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Miscalculating Area and Angles of a Needle-like Triangle

 

( from Lecture Notes for Introductory Numerical Analysis Classes )

Prof. W. Kahan

 

§0.  Abstract:

 

This case study drawn from an elementary numerical analysis course is aimed at computer language designers and 
implementors who took no competent course on the subject or forgot it and consequently subscribe to principles of 
language design inimical to the best interests of writers and users of software with a little floating–point arithmetic 
in it.  Though triangles rarely matter to computer language designers and implementors,  recollections of their high–
school trigonometry and calculus will enable them to follow the discussion,  which is intended primarily to expose 
and correct common misconceptions.  The first of these is that classical trigonometric formulas taught in schools 
and found in handbooks and software must have passed the  Test of Time.  Actually they have withstood it;  they 
are unnecessarily inaccurate,  sometimes badly,  for some data some of which is unexceptionable.  Better formulas 
are supplied here.  Even if these are impeccably accurate and cost no more than the classical formulas they should 
supplant,  the expectation that the better formulas will supplant the worse is based upon misconceptions too  (see  
pp. 5,  9, 16  and  21).  Other misconceptions addressed herein  ( on indicated pages )  are …
   •  That subtractive cancellation always causes numerical inaccuracy,  or is the only cause of it.  ( 3, 5 )
   •  That a singularity always degrades accuracy when data approach it.  ( 4, 5, 7, 8, 10, 12-16 )
   •  That algorithms known to be numerically unstable should never be used.  ( 10 )
   •  That arithmetic much more precise than the data it operates upon is pointless.  ( 7, 9-12, 14, 17-21 )
   •  That modern  “ Backward Error–Analysis ”  explains everything,  or excuses it.  ( 12, 14-17 )
   •  That bad results are due to bad data or bad programmers,  never to a programming language.  ( 9-12, 18-20 )
Misconceptions like these hinder programming languages from conveying to owners of by far the majority of 
computers now on desk–tops the benefits of their hardware’s superior floating–point semantics.  ( 9-11, 19-20 )
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Miscalculating Area and Angles of a Needle-like Triangle

 

( from Lecture Notes for Introductory Numerical Analysis Classes )

Prof. W. Kahan
Math. Dept.,  and  E. E. and Computer Sci. Dept.

University of California,   Berkeley   CA 94720-1776

 

Readers who do not enjoy reading mathematical formulas may skip to  §10  on page 9  after reading this page.

 

§1.  Classical Formulas for Area  

 

∆

 

  and Angle  C :

 

Given the side–lengths  a, b, c  of a triangle,  classical trigonometric formulas determine its area

 

∆

 

 :=  

 

√

 

(

 

s (s-a) (s-b) (s-c)

 

)

 

 ,      where    s :=  (a+b+c)/2 ,
( this formula goes back two millennia to  Heron  of  Alexandria )  and determine the angle

C :=  arccos

 

(

 

 (a

 

2

 

 + b

 

2

 

 - c

 

2

 

)/(2ab) 

 

)

 

  =  2 arctan( 

 

√

 

(

 

 (s-a) (s-b)/(s (s-c)) 

 

)

 

 )
opposite side  c .  However,  rounding errors can undermine the relative accuracy of formulas 
like these so badly as to invalidate them computationally whenever the triangle is too nearly like 
a needle,—  that is,  whenever some two sides add up to scarcely more than the third.  For 
instance,  when  c  is very tiny compared with  a  and  b ,  which must then be very nearly equal,  
roundoff in  s  can be almost as big as  c ,  and then  (s-a)  and  (s-b)  can be left relatively 
inaccurate after cancellation;  then too,  the argument of  arccos(...)  can be so near  1  that its 
roundoff causes a relatively big error in its tiny computed value  C .  Examples appear below.

Another defect in the formulas above is their occasional failure to warn when data,  for example
a = -3 ,   b = 4   and   c = 2 ,

violate the constraints that ought to be satisfied by the sides of a real triangle,  namely
0 

 

≤

 

 a 

 

≤

 

 b+c    and     0 

 

≤

 

 b 

 

≤

 

 c+a    and     0 

 

≤

 

 c 

 

≤

 

 a+b  .
Such a defect seems easy to cure,  but roundoff can obscure borderline cases if it is ignored.

One purpose of this article is to exhibit better formulas that warn when the data cannot be side–
lengths of a real triangle and whose results otherwise are correct to almost as many significant 
figures as the computation carries regardless of the triangle’s shape.  These formulas work well 
on almost all computers and calculators,  including all  IBM mainframes,  all  North American  
personal computers and workstations,  and all  HP calculators.  ( CRAY’s X-MPs  to  J90s  are 
the exceptions for lack of a guard digit during subtraction.)  But our better formulas get little use 
partly because they contradict a few common misconceptions about roundoff in floating-point:  
one is that cancellation is  

 

always

 

  bad news;  another is that a singularity,  near which small 
changes in input data can drastically change a desired result,  

 

always

 

  degrades accuracy.

Besides exhibiting better formulas,  this article explains why they are correct despite roundoff,  
and displays numerical results obtained from programs on an  HP-15C  shirtpocket calculator.

a

b cA

C B∆

A Needle-like Triangle



 

http://http.cs.berkeley.edu/~wkahan/Triangle.pdf                                                                  March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word                                                                                   Page 3  of  22

 

§2.  How to compute  

 

∆

 

 :

 

First sort  a, b, c  so that  a 

 

≥

 

 b 

 

≥

 

 c ;  this can be done at the cost of at most three comparisons.  
If  c-(a-b) < 0  then the data are not side-lengths of a real triangle;  otherwise compute its area

 

∆

 

 : =  

 

√

 

(

 

 (a+(b+c)) (c-(a-b)) (c+(a-b)) (a+(b-c)) 

 

)

 

 .

Do not remove parentheses from this formula!   It will not give rise to  

 

√

 

(< 0) .

 

§3.  How to compute  C :

 

If necessary,  swap  a  and  b  so that  a 

 

≥

 

 b .  Then perform two more comparisons to decide 
whether and how to compute an intermediate quantity  

 

µ

 

  thus:
If  b 

 

≥

 

 c 

 

≥

 

 0  then  

 

µ

 

 := c-(a-b)
elseif  c > b 

 

≥

 

 0  then  

 

µ

 

 := b-(a-c)
else the data are not side–lengths of a real triangle.

If  

 

µ

 

  has been computed,  attempt to compute angle
C  :=  2 arctan( 

 

√

 

(

 

 ((a-b)+c) 

 

µ

 

/

 

((a+(b+c))((a-c)+b)) 

 

)

 

 ) .
Once again,  do not remove parentheses.  Now  

 

√

 

(< 0)  will be encountered if and only if the 
side–lengths do not belong to a real triangle.  Division by zero may be encountered;  if so,    

arctan(positive/0) = arctan(+

 

∞

 

) = 

 

{

 

 

 

+

 

π

 

/2  or  90˚

 

 

 

}

 

   is well–determined but  arctan(0/0)  is  

 

NaN

 

  
( 

 

N

 

ot-

 

a

 

-

 

N

 

umber )  and deemed undeterminable.

 

§4.  Why Cancellation Cannot Hurt:

 

It is not hard to prove that if  p  and  q  are two of a computer’s floating–point numbers,  and if  
1/2 

 

≤

 

 p/q 

 

≤

 

 2 ,  then  p-q  is a floating-point number too,  representable exactly in the computer,  
unless it underflows.  But we shall ignore spurious over/underflow phenomena since we can 
evade them by scaling the data in all but the most extreme cases.  And we shall assume that 
when  p-q  is exactly representable as a floating-point number then subtraction will deliver that 
value exactly,  as it does on all but a few aberrant machines like  CRAY X-MPs.  Therefore 
cancellation in  p-q  introduces no new error that was not already present in  p  and  q .  We shall 
find that no error is already present when cancellation occurs in our formulas for  

 

∆

 

  and  C ,  so 
cancellation cannot hurt their accuracy.

 

∆

 

  and  C  depend upon four factors each of the form  x 

 

±

 

 (y

 

±

 

z) ;  if we prove that each factor is 
accurate to within a unit or two in its last significant digit carried,  then we shall conclude easily
that  

 

∆

 

  and  C  must be accurate to within a few units in their last digits.  The factors fall into 
two classes:  Some are sums of two positive quantities each accurate to within a unit in its last 
digit;  each such sum must obviously be accurate to within a unit or two in its last digit.  The 
other factors are differences between two positive quantities each of which we shall show to be 
exact,  so these factors will turn out to be accurate to within a unit in the last digit too.  And then 
the factors must all be non–negative whenever the data satisfy the constraints that ought to be 
satisfied by the side-lengths of a triangle,  as we shall henceforth take for granted for the sake of 
argument.

1
4
---
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Let us consider the factor   

 

µ

 

 :=  {c-(a-b)  or  b-(a-c)  according as  b 

 

≥

 

 c  or not} .  If  b 

 

≥

 

 c  
then  c 

 

≤

 

 b 

 

≤

 

 a 

 

≤

 

 b+c 

 

≤

 

 2b ,  so  (a-b)  must be exact.  If  b < c  then either  a < c ,  in which case  

 

µ

 

  is an accurate sum of two positive quantities,  or else  a 

 

≥

 

 c  and then  b < c 

 

≤

 

 a 

 

≤

 

 b+c < 2c ,  
in which case  (a-c)  must be exact.  In all these cases,  

 

µ

 

  must be accurate within a unit or two 
in its last digit,  as claimed.  Similar reasoning copes with the factor  (a-c)+b  in the formula for  
C ,  and with the factor  c-(a-b)  in the formula for  

 

∆

 

 .  All the other factors are sums of positive 
quantities.

When the data are not side-lengths of a real triangle,  attempts to calculate  

 

∆

 

  or  C  encounter a 
negative factor that can be proved correctly negative despite roundoff even if it is inaccurate.

 

§5.  Examples:

 

Table 1  below exhibits,  for each set of data  a, b, c,  the values of  

 

∆

 

  and  C  calculated on an  
HP-15C  into which was programmed  ( with full respect for parentheses )  the formulas

 

∆

 

' :=  

 

√

 

(

 

 s (s-a) (s-b) (s-c) 

 

)

 

   after   s := ((a+b)+c)/2 ,

 

∆

 

  :=  

 

√

 

(

 

 (a+(b+c)) (c-(a-b)) (c+(a-b)) (a+(b-c)) )    after sorting  a ≥ b ≥ c   etc.,

C" :=  arccos( ((a2 + b2) - c2)/(2ab) ) ,
C' :=  2 arctan( √((s-a) (s-b)/(s (s-c))) )   after   s := ((a+b)+c)/2 ,   and
C  :=  2 arctan( √( (c+(a-b)) µ/((a+(b+c))((a-c)+b)) ) )   after  µ := c-a+b  etc.

Digits known to be wrong are displayed  bold.  The  HP-15C  carries ten significant decimal 
digits.  The formulas for  ∆  and  C  were also programmed in  BASIC  into an  HP-71B ,  which 
carries twelve significant digits,  to confirm that the  HP-15C  calculated its values of  ∆  and  C  
( in degrees )  correctly to at least nine significant digits.

Table 1:   Area  ∆  and  Angle  C

a b c Heron’s ∆' Accurate ∆ C" ˚ C' ˚ Accurate C ˚

10 10 10 43.30127019 43.30127020 60 60 60

-3 4 2 2.905 Error 151.045 151.045 Error

100000 99999.99979 0.00029 17.6 9.999999990 0 2.02E-7 1.145915591E-7

100000 100000 1.00005 50010.0 50002.50003 0 5.73072E-4 5.72986443E-4

99999.99996 99999.99994 0.00003 Error 1.118033988 0 Error 1.281172578E-8

99999.99996 0.00003 99999.99994 Error 1.118033988 48.18968509 Error 48.18968510

10000 5000.000001 15000 0 612.3724358 180.000 180.000 179.9985965

99999.99999 99999.99999 200000 0 Error 180 180 Error

5278.64055 94721.35941 99999.99996 Error 0 Error Error 180

100002  100002 200004 0 0 Error 180 180

31622.77662 0.000023 31622.77661 0.447 0.327490458 90 70.5 64.22853824

31622.77662 0.0155555 31622.77661 246.18 245.9540000 90.00 89.963187 89.96315276

a b c Heron’s ∆' Accurate ∆ C" ˚ C' ˚ Accurate C ˚

1
4
---
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§6.  Opposite Side  c  and Adjacent Angle  B :
Two more formulas for other elements of a triangle are discussed below.  One formula computes 
the length of side  c  opposite angle  C .  The other formula computes angle  B  given two sides  
a  and  b  and non–included angle  A .  The formulas usually printed in texts and handbooks  
( like  pp. 341-2 & 354  of  Math. Tables from Handbook of Chem. and Phys.  11th ed. (1959)  
Chem. Rubber Publ.,  Cleveland )  become numerically inaccurate under certain circumstances.  
Better formulas are presented below.

§7.  How to compute  c :
If  c  is too much smaller than  a  and  b ,  roundoff spoils the usual textbook formula for side–

length   c :=  √( a2 + b2 - 2 a b cos C ) .   A small change turns it into an always accurate formula

c :=  √( (a-b)2 + 4 a b sin2(C/2) ) .

§8.  How to compute  B :
Given two sides  a  and  b  and a non–included angle  A  between  0  and  180˚ ,  texts usually 
invoke the  “ Law of Sines,”    sin(B)/b = sin(A)/a ,   to obtain the other non–included angle

B := arcsin( (b/a) sin A ) .
But this is sometimes ambiguous;  when  A < 90˚  and  a < b ,  this other angle could as easily 
be  180˚-B  as  B .  And no other non–included angle  B  exists at all when either

a < b sin A   and   A ≤ 90˚ ,    or    a < b   and  A ≥ 90˚ ;
in the latter case the foregoing formula for  B  can produce a plausible but spurious result.  Since 
no subtractive cancellation can occur in it,  the formula’s ability to lose accuracy may come as a 
surprise.  It can lose up to half the figures carried when  B  is too close to  90˚ .  Some of that 
loss is avoidable when  A  is close to  90˚  too,  but only by the use of a better procedure.  The 
idea behind a better procedure is to select,  in a data–dependent way,  the least inaccurate from a 
list of algebraically equivalent but numerically non–fungible formulas like these:

BS(a,A,b) :=  arcsin( (b/a) sin A ) ;

BT(a,A,b) :=  A + 2 arctan( (b-a)/( (a/tan A) + √( (a/tan A)2 - (b-a)(b+a) ) ) ) ,
    :=  0   if  A = 0 ,  regardless of  a ;

BC(a,A,b) :=  arccos( √( (b cos A)2 + (a-b)(a+b) )/a ) ;

A selection is effected by the following conditional assignments:

B2(A,X) :=  if  A > 90˚  then   NaN   else the  pair   of angles  { X ,  180˚ - X } ;

Bb(a,A,b) := if  b-a < a  then  BT(a,A,b)   else  BS(a,A,b) ;

BA(a,A,b) := if  ( A ≥ 90˚  and  (b/a) sin A ≥ 0.756 )  then  BC(a,A,b)
else if  ( A < 90˚  and  (b/a) ≥ 0.756 )  then  BT(a,A,b)  else  BS(a,A,b) ;

B(a,A,b) :=  if  a < b  then  B2(A, Bb(a,A,b))  else  BA(a,A,b) .
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Why the final selection  B(…)  is better than the first for calculating  B  takes a lot of explaining 
of which only a little will be done here.  First switch from degrees to radians  ( π radians = 180˚ )
to make derivatives simpler;  only the constants  30˚ ,  90˚  and  180˚  have to be replaced by  
π/6 ,  π/2  and  π  above.  Then let  æ  stand for any tiny positive quantity not much bigger than a 
rounding error in a number near  π/2 .  On the  HP-15C ,  which rounds to  10 sig. dec.,  æ  is a 

modest multiple of  5/1010 .  On most computers and calculators a number roughly like  æ  can 
be obtained from the expression  |3(4/3 - 1) - 1|  evaluated after  “ 4/3 ”  has been rounded to the 
working precision of the machine’s floating–point arithmetic.  We assume initially that  æ  is so 
tiny that approximations like  ∂ƒ := ƒ(x+∂x)-ƒ(x) ≈ ƒ'(x) ∂x  obtained through the  Differential 
Calculus  are satisfactory provided both  ∂ƒ  and  ∂x  are of the order of  æ .  Later this proviso 
will be relaxed somewhat to accommodate perturbations  ∂x  of the order of  √æ .

Because of roundoff,  we expect the computed value of  (b/a) sin A  to be  (1 ± æ)((b/a) sin A)  
in formula  BS ;  then this formula would deliver  B + ∂B :=  arcsin((1±æ) sin B)  instead of  B ,  
with error  ∂B ≈ ±æ tan B  except for terms that are negligible so long as  æ tan B << √æ .  On 
the other hand,  when  a > b  formula  BC  delivers  B+∂B := arccos((1±æ) cos B) ,  whence  
∂B ≈ ±æ cot B ;  this explains why formula  BC  is better when  B  is close to  π/2  ( or  90˚ ),  
and  BS  is better when  B  is close to  0 .  But internal cancellation degrades the accuracy of  BC  

when  a < b ,  in which case its error turns out to be roughly   ∂B ≈ ±æ cot2(A) tan(B) ,  which is 
usually worse than the error in another formula  BT .

When  a ≤ b  and  A < π/2  ( or  90˚ ),  the error that formula  BT  suffers turns out to be 
roughly   ∂B ≈  ±æ sin(B-A) cos(A)/cos(B) .  This is much smaller than the uncertainty in  BS  
when  A  is close to  B  or close to  π/2 .  When  a ≥ b  and  A < π/2  the error that formula  BT  
suffers is about  ±æ sin(A-B) ,  which is smaller than the uncertainty in  BS  provided  B  is not 
much smaller than  A .  Because  BT  costs more to compute,  it is used only when it is 
substantially less uncertain than  BS .

When  a < b sin A  within a few rounding errors,  arcsin(> 1)  occurs in  BS  and  √(< 0)  in  BT  
to signal that no angle  B  exists.  Finally,  B2(…)  copes with cases when  B(…)  can take two 
values  B'  and  B" ,  or none.  ( Recall that  “ NaN ”  stands for  “ Not a Number.”)

C

a

a

b
A

B'

B"

B = B'  or  B"
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§9.  How Accurate is  B ?
Table 2  compares results from  B(a,A,b)  and the classical formula  BS(a,A,b) ,  obtained on an  
HP-15C  carrying  10 sig. dec.,  with correct values of  B  computed carrying at least  30  sig. 
dec.  When  B  takes two values only the smaller is displayed.  Data  {a,A,b}  has been selected 
to show how narrow is the range of data at which the formulas in question lose accuracy more 
than slightly.  Digits known to be wrong are displayed  bold;  italicized  values are anomalous.

Though more accurate than  BS(…) ,  apparently  B(…)  can lose about half the figures carried.  
This is the worst that can happen,  and it happens only when  A  is noticeably less than  90˚  and  
B  is much nearer  90˚ ,  very nearly a double root of the equation  sin(B)/b = sin(A)/a  that  B  
must satisfy.  This deterioration illustrates an important general principle:

Nearly double roots are much more sensitive than well isolated simple roots
 to perturbations like those due to roundoff.

Table 2:   Angle  B ,  New Formula  B(…)  vs.  Classical  BS(…)

a b A˚ True  B˚ B(a,A,b)˚ BS(a,A,b)˚

3 17 10 79.73894317 79.73894326 79.73894326

3 17 10.16424862 89.99895044 89.9992 89.9992

0.9999999998 2 28 69.87481897 69.87481894 69.87481894

0.9999999998 2 29.9916 88.70873768 88.7087373 88.7087373

0.9999999998 2 29.99999999 89.99918045 89.9984 89.9984

0.9999999998 2 30 NaN 90 90

1 2 30 90 90 90

0.9999999999 1.999999999 30.00000001 89.99919909 89.9987 89.9991897

0.9999999999 1.999999999 30 89.99837943 89.9987 89.9982

0.9999999999 1.999999999 29.9916 88.70873615 88.70873600 88.70873604

0.9999999999 1.999999999 28 69.87481888 69.87481890 69.87481886

18817 21728 59.9 87.42569088 87.42569084 87.4256913

18817 21728 60 89.99695511 89.9971 89.9972

38620 38673 86.9 89.21861758 89.21861758 89.2186177

38620 38673 87 89.99935642 89.9993559 90.000

4.999999999 5.000000001 88.3 88.30000077 88.30000077 88.29999996

4.999999999 5.000000001 89.99827 89.99939448 89.99939448 89.99819

4.999999999 5.000000001 89.999007 NaN NaN 89.9992

5 5 89.999007 89.999007 89.999007 89.9992

8.000000001 7.999999999 89.999007 89.99837906 89.99837906 89.9986

8.000000001 7.999999999 90.000993 89.99837906 89.99837906 89.9986

8.000000001 7.999999999 91 88.99999918 88.99999918 88.9999995

8.000000001 7.999999999 5.739170509 5.739170508 5.739170508 5.739170512

a b A˚ True  B˚ B(a,A,b)˚ BS(a,A,b)˚
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When an equation  ƒ(z) = 0  has a simple root  z  ( which means that the derivative  ƒ'(z) ≠ 0 ),  
changing  ƒ  slightly to  ƒ+∂ƒ  changes  z  to a root  z+∂z  satisfying  (ƒ+∂ƒ)(z+∂z) = 0 ,  whence 

it follows that  ∂z ≈ -∂f(z)/ƒ'(z)  if  ∂ƒ  is tiny enough that terms of order  (∂ƒ)2  can be ignored.  
But when  z  is a double root  ( when  ƒ(z) = ƒ'(z) = 0 ≠ ƒ"(z) )  then,  depending upon the sign 
of  ∂ƒ ,  equation  (ƒ+∂ƒ)(z+∂z) = 0  has either no real root or two with  ∂z ≈ ±√(2|∂ƒ(z)/ƒ"(z)|) .  
If  z  is almost a double root,   min{ |∂ƒ/ƒ'(z)|, √(2|∂ƒ/ƒ"(z)|) }  turns out to be an approximation 
of  |∂z|  adequate for our purposes.

Suppose  ∂ƒ  is due to roundoff,  and therefore proportional to quantities like  æ .  Then the 
error  ∂z  induced in a nearly double root cannot be bigger than something proportional to  √æ ,  
which explains why at most about half the figures carried to compute  z  can be lost.  ( Similarly 
a nearly triple root could lose at most about two thirds the figures carried,  and so on.)

Induced error  ∂z  can be diminished in only two ways. One carries more figures to reduce  æ .  
The other replaces  “ ƒ(z) = 0 ”  by an equivalent equation with the same root(s)  z  and smaller 
rounding errors relative to its first and second derivatives.  For instance,  a double root of  
“ ƒ(z) = 0 ”  is a simple root of  “ ƒ'(z) = 0 ” ;  therefore a nearly double root  z  of   “ƒ(z) = 0 ”  
must make  ƒ'(z)  small.  Whenever  ƒ  satisfies a known differential equation it can be used to 
replace  “ ƒ(z) = 0 ”  by an equivalent equation  “ ƒ'(z) = … ”  with the same root  z  but with 
possibly smaller rounding errors.  Otherwise a better replacement for  ƒ  may be hard to find.

Such a replacement turns   sin(B) = (b/a) sin(A)   into   cos(B) = √((a-b)(a+b) + (b cos(A))2)/a   
advantageously when  a/b  exceeds  1  slightly and  A  is near  90˚ .  This yields  BC(a,A,b)  
which,  as we have seen,  is then accurate in all but the last digit carried under circumstances 
when the original equation’s  BS(a,A,b)  could lose up to half the figures carried.

Formula  BT  is harder to explain.  It was found by a search for a formula that roundoff does not 
prevent from honoring a well-known geometrical theorem:   sign(B-A) = sign(b-a) .  Whenever  
b = a ,  such a formula must deliver  B = A  exactly despite roundoff.  Neither  BS  nor  BC  can 
do this for every  A < 90˚ ;  four instances where  BS  violates the theorem appear in  italics  in 
the last column of  Table 2.  The simplest  ( not the first )  formula found to fit the bill is  BT .  
Though complicated,  it solves an equation   tan((B-A)/2) = (b-a)/…   whose rounding errors are 
attenuated by a factor roughly proportional to  |B-A|  when it is small regardless of whether  B  
is nearly a double root,  as it is when  A  is near  90˚  too.  A double root’s proximity spoils  BT  
far less than it spoils our other two formulas when  A < 90˚  and  a/b  is a little less than  1 .

Our three formulas’ uncertainties due to roundoff are summarized in  Table 3  below,  in which  
æ  stands for an unknown quantity not much  ( not five times )  bigger than a rounding error in 
numbers near  π/2 .  ( To specify  æ  more precisely would require tedious attention to details.)  
Combining the table with a little additional analysis leads to the following conclusions:

Classical formula  BS(a,A,b)  can be in error by
±(180˚/π) min{ æ tan(B) ,   √(2æ) }  .

Better formula  B(a,A,b)  is in error only in its last digit when  a ≥ b ,  and otherwise by
±(180˚/π) cos(A) min{ æ sin(B-A)/cos(B) ,   √æ } .
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§10.  Must the Classical Formulas be Amended ?
Despite their occasional vulnerability to roundoff,  the classical trigonometric formulas for  ∆,  
C,  c  and  B  have served mankind for millennia without complaint.  They are propagated by 

popular software like  MathCAD   from  MathSoft,  Cambridge  Mass.  No text recommends 
their replacement nor mentions the better formulas presented here.  Why fix what ain’t broken?

Actually the classical formulas are broken,  but so slightly as to escape notice in most instances.  
These formulas’ defects afflict only extreme configurations:

•  The triangle is too nearly degenerate —  too needle-like —  or
•  The computed angle  B  is too nearly a right angle.

Such configurations arise infrequently,  and when they do arise the formulas’ errors may still go 
uncorrected for any of a number of reasons:
   •  Erroneous results are difficult to notice without correct results for comparison.
   •  Errors may be truly negligible if enough extra figures were carried during computation.
   •  Errors may be deemed  “ No worse than the data deserve ”  because of a mistaken doctrine.
The last two reasons require explanation.

The accuracy of computation depends upon  ( and is usually less than )  its  “ precision,”  which 
is the number of digits carried when arithmetic operations get rounded off.  Nowadays floating–
point numbers are stored in the memories of computers and calculators with a fixed number of  
“ significant digits ”  that depends upon the machine and,  to a lesser extent,  upon the kind of 
software in use.  For instance,  the  HP-15C  calculator stores  10 sig. dec.  Most computers’ 
hardware supports two or three of the standard binary floating–point formats named in  Table 4  
along with their wordsizes and precisions.  The third format,  unsupported by some computers,  
may be inaccessible on others for lack of support by a programming language or its compiler.

Table 3:   Uncertainty   ∂B   due to  Roundoff   æ

Formula Conditions ±(π/180˚) (∂B/æ)

B = BS(a,A,b) — min{tan(B) ,   √(2/æ)}      ( not used if  B/A  is near  1 )

B = BT(a,A,b) a ≤ b  &  A < 90˚ min{sin(B-A)/cos(B) ,   1/√æ} cos(A)

a ≥ b  &  A < 90˚ sin(A-B)                     ( not used if  B/A  is too small )

B = BC(a,A,b) a < b min{cot2(A) tan(B) ,   ...}                     ( never used )

a ≥ b cot(B)                    ( not used if  A < 90˚  or  B < 49˚ )

Table 4:  Formats of  IEEE Standard 754  for  Binary Floating-Point Arithmetic

 Format Name in  C Name in  Fortran Wordsize Sig. Bits Sig. Dec. ≈ æ ≈
Single Precision: float REAL*4 4 Bytes 24 6 - 9 1.2/107

Double Precision: double REAL*8 8 Bytes 53 15 - 17 2.2/1016

Double-Extended: long double REAL*10 + ≥ 10 Bytes ≥ 64 ≥ 18 - 21 ≤ 1.1/1019
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Today most programming languages match the precision to which arithmetic is rounded with the 
precision to which arithmetic operands and results are stored in memory.  This is not a  Law of 
Nature;  it is a  Rule of Thumb  inherited from the era of slide rules and promoted to a  Law of 
Language  by mistake.  In the early  1960s,  when compilers had to be simple to fit into the 
small memories computers had then,  compiler writers rationalized this over–simplified way of 
evaluating expressions by misapplying pejorative terms like  “ numerical instability ”  and  “ ill–
condition ”  that were coming into vogue then.  Rather than blame results spoiled by roundoff 
upon the way compilers evaluated expressions,  we were to blame bad results upon bad data or 
bad algorithms.  An algorithm stood convicted of numerical instability if it could be replaced by 
a new algorithm at least about as fast and accurate as the old for all data,  and good for all data 
for which the old algorithm was bad.  By this criterion,  the classical formulas for  ∆ ,  C  and  c  
are unstable.  Were no better algorithm known,  the data could be convicted of ill–condition if 
end–figure perturbations in the data changed at least the last several digits of  correct  results.  
By this criterion,  needle–like triangles are mostly ill–conditioned data for  ∆ ,  C  and  c ;  and 
for  B  the ill–conditioned triangles are those that have too nearly a right angle at  B .

How far can we trust a chain of reasoning that tells us to condemn right–angled triangles?

The chain has three weak links.  First is the assumption that arithmetic precision should match 
the precision of operands in memory.  Actually arithmetic precision is a means to an end and 
therefore should ideally be chosen with a view to its consequences:  Choose enough precision,  
from what is available with adequate speed,  to obtain results of adequate accuracy from the 
algorithm selected.  Occasionally,  as we shall see,  the required arithmetic precision will exceed 
the precision of operands in memory.  When the required precision is too difficult to ascertain,  a 
prudent policy is to use the widest arithmetic precision available without much loss of speed.

The second weak link is the assumption that unstable algorithms should never be used.  There is 
some truth to this;  many an algorithm is useless because it is too inaccurate for practically all 
data.  The classical formulas for  ∆,  C,  c  and  B  are different;  they are excessively inaccurate 
for a fraction of their data so tiny that most computer users will never encounter it and most of 
the rest will never notice.  It’s not an unusual situation.  Gaussian Elimination  without pivotal 
exchanges is like that;   it solves systems of linear equations,  solving some quite inaccurately 
though they are otherwise innocuous.  This notoriously unstable algorithm is used anyway  ( and 
not just to solve diagonally dominant systems known to be safe )  whenever the computational 
costs of pivotal exchanges would be too burdensome.  Intolerable inaccuracy,  detectable from 
dissatisfied equations,  occurs rarely because elimination is performed carrying rather more 
precision than would suffice if pivotal exchanges were used;  every additional decimal digit of 
precision carried reduces the incidence of intolerable inaccuracy by a factor near  1/10 .

Similarly,  the tiny fractions of their data for which the classical formulas for  ∆,  C,  c  and  B  
are intolerably inaccurate can be attenuated by carrying more digits during arithmetic operations.
The attenuation factor is typically  1/10  for every additional decimal digit of precision carried.  
This factor depends upon three assumptions.  One is that the data is distributed randomly and 
not too nonuniformly.  Second,  the data’s distribution does not change when precision changes.  
Third,  inaccuracy arises from a cancellation–like singularity of the simplest and most common 
kind but still too complicated to describe fully here.  This third assumption is invalid for  B .
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§11.  What Extra Precision Does for  B :
Provided the data  {a,A,b}  is distributed in advance and not too nonuniformly,  the fraction of 
data for which the classical formula  BS(a,A,b)  is intolerably inaccurate shrinks by a factor near  
1/100  ( not  1/10 )  for every additional decimal digit carried during computation.  Carrying 

three extra decimal digits attenuates the fraction by a factor near  1/106 ,  and so on,  until half 
the precision carried exceeds both the data’s  precision and the accuracy desired in the result.  
Beyond that doubled precision,  BS(a,A,b)  delivers the desired accuracy for almost all data,  all 
except data less than a rounding error away from the boundary beyond which no real  B  exists.  
The better formula  B(a,A,b)  enjoys the same rapid attenuation starting from a smaller fraction 
of data.  Since this rapid attenuation may come as a surprise,  it deserves to be explained.

Revert again to radians instead of degrees,  and suppose we wish to compute  B  with a tiny 
error smaller than  ß  using classical formula  BS(a,A,b) .  Unless  √(2æ) < ß  already,  the error   

æ tan(B)  is too big just when  tan(B) ≥ ß/æ .  This is tantamount to   csc2(B) ≤ 1 + (æ/ß)2   and,  
because  sin(B) = (b/a) sin(A) ≤ 1 ,  places the data  {a,A,b}  into a region where

sin(A)  ≤  a/b  ≤  sin(A) √(1 + (æ/ß)2)

must be satisfied.  This region’s width,  and therefore its volume,  approaches zero like  æ2 ,  
which explains the rapidity of attenuation.  ( A slightly messier argument leads to the same 
conclusion for  B(a,A,b) .)  When half the precision of the arithmetic exceeds the precision of 
the data and the desired accuracy,  the error in  BS(a,A,b)  cannot be worse than  √(2æ) < ß ,  
which is small enough,  unless the computed value   (1 ± æ) (b/a) sin(A) > 1 ≥ (b/a) sin(A)   in 
which case the result will be an error message instead of  B .  This can occur only if one end–
figure perturbation in the stored data could render  B  nonexistent.  ( In some applications this 
boundary case deserves to be detected and assigned the result  B := π/2  ( or  90˚ )  by fiat.)

The phenomenon just explained,  attenuation of risk by  1/100  per extra decimal digit,  occurs 
more often than is generally appreciated,  usually associated with nearly double roots and with 
some optimization problems.  Every extra decimal digit attenuates risk by  1/10  for most other 
problems.  Were such risk reduction appreciated more widely,  naive numerical computation 
might be less hazardous than it is now under current programming language standards.

For instance take the computer language  C .  In the  1970s  this language evaluated all floating–
point expressions in  double  regardless of the formats,  float  or  double,  of arithmetic 
operands.  Doing so was easier and ran faster on the computer,  a  DEC PDP-11,  on which  C  
was first developed.  Programmers whose data and results were preponderantly  floats  were 
mostly unaware of the extent to which  C’s  floating–point semantics all but guaranteed the 
reliability of their computations.  By the mid  1980s  the dismal politics of computer language 
standardization had undermined that reliability by allowing  “ new ”  semantics that forced the 
precisions of arithmetic and operands to match.  A few computers ran faster this way.  Most 
computers installed today,  AMD–Cyrix–Intel–based  PCs  and  Power-PC/Power-Macs  and 
old   680x0-based  Macs,  run faster the old way and get better results than when they are forced 
to abide by the newer semantics.  Numerical software,  compiled to take full advantage of their 
floating–point hardware,  would run more reliably on these than on other machines.  That may 
happen some day if a proposed revision,  C9X,  to the  ANSI C  standard is ever adopted.
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§12.  How Much Accuracy do Data Deserve ?
We can eliminate the risk of inaccurate results from floating–point computation for a price:—  
time.  Time spent in thought,  or time spent computing,  or both.  Before paying that price we 
ought to compare it with the cost of inaccuracy. But the comparison,  if nontrivial,  tends to be 
imponderable;  whenever the the costs of inaccuracy and its elimination are both substantial they 
can hardly ever be ascertained until after they have been incurred.  Rather than embark upon 
tedious computations or error analyses likely to cost more than their worth,  we often fall back 
upon ancient  Rules of Thumb  derived from simple answers to simple questions,  perhaps too 
simple.  An example is …

“ Inaccurate data deserve appropriately inaccurate results.”

It looks simple,  but it’s not.  Inattention to its subtleties causes egregious errors to be deemed  
“ no worse than the data deserve ”  and innocuous data to be condemned as  “ ill–conditioned.”  
Logical and doctrinal mistakes like these have persuaded too many of us to acquiesce to ill–
advised decisions by designers of computer languages like  Java.  Hoping to help correct those 
decisions,  let us expose the mistakes that contributed to them.  Our exposé begins with a 
typical  “ Backward Error Analysis.”

We have seen that the classical formula  BS(a,A,b) := arcsin((b/a) sin A)  can lose up to about 
half the digits carried.  How bad is that compared to the error  B  inherits from end–figure errors 
in its data?  The first line in  Table 3  came from an assertion that the computed value  B + ∂B  
satisfies   sin(B+∂B) = (1 ± æ) sin(B)   in which  æ  is due to roundoff.  To be precise,  æ  comes 
from four rounding errors:  one in the quotient  b/a ,  one in  sin(A) ,  one in the multiplication 
of  (b/a) sin(A) ,  and one in  arcsin(…) .  These errors can be treated as if they belonged to the 
data by rewriting   B + ∂B = BS(a+∂a, A+∂A, b+∂b)   computed  exactly  from perturbed data

b+∂b := b √(1±æ) ,   so  ∂b/b ≈ (±æ/2) ,
a+∂a := a/√(1±æ) ,   so  ∂a/a ≈ -∂b/b ,   and
A+∂A := A ,   so  ∂A = 0 .

The error due to roundoff in the classical formula  BS(a,A,b)  is no worse than if it 
had been computed exactly from data  {a,A,b}  wrong in only their last digit stored.  
Since data more accurate than that are too good to expect,  the improved formula  
B(a,A,b)  is overkill;  its better accuracy is better than the data deserve,  and all the 
more so if extra digits are carried during its computation .

The last sentence,  the one in  italics,  is mistaken.  The sentence preceding it is correct,  though.

One might argue that the sentence in italics is mistaken because the given data could be exact,  
or because its errors could be correlated in a way that cancels them off instead of being anti–
correlated like  ∂a/a  and  ∂b/b  above.  Correlated errors are crucial to some other calculations,  
but not to  B  here.  The mistake here was committed by stopping the error analysis too soon,  
just at the point where an explanation of the error in  BS(a,A,b)  was turned into an excuse for 
accepting it without complaint.  Let’s pursue the analysis beyond that point.

What purpose does a computation of  B  serve?  It has something to do with a triangle.
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§13.  A Triangle is an Object:
Not knowing its dimensions precisely,  we cannot know precisely which triangle it is though we 
know it is a triangle.  As a software object a triangle responds to inquiries about its constituents,  
its sides and angles and area,  which cannot be arbitrary numbers but should satisfy relations 
like  A+B+C = 180˚ .  How consistent with such relations and with each other will responses to 
inquiries be?  Four  italicized  entries in the last column of  Table 2  reveal that the classical 
formula  BS(a,A,b)  ( but not better formula  B(a,A,b) )  can violate the well-known relation   
sign(B-A) = sign(b-a)  slightly.  How badly may other inconsistencies sully these formulas?

Consider two ways to compute side–length  c .  One computes  c  directly from the same data  
{a,A,b}  as were used to determine  B ;  here are conscientious formulas:

    cb(a,A,b) :=  (a-b)(a+b)/( √( (b cos A)2 + (a-b)(a+b) )  -  b cos A )    if   A > 90˚ ;  otherwise

        :=  b cos A  +  √( (b cos A)2 + (a-b)(a+b) )    if  90˚ ≥ A ≥ 53˚  or   b ≤ a ;  otherwise
        :=  b cos A  +  √((a - b sin A)(a + b sin A))     if  A < 53˚  and   b > a .

When  c  can take two values the larger is  cb .  ( In the first formula replace  0/0  by  0 .  The 
third can lose up to half the sig. digits carried.)  A second way to compute  c  is from data  
{a,A,B} ;  here are accurate formulas:

cB(a,A,B) := a·sin(A + B)/sin(A) if  A + B ≤ 90˚ ,
     := a·sin((90˚-A) + (90˚-B))/sin(A) if  A ≤ 90˚ < A+B  and  B ≤ 90˚ ,
     := a·sin((180˚-A) - B)/sin(A) if  B ≤ 90˚ < A ,
     := a·sin((180˚-B) - A)/sin(A) if  A ≤ 90˚ < B .     ( Unneeded here.)

In any case a negative or complex  c  must be replaced by  NaN  to signal an improper triangle.

Table 5  exhibits the true value of  c  alongside values computed for  cb(a,A,b)  and  cB(a,A,B) ,  
with both the better  B = B(a,A,b)  and the classical  B = BS(a,A,b) ,  on an  HP-15C  carrying  
10 sig. dec.  The data  {a,A,b}  were chosen to show how much diversity roundoff can generate 
regardless of whether the triangle is needle–like.  Digits known to be wrong are displayed  bold. 

Consistency is better with  B(…)  than with the classical  BS(…) ,  often far better,  but flawed.

Table 5:   Side  c ,   cb(a,A,b)  vs.  cB(a,A,B(a,A,b))

a b A˚ True  c cb(a,A,b) cB(a,A,B(a,A,b)) cB(a,A,BS(a,A,b))

3 17 10.16424862 16.73325549 16.73328 16.73324 16.73324

0.9999999999 1.999999999 30 1.732079091 1.732079091 1.732073 1.732082

18817 21728 60 10865.00000 10865.00000 10864.95 10864.92

38620 38673 87 2024.422239 2024.423 2024.4226 2023.99

49999.99999 50000.00001 88.3 2966.623735 2966.623736 2966.623736 2966.6244

49999.99999 50000.00001 89.99827 2.038126012 2.038126011 2.0381257 3.

49999.99999 50000.00001 89.999007 NaN NaN NaN 1.6

50000 50000 89.999007 1.733111947 1.733111947 1.733111947 1.6

800000000.1 799999999.9 89.999007 36497.51207 36497.51206 36497.49 33461.

800000000.1 799999999.9 90.000993 8767.720918 8767.720920 8767.696 5731.

800000000.1 799999999.9 91 11.45973300 11.45973300 11.451 7.
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Inconsistencies arise because the two computed values  cb(a,A,b) = c(a+da, A+dA, b+db)  and  
cB(a,A,B(a,A,b)) = c(a+∂a, A+∂A, b+∂b)  are values of  c  obtainable exactly from data with 
different  roundoff–induced end–figure perturbations  {da,dA,db}  and  {∂a,∂A,∂b} ,  neither 
worse than  {±æa, ±æA, ±æb} .  Although both perturbations appear almost negligible compared 
with the data,  they can change half the digits of  c ,  and change them  differently,  whenever 
data lies in a narrow boundary–layer of  {a,A,b}–space containing two kinds of triangles,   those 
with too nearly a right angle at  B  and those with  c  too tiny compared with  a  and  b .  Call 
such data  “ ill–conditioned ”  if doing so makes you feel better,  but it won’t change the facts:

An otherwise unexceptionable triangle can respond to two inquiries,  before and after 
an inquiry about  B ,  by returning grossly inconsistent values of  c .  Inconsistency is 
attenuated,  not always eliminated,  by using improved instead of classical formulas.

Nobody can say in advance how badly such inconsistencies might disrupt a program’s logic.  
Prudence requires their extirpation,  and that is straightforward if the specification of a triangle 
in object–oriented software is designed by a programmer aware of the problems with classical 
formulas and acquainted with reliable numerical algorithms to solve some of those problems.  A 
programmer unaware of the problems is unlikely to be enlightened by casual or random testing;  
those problems are confined to  “ ill–conditioned ”  triangles in so tiny a sliver of the space of all 
triangles that its location,  unknown to the unaware programmer,  is likely to stay unknown.

Fortunately,  the same phenomenon as tends to keep the unaware programmer unenlightened 
tends to protect his unwitting clients from harm.  As arithmetic precision increases beyond what 
the data  “ deserve,”  the sliver of triangles treated too inaccurately by the program shrinks,  the 
likelihood that the programmer will notice it shrinks,  and the risk of harm to his clients shrinks,  
and usually shrinks quickly.  As algebra has shown above and a picture will show below,  …

Every three additional decimal digits of arithmetic precision carried,  in excess of the 
precision to which data and results are stored,  reduces the incidence of intolerably  
“ ill–conditioned ”  triangles by factors  …

•  near  1/1,000,000  for triangles too nearly right–angled,
•  less than  1/1,000  for triangles too nearly needle–like.

Carrying arithmetic precision somewhat more than twice the precision to which data 
and results are stored practically eliminates intolerably  “ ill–conditioned ”  triangles.

Wider is better.  Plus large,  c’est mieux.  Breiter ist besser.  …

§14.  Three  Caveats  and a  Picture:
This digression is intended to forestall unwarranted generalizations.

First,  the incidence in practice of intolerably ill-conditioned data can hardly ever be predicted 
reliably.  Predictions,  based upon simulations that generate data randomly distributed uniformly 
over all possible data,  fail typically by orders of magnitude.  Why they fail is a story for another 
day.  Still,  extra precision generally does reduce that incidence to the extent claimed above.
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Second,  more precision is no panacea.  A few numerical algorithms are so virulently unstable 
on almost all data that no practicable precision can rehabilitate them.  No algorithm mentioned 
here is that bad,  however.

Third,  unlike  BS(…) ,  some algorithms are degraded by roundoff in ways inexplicable by a 
satisfactory backward error–analysis.  Heron’s classical formula  ∆'  for a triangle’s area  ∆  is 
one of these.  To understand why requires lengthy analysis.  Start by deriving expressions like

∂∆/∂a  =  (b2 + c2 - a2) a/∆  =  a b c cos(A)/∆  =  a cot(A)

for all the first partial derivatives of  ∆  with respect to its data  {a, b, c} .  Perturbing that data 
infinitesimally to  {a+da, b+db, c+dc}  changes  ∆  infinitesimally to  ∆ + d∆  wherein

d∆  =  (∂∆/∂a) da  +  (∂∆/∂b) db  +  (∂∆/∂c) dc  .
Suppose now that  |da|/a ≤ æ ,  |db|/b ≤ æ  and  |dc|/c ≤ æ  for any sufficiently tiny positive  æ ;  
this amounts to allowing arbitrary end–figure perturbations in the data.  They lead to

|d∆|/∆  ≤  æ ( a |∂∆/∂a|  +  b |∂∆/∂b|  +  c |∂∆/∂c| )/∆ .
Now two alternatives arise.  One is that the triangle’s angles are all acute,  none bigger than  
90˚ ;  in this case the last inequality’s right–hand side simplifies to  2æ ,  which is small  ( very 
well–conditioned ).  The other alternative is that one angle,  say  A ,  exceeds  90˚ ;  in this case 
the last inequality’s right–hand side turns into  2æ cot(B) cot(C) ,  which gets huge  ( very ill–
conditioned )  as  B  or  C  or both get tiny.  Thus we conclude that …

When tiny end–figure perturbations change side–lengths  {a, b, c}  to  
{(1±æ)a, (1±æ)b, (1±æ)c}  they change the triangle’s area  ∆  to very nearly …
 …  (1 ± 2æ) ∆    if the triangle’s angles are all acute  ( none exceeds  90˚ ) ,
 …  (1 ± 2æ cot(B) cot(C)) ∆   if one of the triangle’s angles  A > 90˚ .
Only in the latter case can  ∆  be an ill-conditioned function of the data  {a, b, c} .

This conclusion contrasts with line  4  in  Table 1.  Perturbations in the tenth sig. dec. of that 
data cannot possibly corrupt the fourth sig. dec. of the area  ∆  the way roundoff has corrupted  
∆'  obtained from  Heron’s  formula.  That isosceles triangle is not ill–conditioned at all;  the 
only thing wrong with it is that  Heron’s  formula  ∆'  doesn’t like its needle–like shape.

The picture on the next page will help to elucidate the situation.  Let us treat a triangle’s side–
lengths  {a, b, c}  as  Barycentric Coordinates  of a point in the  (x, y)–plane by setting

x = (b-c)√12/(a+b+c)    and    y = 2(b+c-2a)/(a+b+c) .
Doing so maps all triples  {a, b, c}  of triangles’ side-lengths to an equilateral triangle  Æ  in the  
(x, y)–plane with vertices at  (0, 2)  and  (±√3, -1) .  Every point  (x, y)  in  Æ  is the image of a 
family of  Similar  triangles with edge-lengths proportional to  {a, b, c} .   Equilateral triangles  
{a, a, a}  map to the center  (0, 0)  of  Æ .  Each isosceles triangle  (with two equal edges)  maps 
to three points on the medians of  Æ  corresponding to  {a, b, b} ,  {b, a, b}  and  {b, b, a} .  
Each scalene triangle  (with no two edges equal)  maps to six points in  Æ  corresponding to the 
permutations of  {a, b, c} .  The edges of  Æ  are images of collapsed triangles:

{b+c, b, c} –>  y = -1 ;    {a, b, a+b} –>  y = 2 + x√3 ;   {a, a+c, b} –>  y = 2 - x√3 .

The images of triangles whose angles are all acute sweep out the inside of a curvilinear triangle  
Œ  inside  Æ ;  the cusped vertices of  Œ  are vertices of  Æ  too,  but  Œ  is bounded by three 
hyperbolic arcs that are the images of all right-angled triangles:

1
8
--- 1

4
--- 1

2
---
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The Triangle  Æ  of  Similar Triangles

The points  (x, y)  in  Œ  satisfy

8 - √(3x2 + 72)  ≤ y ≤  8(1 - |x|√3)/( 4 + |x|√3 + √(3x2 + 24|x|√3) )

corresponding respectively to inequalities  b2+c2 ≥ a2 ≥ |b2-c2|  satisfied by the edge-lengths  
{a, b, c}  of all acute-angled triangles.  All their areas  ∆  are very well-conditioned functions of 
their edge-lengths.  Outside  Œ  a triangle’s area becomes ever worse-conditioned as its image 
approaches an edge of  Æ ,  on which areas vanish and are infinitely ill-conditioned.  Regardless 
of their ill-condition our formula  ∆ ,  the one that first sorts the data,  computes all their areas 
accurately despite roundoff.  However our formula  ∆  is not so well known as  Heron’s.

In the presence of roundoff  Heron’s formula  ∆'  is ill suited to computing,  say,  ratios of areas 
or reflectivities of needle–like triangles,  all of whose images lie near  Æ’s  edges.  Along these 
edges runs a narrow ribbon,  portrayed with exaggerated width in the picture above,  containing 
the images of all triangles for which the relative uncertainty due to roundoff in  ∆'  is intolerably 
big.  A tiny fraction of them,  those nearly isosceles triangles with images very near the vertices 
of  Œ ,  having well-conditioned areas,  suffice to condemn  Heron’s  formula  ∆'  as numerically 
unstable for delivering far less accuracy than the data deserve in certain instances.  Were these 
instances’ existence unknown,  trying to find them by sampling random data distributed roughly 
uniformly over  Æ  would be a futile quest.  This is why most programmers hardly ever discover 
whatever numerical instability may afflict their programs,  much less debug it.

What is the incidence of intolerable inaccuracy when  Heron’s  formula  ∆'  is used?  If roundoff 
is roughly as random as it usually seems,  that incidence is roughly proportional to the incidence 
of data  {a, b, c}  whose images fall into the narrow ribbon portrayed above.  Its width is easily 
proved proportional to   ( roundoff threshold  æ )/( biggest tolerable relative uncertainty in  ∆' ) .
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Though this does not reveal the incidence of intolerable inaccuracy it does explain how carrying 
extra precision beyond the data’s during arithmetic operations reduces that incidence:  Every ten 
additional bits or three additional decimal digits of precision reduces the roundoff threshold  æ ,  
and with it the ribbon’s width and area,  and with that the proportion of data whose images lie in 
the ribbon,  and therefore the incidence of intolerable inaccuracy by a factor of roughly  1/1000  
until a law of diminishing returns sets in.

( Returns diminish after the ribbon becomes so narrow that hardly any images of data are left strictly inside it,  as 
must happen ultimately if the data  {a, b, c}  reside among a finite set of floating-point numbers whose precision 
was fixed before the arithmetic’s precision was increased.  Returns from  Heron’s  formula  ∆'  begin to diminish as 
the arithmetic’s precision surpasses twice the data’s precision,  beyond which only isosceles triangles with one 
extremely tiny side benefit from increased arithmetic precision.)

An error-analysis like the one just performed upon  ∆'  can also be performed upon the formulas 
for angle  C  as a function of side-lengths  {a, b, c} .  Though the picture and many details must 
change,  what happens to  C  resembles what happened to  ∆  above:

When tiny end–figure perturbations change side–lengths  {a, b, c}  to  
{(1±æ)a, (1±æ)b, (1±æ)c}  they change the triangle’s angle  C  to very nearly …
 …   C  ±  (360˚/π) æ sin(C)/(sin(A) sin(B))      if angles  A  and  B  are both acute,
 …   C  ±  (360˚/π) æ cot(B)      if  A > 90˚ .

Like  ∆ ,  a tiny value of  C  is determined well by the data for a needle–like nearly isosceles 
triangle though both classical formulas  C'  and  C" dislike it.  Roundoff impairs these formulas’ 
accuracy when used to compute parallax at a far distant vertex,  so experienced astronomers,  
navigators and surveyors avoid them.  Accurate formula  C ,  the one that first sorts the data,  is 
accurate for all triangles but unlikely to be selected by a programmer who sees only the classical 
formulas  C'  and  C" in his textbook.  Each of  C'  and  C" is intolerably inaccurate for data  
{a, b, c}  whose images lie in a narrow ribbon along  Æ’s  boundary.  Although the ribbon’s 
width varies in a way that depends upon which formula was selected,  its width and area and 
therefore the incidence of intolerable inaccuracy shrink at least as fast as the roundoff threshold  
æ  does when arithmetic precision is increased.

As before,  roundoff in the classical formulas can inflict inconsistencies upon object–oriented 
software.  For instance,  classical formulas can violate the equation   a b sin(C)/∆ = 2   severely.  
It and the accurate formulas are consistent in all but perhaps the last digit stored except when  C  
is too close to  180˚,  in which case an error in  C’s  last digit can spoil  sin(C)  utterly as almost 
occurs in line  7  of  Table 1.

What if the software you use was programmed by someone ignorant of the accurate formulas?  
Then you have to hope that it was compiled to carry sufficiently more arithmetic precision than 
your data occupy in memory.  Every extra three sig. dec. or ten sig. bits carried reduces by 
typically  99.9%  the population of triangles that classical formulas dislike enough to hurt you.
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§15.  Proper Precision Management:
“ The purpose of computing is insight,  not numbers.”       ( R.W. Hamming )
“ The purpose of computing numbers in not yet in sight.”  ( G.E. Forsythe )

Numerical computation is a kind of simulation performed to explain or predict.  Its accuracy is 
not an end in itself but need only be adequate to support reliable explanations and predictions.

To that end,  the arithmetic’s precision should be determined from outside in rather than from 
inside out,  by the uses to which results will be put rather than by operands’ precisions.  When,  
as happens often,  the necessary precision is so difficult to ascertain in advance that it is not 
known,  the widest precision available that does not sacrifice too much speed is the right choice.  
It is the easiest way we know to achieve the accuracy we seek,  sought not for its own sake as 
if,  like  Virtue,  it were its own reward,  but sought because we know no better way to secure as 
many mathematical relationships as we can afford in the hope that they include the ones that 
matter to an impending computation to which we do not yet know which ones matter.  When,  
rarely,  the chosen precision turns out to be inadequate,  we have to find something else to do.

If that does not sound like  Science,  compare it with the assignment of precision according to 
traditional naive rules.  Some rules followed by applications programmers are rules of thumb,  
venerable but no less fallible than ancient trigonometric formulas.  Other rules are enforced by 
computer languages designed by other programmers who have reasons for their rules but not 
reasons informed by modern error–analysis.  The linguistic tradition that assigns to each 
arithmetic operation the same precision as is occupied in memory by its operands and result has 
never been and never will be justified numerically.  When,  rarely,  software written according 
to these naive rules malfunctions because of rounding errors,  users and perhaps the programmer 
of the software  ( but why not the language designer? )  have to find something else to do.

How different are the rates of malfunction due to roundoff under the two regimes of precision 
assignment just described?  Alas,  the hits,  runs and errors recorded so sedulously for baseball 
are not recorded also for numerical computation.  Lacking good records,  we have only crude 
guesses based upon unreliable anecdotal accounts of the few malfunctions that have been caught.

Back when computation ran at leisurely kiloflops in one big room instead of gigaflops on many 
desktops,  I used to look over my colleagues’ shoulders out of curiosity to see what they were 
computing.  What I observed made me as welcome as any other bringer of bad tidings:
   •  About a third of the results I found interesting were far more in error than had been thought.
   •  When serious errors were discovered,  their causes were misdiagnosed more often than not.
   •  About a quarter of those errors arose from failures to appreciate a compiler’s  “ features.”
   •  Most numerical results were discarded unused,  often before anyone had looked at them.
The last observation helps explain why calamitous miscomputations were not celebrated daily.  
The other observations accord with and motivate the examples and analyses presented in this 
article,  and suggest that the malfunction rate is not negligible though nobody knows what it is.

Whatever the rate of malfunction due to roundoff,  it would be orders of magnitude smaller if 
compilers made better use of the precision built into the overwhelming majority of computers 
now installed on desktops,  precision their owners have paid for but are not getting.
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§16.  Different Floating–Point Semantics:
For the purposes of this article just three floating–point hardware designs will be distinguished 
according to how fast operands and results of different widths circulate among their fast on–chip 
cache memories,  their floating–point registers,  and their pipelines where the arithmetic gets 
done.  All computers move numbers to and from main memory  ( DRAM )  and disk faster if the 
numbers occupy a narrower format,  so we can assume for all computers that large volumes of 
data and results will be stored in the narrowest format of  Table 4  adequate to hold them.  Each 
of the three floating–point architectures has its own way to handle scratch variables in registers 
and intermediate variables already resident in the cache.

Today’s less common architecture gets  float  results from  float  operands significantly faster 
than it gets  double  from  doubles,  and cannot mix a  double  with a  float  without first 
promoting the  float  to  double .  This architecture,  which we call  “ Orthogonal,”  appears to 
match a linguistic tradition that assigns to each arithmetic operation the same precision as its 
operands and result occupy in memory.  We call that tradition’s arithmetic semantics  “ Strict.”  
We shall see that it is not the best numerical semantics to use with this architecture.

A now more common architecture holds all operands in  double  registers regardless of whether 
they came from memory as  floats,  and obtains  double  results about as fast as  float  if not 
faster.  The  IBM RS/6000,  Power-PC  and  Apple Power-Mac,  and  DEC Alpha  have this 
architecture.  It matches the semantics of old–fashioned  Kernighan-Ritchie  C ,  which treated 
all constants and subexpressions as  doubles  and rounded to  float  only values then assigned 
to variables the programmer had declared  float .  We call the architecture and the semantics  
“ OldC.”  They suit each other well.  Languages and compilers like  Java,  that enforce  Strict  
semantics upon an  OldC  architecture,  are squandering its precision for no good reason.

Today’s most common architecture,  found in about  90%  of computers installed on desktops,  
holds all operands in  long double  registers regardless of the formats in which they came from 
memory,  and obtains  long double  results about as fast as  double  or  float  if not faster.  
This is the architecture of the  Motorola 680x0  in old  Apple Macintoshes  and older  Sun IIIs,  
the  Motorola 88110  ( few exist ),  the  Intel 80960 KB  ( in embedded systems like  PostScript  
printers and in some military computers ),  and the ubiquitous  Intel x86/Pentium  cloned by  
AMD  and  Cyrix.  We call this architecture  “ Extended.”  It includes a control register in which 
two bits can be set to abbreviate the arithmetic so that it will mimic the roundoff behavior  ( but 
perhaps not the over/underflow thresholds )  of the previous two architectures.  Therefore the  
Extended  architecture can match the  Strict  and  OldC  semantics practically perfectly in case 
software recompiled from the other machines has to be run the way they run it.  However,  the 
semantics natural for the  Extended  architecture is to evaluate all constants and subexpressions 
in  long double  and round to narrower formats only values then assigned to variables declared 
narrower by the programmer;  we call this semantics  “ Extended.”

On most  Extended  machines the library of  long double  elementary transcendental functions  
( log,  exp,  cos,  arctan, … )  is supported extensively by hardware.  Therefore the programmer 
is best advised to declare almost all local floating–point variables  long double  and enjoy near 
obliviousness to obscure rounding errors.  Most of these  ( all that occur in subexpressions )  will 
occur more than three decimal digits to the right of the rightmost digit stored with most data and 
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results,  so roundoff will cause trouble far less frequently than on  non-Extended  machines.  But 
few compilers afford programmers this pleasure.  Among them are the compilers endorsed by  
Apple  for old  680x0-based  Macintoshes;  a good example is the  Fortner  ( formerly  LSI )  
Fortran  compiler.  Another example is  Borland’s  C  compiler for  Intel–based  PCs  and their 
clones.  I know of no other compilers for  PCs  that support  Extended  semantics fully if at all.

There are historical reasons for the dearth of linguistic support for  Extended  semantics,  and 
some of those reasons made sense once if not now.  For two decades up to about  1985,  the big 
number–crunchers had  Orthogonal  architectures.  Among them were the  IBM /370 and 3090,  
CDC 6600/7600,  CRAYs,  and ultimately the  DEC VAX.  IBM  ended up with hardware for 
three floating–point formats,  DEC  for four,  of which the widest  ( also called  Extended )  was  
16  bytes wide and too slow for most applications.  The illusion of  Compatibility  served to 
excuse  Strict  semantics,  and numerical experts tolerated it because we had bigger fish to fry.  
Besides,  we were proud of our ability to program the behemoths successfully by assiduous 
attention to details that sane people find too annoying,  and we were paid well to do it.

Now the evolution of computer languages has reached a state in which language designers feel 
uncomfortable with any semantics other than  Strict,  and doubly uncomfortable at the thought 
of entertaining two or three floating–point semantics.  This is a pity because  Strict  semantics 
was at best a convenient expedient to simplify compilers,  never as good numerically as the 
other semantics described here,  and rather worse for numerically inexpert programmers.

( Let’s digress to consider a semantics that serves programmers of  Orthogonal  architectures 
better than  Strict  semantics.  We call it  “Scan for Widest.”  It affects the overloading of infix 
operators like  +, -, *, /  and  :=  amidst an expression with operands of different precisions;  the 
idea is to perform all arithmetic in that expression to the widest of those precisions.  Unlike  
Strict  semantics,  which overloads an infix operator according to the syntactic types exclusively 
of its operands,  Scan for Widest  has to take account also of the expected type of the result 
when that is decidable.  The bottom line is that  Scan for Widest  does the same as  Strict  when 
precisions are not mixed,  and avoids the need for  Strict’s  explicit widenings  ( which are often 
omitted by mistake )  when precisions are mixed for the usual reasons.  These are that more than 
the data’s precision will be needed by intermediate variables like  S := (a+b+c)/2  in  Heron’s  
formula,  T := a/tan(A)  in  BT(…) ,   U := b·cos(A)  in  cb(…) ,  etc.  to get consistent results;  
and we expect to compute   √(T·T - (b-a)·(b+a))   accurately without first explicitly coercing  b  
to the same higher precision as  T .  Similar scanning is needed to facilitate correct mixtures of a 
multiplicity of precisions,  and mixtures of  Interval Arithmetic  with  non-Interval  data,  and to 
permit the language of coordinate–free  Linear Algebra  to work upon many geometrical objects 
each specified in its own coordinate system.  Of course,  Scan for Widest  eases the lives of 
programmers at the cost of complicating life for language designers and implementors who have 
to cope with a host of details that are easy to botch.  But that is a story for another day.)

The  Strict  semantics specified by  Java  is at odds with its promotion as the one language for  
Everyman  to program everything everywhere.  OldC  semantics would be safer and  Extended  
semantics more so for the overwhelming majority of computers in service,  and probably also 
for almost all programmers.  Java’s  designers should not be surprised if they are suspected of 
denying advantages to the many in order to secure advantages for a few.



http://http.cs.berkeley.edu/~wkahan/Triangle.pdf                                                                  March 24, 2000 3:51 am

WORK IN PROGRESS — not the final word                                                                                   Page 21  of  22

§17.  Conclusion:
The computing community has always regarded floating–point computation as a black art.  It’s 
not really.  It’s very mathematical,  too mathematical to suit most programmers attracted by the 
opportunities to sell software into a mass market.  Maybe they should study the subject a little,  
perhaps read an article or two like this,  before they write floating–point software.  Such advice 
is  Counsel of Perfection,  recommended but not obligatory for programmers who have spent 
their time refining different skills.  Therefore programmers remain mostly unaware of numerical 
hazards lurking in classical formulas copied from texts and handbooks,  and unaware of better 
methods that attenuate or eliminate those hazards.  Yet we all depend unwittingly upon their 
programs,  which expose us all to those hazards.

Computational facilities,  hard– and software,  intended for the masses can do better than blindly 
amplify intelligence or the lack of it.  Just as seat–belts,  gas bags,  ABS  brakes and impact 
absorption are designed into automobiles to enhance their safety without excessive detriment to 
performance or price,  computational capabilities ought to be designed with the attenuation of 
computational hazards in mind,  always subject to considerations of performance,  price and 
time to market.  We know a lot about the programs programmers are inclined to write,  and  that 
knowledge has influenced the design of computer hardware and optimizing compilers to run 
those programs faster.  Running them more reliably too is a worthwhile goal for hardware and 
software engineers,  especially if the added cost of enhanced reliability is ultimately negligible.

By far the easiest way to attenuate and sometimes extinguish the risks from roundoff in 
otherwise correct computation is to carry more precision than data or results  “ deserve.”  
Hardware to do so is in place.  Now the computer language community must do its part.

Think not of  Duty  nor  Indulgence;  think about  Self–Defense.
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numerical miscomputation see my  “A Survey of Error Analysis” pp. 1214-1239 in Information 
Processing 71 (1972) North Holland, Amsterdam.  For  IEEE Standard 754 for Binary Floating–
Point Arithmetic  see  http://http.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps  and its 
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§19.  Footnote about Examples:
Why are my examples run on an old calculator and not a current computer?  Hexadecimal digits 
are so much harder than decimal digits for humans to appraise that all data and results had to be 
printed in decimal;  and then  Decimal ‹—› Binary  conversions had to be avoided because they 
can change the printed data slightly before it goes into the computer’s memory.  Conversions 
vary among computers and compilers,  and so do the trigonometric functions;  such variations 
are distractions best avoided no matter how small.  Angles are computed in degrees instead of 
radians to avoid variations on  π .  HP-15Cs  and  11Cs  are still abundant,  and they perform 
arithmetic identically and well,  so the results presented here are easy for others to reproduce.


