Effects of Student Task Self-Efficacy and Expected Reciprocity on Intent to Share Knowledge

Abstract

To extend our understanding of individual student knowledge sharing, we apply organizational knowledge sharing literature to classroom settings. Using data from 111 students representing 25 groups, we investigated the individual knowledge sharing process. Results show that task self-efficacy and expectation of reciprocal knowledge sharing from group members positively predicted intent to share task-related knowledge with group members. An interaction between self-efficacy and expected reciprocal knowledge affected intent to share knowledge, also. Low expectation of reciprocal knowledge sharing dampens the effects of a student’s self-efficacy on intent to share knowledge. The student has available ability, but does not intend to share it. A high expectation of reciprocal knowledge sharing is a facilitator of knowledge sharing. Even for students with low self-efficacy, the intent to share knowledge is high if others are perceived to be willing to share. We discuss the relevant literature, present data analysis and hypotheses results, and, finally, present limitations and implications of the study.

Keywords: Management Education, Knowledge Sharing, Group Projects
Effects of Student Task Self-Efficacy and Expected Reciprocity on Intent to Share Knowledge

Group projects are an accepted part of the management classroom today, largely inspired by their effective use in organizations (O’Conner & Yballe, 2007). Students appear to recognize the benefits of group work, also, as students who participate in group projects are more likely to agree that their course objectives were met (Bacon, 2005).

Much research attention has been given to barriers to group project effectiveness, but this research is primarily related to non-task interactions in the group. For example, research addresses general problems with accountability (Bacon, 2005; Comer, 1995; Mesch, 1991; Siciliano, 2001), coordination (Chapman et al., 2005), satisfaction with the team (Chowdhury, Lanis, & Endres, 2002) and selection of members (Bacon et al., 2001; Chapman et al., 2006; Ettington & Camp, 2002).

The current study aims to enrich our understanding of the individual knowledge sharing processes within groups of students in an educational setting. Recent research attention has been directed toward knowledge sharing in groups, although not in the educational setting. In addition, few studies have investigated important determinants of individual knowledge sharing, such as perceived ability to perform (Bock & Kim 2002; Cho, Li, & Su, 2007). To extend our understanding of individual student knowledge sharing, we apply organizational knowledge sharing literature to classroom settings. Using data from 111 students representing 25 groups, we investigated the individual knowledge sharing process. Next, we discuss the findings of our research. The study concludes with a discussion of implications for teaching, limitations, and recommendations for future research.

Individual Determinants of Knowledge Sharing in Group Work
Knowledge sharing is recognized as an important facilitator of organizational performance today (Argote, 1999; Quigley, Tesluk, Locke, & Bart, 2007; Siemsen, Balasubramanian, & Roth, 2007; Yang, 2007). The knowledge sharing process is integral to effective group performance, as well. “Knowledge sharing occurs when an individual is willing to assist as well as to learn from others in the development of new competencies” (Yang, 2007: 83). Similarly, Hernandez (2002) describes cooperative group work in business education as that which promotes higher-level learning or thinking. The business education and knowledge sharing perspectives agree that the positive outcomes of knowledge sharing in groups are learning and performance.

Self-efficacy in the Ability to Share Knowledge

Researchers have suggested that self-perceived ability to share knowledge (self-efficacy) is an important predictor of knowledge sharing attitudes and intentions in group work (Cabrera, Collins, & Salgado, 2006; Cho et al., 2007; Lin 2007; Lu, Leung, & Koch, 2006). Cabrera et al. (2006) surveyed 372 employees in a large, multinational corporation and found that self-efficacy to share knowledge predicted self-reported participation in knowledge sharing activities.

In a study by Cho et al. (2007) of Korean employees in several organizations, self-efficacy to share knowledge positively predicted knowledge sharing intentions and a preference for knowledge sharing mechanisms (e.g., groupware, knowledge database). Other predictors of knowledge sharing outcomes were agreeableness, expected reciprocity, group norms, and expertise.

Similarly, Lin (2007) studied 172 employees in 50 organizations in Taiwan and found that self-efficacy to share knowledge positively predicted knowledge sharing attitudes and intentions. In the study, other predictors of knowledge sharing outcomes included anticipated reciprocal benefits from coworkers and the enjoyment of helping others, but organizational
rewards did not predict knowledge sharing. Lu et al. (2006) also found positive effects of self-efficacy to share knowledge. In two studies, self-efficacy mediated the relationship between coworker collegiality and knowledge sharing among Chinese managers.

Bryant and Terborg (2008) measured technical employees’ perceived ability to share knowledge as peer mentors, operationalized similarly to self-efficacy. Results showed that competence led to higher perceived knowledge sharing and creation.

Task Self-efficacy and Knowledge Sharing

The above-mentioned studies reflect the norm in knowledge sharing literature in measuring self-efficacy to share knowledge, versus self-efficacy to perform the actual task that is assigned to the group. Few researchers have investigated the role of the group member’s expertise or perceived expertise in predicting knowledge sharing outcomes (Cho et al., 2007). Individuals will not always be willing to share knowledge, and one key reason limiting knowledge sharing may be the perception that one’s task knowledge is lacking (Wasko & Faraj, 2005). Research supports that individuals may be motivated to help others when they have high task ability because they are ‘rewarded’ intrinsically by seeing the positive outcomes (Ba, Stallaert, & Whinston, 2001; Bock, Zmud, Kim, & Lee, 2005; Constant, Sproull, & Kiesler, 1996; Osterloh & Frey, 2000; Wasko & Faraj, 2005).

Cho et al. (2007) measured expertise as years of organizational tenure and the employees’ self-perceptions, and results revealed that expertise positively affected knowledge sharing attitudes and preference for knowledge sharing mechanisms (e.g., groupware, knowledge database). Bock and Kim (2002) measured employee self-efficacy in one’s perceived ability to contribute to organizational performance. A survey of 467 workers revealed that task self-efficacy positively predicted attitudes toward knowledge sharing, which then predicted reported knowledge sharing with coworkers.
Training research has considered the relationship between employee skills training and knowledge sharing activities (e.g., Yahya & Go, 2002; Weldy, 2009). For example, Yahya and Go (2002) surveyed Malaysian managers and found that the occurrence of training in different skills such as management, teamwork, and quality initiatives was positively related to knowledge sharing in the organization. Furthermore, Weldy (2009) proposed newly learned skills that are effectively transferred to the organization should increase knowledge sharing.

Task self-efficacy is an established predictor of positive group work behaviors related to knowledge sharing, as well (e.g., Wang & Lin, 2007). For example, Wang and Lin (2007) investigated student group work in an undergraduate psychology class and who used a web-based group discussion system. The authors found that students with high self-efficacy to perform well in the class engaged in more collaborative learning behaviors, which led to higher group performance.

In sum, researchers have found that self-efficacy predicts knowledge sharing intentions, attitudes, and behaviors. Most researchers measure self-efficacy to share knowledge rather than self-efficacy to perform the specific task, however. Others suggest that self-efficacy to perform the task or actual expertise are useful indicators of knowledge sharing outcomes (Cho et al., 2007) and training literature has linked knowledge gained to knowledge sharing (Yahya & Go, 2002; Weldy, 2009). In addition, task self-efficacy is linked to positive group outcomes, such as cooperative behavior (Wang & Lin, 2007). Although limited research is available directly on the subject, the discussion here supports the positive relationship of the task self-efficacy with knowledge sharing attitudes and intentions. Therefore, the following hypotheses are offered:

H1a: Self-efficacy to perform a specific task will be positively related to the intent to share knowledge.

H1b: Self-efficacy to perform a specific task will be positively related to the
expected impact of knowledge sharing on outcomes.

Expected Reciprocal Knowledge Sharing

Reciprocal knowledge can be defined as future knowledge requests that are met by others (Kankanhalli, Yan, & Wei, 2005). Most knowledge sharing interactions are two-way exchanges, where each party both provides and receives useful knowledge (Khanna, Guliati, & Nohria, 1998). In fact, the expectation of receiving knowledge may be viewed as an incentive to share knowledge (Kankanhalli et al., 2005; Lin, 2007; Wasko & Faraj, 2005).

Researchers found that the perception that one will receive knowledge is an important indicator of knowledge sharing outcomes (Cho et al., 2007; Lin, 2007). Cho et al. (2007) found that the perception of reciprocity was related to the use of knowledge sharing mechanisms in the organization. Similarly, Lin (2007) investigated both extrinsic and intrinsic factors that affect knowledge sharing intentions and discovered positive effects of reciprocity perceptions.

H2: The perception that an individual will reciprocally receive knowledge will be positively related to the intent to share knowledge.

The belief that other group members will share knowledge may affect the relationship between self-efficacy and intent to share knowledge. One’s ability to act does not always lead to action, however, as illustrated by research showing that team-related variables served as a moderator of the relationship between self-efficacy and individual outcomes (Chowdhury et al., 2002). For example, Chowdhury et al. (2002) studied 107 students in an undergraduate management class and found that team performance moderated the effects of self-efficacy on individual satisfaction and performance. With higher team performance, performance remained high for both low and high individual self-efficacy. The team factor compensated for the low individual factor in affecting the outcome.

The potential of not gaining reciprocal knowledge in a group may act as an impediment
to the relationship between self-efficacy and intent to share knowledge. Bandura (1997) stated that a person’s intent is similar to a proximal goal, or something a person plans to accomplish, and situational elements may negatively affect intentions. Example impediments include lack of resources or lack of encouragement. In knowledge sharing research, gaining reciprocal knowledge is considered to be a personal incentive to share knowledge (Lin, 2007), suggesting that lack of reciprocity may be perceived as an impediment to sharing knowledge.

Based on the information presented above, a person with low task self-efficacy will be less likely to share knowledge versus one with high task self-efficacy. Low expectation of reciprocal knowledge, then, would not improve intention to share. A higher likelihood of receiving reciprocal knowledge, however, may compensate for low task self-efficacy in motivating individuals to share knowledge (e.g., Chowdhury et al., 2002). As mentioned above, people with high task self-efficacy should be motivated to share knowledge based on the intrinsic benefits they receive due to their helping behaviors (Ba et al., 2001; Bock et al., 2005; Constant et al., 1996; Osterloh & Frey, 2000; Wasko & Faraj, 2005), regardless of reciprocal knowledge received. Based on this discussion, the following is offered:

Self-efficacy and expected reciprocal knowledge sharing will interact to affect the intention to share knowledge so that:

H3a: Individuals with high expectation of reciprocity will report the same intent to share knowledge regardless of self-efficacy.

H3b: Individuals with low expectation of reciprocity will report higher intent to share knowledge with higher self-efficacy.

Method

Participants
The study was conducted in a large section of an undergraduate management class at a large Midwestern university. The class was mid-way through the spring semester. A total of 111 students participated in the study (n = 59, 53.2% male). A total of 25 teams were present in the classroom, with an average of 4.44 students per group. The average student age was 23.29 (s.d. = 4.12), with average work experience of 6.47 years (s.d. = 3.90).

Procedure

In this course, students had regular student groups of 4-6 students. In these groups, students completed in-class assignments over the course of the semester on a regular basis. The groups were formed randomly by the professor at the beginning of the term, so students were acquainted and had worked together in several prior class periods.

Students were told that they would have a guest speaker regarding an important course topic. All students were told that they may be tested on the material later in the term, but that their participation in the exercise that day was optional and would be awarded with extra credit, the amount depending on performance on a quiz at the end of class. All students were promised a minimum number of extra credit points, but all were awarded the maximum number of points after the experiment was complete. The procedures in the experiment were as follows:

1. Guest speaker delivered 20-minute lecture regarding how to read statistical output from surveys. The experimenter worked through a practice quiz that asked questions about the lecture such as: “What is the range of answers to the question of pay satisfaction?” and “With what aspect of work are employees least satisfied?”

2. Students filled out a questionnaire including the following measures: (a) self-efficacy to successfully perform on the quiz, (b) intent to share knowledge with the group members, (c) perceived impact of one’s knowledge sharing on the group, and (d) perception that others in my group will share knowledge with me.
3. Participants completed the quiz as individuals.

Measures

Task Self-efficacy. The task self-efficacy questionnaire asked five questions related to performance: “I can identify the range in survey results” and “I can interpret the meaning of the standard deviation in statistical output,” on a scale from 0 (no confidence at all) to 100 (complete confidence), in 10-point intervals. The average self-efficacy score was 82.34 (s.d. = 14.40, n = 111). The measure was deemed reliable according to Cronbach’s (1951) standards (α = .86). Each self-efficacy scale is individualized to a specific task (Bandura, 1997). A validity check on the self-efficacy construct is its ability to predict actual performance. Although performance is not a variable in hypothesized relationships, student grades on the individual quiz were used as a performance variable in order to test the self-efficacy measure’s validity. Self-efficacy did predict performance (F = 2.27, p < .03).

Knowledge Sharing. Knowledge sharing measures were taken from Bock et al. (2005). Perceived impact of knowledge sharing was measured with three items regarding perceived impact of one’s knowledge sharing on the group, including questions such as: “I believe the knowledge I share with my group today will improve our work processes on this task” and “I believe the knowledge I share with my group today will improve our productivity on this task.” The measure displayed good reliability (α = .85). Intent to share knowledge was measured with three items regarding perceived impact of one’s knowledge sharing on the group, including questions such as: “On the task today, I intend to share my notes with other members” and “On the task today, I intend to share my method for solving problems as needed.” The measure displayed good reliability (α = .87). Expectation of reciprocal knowledge sharing was measured with three questions related to the current task: “On the task today, I believe my fellow team
members intend to share their notes with other members” and “On the task today, I believe my fellow team members intend to share their methods for solving problems as needed.”

The measure displayed good reliability (α = .95). CFA was then performed on the three endogenous knowledge sharing variables using LISREL 8.8. The results of the CFA show support for the three-factor model with acceptable goodness of fit statistics (χ² = 39.79; df = 24; p < .02, CFI = .98; RMSEA = .08; SRMR = x, TLI = .x).

Students were asked how many statistics courses they had taken. One statistics course was required for business students, and the average for the participants was 1.93 (s.d. = .92, n = 111). Demographics were gathered (gender, age, and years of work experience), and were reported in the participants section above. Teams were numbered and coded to determine if team differences existed. None of these variables was significantly related to the knowledge sharing measures.

Results

Table 1 displays the correlations between study variables. Correlations indicate a relationship exists between self-efficacy and intent, but not with the other knowledge sharing variables. These relationships suggest that data may confirm Hypothesis 1a, but not Hypothesis 1b. The interaction variable (self-efficacy X reciprocal knowledge) is significantly related to both intent to share knowledge and impact of knowledge sharing, suggesting possible support for Hypotheses 2 and 3. Several independent variables show significant correlations, but none were stronger than 0.59. Nonetheless, some of these correlations may raise issues of multicollinearity. When tested for variation inflation factor (VIF), each relationship produced a VIF score well below 10, suggesting no serious multicollinearity problems.
Insert Table 1 about here

Hypotheses 1a and 1b

Hypothesis 1a states that task self-efficacy will be positively related to the intent to share knowledge. Regression analysis revealed a significant, positive relationship, supporting the hypothesis, $F(1, 110) = 12.25; p < .001$. As task self-efficacy increased, intent to share knowledge increased.

Hypothesis 1b states that task self-efficacy will be positively related to the perceived impact of knowledge sharing. Regression analysis does not support the hypothesis, $F(1, 110) = 2.51; p < .12$. Task self-efficacy does not affect perceived impact of knowledge sharing.

Hypothesis 2

Hypothesis 2 states that the perception that others will reciprocally share knowledge will be positively related to the intent to share knowledge. Regression analysis supports the hypothesis, $F(1, 110) = 61.69; p < .001$. As perceived reciprocal knowledge sharing increased, intent to share knowledge also increased.

Hypotheses 3a and 3b

Hypotheses 3a and 3b propose an interaction between self-efficacy and the expectation of reciprocity in affecting intent to share knowledge. Specifically, H3a states that individuals with a high expectation of reciprocity will report the same intent to share knowledge, regardless of their self-efficacy level. H3b states that, for individuals with a low expectation of reciprocity, intent to share knowledge will be higher for those with high self-efficacy versus those with low self-efficacy.

Regression results are in Table 2. Model 1 includes independent variables self-
efficacy and expected reciprocity in predicting intent to share knowledge. Model 2 shows that the interaction between expected reciprocity and self-efficacy predicted intent \((p < .03)\).

Insert Table 2 about here

Figure 1 adds support for Hypotheses 3a and 3b. Individuals with a high expectation of reciprocal knowledge sharing expressed intent to share knowledge, regardless of self-efficacy level (H3a). For individuals with a low expectation of reciprocal knowledge sharing, however, intent to share knowledge depends on self-efficacy level. With the low expectation, low self-efficacy relates to low intent; with high expectation, high self-efficacy relates to high intent.

Insert Figure 1 about here

Discussion

The purpose of this study was to investigate knowledge sharing in student work groups. Specifically, we sought whether students’ perceived ability to perform their assigned coursework affects their intention to share knowledge with their fellow group members. In addition, we investigated the effects of students’ expectations that their fellow group members would share knowledge with them as well. We asked whether students have high self-perceived ability to perform will always share knowledge, even if their fellow group members will not? We also asked if students who have low self-perceived ability will seek to share knowledge if they perceive their group members are doing so?

Researchers normally investigate the effects of self-efficacy in one’s ability to share knowledge, rather than self-efficacy in one’s ability to perform the actual task. Few studies
measure self-perceived ability in a robust measure such as self-efficacy or incorporate situational considerations as possible moderators affecting knowledge sharing.

In our study, students were taught to interpret statistical output and indentify particular statistics. We confirmed our hypotheses and found that as task self-efficacy increased, intention to share knowledge with their in-class group increased. Similarly, as task self-efficacy increased, students reported an increase in the perceived impact of their knowledge sharing. Therefore, more knowledge sharing may occur if students believe they are competent as individuals prior to working in groups. This finding suggests the utility of work groups for synthesizing and applying knowledge, rather than for learning new tasks. To apply these results to the classroom, professors can lecture and test students on new and complex concepts, and then use project groups to apply these concepts further. Essentially, our results suggest applying higher-level learning of Bloom’s Taxonomy (1956) – analysis, synthesis, and evaluation – to group work. The lower-level learning objectives may be best applied to individual work – gaining knowledge and comprehension.

As students’ self-efficacy increased, their perceived impact of the knowledge sharing increased, as well. When students feel competent performing their assigned tasks, they should anticipate the group’s performance will be affected positively. To facilitate the realization of perceived impact and, therefore, perhaps encourage more future knowledge sharing, the professor may consider a post-group work assignment in which students write about the effects of their knowledge and skills on the final product in their groups.

We asked students whether they believed their fellow group members would share knowledge with them. The expectation of reciprocal knowledge sharing predicted students’ intent to share knowledge. Students’ beliefs that others will provide valuable input into the group task is motivating for their own knowledge sharing, independent of self-efficacy. In the
classroom environment, these findings suggest that it is important to increase group members’ knowledge of each other’s task-related skills and abilities. Increasing all students’ skill levels as individuals will be important, as disclosure of skills and knowledge may be also. If applicable to the class’ learning, a group resume is one way to facilitate public knowledge about each person’s abilities and skills.

The expectation that others in student groups will share knowledge is key, according to our findings. Low expectation of reciprocal knowledge sharing dampens the effects of a student’s self-efficacy on intent to share knowledge. The student has available ability, but does not intend to share it. A high expectation of reciprocal knowledge sharing is a clear facilitator in our results. Even for students with low self-efficacy, the intent to share knowledge is high if others are perceived to be willing to share. In effect, students may saying, “I don’t think I’m very good at this task, but I’ll share all that I can.” That cooperative attitude may not only facilitate performance, but other positive group process outcomes such as trust and satisfaction with the course.

In-class exercises may also facilitate students’ knowledge of their fellow student’s capabilities and, therefore, the expectation of reciprocal knowledge sharing. In-class, non-graded group experiences may facilitate knowledge about each other’s skills before a full-scale project is assigned to the group. Students see each other gaining knowledge and abilities in the small group activities, and then may have a higher expectation of reciprocal knowledge sharing, thereby increasing their own intent to share knowledge.

In sum, our study suggests two critical pieces of student knowledge sharing in groups – the student’s self-efficacy to perform the task and the student’s expectation that others in the group will share knowledge. Professors may consider developing each before students begin a group project to increase the higher-level learning that can occur during the project.
Although not a part of the current study, many aspects are involved in predicting individual self-efficacy. Any person forming self-efficacy perceptions not only looks at his/her task abilities and skills, but at the situational resources that contribute to task performance. In the classroom, some situational resources for students may include a method for solving group conflict, office hours or study groups, supportive classroom environment for asking and answering questions. Future researchers may study these inputs to self-efficacy and their eventual impact on group work and knowledge sharing outcomes.

Other applications of our results may be in the organization. Before project work starts with a new group, managers may want to facilitate public knowledge of each group member’s abilities, experiences, and skills that apply to the group task, especially in a group including members from different parts of an organization or disperse geographic locations. Managers may analyze employees’ skill and ability levels with respect to the project group. The employee should feel supported and prepared to complete his/her part of the group task. A future study may investigate employee knowledge sharing and determine whether employees learning new skills are affected by expectations of reciprocity as strongly as students in our study.

Recruiting and selection may also benefit from considering this study. Our findings indicate that employees who participate in knowledge sharing activities are valuable to the overall knowledge sharing in the group. Hiring individuals who have the ability and willingness to share knowledge in organizational group work may contribute to the overall effectiveness of the organization. Interviewers may include behavioral questions about knowledge sharing experiences in past group work. A future study may look at the identification of knowledge sharing intention in an interview situation.

Future researchers may also extend our study by considering a different task. Our task was interpreting statistical output, while students may respond differently when assigned a more
qualitative or conceptual task. Other work could use participants who did not know each other prior to the study. We used intact groups so that students could reflect on their past experiences in responding to whether they believed others would share knowledge with them. Gathering these perceptions over the course of a semester would be interesting for observing changes in student behaviors and attitudes.

Our study is not without limitations. First, researchers suggest that the intent to share knowledge may not lead to actual knowledge sharing (Kuo & Young, 2008). Therefore, a study that measures actual knowledge sharing may confirm our findings. Second, our study using students may not extend the findings to organizations or outside the current task and coursework. These students have an average of 6.47 years of work experience and may work full-time while attending university classes. These students may not be similar to other university classrooms where group projects are used.

Other non-measured factors may enrich our study results. Task-related demographics (Pelled, 1996) may be valuable measures to understand the effects of group diversity. Other knowledge sharing researchers considered group process variables also, including trust (Chowdhury, 2005), cooperativeness, commitment (Lin, 2007), and shared norms (Bock et al., 2006). These constructs affect knowledge sharing in past studies and may interact with task self-efficacy, as well.

References

Hernandez, S. A., (2002). Team learning in a marketing principles course: Cooperative structures that facilitate active learning and higher level thinking. Journal of Marketing Education,
24(1), 73-85.

Table 1
Study Variables Descriptives and Correlations

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Mean</th>
<th>s.d.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Task Self-efficacy</td>
<td>111</td>
<td>82.34</td>
<td>14.40</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. KS* Intent</td>
<td>111</td>
<td>5.77</td>
<td>0.97</td>
<td>0.32**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Reciprocal KS</td>
<td>111</td>
<td>5.59</td>
<td>1.14</td>
<td>0.07</td>
<td>0.59**</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. KS Impact</td>
<td>111</td>
<td>5.91</td>
<td>0.94</td>
<td>0.15</td>
<td>0.43**</td>
<td>0.29**</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5. Interaction (Task Self-</td>
<td>111</td>
<td>452.18</td>
<td>129.97</td>
<td>0.65**</td>
<td>0.51**</td>
<td>0.71**</td>
<td>0.22**</td>
<td>-</td>
</tr>
<tr>
<td>efficacy X Reciprocal KS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*KS = Knowledge Sharing
*p < .05
**p < .01
Two-tailed tests.
Table 2
Regression of Task Self-efficacy and Expected Reciprocal Knowledge Sharing on Intent to Share Knowledge

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1</th>
<th></th>
<th></th>
<th>Model 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>s.e.</td>
<td>t</td>
<td>b</td>
<td>s.e.</td>
<td>t</td>
</tr>
<tr>
<td>Constant</td>
<td>1.44*</td>
<td>0.51</td>
<td>2.83</td>
<td>-3.01</td>
<td>2.04</td>
<td>-1.48</td>
</tr>
<tr>
<td>Task Self-efficacy</td>
<td>0.02*</td>
<td>0.01</td>
<td>3.85</td>
<td>*</td>
<td>0.02</td>
<td>2.99</td>
</tr>
<tr>
<td>Expected Reciprocal KS*</td>
<td>0.50*</td>
<td>0.06</td>
<td>8.18</td>
<td>*</td>
<td>1.32*</td>
<td>0.37</td>
</tr>
<tr>
<td>Interaction (Task Self-efficacy X Reciprocal KS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01*</td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>0.44*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>ΔR²</td>
<td>0.44*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.03*</td>
</tr>
</tbody>
</table>

KS = Knowledge Sharing
*p < .05
**p < .01
Figure 1. Interaction Effects of Expected Reciprocal Knowledge and Task Self-efficacy on Intent to Share Knowledge