
An Introduction to the K-theory of Banach Algebras

The K-theory of Banach algebras, and most particularly C∗-algebras, is a branch of

mathematics that has caused great excitement in recent years, and played a large part in

the development of “non-commutative geometry”, a term which will be explained later.

This course contains the basic definitions and results of the area, with indications of how

it can be used to distinguish between algebras when this would otherwise be difficult. We

shall only scratch the surface of the subject, which is taken much further in the books of

Blackadar and Wegge-Olsen.

Briefly, we shall construct a sequence of functors K0, K1, K2, . . . which take Banach

algebras A to Abelian groups Kn(A). Given an ideal I ⊂ A, we shall obtain from the short

exact sequence

0→ I → A→ A/I → 0

a long exact sequence

...→ Kn+1(A/I)→ Kn(I)→ Kn(A)→ Kn(A/I)→ Kn−1(I)→ ...

The famous Bott periodicity theorem states that the sequence of functors above is periodic

with period 2 (or 8 in the real case!). So Kn+2 = Kn and the long exact sequence reduces

to a cyclic exact sequence of size 6, involving only K0 and K1. What is beautiful about

this result (or at least one of its beautiful aspects) is that it is often possible to make

judicious choices of A and I so that one can calculate a few of the terms in the cyclic

sequence directly, and then use exactness to calculate the rest, ending up with highly non-

obvious results. Thus, what is to follow is not mere abstract nonsense, despite the large

number of definitions, commutative diagrams, universal constructions, checks that maps

are well-defined etc.

Before defining K0, we need some preliminary definitions and remarks. An idempotent

in a normed algebra A is an element x ∈ A such that x2 = x. An obvious example, which

is helpful to have in mind in what follows, is when A = B(H) and x is an orthogonal

projection. Two idempotents x and y are said to be orthogonal if xy = yx = 0. If

xy = yx = y then we write y 6 x (which says in the projection case that the range of y

is a subset of the range of x). In that case x − y is also an idempotent. We shall need
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to consider three equivalence relations on the set of all idempotents in an algebra A. The

second makes sense only if A has an identity.

Definition. Two idempotents x and y are (algebraically) equivalent if there exist z, w ∈ A

such that zw = x and wz = y. They are similar if there exists an invertible u such that

ux = yu. They are homotopic if there is a continuous path of idempotents starting at x

and ending at y.

The only non-trivial thing to check is that algebraic equivalence is transitive. Even this is

a very easy exercise (left to the reader).

Given an algebra A, Mn(A) stands for the set of all n × n-matrices with entries in

A (which is also Mn ⊗ A). Given elements x ∈ Mn(A) and y ∈ Mp(A), write diag(x, y)

for the element

(

x 0
0 y

)

of Mn+p(A). Mn(A) embeds into Mn+1(A) in an obvious way

via the map x 7→ diag(x, 0). The inductive limit M∞(A) of the Mn(A) is basically the

union of the Mn(A), where each is regarded as a subset of the next using the embedding

just defined. More formally, it can be defined as the set of sequences x1, x2, x3, . . . where

xn ∈ Mn(A), each xn is the top left hand corner of xn+1 and xn+1 = diag(xn, 0) for all

large enough n. We shall be informal in these notes. For example, to see that M∞(A) is an

algebra, given x and y choose the smallest n such that Mn(A) contains both x and y and

perform the obvious operations (matrix addition and multiplication). One can also think

of M∞(A) as the set of infinite matrices with entries in A, only finitely many of which are

non-zero.

The whole of K-theory is about M∞(A) rather than A. To put it another way, K-

theory is about so called stable properties of an algebra A, which means those properties

unaffected by changing to M∞(A). (Observe that M∞(M∞(A)) is isomorphic to M∞(A).)

It does not matter too much what norm is taken on M∞(A) - we shall take ‖x‖ to be the

sum of the norms of the entries of x, but we only really care about the topology to which

the norm gives rise, so that we can talk about homotopies etc. In the algebra, M∞(A),

which has no identity, we shall say that x and y are similar if they are similar in Mn(A)

for some n.

Lemma 1. The notions of equivalence, similarity and homotopy coincide in M∞(A).

Proof. If x and y are idempotents then, setting u = xy+(1−x)(1−y), we have xu = uy

(= xy). If x = y then u = 1. It is therefore obvious (or easy to check if you don’t find
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it obvious) that if x is sufficiently close to y then ‖1− u‖ < 1, which implies that u is

invertible. This implies (by compactness of [0, 1]) that two homotopic idempotents in A

are similar in A.

The converse is false in general, which is the first place where matrices come in. Let

rθ be the matrix

(

cos θ − sin θ
sin θ cos θ

)

and let u be any invertible element of A. Then, as θ

varies between 0 and π/2, vθ = rθ

(

u−1 0
0 1

)

r−1
θ is a continuous path of invertibles in

M2(A) starting at

(

u−1 0
0 1

)

and ending at

(

1 0
0 u−1

)

. Hence, wθ =

(

u 0
0 1

)

vθ is a

continuous path of invertibles starting at

(

1 0
0 1

)

and ending at

(

u 0
0 u−1

)

. Finally, if

x and y are idempotents in A with uxu−1 = y, then wθ

(

x 0
0 0

)

w−1
θ is a continuous path

of idempotents starting at

(

x 0
0 0

)

and ending at

(

y 0
0 0

)

. Thus, similar idempotents in

A are homotopic in M2(A).

It is trivial that similar idempotents are equivalent: if xu = uy then (xu)u−1 = x and

u−1(xu) = y. Again, the converse is not true in general. However, if ab = x and ba = y,

it can be checked that if u =

(

ybx 1− y
1− x xay

)

, then u is invertible in M2(A) with inverse
(

xay 1− x
1− y ybx

)

, and that u

(

x 0
0 0

)

u−1 =

(

y 0
0 0

)

. Thus, equivalent idempotents in

A are similar in M2(A). �

Notice the trick of replacing a and b above by xay and ybx. It helps one to remember the

matrix, and it will be used again below.

We are now ready to define K0. Given an algebra A with a unit, let V (A) be the

set of equivalence classes of idempotents in M∞(A). We can define addition on V (A) as

follows. Write [x] for the equivalence class of an idempotent x and 1n and 0n for the

identity and zero matrices in Mn(A). Then, setting u =

(

0n 1n
1n 0n

)

∈ M2n(A), we have,

for any idempotent x ∈ Mn(A), that u diag(x, 0n)u
−1 = diag(0n, x), so that diag(x, 0n)

and diag(0n, x) are similar in M2n(A) and hence equivalent. It follows that, given two

idempotents x and y in M∞(A), it is possible to choose orthogonal representatives x′ and

y′ from the equivalence classes [x] and [y]. One then defines [x] + [y] to be [x′ + y′].

To show that this operation is well defined, we need to show that if x ∼ y, x′ ∼ y′,

xy = yx = 0 and x′y′ = y′x′ = 0, then x+x′ ∼ y+y′. If ab = x, ba = y, a′b′ = x′, b′a′ = y′,
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then one can check that (xay+x′a′y′)(ybx+y′b′x′) = x+x′ and (ybx+y′b′x′)(xay+x′a′y′) =

y + y′. It is obvious that this addition is commutative, so V (A) is an Abelian semigroup.

To make it into the group K0(A) is straightforward, and similar to constructing Z from N,

with the small difference that V (A) may not satisfy the cancellation law. Anyhow, K0(A)

is defined to be the set of pairs ([x], [y]), where two such pairs ([x], [y]) and ([x′], [y′])

are equivalent if there exists [z] such that [x] + [y′] + [z] = [x′] + [y] + [z]. (This is

called the Grothendieck group of V (A) and has the obvious universal property that any

homomorphism from V (A) into an Abelian group factors through it. This construction

was not what made Grothendieck famous.) It is easy to check that K0 is a functor, i.e.,

that a homomorphism φ of unital algebras A and B gives rise to a homomorphism from

K0(A) to K0(B) well defined by φ∗([x], [y]) = ([φx], [φy]).

It is important to define K0(A) for algebras A without units. To any such algebra

one can adjoin a unit to give a new algebra A+. It is defined as the set of ordered pairs

(x, λ) ∈ A×C with pointwise addition and (x, λ)(y, µ) = (xy+ λy+µx, λµ). The obvious

thing to do now would be to define K0(A) to be K0(A
+). Unfortunately, this does not

work: sequences one needs to be exact are not exact with this definition. Instead, one

proceeds as follows. If K0 is to be a (covariant) functor, then it takes left and right

inverses to left and right inverses. Now there is a short exact sequence

0→ A→ A+ → C→ 0

(with the obvious maps), and the map π from A+ to C has a right inverse. (N.B. this is

saying more than just that the map from A+ to C is surjective, as the right inverse is an

algebra homomorphism - this stronger property is called split exactness of the sequence.)

A is an ideal in A+, so if we are to obtain the cyclic exact sequence mentioned at the

beginning, then the sequence

K1(A
+)→ K1(C)→ K0(A)→ K0(A

+)→ K0(C)→ 0

must be exact. (The final zero follows from the fact that π∗ has a right inverse and is

thus surjective.) It will turn out (by the definition of K1 later) that K1(C) = 0, but the

functoriality of K1 implies that the map from K1(A
+) to K1(C) is surjective again, so for

either reason we obtain the split exact sequence

0→ K0(A)→ K0(A
+)→ K0(C)→ 0 .
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This leaves no choice for the definition of K0(A) - it must be the kernel of π∗. (We shall

see soon that K0(C) = Z.)

The following point should be emphasized. Just because a functor preserves right and

left inverses, it does not follow that it preserves exactness. Indeed, it is very important

that K0 should not preserve short exact sequences, as this would mess up the cyclic exact

sequence we are eventually trying to construct. Given the short exact sequence

0→ I → A→ A/I → 0

metioned at the beginning, it will not in general be possible to find an algebra homomor-

phism lifting A/I to A.

A natural reaction at this point is one of anxiety. If A is a non-unital algebra, then

there are several steps to the construction of K0(A), involving many equivalence relations.

It is therefore a good idea to consider what a typical element of K0(A) looks like, which

we shall do by showing that every equivalence class in K0 has a representative of a certain

nice form. First, we shall prove a simple lemma calculating K0(C) (as promised earlier).

Lemma 2. K0(C) is isomorphic to Z.

Proof. An idempotent in Mn(C) is characterized by its kernel and image in Cn. It is

therefore easy to see that two such idempotents are similar (in Mn(C)) if and only if they

have the same rank. Consequently V (C) = N ∪ {0}. Since the cancellation law applies

here, K0(C) = Z as claimed. �

We are now ready for the “standard portrait” of K0(A). By definition an element of K0(A)

is of the form [x]− [y], where x and y are idempotents in M∞(A+) and π∗([x]− [y]) = 0.

([x] − [y] is of course shorthand for ([x], [y]), or more accurately its equivalence class in

the Grothendieck group of V (A+).) Note that x− y may not be an idempotent so [x− y]

is not in general defined.) Let us write pk for the projection given by the infinite matrix

with the unit of A+ in the first k places in the diagonal, and zero everywhere else. If x

and y are both in Mn(A
+), then x < pn and y < pn. Let x′ ∈ M2n(A

+) be similar to x

but orthogonal to pn (obtained from x by “moving down the diagonal”). Then x′ + pn− y

and pn are both idempotents, and

[x′ + pn − y]− [pn] = [x′] + [pn − y]− ([pn − y] + [y])

= [x] + [y] .
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Thus, all elements of K0(A) are of the form [x]− [pn] for some n, with π∗([x]− [pn]) = 0.

An element x in Mn(A
+) can be written (uniquely) as an ordered pair (x1, x2), where x1

is an element of Mn(A) and x2 is an element of Mn(C). The latter is called the scalar part

of x. Notice that if x is an idempotent, then so is x2. To say that π∗([x]− [pn]) = 0 is to

say that the scalar part of x is equivalent to [pn]. Now x ∈ M2n(A
+), so we can find an

invertible u ∈ M2n(C) such that the scalar part of u−1xu is equal to pn. We have proved

the following result.

Proposition 3. Every element of K0(A) can be written in the form [x + pn] − [pn] for

some n, with x an element of M2n(A).

It is also useful to rewrite the above element when it turns out to be zero. Then we

know that there exists an idempotent z ∈ Mk(A
+) for some k such that [x + pn] + [z] =

[pn]+ [z] in V (A+). Adding [pk−z] to both sides tells us that diag(x+pn, pk) is similar to

diag(pn, 0n, pk). It is now easy to construct a scalar matrix u such that, writing x′ = uxu−1,

we have [x + pn] − [pn] = [x′ + pn+k] − [pn+k] with x′ + pn+k similar to pn+k. It will be

important later that x′ is similar to x via a scalar matrix u.

The next lemma but one shows that K0(A) can be constructed in the same way

whether or not A is unital. Note first that one can adjoin a unit to A, obtaining A+, even

if A has a unit already. (It then ceases to be one, having been usurped by the new unit.)

Lemma 4. If A has a unit, then A+ ∼ A⊕ C.

Proof. A ⊕ C stands for the algebra obtained using pointwise operations in the two

components, so it is not the same as A+. However, the map (x, λ) 7→ (x+ λ, λ) gives the

desired algebra isomorphism. �

Lemma 5. Let A and B be unital algebras. Then K0(A⊕B) = K0(A)⊕K0(B).

Proof. If (x, y) is similar to (x′, y′) in A ⊕ B, then x and y are similar to x′ and y′ in

A and B. This shows that V (A ⊕ B) = V (A) ⊕ V (B). The result follows easily from

the definition of the Grothendieck group (or from the universal property if you are a true

algebraist). �

Now we unify the definitions of K0 for unital and non-unital algebras.
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Lemma 6. Let A be a unital algebra, and consider the short exact sequence 0 → A →

A+ → C → 0. Then K0(A) is equal to the kernel of π∗, the map from K0(A
+) to K0(C)

given by the projection from A+ to C.

Proof. The projection π : A+ → C is defined by (a, λ) 7→ λ. Since (a, λ) corresponds to

the element (a−λ, λ) in A⊕C (via the isomorphism above), the corresponding projection

on A⊕ C is given by the same formula. But then the map π : A⊕ C→ C induces a map

π∗ : K0(A ⊕ C) = K0(A) ⊕ K0(C) → K0(C) with the obvious formula, so its kernel is

K0(A). �

It is not hard to show that K0, extended to non-unital algebras, is still a functor. We

content ourselves with the definition of φ∗ : K0(A) → K0(B) when φ : A → B. First, φ

extends in an obvious way to a homomorphism φ+ : A+ → B+. Writing πA and πB for the

projections to C of A+ and B+, we have 1C ◦πA = πB ◦φ
+, which implies (by functoriality

of K0 for unital algebras) that 1Z ◦π
∗

A = π∗

B ◦φ
+∗, and therefore that φ+∗ maps the kernel

of π∗

A into the kernel of π∗

B, giving us our desired map from K0(A) to K0(B). (Notice that

we have used Lemma 6 and therefore avoided splitting into cases according to whether A

and B are unital or not.) It is easy to see that a typical element [x+ pn]− [pn] of K0(A)

maps under φ+∗ to the element [φ(x) + pn]− [pn] of K0(B).

Before we define K1, we shall need two more lemmas. Given a unital algebra A, let

GLn(A) stand for the group of invertible n×n-matrices with entries in A. Define GL∞(A)

to be the limit of the GLn(A), where this time the embedding from GLn(A) to GLn+1(A)

is given by x 7→ diag(x, 1A). This can be thought of as infinite invertible matrices over A

with only finitely many entries differing from the infinite identity matrix.

Given an element x of an algebra A, we define exp(x) using the power series for exp.

This of course converges. It is not in general true that exp(x+ y) = exp(x) exp(y) though

this is clearly true when x and y commute. For ‖x‖ < 1 we can also define log(1+x) using

a power series, and it can be checked quite easily that exp log(1 + x) = 1 + x.

Lemma 7. Let A be a unital Banach algebra. The component of the identity in A is the

group generated by elements of the form exp(x) with x ∈ A.

Proof. Suppose there is a path of invertibles starting at 1 and ending at u. An easy

compactness argument implies that there is a sequence 1 = u0, u1, . . . , ur = u of invertible
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elements such that
∥

∥1− u−1
i−1ui

∥

∥ < 1 for every i. Hence we can define xi to be log(u−1
i−1ui),

and we have expressed u as exp(x1) . . . exp(xr). �

Notice that since GLn(A) is a Banach algebra, the conclusion holds there as well. Let us

write GL0
n(A) for the component of the identity in GLn(A).

Lemma 8. Let φ be a continuous surjective homomorphism between unital Banach alge-

bras A and B. Then every invertible in GL0
n(B) lifts to an invertible in GL0

n(A).

Proof. Let v be an invertible in GL0
n(B). Write v as a product of elements of the form

exp(yi), and lift each yi to some xi ∈ GLn(A). Then the product of the exp(xi) maps to

v and is in GL0
n(A) by Lemma 7. �

The above lemma will be particularly useful when B is A/I for some ideal I.

The definition of K1 is easier than that of K0. It is simply the group quotient of

GL∞(A) by GL0
∞
(A). (For those who are worried, two elements of GL∞(A) are in the

same component if they are in the same component of GLn(A) for some n.) The above

definition relies on A having a unit. However, in this case we simply define K1(A) to

be K1(A
+). This is not laziness: as in the K0 case the definition is forced upon us,

but it is simpler here because K1(C) = 0. This last fact follows from (or rather, is) the

connectedness of GLn(C), which is an easy exercise.

It turns out that K1(A) is Abelian. To see this, notice that [x][y] = [xy] =

[diag(xy, 1)] = [diag(x, 1)diag(y, 1)]. In the proof of Lemma 1 we constructed a continuous

path from diag(y, 1) to diag(1, y) which shows that [xy] = [diag(x, y)]. In a similar way

we can show that this equals [yx] = [y][x].

The next step in the theory is to define the index map, which takes K1(A/I) to K0(I),

when I is an ideal in the algebra A. This is a generalization of the Fredholm index of an

operator. Consider the algebra A = B(H) and the ideal I of compact operators. We have

seen that every invertible in A/I (the Calkin algebra) is Fredholm with a well-defined index,

and that the component of the identity is the operators of index zero. But K0(I) = Z (this

is because I is the closure of the finite-rank operators, so from the point of view of K0 is

basically the same as C), so there ought to be some way of regarding the index as a map

from K1(A/I) to K0(I). With this example in mind, the definition below ought to seem

more natural than it otherwise would.
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Let [x] be an element of K1(A/I) with x ∈ GLn((A/I)+). We would like to lift x to

an element of GLn(A
+), but in general cannot (including in the example above). Instead,

we take any element of GL0
n+m((A/I)+) of the form diag(x, y) (such as diag(x, x−1) for

example) and lift that (which we can do by Lemma 8) to an element w of GL0
2n(A

+). Let

π : GL∞(A+)→ GL∞((A/I)+) be the quotient map. (Observe that (A/I)+ is isomorphic

to A+/I.) Then π(wpnw
−1) = pn, so wpnw

−1 is an element of I+. Moreover, wpnw
−1 is

an idempotent. We now define ∂[x] to be [wpnw
−1]− [pn] ∈ K0(I).

This definition is of course ludicrously unwell-seeming. We must check that it does

not depend on the representative of [x], the choice of y and the lift of diag(x, y). We must

also check that ∂ is a group homomorphism. Then all the definitions will be in place, and

our task will be to show the exact sequence results outlined at the beginning.

To see that ∂ does not depend on the lift w, suppose that v is another lift of diag(x, y).

Then vpnv
−1 = (vw−1)wpnw

−1(vw−1)−1, which is similar in GL∞(I+) to wpnw
−1, since

vw−1 is an invertible in I+.

To see that ∂ does not depend on the representative x of [x] in GLn((A/I)+) or the

choice of y, let x′ and y′ be different choices. Without loss of generality y′ ∈Mm+k((A/I)+)

with k > 0. Then x−1x′ and diag(y−1, 1k)y
′ are in GL0

n((A/I)+) and GL0
m+k((A/I)+), so

they have lifts a and b in GLn(A
+) and GLm+k(A

+). But then u = wdiag(a, b) is a lift of

diag(x′, y′). Since diag(a, b) commutes with pn, we have upnu
−1 = wpnw

−1. We are now

done, since we were free to choose any lift.

Finally, to show that ∂ is a group homomorphism is easy if one uses the fact that

[xy] = [diag(x, y)] in K1((A/I)+) and the fact that lifts can be chosen however one likes.

We shall now obtain the long exact sequence

K1(I)→ K1(A)→ K1(A/I)→ K0(I)→ K0(A)→ K0(A/I)

over the course of a few lemmas. At a first reading, there is something to be said for

skipping the proofs of the next three lemmas, since the three after that are easier and

provide considerable motivation for them. As usual we shall let ι and π be the inclusion

from I into A and the projection from A onto A/I respectively.

Lemma 10. The sequence is exact at K0(A).

Proof. A typical element of K0(I) can be written [x] − [pn] with x − pn ∈ M2n(I). Its
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image in A is denoted by the same expression, and then

π∗([x]− [pn]) = [π+(x)]− [pn] = [pn]− [pn] = 0 .

Conversely, suppose [y]− [pk] is an element of K0(A), y ∈Mn(A
+) and that [π(y)]−

[pk] = 0. Then there exists m such that [π(y)] + [pm] = [pk+m]. Hence, there exists an

invertible u ∈ Mn+m((A/I)+) such that udiag(π(y), pm)u−1 = pk+m. Then we also have

diag(u, u−1)diag(π(y), pm)diag(u−1, u) = pk+m. We can lift diag(u, u−1) to an invertible

w in GL0
2n+2m(A+). Then π(wdiag(y, pm)w−1) = pk+m, so [wdiag(y, pm)w−1]− [pk+m] is

an element of K0(I) equivalent to [y]− [pk]. �

Lemma 11. The sequence is exact at K0(I).

Proof. Let u be an invertible in (A/I)+ and let us write ∂([u]) = [wpnw
−1] − [pn] for

some lift w of a suitable diag(u, v). This is rather obviously zero when considered as an

element of K0(A) rather than K0(I).

Let [x+pn]− [pn] be an element of K0(I) written in the usual way and suppose that it

is zero in K0(A). Then by the remark following Proposition 3 we can find m and x′ similar

to x inMm+n(I
+) such that x′+pm is similar to pm inMn+m(A+), and rewrite the element

as [x′ + pm]− [pm]. Let w be an invertible in M2n+m(A+) such that wpmw−1 = x′ + pm.

Now x′ is an element of Mn+m(I), so π(x′) = 0 and the above equation tells us that π(w)

commutes with pm. It follows that π(w) has a matrix of the form

(

z11 z12
z21 z22

)

.

Then [z11] is an inverse image under ∂ for [x + pn] − [pn]. This is because π(w) =

diag(z11, z22) and is in GL0
2n+m((A/I)+), so we have

∂[z11] = [wpmw−1]− [pm] = [x′ + pm]− [pm] = [x+ pn]− [pn] .

Lemma 12. The sequence is exact at K1(A/I).

Proof. Let x ∈ GLn(A
+) and let y = π(x). Then diag(y, y−1) lifts to diag(x, x−1) which

commutes with pn, so ∂[y] = 0.

Conversely, if y ∈ GLn((A/I)+) and ∂[y] = 0, then let w be a lift of diag(y, y−1).

We know that [wpnw
−1] − [pn] = 0, so that diag(wpnw

−1, pm) is similar to diag(pn, pm)

in M2n+m(I+) for some m. Pick u ∈ M4n+2m(I+) such that udiag(wpnw
−1, pm)u−1 =

diag(pn, pm). This equation tells us that udiag(w, pm) commutes with diag(pn, 0n, pm)
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and hence has a 4 × 4 block matrix of the form z = (zij) with zij = 0 whenever i + j

is odd. That implies that π(u)diag(y, y−1, pm) commutes with diag(pn, pm), or that π(u)

commutes with diag(pn, pm), so π(u) has a 4 × 4 scalar block matrix (λij) of the same

form. But then

(

λ11 λ13

λ31 λ33

)

is invertible and GLn+m(C) is connected, which implies that

the equivalence class of

(

z11 z13
z31 z33

)

is a lift of [diag(x, pm)] = [x]. �

Instead of proving directly that the sequence is exact at K1(A) we shall now show that

K1(A) is in fact K0 of a different algebra. The suspension SA of the algebra A is defined

to be the algebra of continuous functions f from [0, 1] into A such that f(0) = f(1) = 0.

The cone of A is the same except that f(1) does not have to be 0. All operations are

pointwise, and the norm is the uniform norm.

Lemma 13. Let A be any algebra. Then K0(CA) = K1(CA) = 0.

Proof. Let (x(t), λ) be an idempotent in Mn(CA+). The non-scalar part is easily seen

to be homotopic to the zero map via the homotopy xθ(t) = x(θt). Hence K0(CA+) =

K0(C) = Z and K0(CA), the kernel of π∗, is 0. A similar but easier argument does K1. �

Lemma 14. Let A be any algebra. Then K1(A) ∼= K0(SA).

Proof. There is an obvious short exact sequence

0→ SA→ CA→ A→ 0 .

SA is certainly an ideal in CA, so by Lemmas 10,11 and 12 we obtain an exact sequence

K1(CA)→ K1(A)→ K0(SA)→ K0(CA)→ K0(A) .

By Lemma 13 this gives us the sequence

0→ K1(A)→ K0(SA)→ 0

and therefore shows that ∂ is the required isomorphism. �

The isomorphism above is a natural one. This means that a homomorphism from A to B

yields an obvious commutative diagram taking the isomorphism from K1(A) to K0(SA)

to the corresponding isomorphism for B. This property is left as an exercise.
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Corollary 15. Defining Kn(A) to be K0(S
nA), we have the long exact sequence

→ Kn+1(A/I)→ Kn(I)→ Kn(A)→ Kn(A/I)→ Kn−1(A)→ . . .→ K0(A/I)

mentioned right at the beginning. �

Note that we also obtain such a long exact sequence from a more general looking short

exact sequence 0→ A→ B → C → 0. However we can think of A in this case as an ideal

in B (as it is isomorphic to its image in B, which is the kernel of the map from A to C)

so this is not really a generalization.

Corollary 16. K0 and K1 preserve split exactness.

Proof. By Lemma 14 it is enough to prove this for K0. Consider a split exact sequence

0 → A → B → C → 0. The map σ from B to C has a right inverse which is an algebra

homomorphism, and hence the corresponding maps σ∗ from K1(B) to K1(C) and from

K0(B) to K0(C) have right inverses and are therefore surjections. It follows by exactness

that ∂ is the zero map in this case, and therefore that the long exact sequence

K1(B)→ K1(C)→ K0(A)→ K0(B)→ K0(C)

gives us the short exact sequence

0→ K0(A)→ K0(B)→ K0(C)→ 0 ,

where the last zero comes from σ∗ being surjective. Since σ∗ has a right inverse, this

sequence is split exact. �

To complete the picture, all that is left is to show that K2 = K0, which, by Lemma

14, amounts to showing that K0(A) is isomorphic to K1(SA). This is the Bott periodicity

theorem. We shall give a detailed sketch rather than a complete proof (which can be found

in Wegge-Olsen). Those details left out will all be simple exercises. Why has the result any

chance of being true? We must somehow find a way of associating matrices in GL∞(SA+)

to idempotents in M∞(A+). Now an element of GLn(SA
+) corresponds in an obvious way

to a loop in GLn(A
+). The beginning (and end) of the corresponding loop will be a scalar

matrix, since a typical element of SA+ is the sum of a scalar and a loop in A starting and
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ending at zero. Since GLn(C) is connected, every element of GLn(SA
+) is equivalent to

a loop in GLn(A
+) starting and ending at 1. But such a loop lies in GL0

n(A
+).

It turns out that the so-called Bott map β from K0(A) to K1(SA) is extremely simple

to define. Given an idempotent x ∈Mn(A), let β[x] be the (equivalence class of the) loop

fx : z 7→ zx + (1 − x). Notice that fx is a homomorphism from T to its image. This

shows that fx really is invertible. More generally, define β([x] − [y]) to be fxf
−1
y . It is

clear that a homotopy between two idempotents results in a homotopy of loops, so β is

well defined. Moreover it is a homomorphism since β([x] + [y]) = fdiag(x,y) and so without

loss of generality x and y are orthogonal. This then gives fx+y = fxfy as required. (The

extension from V A to K0(A) is automatic.)

What is much less obvious is that β is an isomorphism. Our task will be to show that

every element of K1(SA), or loop in GLn(A
+) starting and ending at 1, is equivalent to

some loop of the very special form fxf
−1
y . An initial simplification is that we may assume

that A is unital. To see this, bear in mind that by Corollary 16 we have the following pair

of split exact sequences:

0→ K0(A)→ K0(A
+)→ K0(C)→ 0

0→ K1(SA)→ K1(SA
+)→ K1(SC)→ 0 .

If we know the result for unital algebras, then βA+ and βC are isomorphisms from K0(A
+)

to K1(SA
+) and from K0(C) to K1(SC) respectively. By the five lemma, βA is also an

isomorphism.

For the remainder of the proof we shall therefore assume that A is unital. Given a

loop in GLn(A) starting and ending at 1, we wish to find an equivalent loop of the form

zx + (1 − x) for some idempotent x. Let us define a trigonometric loop to be one of the

form z 7→
∑N

i=−N aiz
i, where the coefficients ai are elements of GLn(A), and a polynomial

loop to be a trigonometric loop with no non-zero coefficients ai for negative i.

Lemma 17. Every loop f can be uniformly approximated by trigonometric loops, and is

therefore equivalent to one.

Proof. For 0 6 k 6 m let Ik be the set of elements of T with argument in the interval

2π
m
(k ± 1), let zk = exp(2πik/m) and let ak = f(zk). If m is large enough, then the

diameter of any f(Ik) is at most ǫ. Let g0, g1, . . . , gm be a partition of unity with gk

supported in Ik. It is easy to check that g(z) =
∑m

k=0 akgk(z) approximates f(z) to

13



within ǫ. By the Stone-Weierstrass theorem (or even just the Weierstrass bit) each gk

can be approximated uniformly by a trigonometric polynomial, and therefore g(z) can be

approximated uniformly by a trigonometric loop, and finally so can f(z).

For the last part, observe that any two loops in GLn(A) starting and ending at 1 that

are sufficiently uniformly close are homotopic via loops of the same form. �

Lemma 18. Every polynomial loop is equivalent to a linear loop.

Proof. Let P (z) be a polynomial of degree m with values in GLN (A). Write P (z) =

Q(z) + azm with Q(z) of degree at most m− 1. Then

(

1 λazm−1

0 1

)(

P (z) 0
0 1

)(

1 0
−λz 1

)

=

(

P (z)− λ2azm λazm−1

−λz 1

)

so that letting λ vary from 0 to 1 gives a homotopy in GL2N (A) from diag(P (z), 1) to a

polynomial of smaller degree. Repeating the process, we can get the degree down to 1. �

We now wish to show that a loop of the form z 7→ az+b is equivalent to an idempotent

loop. Setting z = 1 we see that a+ b is an invertible scalar matrix, and hence homotopic

to the identity. Therefore the loop az + b is homotopic to the loop (a + b)−1(az + b), so

without loss of generality a + b = 1 and our linear loop is of the form z 7→ az + (1 − a).

This at least looks reasonably close to what we want - the rest of the proof consists in

building an idempotent out of a using holomorphic functional calculus, taking the obvious

path from a to that idempotent and checking that everything works.

Lemma 19. Suppose az + (1− a) is invertible for every z ∈ T. Then the spectrum of a

is disjoint from the line Re(z) = 1/2.

Proof. When z 6= 1, az + (1 − a) = 1 + a(z − 1) = (z − 1)( 1
z−1

+ a) is invertible, so

−(z − 1)−1 is not in the spectrum of a. But the map z 7→ −(z − 1)−1 maps T \ {1} onto

the line Re(z) = 1/2. �

Lemma 20. Let a be an element of a Banach algebra, and let C be a closed contour in

C disjoint from the spectrum of a. Then

x =
1

2πi

∫

C

(z − a)−1dz
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is an idempotent which commutes with a.

Proof. Let C′ be a contour outside C still disjoint from the spectrum of a.

x2 =
1

(2πi)2

∫

C

(z − a)−1dz

∫

C′

(z′ − a)−1dz′

=
1

(2πi)2

∫

C

∫

C′

(z − a)−1(z′ − a)−1dz′dz

=
1

(2πi)2

∫

C

∫

C′

(z − a)−1 − (z′ − a)−1

z′ − z
dz′dz

=
1

(2πi)2

∫

C

(z − a)−1

∫

C′

dz′

z′ − z
dz +

1

(2πi)2

∫

C′

(z′ − a)−1

∫

C

dz

z′ − z
dz′

=
1

2πi

∫

C

(z − a)−1dz

by Cauchy’s integral formula and Cauchy’s theorem. The commutativity with a follows

from the fact that x is in the closed subalgebra generated by 1 and a. �

The argument of Lemma 20 is a special case of a more general method of defining

analytic functions on Banach algebras. If f is a complex function analytic on some domain

D containing the spectrum σ = σ(x) of an element x ∈ A, and if φ is a cycle in D \ σ that

winds exactly once round each point in σ, then f(x) is defined to be
∫

φ
f(z)(z−x)−1dz. It

can be shown that σ(f(x)) = f(σ(x)) (the spectral mapping theorem), which we shall use

below. If σ has two components σ1 and σ2, then it is possible to find D = D1∪D2 disjoint

open sets disconnecting σ. The function f that is 1 on D1 and 0 on D2 is analytic on

D1 ∪D2. The resulting function f(x) is basically the idempotent constructed above. For

more details, look up “holomorphic (or analytic) functional calculus” in a typical functional

analysis textbook. E.g. Functional Analysis by H. G. Heuser is quite good on the topic

(H3/HEU in the library). There may well be better accounts.

Lemma 21. Let a and x be as above and let 0 6 t 6 1. The spectrum of (1− t)a+ tx is

disjoint from the line Re(z) = 1/2.

Proof. Let f be defined on the spectrum of a by f(z) = 1 when Re(z) > 1/2 and 0

when Re(z) < 1/2. As we commented above, the element x is f(a), where this has its

functional calculus meaning. Moreover, (1 − t)a + tx = (1 − t)a + tf(a). The spectral

mapping theorem implies that

σ
(

(1− t)a+ tf(a)
)

= {(1− t)z + tf(z) : z ∈ σ(a)} .
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From the definition of the function f , it is clear that this set is disjoint from the line

Re(z) = 1/2, as required. �

Now let b be any element of Mn(A) of the form (1− t)a+ tx with t ∈ [0, 1]. What we

have just proved about the spectrum of b implies that bz + (1 − b) is invertible for every

z ∈ T. It follows that the straight line from a to x gives rise to a homotopy from the

loop az + (1− a) to the idempotent loop xz + (1− x). This completes the proof that β is

surjective.

To show that β is injective is easier. Given a loop f , we construct a sequence of

equivalent loops as above, ending up with an idempotent loop x. Then β−1[f ] is defined

to be [x] − [pN ], where N was the power of z used to turn the trigonometric loop into a

polynomial one. It must be checked that this map β−1 is well-defined - in other words,

that different choices lead to an element [x′] − [pM ] equal to [x] − [pN ] in K0(A). This

is a straightforward exercise. (It appears in great detail in Wegge-Olsen, or as a very

short remark in Blackadar.) For example, two homotopic polynomial loops result in two

homotopic linear loops, and thereby to homotopic choices for a, and therefore (small

estimate needed) to homotopic choices for x.

A similarly easy exercise (which would nevertheless be quite long to write out in full)

is that β is a natural isomorphism between K0(A) and K2(A). That is, if φ : A→ B is a

homomorphism, then the diagram

K0(A) → K0(B)

K2(A) → K2(B)

commutes.

We have thus reached the culmination of these notes:

Theorem 23. There is a natural isomorphism between K0(A) and K1(SA). Therefore

a short exact sequence 0 → A → B → C → 0 of Banach algebras gives a cyclic six-term

exact sequence
K0(A) → K0(B) → K0(C)

K1(C) ← K1(B) ← K1(A)

of Abelian groups. �

Now that we have proved the Bott periodicity theorem, let us briefly see what Banach

algebra K-theory has to do with the version familiar to topologists. Let X = Sn for some
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n. Then A = C[X ] is a Banach algebra (even a C∗-algebra) and we can therefore look

at K0(A) and K1(A) of this (unital) algebra. V (A) then consists of equivalence classes of

idempotents, and an idempotent inMn(A) is basically a continuous map fromX toMn(C),

where every x ∈ X maps to an idempotent. Since the map is continuous, the ranks of these

idempotents are all the same, k say, and the images form a k-dimensional vector bundle,

which is a k-dimensional section of the trivial vector bundle of dimension n. Moreover,

two such vector bundles are equivalent if and only if the corresponding idempotents are

equivalent.

The original version of K-theory started with equivalence classes of vector bundles,

with addition defined by direct sum. This gave a semigroup and K0 was the correspond-

ing Grothendieck group. Given a manifold X , the vector bundle K0(X) is equal to the

Banach algebra K0 of C[X ]. However, the algebra version works for non-commutative al-

gebras, which obviously do not arise as C[X ] for any X : hence the term “non-commutative

geometry”.

More generally, if X is not compact, then C0[X ] stands for the algebra of continuous

functions f on X such that |f | > ǫ on a compact subset of X for every ǫ > 0. (E.g. C0[R]

is continuous functions tending to zero at infinity.) If Y ⊂ X and Y and X are both

compact, then the ideal in C[X ] of functions vanishing on Y is isomorphic to C0[X \ Y ].

We therefore have an exact sequence

0→ C0[X \ Y ]→ C[X ]→ C[Y ]→ 0 ,

and this may enable us to calculate the K-theory of X from that of Y and how X is put

together from Y .

This does not yet explain how to work out K1 in the topological case. The suspension

of a space X is defined to be X × [0, 1] with X ×{0} and X ×{1} identified to two points.

(For the cone just do this to X × {0}.) For example, the suspension of Sn is Sn+1. The

definition of Kn+1(X) is now of course Kn(SX), and the Bott periodicity theorem in its

original form states that K2(X) = K0(X).

The following glossary translates concepts from topological K-theory into their

Banach-algebra counterparts.

Topological space X C0(X)

Vector bundle on X Idempotent in C0(X)
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Direct sum of bundles Orthogonal sum of idempotents in M∞(C0(X))

One-point compactifying X Adjoining a unit to C0(X)

Suspension and cone of X Suspension and cone of C0(X)

Kn(X) Kn(C0(X))

I strongly recommend browsing through the books of Blackadar and Wegge-Olsen to

get some sort of feel for what K-theory is good for, where the theory goes next and so on.

It turns out that there are many other cyclic six-term exact sequences one can define (e.g.

there is one - the Pimsner-Voiculescu exact sequence - which can help to determine the

K-groups of the tensor product of two C∗-algebras). In other words, the Bott periodicity

theorem is not an isolated fact, but more like an example of a phenomenon that appears

all over the place.

A very nice chapter in Wegge-Olsen explains that K-theory can be done axiomatically,

just like homology and cohomology. That is, there is a small list of properties that char-

acterize the functors K0 and K1, and it is possible to deduce the Bott periodicity theorem

very cleanly from these properties. However, as far as I know this has been done only for

C∗-algebras.

Finally, a bluffer’s guide to K-theory would not be complete without a mention of

Kasparov’s KK-theory. This is a functor KK(A,B) defined on pairs of algebras. Various

restrictions of it specialize to known other theories, including K-theory. One can define a

product of some sort, and it turns out that KK(A,B)KK(B,C) = KK(A,C). This is

difficult to prove and, for some reason, frightfully important.

Exercises.

1. Show that K0 is a functor.

2. Let A be an algebra, and let γ be the obvious embedding of A into A+. Under what

circumstances will γ have a left inverse which is also an algebra homomorphism?

3. Show that K0(A⊕B) = K0(A)⊕K0(B) for arbitrary algebras A and B.

4. Show that Lemma 7 is false if one defines K0(A) to be K0(A
+) for non-unital algebras.

5. Let A = L(H) for H a separable Hilbert space and let I = K(H) (the ideal of compact

operators). Then the index map from K1(A/I) to K0(A) takes a Fredholm operator (i.e.,

an invertible in A/I) to an element of K0(I). How does this element of K0(I) relate to

the index of the Fredholm operator as usually understood?
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6. Prove that the index map from K1(A) to K0(SA) is not just an isomorphism (which

you may assume) but a natural one.

7. What are K0(Sn) and K1(Sn)? What about K0(T
n) and K1(T

n)?

8. Prove that GLn(C) is connected.

9. Give an example of a non-zero element of K1(C[T]).

10. Let X be a Banach space isomorphic to its square. Show that K0(L(X)) = {0}.

11. (For the keen - I have not done this.) What should the definition of the index map be

in the topological version of K-theory?
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