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Motivation

1 IT-regime is characterized by scheduled meetings;

2 Standard interest rate models do not incorporate schedule
events;

3 Stochastic timed jumps (jump-diffusion models) are not
consistent with scheduled events;

4 Traded instruments have embedded market expectation about
policy changes;

5 IR futures and options must be priced consistently.
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Motivation

It is a well know result that under no-arbitrage zero coupon price is
given by:

Bt = E(e−
∫ T
t rsds |Gt) (1)

if we assume that (rt)t≥0 is an affine process, zero coupon bond
prices can be obtained using the Laplace transform, as Duffie et al.
(2003).

If there is a Central Bank meeting scheduled before the bond
maturity, interest rate must reflect this, otherwise the bond price
will be incorrect.
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Motivation

A possible form to incorporate Central Bank’s decisions regarding
the target rate is by assuming that the resulting overnight rate is a
semimartigale where the discontinuous component captures
monetary decisions. A standard construction when one adopt
semimartigales to model asset prices is to assume that the jump
component is resulting from a sequence of inaccessible stopping
times, in this case one have a randomly timed jump.



Motivation

Our model does not include randomly timed jumps in prices, but we
adopted a deterministic time events instead. We assume there is a
deterministic counting process N(t), counting the number of
predictable events that occur up to time t:

N(t) :=
∑
j

1I{τj≤t}

where (τj)j≥1 are increasing predictable stopping times.



Motivation

Without any assumption on the jump size distribution we can write
the interest rate dynamics like:

drt = µ(rt)dt + σ(rt)dWt + η(rt−)dJ(t), t > 0. (2)

Where µ(·) is the drift, σ( · ) the diffusion coefficient and is the
η( · ) jump impact parameter. Here J is a compound jump process:

J(t) =

N(t)∑
j=1

θj

and rt− = lims↑t rs .



Motivation

Plugging equation (2) into (1) we have that bond prices are given
by:

Bt = L(rt)× L(θt) (3)

Where L is the Laplace transform.

The process (rt)t≥0 describe the continuous part of overnight
interest rate and (θt)t≥0 incorporate the scheduled events.



Motivation

We can rewrite equation (1) as:

Bt = E(e−
∫ T
t rsds−θ(T−u)|Gt) (4)

Intuitively the expression above means that changes in target rate
only affects the level of (rt)t≥0 but not its volatility. This
assumption is not too strong, because:

1 overnight interest rate are determined by Interbank
transactions, and

2 without any deterioration in Banks’ credit quality, the new
target rate will not increase the volatility of the borrow/lending
rate among banks with same creditworthiness.
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The evolution of (θt)t≥0

1 Central bank decision about θ are not time independent;

2 The values of θ tend to reflect the current monetary policy
pursued by the Central Bank (tight and loosing cycles);

3 To incorporate simultaneously uncertainty and dependence on
(θt)t≥0 (Central bank decisions) it is treated as a Discrete
Time Markov Chain (DTMC) of order k
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The evolution of (θt)t≥0

For sake of simplicity we assume that (θt)t≥0 is an ergodic Markov
Chain of order one. Ergodicity is not a strong assumption, because:

1 one can always write a k order DTMC as a first order DTMC;

2 periodicity is not a rational behavior under a IT-regime, and

3 set A given by all potential values of Central Bank’s decision
about (θt)t≥0 is finite.
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The evolution of (θt)t≥0

For a discrete value random variable, its Laplace transform is given
by:

L(θu) :=
∑
i

e−θu,i ×Q(θu = i) (5)

Here i ∈ A. Typical elements of A are i = k × 0.0025 such that
k ∈ Z. Additionally, once θ is DTMC its marginal distribution
Q(θu = i) over A at time u is described by:

Q(θu = i) =
∑
j

Q(θu = i |θs = j)Q(θs = j) (6)

Where transition probabilities Q(θu = i |θt = j) satisfy the
Chapman Kolmogorov equation for two consecutive Central Bank
meetings s < t < u.
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The evolution of (θt)t≥0

A convenient simplification arise in equation (6) when there exist
just one scheduled meeting before the bond maturity. In this case,
θs ∈ Gt and equation (6) simplifies to:

Q(θu = i) = Q(θu = i |θs = j) (7)

Because Q(θs = j) assume just two outcomes {0, 1}. We have
P(θs = j) = 1 if θs = j was the decision taken by Central bank at
meeting s and zero otherwise. Such simplification is important to
calibrate the transition probabilities from market prices.
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Options Pricing

1 Interest rate options products provide market participants the
right payoff to bet on Central bank futures decisions about the
target rate.

2 If a binary options is available, investors can make bets on
futures values of (θt)t≥0 at time t by buying/selling binary
options on overnight interest rate expiring in the next business
day after a scheduled meeting u.

3 Binary options are generally considered “exotic” instruments
and there is no liquid market for trading these instruments
between their issuance and expiration.

4 Asian options are not perfect to bet on monetary changes, but
are much more liquid.
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Options Pricing

Regardless the option type, i.e, binary, vanilla or Asian, the
non-arbitrage price including expectation about changes in
monetary policy is given by:

Call(T ,K , rt) = EQ[(AT (θT )− K )+|Gt ] (8)

where AT can be either the overnight interest rate at time T or its
average value. As seen before rT depends on all previous values of
θ.

The expectation in (8) is calculated over the joint density of
(rT , θT ) which might be quite complicate because θT is a DTMC
and therefore the joint density will be a mixture of continuous and
discrete variables.
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Options Pricing

We can rewrite equation (8) as:

Call(T ,K , rt) =

∫
Ω×A

[(AT (θT )− K )+]f (AT , θ)d(AT , θ) (9)∫
A

[∫
Ω

[(AT (θT )− K )+]f (AT |θ)dAT

]
g(θ)dθ (10)

So conditioning f (•, •) on θ we can solve the expectation above as
a classic Black & Scholes problem for every value θ ∈ A;



Options Pricing

This strategy of conditioning on all possible values of θT is
conceptually equivalent to Merton (1976) to price option where
jumps are present. Assuming that AT has a lognormal distribution,
we have:

Call(T ,K , rt) =
∑
i

BS(AT (θT = i),K ,T , σ)Q(θT = i) (11)

where θT ∈ A and Q(θT = i) are given by equation (6). Here BS()
stand for the classic Black & Scholes formula.
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Model Calibration: simulated monetary decision data

1 We performed a Monte Carlo simulation to assess its quality to
extract market beliefs about Central Bank decision;

2 We assume different values for the elements of A for 2
consecutive meetings;

3 We assume that overnight interest rates are Guassian;

4 For every set A we combine all elements to describe futures
decision of Central Bank. For instance, if
A = {−25bps, 0,+25bps} we have a vector of dimension 8× 2
corresponding to all 2-combinations from elements of set A.
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1 For every possible combination of monetary decision we use
equation (4) and (3) to simulate bond prices at time t and
latter we solve the optimization problem:

argmin (B̂t − B̌t)
2 s.t :


∑
j

P(θu = i |θs = j) = 1

P(θu = i |θs = j) ≥ 0,∀j
(12)

2 where B̂t is obtained by plugging the values of A into (4) with
different values for initial overnight rate rt . B̌t is the predicted
bond price using (3).

3 The first constraint assures that the sum of each line in the
transition matrix is equal to 1; and .

4 the second constraint assures non-negative values for
probabilities.
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Model Calibration: simulated monetary decision data

1 The output from the optimization problem is a vector of
dimension 8× 2 corresponding to all 2-combinations from
elements of set A.

2 Results from the simulation exercise are in tables 1 and 2:

1stMeeting 2ndMeeting

A = {−25bps, 0,+25bps} 100% 100%

A = {−25bps, 0,+50bps} 100% 100%

A = {−50bps, 0,+25bps} 100% 99%

Table: Calibration exercise for simulated monetary decision. Initial
overnight interest rate, rt = 10%

1 We assume that the bond maturity is 4 months and Central
Bank Meetings are scheduled every month.



Model Calibration: simulated monetary decision data

1 The output from the optimization problem is a vector of
dimension 8× 2 corresponding to all 2-combinations from
elements of set A.

2 Results from the simulation exercise are in tables 1 and 2:

1stMeeting 2ndMeeting

A = {−25bps, 0,+25bps} 100% 100%

A = {−25bps, 0,+50bps} 100% 100%

A = {−50bps, 0,+25bps} 100% 99%

Table: Calibration exercise for simulated monetary decision. Initial
overnight interest rate, rt = 10%

1 We assume that the bond maturity is 4 months and Central
Bank Meetings are scheduled every month.



Model Calibration: simulated monetary decision data

1stMeeting 2ndMeeting

A = {−25bps, 0,+25bps} 100% 100%

A = {−25bps, 0,+50bps} 100% 100%

A = {−50bps, 0,+25bps} 100% 100%

Table: Calibration exercise for simulated monetary decision. Initial
overnight interest rate, rt = 5%



Model Calibration: Real market data

We calibrate the model to Brazilian data for some reasons:

1 There is a very liquid market for overnight interest rate in
Brazil, both for futures and options;

2 Brazil has adopted a Inflation Targeting regime since 1999
with scheduled meeting to define the target rate; and

3 Interest rate derivatives are used by market participants to bet
on future monetary decisions
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Model Calibration: Real market data

1 The overnight interest rate futures(Ticker: DI1) traded at
BM&FBOVESPA is one of the most liquid short-term interest
rate contracts in emerging markets worldwide (ADTV 1,3 M);

2 DI futures are quoted in terms of rates and are traded in
basis-point, but positions are recorded and tracked by the
present value of contract, called PU;

3 For a given day t the present value is obtained by discounting
the notional value of the contract by the expected overnight
interest rate from t up to the day prior to expiration, T .

4 Therefore, at time t we can calculate the present value (PU)
of a DI-futures with expiration date of T as:

PUt = E(e−
∫ T
t rsds |Gt)× 100, 000 (13)

From equation (13) we verify that the DI futures is very similar to a
zero-coupon bond, except that it pays margin adjustments every
day.
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basis-point, but positions are recorded and tracked by the
present value of contract, called PU;

3 For a given day t the present value is obtained by discounting
the notional value of the contract by the expected overnight
interest rate from t up to the day prior to expiration, T .

4 Therefore, at time t we can calculate the present value (PU)
of a DI-futures with expiration date of T as:

PUt = E(e−
∫ T
t rsds |Gt)× 100, 000 (13)

From equation (13) we verify that the DI futures is very similar to a
zero-coupon bond, except that it pays margin adjustments every
day.



Model Calibration: Real market data

1 We will calibrate our models as we were in January/2012;

2 We assume that A = {−50bps, 0,+25bps};
3 We calibrate the model for every day in January to extract the

market probabilities of the two next COPOM decisions.

4 The first two COPOM meeting in 2012 are scheduled for
January 18 and March 7;

5 Tables below exhibit the transitions matrix implied into DI
futures. We do not report all transition matrix due to lack of
space.
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Model Calibration: Real market data

θ = U θ = D θ = N

θ = U 0.73 0.13 0.14

θ = D 0.00 0.87 0.13

θ = N 0.33 0.33 0.34

Table: Implied transition matrix -
1/2/2012

θ = U θ = D θ = N

θ = U 0.74 0.14 0.12

θ = D 0.00 0.87 0.13

θ = N 0.33 0.33 0.34

Table: Implied transition matrix -
1/10/2012

A = {D = −50bps,N = 0,N = +25bps}
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Final Remarks

1 In this paper, we develop a model to incorporate monetary
announcements for pricing interest rate options;

2 The model formulates future monetary decision and options
pricing in a consistent way;

3 We calibrate the model to Brazilian Data;

4 The model can be applied to other central banks, such as the
European Central Bank and the Bank of England which
announce their policy decisions at regularly scheduled
meetings.
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