USP – MAT 2458 – Álgebra Linear II – Turma 20

Prova Substitutiva - 4 de dezembro de 2014

Número USP : ____ Assinatura:

Professor: Severino Toscano do Rego Melo.

1	
2	
3	
4	
Total	

Questão 1 (3 pts) Seja $T_A: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear cuja matriz relativa à base canônica é

igual a
$$A = \frac{1}{25} \begin{bmatrix} 15 & 0 & -20 \\ -16 & 15 & -12 \\ 12 & 20 & 9 \end{bmatrix}$$
.

- (a) Verifique que (2, -2, -1) é um autovetor de T_A .
- (b) Ache uma base ortonormal de \mathbb{R}^3 que tenha, como primeiro elemento, um autovetor de T_A .
- (c) Chamando de \mathcal{B} a base encontrada no item anterior, ache $[T_A]_{\mathcal{B}}$, a matriz de T_A relativa a \mathcal{B} .
- (d) Calcule $\det A$.

Dadas
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$
 e $B = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, encontre U inversível tal que $A = UBU^{-1}$.

Questão 3 (2,5 pts) Seja $T: M_{22} \to M_{22}$ a transformação linear definida por T(X) = AX + XB, sendo $A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$ e $B = \begin{bmatrix} 0 & 0 \\ 3 & 4 \end{bmatrix}$.

- (a) Escolha uma base de M_{22} e ache a matriz de T relativa a essa base.
- (b) Verifique se T é inversível.

Questão 4 (2,5 pts) Considere o espaço vetorial P_2 de todos os polinômios de grau menor ou igual a 2, munido do produto interno $\langle p,q\rangle = \int_{-1}^{1} p(x)q(x) dx$.

1

- (a) Verifique que $B = \{1, x, 3x^2 1\}$ é uma base ortogonal de P_2 .
- (b) Seja $B' = \{1, x, x^2\}$. Encontre a matriz de transição de B para B'.
- (c) Encontre a matriz de transição de B' para B.