

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 1 of 22

Miscalculating Area and Angles of a Needle-like Triangle

(from Lecture Notes for Introductory Numerical Analysis Classes)

Prof. W. Kahan

§0. Abstract:

This case study drawn from an elementary numerical analysis course is aimed at computer language designers and
implementors who took no competent course on the subject or forgot it and consequently subscribe to principles of
language design inimical to the best interests of writers and users of software with a little floating–point arithmetic
in it. Though triangles rarely matter to computer language designers and implementors, recollections of their high–
school trigonometry and calculus will enable them to follow the discussion, which is intended primarily to expose
and correct common misconceptions. The first of these is that classical trigonometric formulas taught in schools
and found in handbooks and software must have passed the Test of Time. Actually they have withstood it; they
are unnecessarily inaccurate, sometimes badly, for some data some of which is unexceptionable. Better formulas
are supplied here. Even if these are impeccably accurate and cost no more than the classical formulas they should
supplant, the expectation that the better formulas will supplant the worse is based upon misconceptions too (see
pp. 5, 9, 16 and 21). Other misconceptions addressed herein (on indicated pages) are …
 • That subtractive cancellation always causes numerical inaccuracy, or is the only cause of it. (3, 5)
 • That a singularity always degrades accuracy when data approach it. (4, 5, 7, 8, 10, 12-16)
 • That algorithms known to be numerically unstable should never be used. (10)
 • That arithmetic much more precise than the data it operates upon is pointless. (7, 9-12, 14, 17-21)
 • That modern “ Backward Error–Analysis ” explains everything, or excuses it. (12, 14-17)
 • That bad results are due to bad data or bad programmers, never to a programming language. (9-12, 18-20)
Misconceptions like these hinder programming languages from conveying to owners of by far the majority of
computers now on desk–tops the benefits of their hardware’s superior floating–point semantics. (9-11, 19-20)

Contents:

§1. Classical Formulas for Area

∆

 and Angle C page 2
§2. How to compute

∆

 3
§3. How to compute C 3
§4. Why Cancellation Cannot Hurt 3
§5. Examples 4
 Table 1: Area

∆

 and Angle C 4
§6. Opposite Side c and Adjacent Angle B 5
§7. How to compute c 5
§8. How to compute B 5
§9. How Accurate is B ? 7
 Table 2: Angle B , New Formula B(…) vs. Classical B

S

(…) 7
 Table 3: Uncertainty

∂

B due to Roundoff æ 9
§10. Must the Classical Formulas be Amended ? 9
 Table 4: Formats of IEEE Standard 754 for Binary Floating-Point Arithmetic 9
§11. What Extra Precision Does for B 11
§12. How Much Accuracy do Data Deserve ? 12
§13. A Triangle is an Object 13
 Table 5: Side c , c

b

(a,A,b) vs. c

B

(a,A,B(a,A,b)) 13
§14. Three Caveats and a Picture 14
§15. Proper Precision Management 18
§16. Different Floating–Point Semantics 19
§17. Conclusion 21
§18. Acknowledgments and Bibliography 22
§19. Footnote about Examples 22

This document was created with FrameMaker 4 0 4

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 2 of 22

Miscalculating Area and Angles of a Needle-like Triangle

(from Lecture Notes for Introductory Numerical Analysis Classes)

Prof. W. Kahan
Math. Dept., and E. E. and Computer Sci. Dept.

University of California, Berkeley CA 94720-1776

Readers who do not enjoy reading mathematical formulas may skip to §10 on page 9 after reading this page.

§1. Classical Formulas for Area

∆

 and Angle C :

Given the side–lengths a, b, c of a triangle, classical trigonometric formulas determine its area

∆

 :=

√

(

s (s-a) (s-b) (s-c)

)

 , where s := (a+b+c)/2 ,
(this formula goes back two millennia to Heron of Alexandria) and determine the angle

C := arccos

(

 (a

2

 + b

2

 - c

2

)/(2ab)

)

 = 2 arctan(

√

(

 (s-a) (s-b)/(s (s-c))

)

)
opposite side c . However, rounding errors can undermine the relative accuracy of formulas
like these so badly as to invalidate them computationally whenever the triangle is too nearly like
a needle,— that is, whenever some two sides add up to scarcely more than the third. For
instance, when c is very tiny compared with a and b , which must then be very nearly equal,
roundoff in s can be almost as big as c , and then (s-a) and (s-b) can be left relatively
inaccurate after cancellation; then too, the argument of arccos(...) can be so near 1 that its
roundoff causes a relatively big error in its tiny computed value C . Examples appear below.

Another defect in the formulas above is their occasional failure to warn when data, for example
a = -3 , b = 4 and c = 2 ,

violate the constraints that ought to be satisfied by the sides of a real triangle, namely
0

≤

 a

≤

 b+c and 0

≤

 b

≤

 c+a and 0

≤

 c

≤

 a+b .
Such a defect seems easy to cure, but roundoff can obscure borderline cases if it is ignored.

One purpose of this article is to exhibit better formulas that warn when the data cannot be side–
lengths of a real triangle and whose results otherwise are correct to almost as many significant
figures as the computation carries regardless of the triangle’s shape. These formulas work well
on almost all computers and calculators, including all IBM mainframes, all North American
personal computers and workstations, and all HP calculators. (CRAY’s X-MPs to J90s are
the exceptions for lack of a guard digit during subtraction.) But our better formulas get little use
partly because they contradict a few common misconceptions about roundoff in floating-point:
one is that cancellation is

always

 bad news; another is that a singularity, near which small
changes in input data can drastically change a desired result,

always

 degrades accuracy.

Besides exhibiting better formulas, this article explains why they are correct despite roundoff,
and displays numerical results obtained from programs on an HP-15C shirtpocket calculator.

a

b cA

C B∆

A Needle-like Triangle

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 3 of 22

§2. How to compute

∆

 :

First sort a, b, c so that a

≥

 b

≥

 c ; this can be done at the cost of at most three comparisons.
If c-(a-b) < 0 then the data are not side-lengths of a real triangle; otherwise compute its area

∆

 : =

√

(

 (a+(b+c)) (c-(a-b)) (c+(a-b)) (a+(b-c))

)

 .

Do not remove parentheses from this formula! It will not give rise to

√

(< 0) .

§3. How to compute C :

If necessary, swap a and b so that a

≥

 b . Then perform two more comparisons to decide
whether and how to compute an intermediate quantity

µ

 thus:
If b

≥

 c

≥

 0 then

µ

 := c-(a-b)
elseif c > b

≥

 0 then

µ

 := b-(a-c)
else the data are not side–lengths of a real triangle.

If

µ

 has been computed, attempt to compute angle
C := 2 arctan(

√

(

 ((a-b)+c)

µ

/

((a+(b+c))((a-c)+b))

)

) .
Once again, do not remove parentheses. Now

√

(< 0) will be encountered if and only if the
side–lengths do not belong to a real triangle. Division by zero may be encountered; if so,

arctan(positive/0) = arctan(+

∞

) =

{

+

π

/2 or 90˚

}

 is well–determined but arctan(0/0) is

NaN

(

N

ot-

a

-

N

umber) and deemed undeterminable.

§4. Why Cancellation Cannot Hurt:

It is not hard to prove that if p and q are two of a computer’s floating–point numbers, and if
1/2

≤

 p/q

≤

 2 , then p-q is a floating-point number too, representable exactly in the computer,
unless it underflows. But we shall ignore spurious over/underflow phenomena since we can
evade them by scaling the data in all but the most extreme cases. And we shall assume that
when p-q is exactly representable as a floating-point number then subtraction will deliver that
value exactly, as it does on all but a few aberrant machines like CRAY X-MPs. Therefore
cancellation in p-q introduces no new error that was not already present in p and q . We shall
find that no error is already present when cancellation occurs in our formulas for

∆

 and C , so
cancellation cannot hurt their accuracy.

∆

 and C depend upon four factors each of the form x

±

 (y

±

z) ; if we prove that each factor is
accurate to within a unit or two in its last significant digit carried, then we shall conclude easily
that

∆

 and C must be accurate to within a few units in their last digits. The factors fall into
two classes: Some are sums of two positive quantities each accurate to within a unit in its last
digit; each such sum must obviously be accurate to within a unit or two in its last digit. The
other factors are differences between two positive quantities each of which we shall show to be
exact, so these factors will turn out to be accurate to within a unit in the last digit too. And then
the factors must all be non–negative whenever the data satisfy the constraints that ought to be
satisfied by the side-lengths of a triangle, as we shall henceforth take for granted for the sake of
argument.

1
4

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 4 of 22

Let us consider the factor

µ

 := {c-(a-b) or b-(a-c) according as b

≥

 c or not} . If b

≥

 c
then c

≤

 b

≤

 a

≤

 b+c

≤

 2b , so (a-b) must be exact. If b < c then either a < c , in which case

µ

 is an accurate sum of two positive quantities, or else a

≥

 c and then b < c

≤

 a

≤

 b+c < 2c ,
in which case (a-c) must be exact. In all these cases,

µ

 must be accurate within a unit or two
in its last digit, as claimed. Similar reasoning copes with the factor (a-c)+b in the formula for
C , and with the factor c-(a-b) in the formula for

∆

 . All the other factors are sums of positive
quantities.

When the data are not side-lengths of a real triangle, attempts to calculate

∆

 or C encounter a
negative factor that can be proved correctly negative despite roundoff even if it is inaccurate.

§5. Examples:

Table 1 below exhibits, for each set of data a, b, c, the values of

∆

 and C calculated on an
HP-15C into which was programmed (with full respect for parentheses) the formulas

∆

' :=

√

(

 s (s-a) (s-b) (s-c)

)

 after s := ((a+b)+c)/2 ,

∆

 :=

√

(

 (a+(b+c)) (c-(a-b)) (c+(a-b)) (a+(b-c))) after sorting a ≥ b ≥ c etc.,

C" := arccos(((a2 + b2) - c2)/(2ab)) ,
C' := 2 arctan(√((s-a) (s-b)/(s (s-c)))) after s := ((a+b)+c)/2 , and
C := 2 arctan(√((c+(a-b)) µ/((a+(b+c))((a-c)+b)))) after µ := c-a+b etc.

Digits known to be wrong are displayed bold. The HP-15C carries ten significant decimal
digits. The formulas for ∆ and C were also programmed in BASIC into an HP-71B , which
carries twelve significant digits, to confirm that the HP-15C calculated its values of ∆ and C
(in degrees) correctly to at least nine significant digits.

Table 1: Area ∆ and Angle C

a b c Heron’s ∆' Accurate ∆ C" ˚ C' ˚ Accurate C ˚

10 10 10 43.30127019 43.30127020 60 60 60

-3 4 2 2.905 Error 151.045 151.045 Error

100000 99999.99979 0.00029 17.6 9.999999990 0 2.02E-7 1.145915591E-7

100000 100000 1.00005 50010.0 50002.50003 0 5.73072E-4 5.72986443E-4

99999.99996 99999.99994 0.00003 Error 1.118033988 0 Error 1.281172578E-8

99999.99996 0.00003 99999.99994 Error 1.118033988 48.18968509 Error 48.18968510

10000 5000.000001 15000 0 612.3724358 180.000 180.000 179.9985965

99999.99999 99999.99999 200000 0 Error 180 180 Error

5278.64055 94721.35941 99999.99996 Error 0 Error Error 180

100002 100002 200004 0 0 Error 180 180

31622.77662 0.000023 31622.77661 0.447 0.327490458 90 70.5 64.22853824

31622.77662 0.0155555 31622.77661 246.18 245.9540000 90.00 89.963187 89.96315276

a b c Heron’s ∆' Accurate ∆ C" ˚ C' ˚ Accurate C ˚

1
4

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 5 of 22

§6. Opposite Side c and Adjacent Angle B :
Two more formulas for other elements of a triangle are discussed below. One formula computes
the length of side c opposite angle C . The other formula computes angle B given two sides
a and b and non–included angle A . The formulas usually printed in texts and handbooks
(like pp. 341-2 & 354 of Math. Tables from Handbook of Chem. and Phys. 11th ed. (1959)
Chem. Rubber Publ., Cleveland) become numerically inaccurate under certain circumstances.
Better formulas are presented below.

§7. How to compute c :
If c is too much smaller than a and b , roundoff spoils the usual textbook formula for side–

length c := √(a2 + b2 - 2 a b cos C) . A small change turns it into an always accurate formula

c := √((a-b)2 + 4 a b sin2(C/2)) .

§8. How to compute B :
Given two sides a and b and a non–included angle A between 0 and 180˚ , texts usually
invoke the “ Law of Sines,” sin(B)/b = sin(A)/a , to obtain the other non–included angle

B := arcsin((b/a) sin A) .
But this is sometimes ambiguous; when A < 90˚ and a < b , this other angle could as easily
be 180˚-B as B . And no other non–included angle B exists at all when either

a < b sin A and A ≤ 90˚ , or a < b and A ≥ 90˚ ;
in the latter case the foregoing formula for B can produce a plausible but spurious result. Since
no subtractive cancellation can occur in it, the formula’s ability to lose accuracy may come as a
surprise. It can lose up to half the figures carried when B is too close to 90˚ . Some of that
loss is avoidable when A is close to 90˚ too, but only by the use of a better procedure. The
idea behind a better procedure is to select, in a data–dependent way, the least inaccurate from a
list of algebraically equivalent but numerically non–fungible formulas like these:

BS(a,A,b) := arcsin((b/a) sin A) ;

BT(a,A,b) := A + 2 arctan((b-a)/((a/tan A) + √((a/tan A)2 - (b-a)(b+a)))) ,
 := 0 if A = 0 , regardless of a ;

BC(a,A,b) := arccos(√((b cos A)2 + (a-b)(a+b))/a) ;

A selection is effected by the following conditional assignments:

B2(A,X) := if A > 90˚ then NaN else the pair of angles { X , 180˚ - X } ;

Bb(a,A,b) := if b-a < a then BT(a,A,b) else BS(a,A,b) ;

BA(a,A,b) := if (A ≥ 90˚ and (b/a) sin A ≥ 0.756) then BC(a,A,b)
else if (A < 90˚ and (b/a) ≥ 0.756) then BT(a,A,b) else BS(a,A,b) ;

B(a,A,b) := if a < b then B2(A, Bb(a,A,b)) else BA(a,A,b) .

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 6 of 22

Why the final selection B(…) is better than the first for calculating B takes a lot of explaining
of which only a little will be done here. First switch from degrees to radians (π radians = 180˚)
to make derivatives simpler; only the constants 30˚ , 90˚ and 180˚ have to be replaced by
π/6 , π/2 and π above. Then let æ stand for any tiny positive quantity not much bigger than a
rounding error in a number near π/2 . On the HP-15C , which rounds to 10 sig. dec., æ is a

modest multiple of 5/1010 . On most computers and calculators a number roughly like æ can
be obtained from the expression |3(4/3 - 1) - 1| evaluated after “ 4/3 ” has been rounded to the
working precision of the machine’s floating–point arithmetic. We assume initially that æ is so
tiny that approximations like ∂ƒ := ƒ(x+∂x)-ƒ(x) ≈ ƒ'(x) ∂x obtained through the Differential
Calculus are satisfactory provided both ∂ƒ and ∂x are of the order of æ . Later this proviso
will be relaxed somewhat to accommodate perturbations ∂x of the order of √æ .

Because of roundoff, we expect the computed value of (b/a) sin A to be (1 ± æ)((b/a) sin A)
in formula BS ; then this formula would deliver B + ∂B := arcsin((1±æ) sin B) instead of B ,
with error ∂B ≈ ±æ tan B except for terms that are negligible so long as æ tan B << √æ . On
the other hand, when a > b formula BC delivers B+∂B := arccos((1±æ) cos B) , whence
∂B ≈ ±æ cot B ; this explains why formula BC is better when B is close to π/2 (or 90˚),
and BS is better when B is close to 0 . But internal cancellation degrades the accuracy of BC

when a < b , in which case its error turns out to be roughly ∂B ≈ ±æ cot2(A) tan(B) , which is
usually worse than the error in another formula BT .

When a ≤ b and A < π/2 (or 90˚), the error that formula BT suffers turns out to be
roughly ∂B ≈ ±æ sin(B-A) cos(A)/cos(B) . This is much smaller than the uncertainty in BS
when A is close to B or close to π/2 . When a ≥ b and A < π/2 the error that formula BT
suffers is about ±æ sin(A-B) , which is smaller than the uncertainty in BS provided B is not
much smaller than A . Because BT costs more to compute, it is used only when it is
substantially less uncertain than BS .

When a < b sin A within a few rounding errors, arcsin(> 1) occurs in BS and √(< 0) in BT
to signal that no angle B exists. Finally, B2(…) copes with cases when B(…) can take two
values B' and B" , or none. (Recall that “ NaN ” stands for “ Not a Number.”)

C

a

a

b
A

B'

B"

B = B' or B"

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 7 of 22

§9. How Accurate is B ?
Table 2 compares results from B(a,A,b) and the classical formula BS(a,A,b) , obtained on an
HP-15C carrying 10 sig. dec., with correct values of B computed carrying at least 30 sig.
dec. When B takes two values only the smaller is displayed. Data {a,A,b} has been selected
to show how narrow is the range of data at which the formulas in question lose accuracy more
than slightly. Digits known to be wrong are displayed bold; italicized values are anomalous.

Though more accurate than BS(…) , apparently B(…) can lose about half the figures carried.
This is the worst that can happen, and it happens only when A is noticeably less than 90˚ and
B is much nearer 90˚ , very nearly a double root of the equation sin(B)/b = sin(A)/a that B
must satisfy. This deterioration illustrates an important general principle:

Nearly double roots are much more sensitive than well isolated simple roots
 to perturbations like those due to roundoff.

Table 2: Angle B , New Formula B(…) vs. Classical BS(…)

a b A˚ True B˚ B(a,A,b)˚ BS(a,A,b)˚

3 17 10 79.73894317 79.73894326 79.73894326

3 17 10.16424862 89.99895044 89.9992 89.9992

0.9999999998 2 28 69.87481897 69.87481894 69.87481894

0.9999999998 2 29.9916 88.70873768 88.7087373 88.7087373

0.9999999998 2 29.99999999 89.99918045 89.9984 89.9984

0.9999999998 2 30 NaN 90 90

1 2 30 90 90 90

0.9999999999 1.999999999 30.00000001 89.99919909 89.9987 89.9991897

0.9999999999 1.999999999 30 89.99837943 89.9987 89.9982

0.9999999999 1.999999999 29.9916 88.70873615 88.70873600 88.70873604

0.9999999999 1.999999999 28 69.87481888 69.87481890 69.87481886

18817 21728 59.9 87.42569088 87.42569084 87.4256913

18817 21728 60 89.99695511 89.9971 89.9972

38620 38673 86.9 89.21861758 89.21861758 89.2186177

38620 38673 87 89.99935642 89.9993559 90.000

4.999999999 5.000000001 88.3 88.30000077 88.30000077 88.29999996

4.999999999 5.000000001 89.99827 89.99939448 89.99939448 89.99819

4.999999999 5.000000001 89.999007 NaN NaN 89.9992

5 5 89.999007 89.999007 89.999007 89.9992

8.000000001 7.999999999 89.999007 89.99837906 89.99837906 89.9986

8.000000001 7.999999999 90.000993 89.99837906 89.99837906 89.9986

8.000000001 7.999999999 91 88.99999918 88.99999918 88.9999995

8.000000001 7.999999999 5.739170509 5.739170508 5.739170508 5.739170512

a b A˚ True B˚ B(a,A,b)˚ BS(a,A,b)˚

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 8 of 22

When an equation ƒ(z) = 0 has a simple root z (which means that the derivative ƒ'(z) ≠ 0),
changing ƒ slightly to ƒ+∂ƒ changes z to a root z+∂z satisfying (ƒ+∂ƒ)(z+∂z) = 0 , whence

it follows that ∂z ≈ -∂f(z)/ƒ'(z) if ∂ƒ is tiny enough that terms of order (∂ƒ)2 can be ignored.
But when z is a double root (when ƒ(z) = ƒ'(z) = 0 ≠ ƒ"(z)) then, depending upon the sign
of ∂ƒ , equation (ƒ+∂ƒ)(z+∂z) = 0 has either no real root or two with ∂z ≈ ±√(2|∂ƒ(z)/ƒ"(z)|) .
If z is almost a double root, min{ |∂ƒ/ƒ'(z)|, √(2|∂ƒ/ƒ"(z)|) } turns out to be an approximation
of |∂z| adequate for our purposes.

Suppose ∂ƒ is due to roundoff, and therefore proportional to quantities like æ . Then the
error ∂z induced in a nearly double root cannot be bigger than something proportional to √æ ,
which explains why at most about half the figures carried to compute z can be lost. (Similarly
a nearly triple root could lose at most about two thirds the figures carried, and so on.)

Induced error ∂z can be diminished in only two ways. One carries more figures to reduce æ .
The other replaces “ ƒ(z) = 0 ” by an equivalent equation with the same root(s) z and smaller
rounding errors relative to its first and second derivatives. For instance, a double root of
“ ƒ(z) = 0 ” is a simple root of “ ƒ'(z) = 0 ” ; therefore a nearly double root z of “ƒ(z) = 0 ”
must make ƒ'(z) small. Whenever ƒ satisfies a known differential equation it can be used to
replace “ ƒ(z) = 0 ” by an equivalent equation “ ƒ'(z) = … ” with the same root z but with
possibly smaller rounding errors. Otherwise a better replacement for ƒ may be hard to find.

Such a replacement turns sin(B) = (b/a) sin(A) into cos(B) = √((a-b)(a+b) + (b cos(A))2)/a
advantageously when a/b exceeds 1 slightly and A is near 90˚ . This yields BC(a,A,b)
which, as we have seen, is then accurate in all but the last digit carried under circumstances
when the original equation’s BS(a,A,b) could lose up to half the figures carried.

Formula BT is harder to explain. It was found by a search for a formula that roundoff does not
prevent from honoring a well-known geometrical theorem: sign(B-A) = sign(b-a) . Whenever
b = a , such a formula must deliver B = A exactly despite roundoff. Neither BS nor BC can
do this for every A < 90˚ ; four instances where BS violates the theorem appear in italics in
the last column of Table 2. The simplest (not the first) formula found to fit the bill is BT .
Though complicated, it solves an equation tan((B-A)/2) = (b-a)/… whose rounding errors are
attenuated by a factor roughly proportional to |B-A| when it is small regardless of whether B
is nearly a double root, as it is when A is near 90˚ too. A double root’s proximity spoils BT
far less than it spoils our other two formulas when A < 90˚ and a/b is a little less than 1 .

Our three formulas’ uncertainties due to roundoff are summarized in Table 3 below, in which
æ stands for an unknown quantity not much (not five times) bigger than a rounding error in
numbers near π/2 . (To specify æ more precisely would require tedious attention to details.)
Combining the table with a little additional analysis leads to the following conclusions:

Classical formula BS(a,A,b) can be in error by
±(180˚/π) min{ æ tan(B) , √(2æ) } .

Better formula B(a,A,b) is in error only in its last digit when a ≥ b , and otherwise by
±(180˚/π) cos(A) min{ æ sin(B-A)/cos(B) , √æ } .

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 9 of 22

§10. Must the Classical Formulas be Amended ?
Despite their occasional vulnerability to roundoff, the classical trigonometric formulas for ∆,
C, c and B have served mankind for millennia without complaint. They are propagated by

popular software like MathCAD from MathSoft, Cambridge Mass. No text recommends
their replacement nor mentions the better formulas presented here. Why fix what ain’t broken?

Actually the classical formulas are broken, but so slightly as to escape notice in most instances.
These formulas’ defects afflict only extreme configurations:

• The triangle is too nearly degenerate — too needle-like — or
• The computed angle B is too nearly a right angle.

Such configurations arise infrequently, and when they do arise the formulas’ errors may still go
uncorrected for any of a number of reasons:
 • Erroneous results are difficult to notice without correct results for comparison.
 • Errors may be truly negligible if enough extra figures were carried during computation.
 • Errors may be deemed “ No worse than the data deserve ” because of a mistaken doctrine.
The last two reasons require explanation.

The accuracy of computation depends upon (and is usually less than) its “ precision,” which
is the number of digits carried when arithmetic operations get rounded off. Nowadays floating–
point numbers are stored in the memories of computers and calculators with a fixed number of
“ significant digits ” that depends upon the machine and, to a lesser extent, upon the kind of
software in use. For instance, the HP-15C calculator stores 10 sig. dec. Most computers’
hardware supports two or three of the standard binary floating–point formats named in Table 4
along with their wordsizes and precisions. The third format, unsupported by some computers,
may be inaccessible on others for lack of support by a programming language or its compiler.

Table 3: Uncertainty ∂B due to Roundoff æ

Formula Conditions ±(π/180˚) (∂B/æ)

B = BS(a,A,b) — min{tan(B) , √(2/æ)} (not used if B/A is near 1)

B = BT(a,A,b) a ≤ b & A < 90˚ min{sin(B-A)/cos(B) , 1/√æ} cos(A)

a ≥ b & A < 90˚ sin(A-B) (not used if B/A is too small)

B = BC(a,A,b) a < b min{cot2(A) tan(B) , ...} (never used)

a ≥ b cot(B) (not used if A < 90˚ or B < 49˚)

Table 4: Formats of IEEE Standard 754 for Binary Floating-Point Arithmetic

 Format Name in C Name in Fortran Wordsize Sig. Bits Sig. Dec. ≈ æ ≈
Single Precision: float REAL*4 4 Bytes 24 6 - 9 1.2/107

Double Precision: double REAL*8 8 Bytes 53 15 - 17 2.2/1016

Double-Extended: long double REAL*10 + ≥ 10 Bytes ≥ 64 ≥ 18 - 21 ≤ 1.1/1019

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 10 of 22

Today most programming languages match the precision to which arithmetic is rounded with the
precision to which arithmetic operands and results are stored in memory. This is not a Law of
Nature; it is a Rule of Thumb inherited from the era of slide rules and promoted to a Law of
Language by mistake. In the early 1960s, when compilers had to be simple to fit into the
small memories computers had then, compiler writers rationalized this over–simplified way of
evaluating expressions by misapplying pejorative terms like “ numerical instability ” and “ ill–
condition ” that were coming into vogue then. Rather than blame results spoiled by roundoff
upon the way compilers evaluated expressions, we were to blame bad results upon bad data or
bad algorithms. An algorithm stood convicted of numerical instability if it could be replaced by
a new algorithm at least about as fast and accurate as the old for all data, and good for all data
for which the old algorithm was bad. By this criterion, the classical formulas for ∆ , C and c
are unstable. Were no better algorithm known, the data could be convicted of ill–condition if
end–figure perturbations in the data changed at least the last several digits of correct results.
By this criterion, needle–like triangles are mostly ill–conditioned data for ∆ , C and c ; and
for B the ill–conditioned triangles are those that have too nearly a right angle at B .

How far can we trust a chain of reasoning that tells us to condemn right–angled triangles?

The chain has three weak links. First is the assumption that arithmetic precision should match
the precision of operands in memory. Actually arithmetic precision is a means to an end and
therefore should ideally be chosen with a view to its consequences: Choose enough precision,
from what is available with adequate speed, to obtain results of adequate accuracy from the
algorithm selected. Occasionally, as we shall see, the required arithmetic precision will exceed
the precision of operands in memory. When the required precision is too difficult to ascertain, a
prudent policy is to use the widest arithmetic precision available without much loss of speed.

The second weak link is the assumption that unstable algorithms should never be used. There is
some truth to this; many an algorithm is useless because it is too inaccurate for practically all
data. The classical formulas for ∆, C, c and B are different; they are excessively inaccurate
for a fraction of their data so tiny that most computer users will never encounter it and most of
the rest will never notice. It’s not an unusual situation. Gaussian Elimination without pivotal
exchanges is like that; it solves systems of linear equations, solving some quite inaccurately
though they are otherwise innocuous. This notoriously unstable algorithm is used anyway (and
not just to solve diagonally dominant systems known to be safe) whenever the computational
costs of pivotal exchanges would be too burdensome. Intolerable inaccuracy, detectable from
dissatisfied equations, occurs rarely because elimination is performed carrying rather more
precision than would suffice if pivotal exchanges were used; every additional decimal digit of
precision carried reduces the incidence of intolerable inaccuracy by a factor near 1/10 .

Similarly, the tiny fractions of their data for which the classical formulas for ∆, C, c and B
are intolerably inaccurate can be attenuated by carrying more digits during arithmetic operations.
The attenuation factor is typically 1/10 for every additional decimal digit of precision carried.
This factor depends upon three assumptions. One is that the data is distributed randomly and
not too nonuniformly. Second, the data’s distribution does not change when precision changes.
Third, inaccuracy arises from a cancellation–like singularity of the simplest and most common
kind but still too complicated to describe fully here. This third assumption is invalid for B .

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 11 of 22

§11. What Extra Precision Does for B :
Provided the data {a,A,b} is distributed in advance and not too nonuniformly, the fraction of
data for which the classical formula BS(a,A,b) is intolerably inaccurate shrinks by a factor near
1/100 (not 1/10) for every additional decimal digit carried during computation. Carrying

three extra decimal digits attenuates the fraction by a factor near 1/106 , and so on, until half
the precision carried exceeds both the data’s precision and the accuracy desired in the result.
Beyond that doubled precision, BS(a,A,b) delivers the desired accuracy for almost all data, all
except data less than a rounding error away from the boundary beyond which no real B exists.
The better formula B(a,A,b) enjoys the same rapid attenuation starting from a smaller fraction
of data. Since this rapid attenuation may come as a surprise, it deserves to be explained.

Revert again to radians instead of degrees, and suppose we wish to compute B with a tiny
error smaller than ß using classical formula BS(a,A,b) . Unless √(2æ) < ß already, the error

æ tan(B) is too big just when tan(B) ≥ ß/æ . This is tantamount to csc2(B) ≤ 1 + (æ/ß)2 and,
because sin(B) = (b/a) sin(A) ≤ 1 , places the data {a,A,b} into a region where

sin(A) ≤ a/b ≤ sin(A) √(1 + (æ/ß)2)

must be satisfied. This region’s width, and therefore its volume, approaches zero like æ2 ,
which explains the rapidity of attenuation. (A slightly messier argument leads to the same
conclusion for B(a,A,b) .) When half the precision of the arithmetic exceeds the precision of
the data and the desired accuracy, the error in BS(a,A,b) cannot be worse than √(2æ) < ß ,
which is small enough, unless the computed value (1 ± æ) (b/a) sin(A) > 1 ≥ (b/a) sin(A) in
which case the result will be an error message instead of B . This can occur only if one end–
figure perturbation in the stored data could render B nonexistent. (In some applications this
boundary case deserves to be detected and assigned the result B := π/2 (or 90˚) by fiat.)

The phenomenon just explained, attenuation of risk by 1/100 per extra decimal digit, occurs
more often than is generally appreciated, usually associated with nearly double roots and with
some optimization problems. Every extra decimal digit attenuates risk by 1/10 for most other
problems. Were such risk reduction appreciated more widely, naive numerical computation
might be less hazardous than it is now under current programming language standards.

For instance take the computer language C . In the 1970s this language evaluated all floating–
point expressions in double regardless of the formats, float or double, of arithmetic
operands. Doing so was easier and ran faster on the computer, a DEC PDP-11, on which C
was first developed. Programmers whose data and results were preponderantly floats were
mostly unaware of the extent to which C’s floating–point semantics all but guaranteed the
reliability of their computations. By the mid 1980s the dismal politics of computer language
standardization had undermined that reliability by allowing “ new ” semantics that forced the
precisions of arithmetic and operands to match. A few computers ran faster this way. Most
computers installed today, AMD–Cyrix–Intel–based PCs and Power-PC/Power-Macs and
old 680x0-based Macs, run faster the old way and get better results than when they are forced
to abide by the newer semantics. Numerical software, compiled to take full advantage of their
floating–point hardware, would run more reliably on these than on other machines. That may
happen some day if a proposed revision, C9X, to the ANSI C standard is ever adopted.

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 12 of 22

§12. How Much Accuracy do Data Deserve ?
We can eliminate the risk of inaccurate results from floating–point computation for a price:—
time. Time spent in thought, or time spent computing, or both. Before paying that price we
ought to compare it with the cost of inaccuracy. But the comparison, if nontrivial, tends to be
imponderable; whenever the the costs of inaccuracy and its elimination are both substantial they
can hardly ever be ascertained until after they have been incurred. Rather than embark upon
tedious computations or error analyses likely to cost more than their worth, we often fall back
upon ancient Rules of Thumb derived from simple answers to simple questions, perhaps too
simple. An example is …

“ Inaccurate data deserve appropriately inaccurate results.”

It looks simple, but it’s not. Inattention to its subtleties causes egregious errors to be deemed
“ no worse than the data deserve ” and innocuous data to be condemned as “ ill–conditioned.”
Logical and doctrinal mistakes like these have persuaded too many of us to acquiesce to ill–
advised decisions by designers of computer languages like Java. Hoping to help correct those
decisions, let us expose the mistakes that contributed to them. Our exposé begins with a
typical “ Backward Error Analysis.”

We have seen that the classical formula BS(a,A,b) := arcsin((b/a) sin A) can lose up to about
half the digits carried. How bad is that compared to the error B inherits from end–figure errors
in its data? The first line in Table 3 came from an assertion that the computed value B + ∂B
satisfies sin(B+∂B) = (1 ± æ) sin(B) in which æ is due to roundoff. To be precise, æ comes
from four rounding errors: one in the quotient b/a , one in sin(A) , one in the multiplication
of (b/a) sin(A) , and one in arcsin(…) . These errors can be treated as if they belonged to the
data by rewriting B + ∂B = BS(a+∂a, A+∂A, b+∂b) computed exactly from perturbed data

b+∂b := b √(1±æ) , so ∂b/b ≈ (±æ/2) ,
a+∂a := a/√(1±æ) , so ∂a/a ≈ -∂b/b , and
A+∂A := A , so ∂A = 0 .

The error due to roundoff in the classical formula BS(a,A,b) is no worse than if it
had been computed exactly from data {a,A,b} wrong in only their last digit stored.
Since data more accurate than that are too good to expect, the improved formula
B(a,A,b) is overkill; its better accuracy is better than the data deserve, and all the
more so if extra digits are carried during its computation .

The last sentence, the one in italics, is mistaken. The sentence preceding it is correct, though.

One might argue that the sentence in italics is mistaken because the given data could be exact,
or because its errors could be correlated in a way that cancels them off instead of being anti–
correlated like ∂a/a and ∂b/b above. Correlated errors are crucial to some other calculations,
but not to B here. The mistake here was committed by stopping the error analysis too soon,
just at the point where an explanation of the error in BS(a,A,b) was turned into an excuse for
accepting it without complaint. Let’s pursue the analysis beyond that point.

What purpose does a computation of B serve? It has something to do with a triangle.

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 13 of 22

§13. A Triangle is an Object:
Not knowing its dimensions precisely, we cannot know precisely which triangle it is though we
know it is a triangle. As a software object a triangle responds to inquiries about its constituents,
its sides and angles and area, which cannot be arbitrary numbers but should satisfy relations
like A+B+C = 180˚ . How consistent with such relations and with each other will responses to
inquiries be? Four italicized entries in the last column of Table 2 reveal that the classical
formula BS(a,A,b) (but not better formula B(a,A,b)) can violate the well-known relation
sign(B-A) = sign(b-a) slightly. How badly may other inconsistencies sully these formulas?

Consider two ways to compute side–length c . One computes c directly from the same data
{a,A,b} as were used to determine B ; here are conscientious formulas:

 cb(a,A,b) := (a-b)(a+b)/(√((b cos A)2 + (a-b)(a+b)) - b cos A) if A > 90˚ ; otherwise

 := b cos A + √((b cos A)2 + (a-b)(a+b)) if 90˚ ≥ A ≥ 53˚ or b ≤ a ; otherwise
 := b cos A + √((a - b sin A)(a + b sin A)) if A < 53˚ and b > a .

When c can take two values the larger is cb . (In the first formula replace 0/0 by 0 . The
third can lose up to half the sig. digits carried.) A second way to compute c is from data
{a,A,B} ; here are accurate formulas:

cB(a,A,B) := a·sin(A + B)/sin(A) if A + B ≤ 90˚ ,
 := a·sin((90˚-A) + (90˚-B))/sin(A) if A ≤ 90˚ < A+B and B ≤ 90˚ ,
 := a·sin((180˚-A) - B)/sin(A) if B ≤ 90˚ < A ,
 := a·sin((180˚-B) - A)/sin(A) if A ≤ 90˚ < B . (Unneeded here.)

In any case a negative or complex c must be replaced by NaN to signal an improper triangle.

Table 5 exhibits the true value of c alongside values computed for cb(a,A,b) and cB(a,A,B) ,
with both the better B = B(a,A,b) and the classical B = BS(a,A,b) , on an HP-15C carrying
10 sig. dec. The data {a,A,b} were chosen to show how much diversity roundoff can generate
regardless of whether the triangle is needle–like. Digits known to be wrong are displayed bold.

Consistency is better with B(…) than with the classical BS(…) , often far better, but flawed.

Table 5: Side c , cb(a,A,b) vs. cB(a,A,B(a,A,b))

a b A˚ True c cb(a,A,b) cB(a,A,B(a,A,b)) cB(a,A,BS(a,A,b))

3 17 10.16424862 16.73325549 16.73328 16.73324 16.73324

0.9999999999 1.999999999 30 1.732079091 1.732079091 1.732073 1.732082

18817 21728 60 10865.00000 10865.00000 10864.95 10864.92

38620 38673 87 2024.422239 2024.423 2024.4226 2023.99

49999.99999 50000.00001 88.3 2966.623735 2966.623736 2966.623736 2966.6244

49999.99999 50000.00001 89.99827 2.038126012 2.038126011 2.0381257 3.

49999.99999 50000.00001 89.999007 NaN NaN NaN 1.6

50000 50000 89.999007 1.733111947 1.733111947 1.733111947 1.6

800000000.1 799999999.9 89.999007 36497.51207 36497.51206 36497.49 33461.

800000000.1 799999999.9 90.000993 8767.720918 8767.720920 8767.696 5731.

800000000.1 799999999.9 91 11.45973300 11.45973300 11.451 7.

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 14 of 22

Inconsistencies arise because the two computed values cb(a,A,b) = c(a+da, A+dA, b+db) and
cB(a,A,B(a,A,b)) = c(a+∂a, A+∂A, b+∂b) are values of c obtainable exactly from data with
different roundoff–induced end–figure perturbations {da,dA,db} and {∂a,∂A,∂b} , neither
worse than {±æa, ±æA, ±æb} . Although both perturbations appear almost negligible compared
with the data, they can change half the digits of c , and change them differently, whenever
data lies in a narrow boundary–layer of {a,A,b}–space containing two kinds of triangles, those
with too nearly a right angle at B and those with c too tiny compared with a and b . Call
such data “ ill–conditioned ” if doing so makes you feel better, but it won’t change the facts:

An otherwise unexceptionable triangle can respond to two inquiries, before and after
an inquiry about B , by returning grossly inconsistent values of c . Inconsistency is
attenuated, not always eliminated, by using improved instead of classical formulas.

Nobody can say in advance how badly such inconsistencies might disrupt a program’s logic.
Prudence requires their extirpation, and that is straightforward if the specification of a triangle
in object–oriented software is designed by a programmer aware of the problems with classical
formulas and acquainted with reliable numerical algorithms to solve some of those problems. A
programmer unaware of the problems is unlikely to be enlightened by casual or random testing;
those problems are confined to “ ill–conditioned ” triangles in so tiny a sliver of the space of all
triangles that its location, unknown to the unaware programmer, is likely to stay unknown.

Fortunately, the same phenomenon as tends to keep the unaware programmer unenlightened
tends to protect his unwitting clients from harm. As arithmetic precision increases beyond what
the data “ deserve,” the sliver of triangles treated too inaccurately by the program shrinks, the
likelihood that the programmer will notice it shrinks, and the risk of harm to his clients shrinks,
and usually shrinks quickly. As algebra has shown above and a picture will show below, …

Every three additional decimal digits of arithmetic precision carried, in excess of the
precision to which data and results are stored, reduces the incidence of intolerably
“ ill–conditioned ” triangles by factors …

• near 1/1,000,000 for triangles too nearly right–angled,
• less than 1/1,000 for triangles too nearly needle–like.

Carrying arithmetic precision somewhat more than twice the precision to which data
and results are stored practically eliminates intolerably “ ill–conditioned ” triangles.

Wider is better. Plus large, c’est mieux. Breiter ist besser. …

§14. Three Caveats and a Picture:
This digression is intended to forestall unwarranted generalizations.

First, the incidence in practice of intolerably ill-conditioned data can hardly ever be predicted
reliably. Predictions, based upon simulations that generate data randomly distributed uniformly
over all possible data, fail typically by orders of magnitude. Why they fail is a story for another
day. Still, extra precision generally does reduce that incidence to the extent claimed above.

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 15 of 22

Second, more precision is no panacea. A few numerical algorithms are so virulently unstable
on almost all data that no practicable precision can rehabilitate them. No algorithm mentioned
here is that bad, however.

Third, unlike BS(…) , some algorithms are degraded by roundoff in ways inexplicable by a
satisfactory backward error–analysis. Heron’s classical formula ∆' for a triangle’s area ∆ is
one of these. To understand why requires lengthy analysis. Start by deriving expressions like

∂∆/∂a = (b2 + c2 - a2) a/∆ = a b c cos(A)/∆ = a cot(A)

for all the first partial derivatives of ∆ with respect to its data {a, b, c} . Perturbing that data
infinitesimally to {a+da, b+db, c+dc} changes ∆ infinitesimally to ∆ + d∆ wherein

d∆ = (∂∆/∂a) da + (∂∆/∂b) db + (∂∆/∂c) dc .
Suppose now that |da|/a ≤ æ , |db|/b ≤ æ and |dc|/c ≤ æ for any sufficiently tiny positive æ ;
this amounts to allowing arbitrary end–figure perturbations in the data. They lead to

|d∆|/∆ ≤ æ (a |∂∆/∂a| + b |∂∆/∂b| + c |∂∆/∂c|)/∆ .
Now two alternatives arise. One is that the triangle’s angles are all acute, none bigger than
90˚ ; in this case the last inequality’s right–hand side simplifies to 2æ , which is small (very
well–conditioned). The other alternative is that one angle, say A , exceeds 90˚ ; in this case
the last inequality’s right–hand side turns into 2æ cot(B) cot(C) , which gets huge (very ill–
conditioned) as B or C or both get tiny. Thus we conclude that …

When tiny end–figure perturbations change side–lengths {a, b, c} to
{(1±æ)a, (1±æ)b, (1±æ)c} they change the triangle’s area ∆ to very nearly …
 … (1 ± 2æ) ∆ if the triangle’s angles are all acute (none exceeds 90˚) ,
 … (1 ± 2æ cot(B) cot(C)) ∆ if one of the triangle’s angles A > 90˚ .
Only in the latter case can ∆ be an ill-conditioned function of the data {a, b, c} .

This conclusion contrasts with line 4 in Table 1. Perturbations in the tenth sig. dec. of that
data cannot possibly corrupt the fourth sig. dec. of the area ∆ the way roundoff has corrupted
∆' obtained from Heron’s formula. That isosceles triangle is not ill–conditioned at all; the
only thing wrong with it is that Heron’s formula ∆' doesn’t like its needle–like shape.

The picture on the next page will help to elucidate the situation. Let us treat a triangle’s side–
lengths {a, b, c} as Barycentric Coordinates of a point in the (x, y)–plane by setting

x = (b-c)√12/(a+b+c) and y = 2(b+c-2a)/(a+b+c) .
Doing so maps all triples {a, b, c} of triangles’ side-lengths to an equilateral triangle Æ in the
(x, y)–plane with vertices at (0, 2) and (±√3, -1) . Every point (x, y) in Æ is the image of a
family of Similar triangles with edge-lengths proportional to {a, b, c} . Equilateral triangles
{a, a, a} map to the center (0, 0) of Æ . Each isosceles triangle (with two equal edges) maps
to three points on the medians of Æ corresponding to {a, b, b} , {b, a, b} and {b, b, a} .
Each scalene triangle (with no two edges equal) maps to six points in Æ corresponding to the
permutations of {a, b, c} . The edges of Æ are images of collapsed triangles:

{b+c, b, c} –> y = -1 ; {a, b, a+b} –> y = 2 + x√3 ; {a, a+c, b} –> y = 2 - x√3 .

The images of triangles whose angles are all acute sweep out the inside of a curvilinear triangle
Œ inside Æ ; the cusped vertices of Œ are vertices of Æ too, but Œ is bounded by three
hyperbolic arcs that are the images of all right-angled triangles:

1
8
--- 1

4
--- 1

2

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 16 of 22

The Triangle Æ of Similar Triangles

The points (x, y) in Œ satisfy

8 - √(3x2 + 72) ≤ y ≤ 8(1 - |x|√3)/(4 + |x|√3 + √(3x2 + 24|x|√3))

corresponding respectively to inequalities b2+c2 ≥ a2 ≥ |b2-c2| satisfied by the edge-lengths
{a, b, c} of all acute-angled triangles. All their areas ∆ are very well-conditioned functions of
their edge-lengths. Outside Œ a triangle’s area becomes ever worse-conditioned as its image
approaches an edge of Æ , on which areas vanish and are infinitely ill-conditioned. Regardless
of their ill-condition our formula ∆ , the one that first sorts the data, computes all their areas
accurately despite roundoff. However our formula ∆ is not so well known as Heron’s.

In the presence of roundoff Heron’s formula ∆' is ill suited to computing, say, ratios of areas
or reflectivities of needle–like triangles, all of whose images lie near Æ’s edges. Along these
edges runs a narrow ribbon, portrayed with exaggerated width in the picture above, containing
the images of all triangles for which the relative uncertainty due to roundoff in ∆' is intolerably
big. A tiny fraction of them, those nearly isosceles triangles with images very near the vertices
of Œ , having well-conditioned areas, suffice to condemn Heron’s formula ∆' as numerically
unstable for delivering far less accuracy than the data deserve in certain instances. Were these
instances’ existence unknown, trying to find them by sampling random data distributed roughly
uniformly over Æ would be a futile quest. This is why most programmers hardly ever discover
whatever numerical instability may afflict their programs, much less debug it.

What is the incidence of intolerable inaccuracy when Heron’s formula ∆' is used? If roundoff
is roughly as random as it usually seems, that incidence is roughly proportional to the incidence
of data {a, b, c} whose images fall into the narrow ribbon portrayed above. Its width is easily
proved proportional to (roundoff threshold æ)/(biggest tolerable relative uncertainty in ∆') .

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

1.5

2

x

y

Barycentric Plot of Triangles with Side-Lengths [a, b, c]

Œ

Images of Acute-Angled Triangles

a > b+c

b > c+ac > a+b

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 17 of 22

Though this does not reveal the incidence of intolerable inaccuracy it does explain how carrying
extra precision beyond the data’s during arithmetic operations reduces that incidence: Every ten
additional bits or three additional decimal digits of precision reduces the roundoff threshold æ ,
and with it the ribbon’s width and area, and with that the proportion of data whose images lie in
the ribbon, and therefore the incidence of intolerable inaccuracy by a factor of roughly 1/1000
until a law of diminishing returns sets in.

(Returns diminish after the ribbon becomes so narrow that hardly any images of data are left strictly inside it, as
must happen ultimately if the data {a, b, c} reside among a finite set of floating-point numbers whose precision
was fixed before the arithmetic’s precision was increased. Returns from Heron’s formula ∆' begin to diminish as
the arithmetic’s precision surpasses twice the data’s precision, beyond which only isosceles triangles with one
extremely tiny side benefit from increased arithmetic precision.)

An error-analysis like the one just performed upon ∆' can also be performed upon the formulas
for angle C as a function of side-lengths {a, b, c} . Though the picture and many details must
change, what happens to C resembles what happened to ∆ above:

When tiny end–figure perturbations change side–lengths {a, b, c} to
{(1±æ)a, (1±æ)b, (1±æ)c} they change the triangle’s angle C to very nearly …
 … C ± (360˚/π) æ sin(C)/(sin(A) sin(B)) if angles A and B are both acute,
 … C ± (360˚/π) æ cot(B) if A > 90˚ .

Like ∆ , a tiny value of C is determined well by the data for a needle–like nearly isosceles
triangle though both classical formulas C' and C" dislike it. Roundoff impairs these formulas’
accuracy when used to compute parallax at a far distant vertex, so experienced astronomers,
navigators and surveyors avoid them. Accurate formula C , the one that first sorts the data, is
accurate for all triangles but unlikely to be selected by a programmer who sees only the classical
formulas C' and C" in his textbook. Each of C' and C" is intolerably inaccurate for data
{a, b, c} whose images lie in a narrow ribbon along Æ’s boundary. Although the ribbon’s
width varies in a way that depends upon which formula was selected, its width and area and
therefore the incidence of intolerable inaccuracy shrink at least as fast as the roundoff threshold
æ does when arithmetic precision is increased.

As before, roundoff in the classical formulas can inflict inconsistencies upon object–oriented
software. For instance, classical formulas can violate the equation a b sin(C)/∆ = 2 severely.
It and the accurate formulas are consistent in all but perhaps the last digit stored except when C
is too close to 180˚, in which case an error in C’s last digit can spoil sin(C) utterly as almost
occurs in line 7 of Table 1.

What if the software you use was programmed by someone ignorant of the accurate formulas?
Then you have to hope that it was compiled to carry sufficiently more arithmetic precision than
your data occupy in memory. Every extra three sig. dec. or ten sig. bits carried reduces by
typically 99.9% the population of triangles that classical formulas dislike enough to hurt you.

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 18 of 22

§15. Proper Precision Management:
“ The purpose of computing is insight, not numbers.” (R.W. Hamming)
“ The purpose of computing numbers in not yet in sight.” (G.E. Forsythe)

Numerical computation is a kind of simulation performed to explain or predict. Its accuracy is
not an end in itself but need only be adequate to support reliable explanations and predictions.

To that end, the arithmetic’s precision should be determined from outside in rather than from
inside out, by the uses to which results will be put rather than by operands’ precisions. When,
as happens often, the necessary precision is so difficult to ascertain in advance that it is not
known, the widest precision available that does not sacrifice too much speed is the right choice.
It is the easiest way we know to achieve the accuracy we seek, sought not for its own sake as
if, like Virtue, it were its own reward, but sought because we know no better way to secure as
many mathematical relationships as we can afford in the hope that they include the ones that
matter to an impending computation to which we do not yet know which ones matter. When,
rarely, the chosen precision turns out to be inadequate, we have to find something else to do.

If that does not sound like Science, compare it with the assignment of precision according to
traditional naive rules. Some rules followed by applications programmers are rules of thumb,
venerable but no less fallible than ancient trigonometric formulas. Other rules are enforced by
computer languages designed by other programmers who have reasons for their rules but not
reasons informed by modern error–analysis. The linguistic tradition that assigns to each
arithmetic operation the same precision as is occupied in memory by its operands and result has
never been and never will be justified numerically. When, rarely, software written according
to these naive rules malfunctions because of rounding errors, users and perhaps the programmer
of the software (but why not the language designer?) have to find something else to do.

How different are the rates of malfunction due to roundoff under the two regimes of precision
assignment just described? Alas, the hits, runs and errors recorded so sedulously for baseball
are not recorded also for numerical computation. Lacking good records, we have only crude
guesses based upon unreliable anecdotal accounts of the few malfunctions that have been caught.

Back when computation ran at leisurely kiloflops in one big room instead of gigaflops on many
desktops, I used to look over my colleagues’ shoulders out of curiosity to see what they were
computing. What I observed made me as welcome as any other bringer of bad tidings:
 • About a third of the results I found interesting were far more in error than had been thought.
 • When serious errors were discovered, their causes were misdiagnosed more often than not.
 • About a quarter of those errors arose from failures to appreciate a compiler’s “ features.”
 • Most numerical results were discarded unused, often before anyone had looked at them.
The last observation helps explain why calamitous miscomputations were not celebrated daily.
The other observations accord with and motivate the examples and analyses presented in this
article, and suggest that the malfunction rate is not negligible though nobody knows what it is.

Whatever the rate of malfunction due to roundoff, it would be orders of magnitude smaller if
compilers made better use of the precision built into the overwhelming majority of computers
now installed on desktops, precision their owners have paid for but are not getting.

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 19 of 22

§16. Different Floating–Point Semantics:
For the purposes of this article just three floating–point hardware designs will be distinguished
according to how fast operands and results of different widths circulate among their fast on–chip
cache memories, their floating–point registers, and their pipelines where the arithmetic gets
done. All computers move numbers to and from main memory (DRAM) and disk faster if the
numbers occupy a narrower format, so we can assume for all computers that large volumes of
data and results will be stored in the narrowest format of Table 4 adequate to hold them. Each
of the three floating–point architectures has its own way to handle scratch variables in registers
and intermediate variables already resident in the cache.

Today’s less common architecture gets float results from float operands significantly faster
than it gets double from doubles, and cannot mix a double with a float without first
promoting the float to double . This architecture, which we call “ Orthogonal,” appears to
match a linguistic tradition that assigns to each arithmetic operation the same precision as its
operands and result occupy in memory. We call that tradition’s arithmetic semantics “ Strict.”
We shall see that it is not the best numerical semantics to use with this architecture.

A now more common architecture holds all operands in double registers regardless of whether
they came from memory as floats, and obtains double results about as fast as float if not
faster. The IBM RS/6000, Power-PC and Apple Power-Mac, and DEC Alpha have this
architecture. It matches the semantics of old–fashioned Kernighan-Ritchie C , which treated
all constants and subexpressions as doubles and rounded to float only values then assigned
to variables the programmer had declared float . We call the architecture and the semantics
“ OldC.” They suit each other well. Languages and compilers like Java, that enforce Strict
semantics upon an OldC architecture, are squandering its precision for no good reason.

Today’s most common architecture, found in about 90% of computers installed on desktops,
holds all operands in long double registers regardless of the formats in which they came from
memory, and obtains long double results about as fast as double or float if not faster.
This is the architecture of the Motorola 680x0 in old Apple Macintoshes and older Sun IIIs,
the Motorola 88110 (few exist), the Intel 80960 KB (in embedded systems like PostScript
printers and in some military computers), and the ubiquitous Intel x86/Pentium cloned by
AMD and Cyrix. We call this architecture “ Extended.” It includes a control register in which
two bits can be set to abbreviate the arithmetic so that it will mimic the roundoff behavior (but
perhaps not the over/underflow thresholds) of the previous two architectures. Therefore the
Extended architecture can match the Strict and OldC semantics practically perfectly in case
software recompiled from the other machines has to be run the way they run it. However, the
semantics natural for the Extended architecture is to evaluate all constants and subexpressions
in long double and round to narrower formats only values then assigned to variables declared
narrower by the programmer; we call this semantics “ Extended.”

On most Extended machines the library of long double elementary transcendental functions
(log, exp, cos, arctan, …) is supported extensively by hardware. Therefore the programmer
is best advised to declare almost all local floating–point variables long double and enjoy near
obliviousness to obscure rounding errors. Most of these (all that occur in subexpressions) will
occur more than three decimal digits to the right of the rightmost digit stored with most data and

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 20 of 22

results, so roundoff will cause trouble far less frequently than on non-Extended machines. But
few compilers afford programmers this pleasure. Among them are the compilers endorsed by
Apple for old 680x0-based Macintoshes; a good example is the Fortner (formerly LSI)
Fortran compiler. Another example is Borland’s C compiler for Intel–based PCs and their
clones. I know of no other compilers for PCs that support Extended semantics fully if at all.

There are historical reasons for the dearth of linguistic support for Extended semantics, and
some of those reasons made sense once if not now. For two decades up to about 1985, the big
number–crunchers had Orthogonal architectures. Among them were the IBM /370 and 3090,
CDC 6600/7600, CRAYs, and ultimately the DEC VAX. IBM ended up with hardware for
three floating–point formats, DEC for four, of which the widest (also called Extended) was
16 bytes wide and too slow for most applications. The illusion of Compatibility served to
excuse Strict semantics, and numerical experts tolerated it because we had bigger fish to fry.
Besides, we were proud of our ability to program the behemoths successfully by assiduous
attention to details that sane people find too annoying, and we were paid well to do it.

Now the evolution of computer languages has reached a state in which language designers feel
uncomfortable with any semantics other than Strict, and doubly uncomfortable at the thought
of entertaining two or three floating–point semantics. This is a pity because Strict semantics
was at best a convenient expedient to simplify compilers, never as good numerically as the
other semantics described here, and rather worse for numerically inexpert programmers.

(Let’s digress to consider a semantics that serves programmers of Orthogonal architectures
better than Strict semantics. We call it “Scan for Widest.” It affects the overloading of infix
operators like +, -, *, / and := amidst an expression with operands of different precisions; the
idea is to perform all arithmetic in that expression to the widest of those precisions. Unlike
Strict semantics, which overloads an infix operator according to the syntactic types exclusively
of its operands, Scan for Widest has to take account also of the expected type of the result
when that is decidable. The bottom line is that Scan for Widest does the same as Strict when
precisions are not mixed, and avoids the need for Strict’s explicit widenings (which are often
omitted by mistake) when precisions are mixed for the usual reasons. These are that more than
the data’s precision will be needed by intermediate variables like S := (a+b+c)/2 in Heron’s
formula, T := a/tan(A) in BT(…) , U := b·cos(A) in cb(…) , etc. to get consistent results;
and we expect to compute √(T·T - (b-a)·(b+a)) accurately without first explicitly coercing b
to the same higher precision as T . Similar scanning is needed to facilitate correct mixtures of a
multiplicity of precisions, and mixtures of Interval Arithmetic with non-Interval data, and to
permit the language of coordinate–free Linear Algebra to work upon many geometrical objects
each specified in its own coordinate system. Of course, Scan for Widest eases the lives of
programmers at the cost of complicating life for language designers and implementors who have
to cope with a host of details that are easy to botch. But that is a story for another day.)

The Strict semantics specified by Java is at odds with its promotion as the one language for
Everyman to program everything everywhere. OldC semantics would be safer and Extended
semantics more so for the overwhelming majority of computers in service, and probably also
for almost all programmers. Java’s designers should not be surprised if they are suspected of
denying advantages to the many in order to secure advantages for a few.

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 21 of 22

§17. Conclusion:
The computing community has always regarded floating–point computation as a black art. It’s
not really. It’s very mathematical, too mathematical to suit most programmers attracted by the
opportunities to sell software into a mass market. Maybe they should study the subject a little,
perhaps read an article or two like this, before they write floating–point software. Such advice
is Counsel of Perfection, recommended but not obligatory for programmers who have spent
their time refining different skills. Therefore programmers remain mostly unaware of numerical
hazards lurking in classical formulas copied from texts and handbooks, and unaware of better
methods that attenuate or eliminate those hazards. Yet we all depend unwittingly upon their
programs, which expose us all to those hazards.

Computational facilities, hard– and software, intended for the masses can do better than blindly
amplify intelligence or the lack of it. Just as seat–belts, gas bags, ABS brakes and impact
absorption are designed into automobiles to enhance their safety without excessive detriment to
performance or price, computational capabilities ought to be designed with the attenuation of
computational hazards in mind, always subject to considerations of performance, price and
time to market. We know a lot about the programs programmers are inclined to write, and that
knowledge has influenced the design of computer hardware and optimizing compilers to run
those programs faster. Running them more reliably too is a worthwhile goal for hardware and
software engineers, especially if the added cost of enhanced reliability is ultimately negligible.

By far the easiest way to attenuate and sometimes extinguish the risks from roundoff in
otherwise correct computation is to carry more precision than data or results “ deserve.”
Hardware to do so is in place. Now the computer language community must do its part.

Think not of Duty nor Indulgence; think about Self–Defense.

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word Page 22 of 22

§18. Acknowledgments and Bibliography:
This note is derived from material I have long taught to introductory classes in Numerical
Analysis. The material is very old; I cannot recall from whom (perhaps astronomers) some
of it came in the 1950s, but I do recall that many programmers knew such things in the early
1960s. Exact cancellation of floating–point numbers was exploited in my letter “Further
Remarks on Reducing Truncation Errors” in Comm. Assoc. Comput. Mach. 8 (1965) p. 40, and
in R.H. Møller’s “Quasi Double–Precision in Floating–Point Addition” in BIT 5 (1965) pp.
37-50. The accurate formula for ∆ appeared in my “Mathematics Written in Sand” in the
Statistical Computing Section of the 1983 Proceedings of the American Statistical
Association; that work had been supported by a grant from the U.S. Office of Naval Research,
contract # N 00014-76-C-0013. A formula similar to ∆ appears in problem 23 on pp. 152–3
of Floating–Point Computation by P.H. Sterbenz (1974) Prentice-Hall, New Jersey. An
earlier version of the accurate formula for C appeared in pp. 194–200 of the Hewlett–
Packard HP-15C Advanced Functions Handbook (1982). The selected formulas for B and
c have appeared nowhere else that I know.

A little extra precision can enhance accuracy in industrial–strength computations dramatically,
as it does in “ Roundoff Degrades an Idealized Cantilever ” by Melody Y. Ivory and
myself; see http://http.cs.berkeley.edu/~wkahan/Cantilever.ps . The rate at which extra
precision reduces the incidence of intolerably inaccurate results is a subtlety discussed in papers
like J.W. Demmel’s “The Probability that a Numerical Analysis Problem is Difficult” Math. of
Computation 50 (1988) pp. 449-481. N.J. Higham’s Accuracy and Stability of Numerical
Algorithms (1996) Soc. Indust. & Appl. Math., Philadelphia, is a 700 page encyclopedia.

The uneasy relationship between compilers and floating–point is the subject of C. Farnum’s
“Compiler Support for Floating–Point Computation” Software Practices and Experience 18 #7
(1988) pp. 701-9, and of D. Goldberg’s “What every computer scientist should know about
floating–point arithmetic” ACM Computing Surveys 23 #1 (1991) pp. 5-48., and some of their
citations. An updated and emended version of the latter is bundled in Sun’s documentation and
can be downloaded as a postscript file from http://www.validgh.com. For old anecdotes about
numerical miscomputation see my “A Survey of Error Analysis” pp. 1214-1239 in Information
Processing 71 (1972) North Holland, Amsterdam. For IEEE Standard 754 for Binary Floating–
Point Arithmetic see http://http.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps and its
citations. For a critique of Java’s floating-point see …/~wkahan/JAVAhurt.pdf .

§19. Footnote about Examples:
Why are my examples run on an old calculator and not a current computer? Hexadecimal digits
are so much harder than decimal digits for humans to appraise that all data and results had to be
printed in decimal; and then Decimal ‹—› Binary conversions had to be avoided because they
can change the printed data slightly before it goes into the computer’s memory. Conversions
vary among computers and compilers, and so do the trigonometric functions; such variations
are distractions best avoided no matter how small. Angles are computed in degrees instead of
radians to avoid variations on π . HP-15Cs and 11Cs are still abundant, and they perform
arithmetic identically and well, so the results presented here are easy for others to reproduce.

