running
times are understood in the expected sense.

from which a naive search takes us to the successor. To
make random sampling possible, we may assume that the
list element are stored in consecutive locations (say, in a ta-
ble). However—and this is the key point—no assumption is
made on the ordering of the elements in the table (otherwise
we could do a binary search).

LeEMMA 1.1. Successor searching can be done in O(y/n)
ezpected time per query, which is optimal.

PROOF. Let Q. be the set of all elements that are at most
¢y/n away from the answer on the list (in either direction).
The probability of not hitting Q. after /n random choices of
the list elements is 27 %) and so the expected distance of the
answer to the random sample is O(y/n). This immediately
implies that the expected time of the algorithm is O(y/n).

For the lower bound, we use Yao’s minimax principle. We
fix a distribution on the input, and we lower-bound the ex-
pected complexity of any deterministic algorithm. The in-
put is a linked list containing the numbers 1 through n in
sorted order. In our model, the list is represented by a table
T[1---n], with the i-th element in the list stored in location
o (%) of the table; hence, T[o(¢)] = 4. The input distribution
is formed by choosing the permutation o uniformly from the
symmetric group on n elements. The query is set to be n.
In other words, the problem is to locate the last element
in the list. A deterministic algorithm can be modeled as
a sequence of steps of the form: (A) pick a location T'[k]
already visited and look up the next (or previous) item, ie,
Tlo(i£1)], where k = o(i); (B) compute a new index k and
look up T'[k]. Each step may involve the consideration of
every piece of information gathered so far. In particular, in
a B-step we may not consult either one of the adjacent items
in the list before computing & (unless, of course, these items
were visited earlier). In this way, o~ (k) is equally likely to
lie anywhere in the portion of the list still unvisited. For this
reason, after a A-steps and b B-steps, there is a probability

b
at least (1 — M) that none of the last y/n elements in

the list has been visited in a B-step. Right after the last B-
step, either the total number of A- and B-steps exceeds v/n
or, with constant nonzero probability, at least \/n A-steps
(some of which may have already been taken) are required
to reach the last element in the list. This immediately im-
plies that the expected time of any deterministic algorithm

is Q(y/n) O

We can generalize these ideas to polygon intersection.
Given two convex polygons P and @, with n vertices each,
determine whether they intersect or not and, if they do,
report one point in the intersection. Note that if one poly-
gon consists of a single point, then it is easy to express the
problem as successor searching and solve with O(y/n) CCW
tests. Conversely, it is trivial to embed any successor prob-
lem as a convex polygon intersection problem. This shows
that ©(y/n) is the correct bound in a model where the an-
swer must be not just yes/no, but the address of the list
node containing an intersected polygon edge where the in-
tersection takes place.

Choose a random sample of r vertices from each polygon,
and let R, C P and R, C @Q denote the two corresponding
convex hulls. By linear programming, we can test R, and
R, for intersection without computing them explicitly. This
can be done probabilistically (or even deterministically) in



Figure 1: Intersecting two convex polygons

linear time. There are many ways of doing that (see [5] for
references). It is easy to modify the algorithm (of, say, [28])
in O(r) time so that it reports a point of intersection if
there is one, and a bi-tangent separating line £ otherwise
(Figure 1). Let p be the vertex of R, in £, and let p1,p2
be their two adjacent vertices in P. If neither of them is on
the R, side of £, then define C}, to be the empty polygon.
Otherwise, by convexity exactly one of them is; say, p1. We
walk along the boundary of P starting at p;, away from
p, until we cross £ again. This portion of the boundary,
clipped by the line £, forms a convex polygon, also denoted
by Cp. A similar construction for @ leads to C,.

It is immediate that PN Q # 0 if and only if P intersects
Cy or Q intersects Cp. We check the first condition and, if
it fails, check the second one. We restrict our explanation
to the case of P N Cy. First, we check whether R, and
C, intersect, again using a standard linear time algorithm,
and return with an intersection point if they do. Otherwise,
we find a line £’ that separates R, and C, and, using the
same procedure described above, we compute the part of
P, denoted C, on the other side of £'. Finally, we test
C, and C, for intersection in linear time. Correctness is
immediate. The running time is O(v/n+|Cyp| +|Cy| +|Cq| +
|Cql). It follows from a standard union bound that E|Cy| =
O(n/r)log n, but a more carefuly analysis shows that in fact
E|Cp| = O(n/r). (The three-dimensional case discussed
below will subsume this result, so there is no need for a proof
now.) The overall complexity of the algorithm is O(r+mn/r),
and choosing r = |v/n | gives the desired bound of O(y/n).

THEOREM 1.2. To check whether two convex n-gons in-
tersect can be done in O(v/n) time, which is optimal.

To put Theorem 1.2 in perspective, recall that the inter-
section of two convex polygons can be determined in loga-
rithmic time if the vertices are stored in an array in cyclic
order [6]. The key point of our result is that, in fact, a
linked list is sufficient for sublinearity. Similarly, if poly-
hedra are preprocessed & la Dobkin-Kirkpatrick then fast
intersection detection is possible [13]. What we show below
is that sublinearity is achievable even with no preprocess-
ing at all. Again, we use a two-stage process: In the first
stage we break up the problem into r subproblems of size
roughly n/r, and then identify which ones actually need to
be solved; in the second stage we solve these subproblems in
standard (ie, non-sublinear) fashion. Their number is con-
stant; hence the square root complexity. What prevents us
from solving these subproblems recursively is the model’s

restriction to global random sampling. In other words, one
can sample efficiently for the main problem but not for the
subproblems.

2. CONVEXPOLYHEDRAL INTERSECTIONS

Given two n-vertex convex polyhedra P and @ in R?, de-
termine whether they intersect or not and, if they do, report
one point in the intersection. Choose a random sample of
r = |/n | edges from each one, and let R, and R, denote
their respective convex hulls. We do not compute them.
Instead, by linear programming, we test R, and R, for in-
tersection in O(r) time [5, 28]. We stop with a point of
intersection if there is one. Otherwise, we find a separating
plane £ that is tangent to both R, and R,. It is important
to choose the plane £ in a canonical fashion. To do that,
we set up the linear program so as to maximize, say, the
coefficient a in the equation® ax 4+ by + cz =1 of L.

Next, choose a plane 7 normal to £ and consider project-
ing P and @ onto it. (Of course, we do not actually do it.)
Let p be a vertex of R, in £ (there could be two of them,
but not more if we assume general position between P and
Q) and let p* be its projection onto w. Let pi,p3, ..., Pk
be the set of vertices adjacent to p* in the projection of P
onto w. We test to see if any of them is on the R, side of L,
and identify one such point, pi, if the answer is yes (more
on that below). If none of them is on the R, side, then we
define C, to be the empty polyhedron. This is because in
this case, P is completely on the other side of £. Otherwise,
we construct the portion of P, denoted Cj, that lies on the
R, side of L. Note that C) is a convex polytope, not just
the boundary of P cut off by £L. We compute C, by using
a standard flooding mechanism. Beginning at pi, we per-
form a depth-first search through the facial structure of P,
restricted to the relevant side of £. Because C, is convex,
the edges form a single connected component, so we never
need to leave Cp. This allows us to build the entire facial
representation of C, in time proportional to its number of
edges. From then on, the algorithm has the same structure
as its polygonal counterpart, ie, we compute Cyp, Cy, Cq, Cy
and perform the same sequence of tests.

The question is now: how do we find p; (if it exists)? To
simplify the analysis, once we have p, we resample by picking
r edges in P at random; let E be the subset of those incident
to p. To find p1, we project on = all of the edges of E. If
there exists an edge of E that is on the R, side of £, then we
identify its endpoint as p1. Otherwise all the edges of E lie
on one side of £. We then identify the two extreme ones (e
and f in Figure 2); being extreme means that all the other
projected edges of E lie in the wedge between e and f in .
Assume that e and f are well defined and distinct. Consider
the cyclic list V' of edges of P incident to p. The edges of E
break up V into blocks of consecutive edges. It is not hard
to prove that pp: lies in blocks starting or ending with e or
f, if such a p; (as defined above) exists. So, we examine
each of these relevant blocks (at most four) exhaustively.
If e and f are not both distinct and well defined, we may
simply search for p; by checking every edge of P incident
to p.

2With perturbation techniques, we can always assume general
position, and hence avoid having a solution passing through the
origin. We will also assume that the relative position of P and @
is general.
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Figure 2: The edges of P incident to p; the thick
lines form the random sample.

THEOREM 2.1. Two convex n-vertez polyhedra in R® can
be tested for intersection in O(v/n) time; this is optimal.

ProOF. Optimality was already discussed in the polygo-
nal case and correctness follows from elementary convex ge-
ometry, so we limit our discussion to the complexity of the
algorithm. Because of the resampling, the expected sizes of
the blocks next to e and f (or alternatively the expected size
of the neighborhood of p if the blocks are not distinct) are
trivially O(n/r), so the running time is O(r +n/r + E |Cp|),
where |C}| denotes the number of edges of Cp. We may ex-
clude the other terms |Cy|, |Cy|, and |Cy|, since our upper
bound on E |Cp| will apply to them as well. The naive bound
of O((n/r)logn) on E |Cp| can be improved to O(n/r). Here
is how.

We modify the sampling distribution a little. Then we
argue that reverting back to the original setting does not
change the asymptotic value of the upper bound. The mod-
ification is two-fold: (i) we view P as a multiset M where
each vertex appears as many times as its number of inci-
dent edges; (ii) R, is formed by picking each point of M
independently with probability r/n. With respect to the
modified distribution, |C}| is proportional to the number of
constraints in M that violate the linear program P(R,, R,)
used to define £ (with each point of R, and R, defining a
linear constraint). Consider a subset M’ C M such that the
solution of P(M', R,) (if it exists) has exactly k violations
in M. We distinguish between the solutions with one point
in M and two in R, and those with two points in M and one
in R,. (Assuming general position between P and @, these
are the only possibilities.) Let f and gx count the number
of solutions of the first and second type respectively, and let
f<k = fo+ -+ fr (with the same definition for g). For
example, we have fo +go =1 and fjar) = gju| = 0. We can
prove by standard arguments [8, 25] that

f<k = O(k) and g<r = O(k). (1)

To see why, form a random sample S by picking each point
of M independently with probability s/n. Obviously, the
number of solutions of P (S, R,) is one; therefore, so is its
expected value. This gives us

S T a2 -

Choosing s = n/k we have,

(- e () (-0 =

it follows easily that

() s+ (2) s =00

which proves (1).
Returning to our modified distribution, which assigns prob-
ability r/n to each point of M, we now have

sicr=om 32 o (7)1 )" +an(7) 0-1)')

The first ko = O(n/r) summands add up to
(2 szt (2 rcr =0(2)

k
Setting up = k(l - %) , we can use summation by parts

to bound the contribution of the last |M| — ko summands.
This gives an upper bound of

(%) Z {(uk—uk+1)f5k}"‘(%)U\leS\Ml

ko<k<|M]|

+(%)2 kos%;wl{(uk — wki1)g<k )+ (%)2"\M|95|M\-
By (1) and the inequality

rk —kr/n
uk—uk+1SZ6 /,

this is also bounded by

O(E Z kze—kr/n+0(£)3 Z kse—kr/n+0(1)
n ko<k<|M]| " ko<k<|M]|
n
=o(3)
This implies that
E|C,|=0(%). 2)

Let D be the original distribution (the one used by the ac-
tual algorithm) with r replaced by 7r. Of course, by (2)
this scaling has no asymptotic effect on the upper bound
for E|Cp|. We define an intermediate distribution D; by
going through each edge (u,v) of P twice, selecting it with
probability r/n, and then throwing into the sample both u
and v, provided that the edge (u,v) has not been selected
yet. (Note that this implies that u and v are kept out with
probability (1 — r/n)>.) There are at most 3n edges in P,
so the probability that a sample from D; is of size less than
Tr is overwhelmingly high. Since all equal-size subsets of
edges are equally likely to be chosen, Ep |Cp| is nonincreas-
ing with the sample size, and so, Ep |Cp| = O(Ep, |Cp|).
Let D2 denote the modified distribution used in the calcula-
tions. Observe that D; is derived from D; by picking only u
if (u, v) is chosen the first time it is considered for selection,
and then only v if it is picked the second time around. By
monotonicity, we then have Ep, |Cp| = O(Ep, |Cp|). This
proves that (2) holds in the distribution used by the algo-
rithm. O

Within the same amount of time we can report a separat-
ing plane if the two convex polyhedra do not intersect and



a point in the intersection otherwise. In fact, we can always
find a point of intersection on the boundary of at least one
of the polyhedra. From this it is immediate to derive the
following:

COROLLARY 2.2. Given a convez polyhedron with n ver-
tices and a line, we can compute their intersection explicitly
wn optimal O(y/n) time.

This allows us to perform ray shooting toward a convex
polyhedron in sublinear time. This gives us useful ammuni-
tion for all sorts of location problems.

3. RAY SHOOTING APPLICATIONS

Given the Delaunay triangulation 7 of a set S of n points
in the plane and a query point g, consider the problem of
locating ¢, ie, retrieving the triangle of 7 that contains it.
The Delaunay triangulation can be given in any classical
edge-based data structure (e.g. DCEL) that supports O(1)
time access to a triangle from a neighboring triangle. We use
the close relationship between Delaunay triangulations and
convex hulls given by the mapping h : (z,y) — (z,y, 2> +y?).
As is well known, the Delaunay triangulation of S is facially
isomorphic to the lower hull of A(S) (ie, the part of the
convex hull that sees z = —00). In this way, point location
in 7 is equivalent to ray shooting towards the convex hull,
where the ray originates from the query point ¢ and shoots
in the positive z direction. Obviously, any facial feature of
the convex hull can be retrieved in constant time from its
corresponding feature in the Delaunay triangulation. (The
one exception is the set of faces outside the lower hull: we
can simplify matters by adding a dummy vertex to the hull
at z = 00.)

The same argument can be used for point location in
Voronoi diagrams. Recall that each point (pe,py) is now
lifted to the plane Z = 2p, X + 2p,Y — (p; + p,), which
is tangent to the paraboloid Z = X2 + Y?2. The Voronoi
diagram of S is isomorphic to the lower envelope of the ar-
rangement formed by the n tangent planes. Note that any
vertex (resp. edge) of the envelope can be derived in con-
stant time from the three (resp. two) faces incident to the
corresponding vertex (resp. face).

THEOREM 3.1. Point location in the Delaunay triangula-
tion or Voronoi diagram of n points in the plane can be done
wn optimal O(y/n) time.

We consider the following problem, which will arise in our
subsequent discussion of volume approximation and short-
est paths algorithms. Given a convex polyhedron P with n
vertices and a point ¢, let np(q) denote the (unique) point
of P that is closest to q. Of course, we can assume that
q does not lie inside P, which we can test by using the
previous algorithm. To compute np(gq) we extract a sample
polyhedron Ry, as we did before, and find nr, (q) by exhaus-
tive search. This also gives us a plane £ tangent to R, at
nr,(¢) and normal to the segment gnr,(g). Next, we com-
pute the intersection Cp, of P with the halfspace bounded
by £ that contains q. We already explained how to do that
in the previous section. In fact, a similar analysis shows
that the expected size of C,, is not just O(n/r). Obviously,
np(q) = nc,(g), so we can finish the work by exhaustive
search in Cp. The entire algorithm takes time O(r + n/r),
so we set r = [\/n].

THEOREM 3.2. Given a conves polyhedron P with n ver-
tices and a point q, the nearest neighbor of q in P can be

found in O(y/n) time.

We can compute a related function by similar means.
Given a directed line ¢, consider an orthogonal system of
coordinates with ¢ as one of its axes (in the positive direc-
tion), and define £p(€) to be any point of P with maximum
f-coordinate. If we choose a point ¢ at infinity on £, then
&p(£) can be chosen as np(q), and so we can apply Theo-
rem 3.2. Another function we can compute in this fashion
maps a plane £ and a direction £ in £ to the furthest point
of P in £ along ¢: in other words, £p(L,£) = {pnc(f). We
summarize our results.

COROLLARY 3.3. Given a convez polyhedron P with n
vertices, a directed line £, and a plane w, the points £p(£)
and £p(m,£) can be found in O(y/n) time.

4. VOLUME APPROXIMATION

We seek to approximate the volume of a convex poly-
tope P. We proceed in two stages. First, we compute a
large enough enclosed ellipsoid, which we use to rescale P
affinely. This is intended to make P round enough so that
good Hausdorff distance approximation yields good volume
approximation. Second, we use a standard construction of
Dudley [14] to find, via the methods of the previous section,
an enclosing polytope of O(1/¢) vertices whose boundary is
at Hausdorff distance at most ¢ from P.

STAGE 1: We begin by computing, in O(y/n) time, a poly-
tope P’ C P, such that vol (P’) > ¢ vol (P) for some con-
stant ¢o > 0. Compute the six points £p(£), for £ = +x, ty,
+2. These points come in pairs, so let w1, w2 be the pair
forming the largest distance. Given a point w on the line £
passing through wi and w2, let P, denote the intersection
of P with the plane through w that is orthogonal to £. Let
wo be the midpoint of wiws (Figure 3). We first show that
if S is a set of points in P, such that

area (conv (S)) > cj area (Py,), (3)

for some constant ¢; > 0, then vol (conv (S |J{w1,w2})) >
cavol (P), for some other constant ¢z > 0. Therefore, we can
take P’ = conv (S|J{w1,w2}) to achieve our goal. Indeed,
assume we have such a set S. As a straightforward con-
sequence of Pythagoras’ theorem, we find that diam(P) <
V3 d(wy, ws); therefore, the orthogonal projection of P on
L is a segment v1vs D wiws of length at most /3 d(w1, w2).
This implies that, for any w in £, area (P,) < 2v/3 area (Py,).
To see why, observe that if, say, w € viwo, then, by con-
vexity, P, is enclosed in the cone with apex w> and base
P,,. Therefore, P, lies in a copy of P,, scaled by at most
d(vo, w2)/d(wo, w2) < 2v/3, which proves our claimed upper
bound on area (P,). Of course, the same argument can be
repeated if w € wova. Because vol (P) = [)* area (Py) dw,
we can conclude that the 4 quantities

vol (P), vol (conv (Py, U {v1,v2})),

vol (conv (Py, U {w1,w2})), vol (conv (S U {wi,ws2}))

are all equal up to within constant factors.
We now show how to find a set S satisfying (3). Let a,b
be two mutually orthogonal vectors both normal to £, and



z

1
A ﬂ
Figure 3: Approximating P from within.

let 21, 22, 23, 24 be the four points £p(€), for £ = a, —a, b, —b.
We define t; = woz, — ui, where u; is the projection of woz;
on L. Now, for 1 =1,2,3,4, we compute the intersection of
OP with the line passing through wo with direction ¢;. This
gives us four points on the boundary of P,,. Let s denote
the furthest one from wo. It can be shown that d(wo,s)
is a constant-factor approximation of diam(Py,). Pick the
midpoint m of wos, and compute the intersection of 9P with
the line in P, passing through m with direction normal to
wos, which gives us two points mi, mz. We omit the proof
that the quadrilateral with vertex set S = {wo, s, m1, m2}
has an area at least proportional to area (P,), and thus
satisfies (3). We note that a similar approach to the one we
described above was used by Barequet and Har-Peled in [4].
The difference is that they approximate the volume of a
convex polytope from outside by a bounding box, whereas
we approximate it from within.

Let £ be the largest ellipsoid enclosed in conv (P’), also
known as the Lowner-John ellipsoid. It is computable in
constant time within any fixed relative error by solving a
constant-size quadratic program [17]. As is well known, its
volume is at least (1/dim)? times that of the enclosing poly-
tope; therefore,

vol (&) > % vol (P') > c-vol (P),

for some constant ¢ > 0. Make the center of the ellipsoid the
origin of the system of coordinates, and use the ellipsoid’s
positive semidefinite matrix to rescale P. To do that, we
consider the linear transformation that takes the ellipsoid
into a ball of the same volume. Specifically, if zT AT Az < 1
is the equation of the ellipsoid, then we consider the trans-
formation T = A/(det A). The polytope TP has the same
volume as P, but it is round, namely it contains a ball B
of volume in Q(vol (T'P)). Thus, we might as well assume
that P has this property to begin with. Note that P is also
enclosed in a concentric ball B’ that differs from B by only
a constant-factor scaling. (If not then T'P would contain a
point p so far away from B that the convex hull of p and
B, although contained in P, would have volume much larger
than vol (B) and hence vol (P), which would give a contra-
diction.) Finally, by rescaling we can also assume that P is
enclosed in the unit ball and its volume is bounded below
by a positive constant. By Corollaries 2.2 and 3.3, all of the
work in Stage 1 can be done in O(y/n) time.

STAGE 2: We implement Dudley’s construction [14] of a con-
vex polytope @ such that: (i) Q@ D P; (ii) Q@ C P., where
P. is the Minkowski sum of P with a ball of radius ¢; (iii)

Q@ has O(1/e) vertices. Dudley’s result was used construc-
tively in [2]. The difference here is that our implementation
is sublinear. We compute an /e-net on the unit sphere,®
and project this net down to 0P, using the nearest-neighbor
function np as a projection map. Finally, we form () as the
intersection of the O(1/¢) halfspaces bounded by the ap-
propriate tangent planes passing through the vertices of the
projected net. With suitable use of the nearest neighbor
algorithm of Theorem 3.2, we can implement the entire con-
struction in time O(e~*/n ) for the projection construction
(since the facial representations of P and TP are the same,
the algorithm can use T'P as though it had its full facial
representation at its disposal) and O(¢™*loge™') for inter-
secting the halfspaces needed to form @Q. Since we can ob-
viously assume that @ does not have more vertices than P,
there is no need for € to be smaller than, say, 1/n*. This im-
plies that the entire construction time is in fact O(e~*v/n).
Because of (i) and (ii), vol (@) = (1 + O(e))vol (P).

We sketch a proof: Recall that P is “sandwiched” between
two concentric balls B and B’ such that rad(B’) = 1 and
rad(B) = Q(1). We assume that B and B’ are centered at
the origin. We define a polytope P as follows: for each
face f of P, let f be the plane parallel to f that avoids the
interior of P, such that the distance between f and f is
e. Let Hy be the halfspace bounded by £ that contains P.
Then P} = NsepHy. It is easy to show that Q C P. C P,
On the other hand we can show, using elementary geometry
and the fact that B C P C B’, that P, C (1 + O(¢))P.
This shows that vol (Q) < vol (P:) = (1 + O(g))vol (P).

THEOREM 4.1. Given any € > 0, it is possible to approz-
imate the volume of an n-verter convexr polytope with arbi-
trary relative error € > 0 in time O(e~'y/n).

5. APPROXIMATE SHORTEST PATHS

Given a convex polyhedron P with n vertices and two
points s and t on its boundary 0P, find the shortest path
between s and t outside the interior of P. It is well known
that the shortest path lies on the boundary OP. In fact, it
is easy to construct instances where any reasonable approxi-
mation of the shortest path on OP involves Q(n) edges. This
rules out sublinear algorithms, unless we are willing to fol-
low paths outside of P. We show how to compute a path
between s and t whose length exceeds the minimum by a
factor of at most 1 + ¢, for any £ > 0.

Our algorithm relies on a new result of independent in-
terest. Let dp(s,t) denote the length of the shortest path
between s and ¢ in P. Given a point v € 0P, let H, be the
supporting plane of P at v (or any such plane if v is a ver-
tex), and let H; denote the halfspace bounded by H, that
contains P. Given € > 0, we say that a convex polytope Q
is an e-wrapper of P if: (co is an absolute constant discussed
below.)

(i) @ encloses P;

(ii) the Hausdorff distance between P and 0Q is O(e diam (P));

(iii) given any s,t € AP such that dp(s,t) > codiam(P),
dg(s,t) < (1+¢e)dp(s,t), where Q = QN HS N H;'.

3This is a collection of O(~1) points on the sphere such that any
spherical cap of radius /¢ contains at least one of the points.



LEMMA 5.1. Any convex 3-polytope has an e-wrapper of
size O(1/¢)**, for any e > 0.

This result improves on the O(1/€)%/2 bound of Agarwal
et al. [2]. The use of a wrapper is self-evident. First, we
clip the polytope to ensure that dp(s,t) > co diam (P) (Sec-
tion 5.1). Next, we compute an e-wrapper (Section 5.2) and
approximate the shortest path between s and ¢ by comput-
ing the shortest path between the two points in BQ. This
can be done in quadratic time by using an algorithm by
Chen and Han [7]. The resulting path, which is of length
(1 + O(e))dp(s,t), can be shortened to (1 + £)dp(s,t) by
rescaling & suitably. Note that in (iii) the condition on s
and t being sufficiently far apart is essential. It is a simple
exercise to show that no variant of a wrapper can accom-
modate all pairs (s,t) simultaneously. If f(n) denotes the
complexity of the eract version of problem, then we have,

THEOREM 5.2. Given any € > 0 and two points s,t on the
boundary of a convex polytope P of n vertices, it is possible
to find a path between s and t outside P of length at most
(1+¢)dp(s,t) in time O(e~%/*y/n) + f(e75/4).

We refer the reader back to the introduction for a discus-
sion of the implication of this result in view of the state-of-
the-art on the function f(n).

5.1 Computing Short Paths

Given two points s,t € 0P, our first task is to ensure that
dp(s,t) > co diam (P), for some constant co > 0. To do
this, we first compute a value § such that § < dp(s,t) < 84.
We will substitute for P the intersection P’ of P with a box
centered at s of side length 166. Obviously, the shortest
path between s and ¢ relative to P and P’ are identical.
The only computational primitive we need is the nearest
neighbor function of Theorem 3.2. It is clear that if we can
compute the function relative to P, then we can do it with
respect to P’ with only constant-time overhead.

To compute a constant-factor approximation for dp(s,t),
we adapt an algorithm of Har-Peled [18] to our sublinear
setting. All that is needed is an implementation of the fol-
lowing primitive: Given two rays 71,72 from a fixed point
p € P, let H be the plane spanned by these two rays and let
C denote the two-dimensional cone in H wedged between 71
and ry. Given an additional query ray r € H (not necessar-
ily emanating from p), we need to compute écnp(H,r). By
Corollary 3.3, this can be done in O(y/n) time.

5.2 The e-Wrapper Construction

Assuming without loss of generality that diam (P) =1, it
suffices to prove the following:

THEOREM b5.3. Given any € > 0 and a convex polytope P
of n vertices, there exists a convez polytope Q with O(e~%/*)
vertices such that: (i) Q D P; (ii) the Hausdorff distance
between OP and 0Q is O(g); and (iii) given any s,t € OP
such that dp(s,t) > co for some constant co, dp(s,t) <

(1+0(e))dp(s,t), where Q = QN HF N H;.

We first show how to construct Q. Let S be a sphere
of radius 2 centered at some arbitrary point in P. Draw a
grid G of longitudes and latitudes on S, so that each cell
is of length /€ by \/€ (with an exception made for the last
latitude and longitude, if \/€ does not divide 7). All lengths

—

Ve

Figure 4: The grid G.

in this discussion are Euclidean, ezcept in this case where
the length of a circular arc refers to its corresponding angle.
We choose a parameter A = £%/* and subdivide each side
of a cell into sub-arcs of length A (Figure 4). In this way
each cell has O(y/g/)) vertices, and the whole construction
defines a set V of O(1/\\/€) vertices. For each point v € V,
we compute np(v), its nearest neighbor in 0P, and define

Qzﬂ{H:p(vﬂUEV}- (4)

It is immediate from our choice of A that Q has O(e~%/%)
vertices. Every point of the sphere S has at least one vertex
of G at distance O(y/€). By a result of Dudley [14], this
implies part (ii) of Theorem 5.3. Since (i) is obvious, it
remains for us to prove (iii).

Borrowing terminology from Agarwal et al. [2], we say that
a pair (o, H) forms a supported path of P if o = p1,q1,p2,92,. . .,
Gm—1,Pm is a polygonal line disjoint from the interior of P
and ‘H = Hp,,...,Hp,, is a sequence of supporting planes
of P, such that ¢;—1p; and p;g; both lie in H,,,, with go = p1
Gm = pm (Figure 5). For 0 < i < m, the folding angle a;
at ¢; is the dihedral angle of the wedge between H,, and
H,,,, (the one outside P). The folding angle of o is defined

as a(0) = Y ocicm -

LEMMA 5.4. (Agarwal et al. [2]) Given s,t € OP, there
exists a supported path o of P with O(1/e) edges, joining s
and t, such that:

dp(s,t) <|o| < (14€)dp(s,t) and  a(o) =0 /?).

To help build intuition for the remainder of our discus-
sion, it is useful to sketch the proof of the lemma. Mapping
the grid G to P via the nearest neighbor function np cre-
ates a grid np(G) on OP (with curved, possibly degenerate
edges). It is convenient to think of P as a smooth manifold
by infinitesimally rounding the vertices and edges. It does
not much matter how we do that as long as the end result
endows each point p € JP with an (outward) unit normal
vector 7, that is a continuous function of p. Note that in
this way, for any u € S, the vectors unp(u) and 7, () are
collinear, and the function mp is a bijection. The funda-
mental property of the nearest-neighor function is that it is
non-expansive. We need only a weak version of that fact,
which follows directly from Lemmas 4.3 and 4.4 in [14].

LEMMA 5.5. (Dudley [14]) Given two points p,q € OP,
lpa| and Z(np,ng) are both in O(|np"' (P)np' ()])-

This implies that, for any two points p,q € OP in the
same cell of the mapped grid np(G), both |pq| and Z(np,nq)



Figure 5: The path o.

are in O(y/e). We shortcut the shortest path on P from
s to t to form a supported path o that passes through each
cell at most once. In this manner, we identify O(1/¢) points
Pi,-..,Pm on OP, where p; (resp. pi+1) is the entry (resp.
exit) point of the path through the i-th cell in the sequence.
The points p;’s lie on the edges of np(G). There are two
exceptions, p1 = s and p,, = t, which might lie in the in-
terior of the cell. Next, we connect each pair (p;,pi+1) by
taking the shortest path on Hj,, U Hp, ,. The path inter-
sects Hp, N Hy,,, at a point denoted g;. (Note that g; might
be infinitesimally close to p;.) This forms a supported path
o with O(1/¢) vertices s = p1,q1,P2,42, - - ydm—1,Pm = t.
The only real difference with the proof in [2] is that we
skip the final “trimming” step and keep the points p;’s un-
changed. We mention two useful, immediate consequences
of Lemma 5.5.

e The folding angle at ¢; is O(y/€).

e For each 1 < i < m, the point p; belongs to P and,
for 1 # 1, m, there exists a point w; = np(v;), where
v; € V, such that both |p;w;| and Z(np,;,Nw;) are in
o).

From o we build a curve ¢’ of length (14 O(¢))|o| that joins
s and t outside the interior of Q. The classical result below

shows that the shortest path on 8@ from s to ¢t cannot be
longer than o', which proves Theorem 5.3.

THEOREM b5.6. (Pogorelov [26]) Given a convezx body
C, let v be a curve joining two points s,t € OC outside the
interior of C. Then the length of v is at least that of the
shortest path joining s and t on 0C.

We now explain how to construct o’. For 0 < i < m,
let (pi,mp;) and (g, 7p;) be the rays emanating from p; and
¢i, respectively, in the direction normal to Hp, away from
P. Together with the segments p;q; and ¢;pi+1, the four
rays (pi, Mo; ), (Qis s )5 (qi:npi+1): and (pi+1:7]m+1) define a
polyhedral surface 3;, which consists of two unbounded rect-
angles, ¥! and =2, joined together at ¢; by an unbounded
triangle, ¥? (Figure 6). Note that the surface is in general
nonplanar but X7 is always normal to the line H,, N Hy, ;.
Out of ¥; we carve a polyhedral strip S; as follows. Fix a
large enough constant ¢ > 0, and let K; denote the plane
H,, + c\’1p,. In other words, K; is a parallel copy of Hp,
translated by ¢A? away from P: As usual, the superscripted
K" denotes the halfspace enclosing P. Recall that w; is the
nearest neighbor of v; defined earlier. We need to consider

Si=%in {(K;r NEK& ) UHE N Hj,m)}.
Again, we have two exceptions for ¢ = 1,m — 1, where we
use H;'l instead of HJ,'I and H;'m instead of Hj,'m.

Figure 6: The curve o,.

Z

Hp
Figure 7: How H, intersects the zz plane.

Let p;p; be the edge of S; incident to p; collinear with
Np;- We denote by o the portion of 8S; between p; and
Pi+1, and define o’ as Uy ;,, 0i- To provide a connection
to s and t, we also add to o' the segments p1p} and pmpi,.
To show that o’ is a connected curve outside the interior of

Q of length (1+ O(g))|o| requires a simple technical lemma.

LEMMA 5.7. Given an orthogonal system of reference
(0, zyz), assume that P is tangent to the zy plane at O and
lies below it. Given a point p on P, if Inp" (O)ny'(p)| < 4,
for some small enough § > 0, then the intersection of Hp
with the xz plane has for equation, Z = aX + b, where
la] = O(8) and 0 < b= O(6%).

PrROOF. By Lemma 5.5, the normal to H, forms a small
angle § = O(4) with the z axis, so the plane H,, being
nonparallel to the z axis, can be expressed as Z = aX +
c¢Y +b. The cross product between the normal (a,c,—1)
and the z-axis vector is the vector (c,—a,0). By the cross
product formula, its length, which is v/a? + ¢2, is also equal
to Va2 + ¢2 + 1 sind. Tt follows that a® + ¢* = O(a® + % +
1)é2; therefore,

0(6?)
1—-0(8?)
and hence |a| = O(d). By convexity of P, the plane H,
intersects the nonnegative part of the z axis, and p., the z

coordinate of p, is nonpositive. By (5) and |Op| = O(4), it
follows that

0 <b=p. —ap. —cpy < Va® +c2/p} +p} = O(5%).

O

2 2
a” +c =

=0(8"), (5)

We examine each o] separately, omitting the cases i =
1,m — 1, which are trivial modifications of the general case



1 < i < m—1. The curve g; lies outside the interior of
H;",'i N H{L‘Hl and hence of Q. It is naturally broken up
into three parts, ag - E{: (j = 1,2,3), each one of them
being a polygonal curve whose edges lie in any one of four
planes: K;, K11, Hy,;, and Hy,, ,. Applying Lemma 5.7

with (pi,m,pipi) in the role of (O, z, z) and w; in the role
of p, we find that H,,, intersects the segment p;pj, for ¢ large
enough; similarly, H,, , intersects Pi+1Piy1. This shows
that p} is the intersection of the ray (p;,n,;) with the plane
K;; therefore, pj is the same point in the definition of o} and
o;_1, thus proving that the curve ¢’ is, indeed, connected.
(The danger was having p; defined by Hu,,,.) We now
bound the length of o;.

e By Lemma 5.7 the slopes of the edges of o} are chosen
among: 0 for K;; O(v/€) for Ki+1; O(X) for H,,; and
O(y/e) for Hy,,,. It follows that |o}| < |piq:|/ cos¥,
where § = O(y/€); therefore, |o}| = (1 + O(¢))|pigil-
The same argument shows that |o?| = (1+0(¢))|gipi+1]-

e Let ¢}, ¢/ be the endpoints of the curve o7 (Figure 6),

and let a,a’, b, b' be the distances along the ray (gi, 7p;)
from g; to Ki, Kit+1, Hu,, and Hy,,, respectively. By
definition of S;,

lgigi| = ma.x{ min{a,a’}, min{b, '} }

Obviously, a = cA? and, by Lemma 5.7, b = O(\|p;q;|+
A?). This implies that |g;q}| = O(A|pigs| + A?) and, by
the same argument,

|ligi| + |aigi’ | = ON(|pii| + |@ipis1]) + A®).

Within X2, the curve o7 is a polygonal line consisting
of at most a constant number of edges. It is easy to
see that for any vertex v of ¢ (including ¢} and ¢}'),
the angle between g;v and edges of o7 incident to v is
w/2 £ O(y/€). This follows from a simple geometric
observation: given any plane H whose normal makes
with ¢;v an angle at most «, the angle formed by g;v
and any line on H lies in the range [7/2 —a, 7/2 + a].
Since any of the edges of o7 lies on one of four planes:
K;, K11, Hy, and Hy, ,, and the normal of each
of them makes an angle of O(y/€) with g;v, the claim
follows. Because the folding angle of O(4/2) can be
assumed to be less than, say, 7/2, this implies that
the curve o7 lies entirely at a distance O(|q:q}|+|q:q}'|)
from g¢;. It follows that |o?| = O(|qid}| + |¢:d!|) /=

Putting everything together we find that
lo%] = (1 + O(e) + OAWE))(Ipigi| + laspi+a]) + ON*VE).

In view of the fact that |p1p}| = |Pmph.| = cA?, summing up
over all |oj|’s (there are O(1/¢) of them),

' (14 0(e) + O(\WE)) o] + O(N*/E)

(14 0O(e))|a| + O(e)

(14 0(e))lal,

which completes the proof of Theorem 5.3. Note that the

setting of X is made to ensure that the additive term O(\?/+/€)
is O(e). O

|o
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