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Resumo

DIAS, R. L. Deformações contínuas de operadores de Fredholm em B(H). 2021. Disserta-
ção (Mestrado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2021.

Seja X um espaço topológico Hausdorff compacto. O K-grupo de X, denotado por K(X), é o
grupo de Grothendieck associado ao monoide comutativo das classes de isomorfismos de fibrados
vetoriais complexos sobre X, munido da soma de Whitney.

Sejam H um espaço de Hilbert de dimensão infinita e F (H) o conjunto dos operadores de
Fredholm em H. O Teorema de Atiyah-Jänich afirma que o families-index é um isomorfismo natural
entre o monoide das classes de homotopia das funções de X em F (H) e o grupo K(X). No caso em
que X consiste de apenas um ponto, o families-index é o clássico índice de Fredholm, e o Teorema
de Atiyah-Jänich afirma que as componentes conexas por caminhos de F (H) são caracterizadas
pelo índice de Fredholm.

Nesse trabalho, fazemos uma exposição detalhada do Teorema de Atiyah-Jänich, estudando os
elementos necessários para entender a construção do K-grupo de um espaço topológico Hausdorff
compacto, a definição do families-index e a demonstração de que tal índice é o isomorfismo men-
cionado.

Palavras-chave: K-teoria, operadores de Fredholm, índice de Fredholm, teoria do índice, K-teoria
de espaços compactos.
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Abstract

DIAS, R. L. Continuous deformations of Fredholm operators in B(H). 2021. Thesis (Mas-
ters) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2021.

Let X be a compact Hausdorff topological space. The K-group of X, denoted by K(X), is
the Grothendieck group associated to the commutative monoid of isomorphism classes of complex
vector bundles over X, equipped with the Whitney sum.

Let H be an infinite dimensional Hilbert space and F (H) be the set of Fredholm operators on
H. The Atiyah-Jänich Theorem states that the families-index is a natural isomorphism between
the monoid of homotopy classes of functions from X into F (H) and the group K(X). In case X is
a singleton, the families-index is the classic Fredholm index, and the Atiyah-Jänich Theorem states
that the arcwise connected components of F (H) are characterized by the Fredholm index.

In this work, we give a detailed exposition of the Atiyah-Jänich Theorem, studying the neces-
sary elements to understand the construction of the K-group of a compact Hausdorff topological
space, the definition of the families-index and giving a proof that such an index is the mentioned
isomorphism.

Keywords: K-theory, Fredholm operators, Fredholm index, index theory, K-theory of compact
spaces.
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Introduction

It is of great interest to mathematicians and enthusiasts to understand the behavior of linear
operators, given that they naturally appear in many problems of mathematics, physics and related
areas. A motivating source of examples is the field of linear differential equations. For instance, the
equation

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
= g(x, y, z)

can be written as ∆f = g, where ∆ =̇ ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is a linear differential operator defined

over suitable function spaces. Let D : X → Y be a linear differential operator between appropriate
function spaces X and Y . Given g ∈ Y , one can ask for existence and uniqueness of solutions for the
equation Df = g, and the answer for this question is associated to the surjectivity and injectivity of
D, respectively. If D is an elliptic differential operator, we can impose a finite number of restrictions
to g in order to be able to solve the equation Df = g, and the solution is uniquely determined if we
give a finite number of parameters. More specifically, that is to say that Ker D and Coker D are
finite dimensional. This last property is precisely what defines a Fredholm operator: a linear map
T : V →W such that Ker T and Coker T are finite dimensional (if V and W are both topologized,
we also require T to be continuous and T (V ) to be closed). For a Fredholm operator T , the integer
number

ind T =̇ dim Ker T − dim Coker T,

called Fredholm index, is a measurement for the injectivity and surjectivity of T . Surprisingly, this
algebraic object turns out to be a topological invariant, as one can see in the following classical
result.

For a Hilbert space H and Fredholm operators T1, T2 : H → H it is true that
ind(T1) = ind(T2) if and only if there exists a continuous path of Fredholm

operators joining T1 and T2.

Another way to state this result is: the Fredholm index is a bijection from the (arcwise) connected
components of the space of Fredholm operators in H and the set of integer numbers.

Topological K-theory, a tool created by Atiyah and Hirzebruch in the 60’s, inspired in the
previous work of Grothendieck, provides a successful way to generalize the above result. The K group
of a compact Hausdorff topological space X, denoted by K(X), is constructed using isomorphism
classes of vector bundles over X. It is possible to associate an element ind(T ) ∈ K(X) to every
continuous family T of Fredholm operators parameterized by X, in a natural manner, in such a way
that ind(T ) coincides with the classical Fredholm index whenever the space X consists of one point
only (and T is therefore a single Fredholm operator). This is the reason why we can call ind(T ) the

1



2 CONTENTS 0.0

index bundle of T . The Atiyah-Jänich Theorem is the mentioned generalization and it asserts that
the families-index is an isomorphism from the monoid of homotopy classes of continuous families
of Fredholm operators parameterized by X onto the abelian group K(X).

The discussion above could help one to understand the following Atiyah’s quote: “Abstract Func-
tional Analysis provides the natural meeting ground of Algebraic Topology and Partial Differetial
Equations” (see [Ati70]).

This Master’s Thesis is primarily written with the intention of presenting a systematic and
comprehensive account of the Atiyah-Jänich Theorem for beginners. The prerequisites and require-
ments necessary for understanding this text are essentially basic functional analysis and topology,
so that any senior undergraduate student of mathematics should be able to read this thesis with
no trouble.

The content treated here is not original, but rather a detailed exposition of the work of K. Jänich,
F. Hirzebruch, M. Atiyah, among other great mathematicians. One can find a discussion of Atiyah-
Jänich Theorem in the Appendix of [Ati67], where one approach for the families-index is given.
Another approach is given in [Bre16], whose description of the families-index has some similarity
with the index of the paper Atiyah-Singer IV [AS71]. I have discussed these two approaches in the
slightly more general setting that the continuous families of Fredholm operators can be considered
to be defined between distinct Hilbert spaces. To prove the equivalence of these approaches, it
was needed to suppose that our Hilbert spaces are complexes. Using Kuiper’s Theorem [Kui65]
and a generalization of it, that was shown in [Ill65], I gave a proof for the Atiyah-Jänich Theorem
dropping the assumption of separability for the Hilbert space, and assuming only that its dimension
are infinite. At last, a digression was made to give a category theoretical interpretation for Atiyah-
Jänich Theorem, concluding that the constructed families-index is a natural isomorphism between
the K-theory functor and the functor that, to each compact Hausdorff space X, associate the
monoid of homotopy classes of functions from X into the space of Fredholm operators in an infinite
dimensional Hilbert space.



Chapter 1

Background and Prerequisites

In this section we discuss some preliminary concepts. Most of them shall be used throughout
the text, even if we do not mention them explicitly sometimes.

1.1 Some Algebraic Requisites

Definition 1.1. A monoid (or semigroup) is a pair (M,?) where M is a set and ? : M ×M →M

is a binary operation in M such that

(i) (a ? b) ? c = a ? (b ? c) for every a, b, c ∈M ;

(ii) there exists e ∈M such that a ? e = e ? a = a for every a ∈M .

The element e is called neutral element. If ? also satisfies

(iii) a ? b = b ? a for every a, b ∈M ,

we shall call (M,?) a commutative monoid. In this case, we will use the additive notation for
operation ?, writing simply +, and the neutral element will be denoted by 0.

An element a in a monoidM is said to be invertible if there exists b ∈M such that ab = ba = e,
and such b is called an inverse for a. Differently from the groups, and by the very definition, elements
in monoids need not to be invertible, but when it is, its inverse is unique. For if a ∈ M and there
exist x, y ∈M such that ax = xa = e = ay = ya, then x = xe = x(ay) = (xa)y = ey = y. If a ∈M
is invertible, we denote its inverse by a−1 (and by −a in the commutative case).

Example 1.2. 1. Every group (resp. abelian group) is a monoid (resp. commutative monoid).

2. (N,+) is a commutative monoid with neutral element 0 ∈ N.

3. The set of non zero integers Z× equipped with integer multiplication is a commutative monoid
with neutral element 1 ∈ Z×.

4. Given a set X, the set of all functions from X to itself equipped with the composition opera-
tion, (XX , ◦), is a monoid with neutral element idX ∈ XX .

5. The set {e, a}, e 6= a, equipped with multiplication table given by

3



4 BACKGROUND AND PREREQUISITES 1.2

e a

e e a
a a a

is a commutative monoid.

Definition 1.3. Let M and N be monoids. We say that a map f : M → N is a monoid morphism
if it satisfies

(i) f(ab) = f(a)f(b) for every a, b ∈M ,

(ii) f(e) = e.

The kernel of a monoid morphism f : M → N is Ker f =̇ f−1(e).

Example 1.4. Let X be a set and fix φ ∈ XX . Define, for n ≥ 0,

φ◦n =

{
idX if n = 0,

φ◦(n−1) ◦ φ if n > 0.

The map N→ XX , n 7−→ φ◦n, is a monoid morphism.

It is known that a group morphism is injective if and only if its kernel is trivial. This is not true
for monoids.

Example 1.5. Let M be the commutative monoid described in Example 1.2.5. Define f : N→M

by f(n) = an, that is,

f(n) =

{
e if n = 0,

a if n > 0.

Then f is a non injective monoid morphism with Ker f = {0}.

The following is a result will be needed later in the text.

Proposition 1.6. Let M be a monoid, G be a group and f : M → G be a surjective monoid
morphism. If Ker f = {e}, then f is injective.

Proof. Let a, b ∈M be such that f(a) = f(b). Since f is surjective and G is a group, we can consider
x ∈ M such that f(x) = f(a)−1 = f(b)−1 ∈ G. Then f(ax) = f(a)f(x) = e = f(x)f(a) = f(xa)

and we have ax, xa ∈ Ker f = {e}, from where we conclude that ax = e = xa. In a similar way,
bx = e = xb. Then a = x−1 = b, and therefore f is injective.

1.2 Category Theory

In this section, it will be discussed basics concepts of Category Theory. For further discussion,
see [Mac98].

Definition 1.7. A category C consists of

• a class ob(C) of objects,
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• a class hom(C) of morphisms (or arrows, or maps) between objects,

• a domain (or source object) class function dom : hom(C)→ ob(C),

• a codomain (or target object) class function cod : hom(C)→ ob(C),

• for every a, b, c ∈ ob(C), a binary operation1 C(a, b) × C(b, c) → C(a, c) called composition
of morphisms: the composition of (f, g) ∈ C(a, b)× C(b, c) is denoted by g ◦ f or simply gf .
The composition must satisfy the following axioms:

? (Associativity) for every a1, a2, a3, a4 ∈ ob(C) and every fi ∈ C(ai, ai+1), i = 1, 2, 3, the
equality f3 ◦ (f2 ◦ f1) = (f3 ◦ f2) ◦ f1 holds,

? (Identity) for every a ∈ ob(C) there exists ida ∈ C(a, a), called identity morphism for
a, such that for every b ∈ ob(C) and every f ∈ C(a, b) and g ∈ C(b, a) the equalities
f ◦ ida = f and ida ◦ g = g hold.

Given a, b ∈ ob(C), a morphism f ∈ C(a, b) is an isomorphism if there exists g ∈ C(b, a) such
that g ◦ f = ida and f ◦ g = idb.

Remark 1.8. Let C be a category and fix a ∈ ob(C). Observe that the identity morphism for a is
unique, for if id′a ∈ C(a, a) is a morphism satisfying the same property we would have

ida = ida ◦ id′a = id′a .

Example 1.9. 1. The category of sets, Set, consists of the class of all sets ob(Set) and the class
of all maps between all sets, hom(Set). Domain and codomain coincides with the usual notion
of domain and codomain of maps. Composition coincides with the usual notion of composition
of maps.

2. Let K be a field. The category of vector spaces over K, VectK, consists of the class of all vector
spaces ob(VectK) and the class of all linear transformations between them, hom(VectK). Again,
domain, codomain and composition coincide with the usual notion.

3. The category of topological spaces, Top, consists of the class of all topological spaces ob(Top)

and the class of all continuous maps between them, hom(Top). Domain, codomain and com-
position are defined as usual.

The morphisms of a category C can often be thought of as maps between objects in C that
preserves the structure of interest (linear maps preserve linear structures of the spaces, continuous
maps preserve topological structures, etc). There is also a notion of special maps between categories,
that preserve the structure of the categories themselves.

Definition 1.10. Let C and D be two categories. A covariant functor F between C and D, denoted
by F : C → D, is a pair of class functions F1 : ob(C)→ ob(D) and F2 : hom(C)→ hom(D) satisfying

• for every a, b ∈ ob(C) and every f ∈ C(a, b), it holds that F2(f) ∈ D(F1(a), F1(b)),

• F2(ida) = idF1(a) for every a ∈ ob(C),

1Given a, b ∈ ob(C) the symbol C(a, b) stands for the subclass consisting of morphisms f ∈ hom(C) such that
dom(f) = a and cod(f) = b.
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• for every a, b, c ∈ ob(C), f ∈ C(a, b) and g ∈ C(b, c), it holds that F2(g ◦ f) = F2(g) ◦ F2(f).

These properties are called functorial properties.
Similarly, a contravariant functor G between C and D, also written G : C → D, is a pair of

class functions G1 : ob(C)→ ob(D) and G2 : hom(C)→ hom(D) satisfying

• for every a, b ∈ ob(C) and every f ∈ C(a, b), it holds that G2(f) ∈ D(G1(b), G1(a)),

• G2(ida) = idG1(a) for every a ∈ ob(C),

• for every a, b, c ∈ ob(C), f ∈ C(a, b) and g ∈ C(b, c), it holds that G2(g ◦ f) = G2(f) ◦G2(g).

Let F be a functor. For simplicity, it is usual to write simply F instead of F1 and F2, so that
the functorial properties are written as

F (ida) = idF (a) and F (g ◦ f) = F (g) ◦ F (f)

if F is covariant, and as

F (ida) = idF (a) and F (g ◦ f) = F (f) ◦ F (g)

if F is contravariant.
We shall see examples of functors in Chapter 2.

Definition 1.11. Let C and D be two categories and let F and G be covariant functors between
C and D. A natural transformation between F and G is a class function η : ob(C)→ hom(D) that
satisfies

• for every a ∈ ob(C), η(a) is a morphism from F (a) to G(a),

• for every a, b ∈ ob(C) and every f ∈ C(a, b), we have that η(b) ◦ F (f) = G(f) ◦ η(a), making
commutative the diagram

F (a) G(a)

F (b) G(b)

η(a)

F (f) G(f)

η(b)

(1.1)

Remark 1.12. If F and G are both contravariant functors, we require η to make the following
diagram commutative, instead of diagram (1.1):

F (a) G(a)

F (b) G(b)

η(a)

F (f)

η(b)

G(f)

We say that a natural transformation η is a natural isomorphism (or a natural equivalence, or a
isomorphism of functors) if η(a) is an isomorphism for every a ∈ ob(C).
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1.3 Topology

Definition 1.13. Let X be a topological space.
An open cover of X is a family F of open subsets of X such that X =

⋃
F . If F is an open

cover of X and F ′ ⊆ F satisfies X =
⋃
F ′, we say that F ′ is a subcover of F . We say that X is

compact if every open cover of X admits a finite subcover. The space X is said to be locally compact
if every x ∈ X admits a compact neighborhood, i.e., if for every x ∈ X there exist an open set
U ⊆ X and a compact set K ⊆ X such that x ∈ U ⊆ K.

We say that X is normal if it is Hausdorff and if for every closed sets C1, C2 ⊆ X one can find
open sets U1, U2 ⊆ X such that Ci ⊆ Ui, i = 1, 2, and U1 ∩ U2 = ∅.

Theorem 1.14 (Tietze Extension Theorem). Let X be a normal topological space, Y be a closed
subset of X and f : Y → CN be a continuous function. There exists continuous function f̃ : X → CN

such that f̃(x) = f(x) for every x ∈ Y .

Lemma 1.15 (Tube Lemma). Let X be compact, Y be an arbitrary topological space and y ∈ Y .
If U is an open subset of X × Y such that X × {y} ⊆ U , then there exists an open set V ⊆ Y such
that X × {y} ⊆ X × V ⊆ U .

Proof. For each x ∈ X there exist open sets Wx ⊆ X and Vx ⊆ Y such that (x, y) ∈Wx × Vx ⊆ U .
By compactness, there exists a finite set {x1, · · · , xn} such that X =

⋃n
i=1Wxi . Consider the open

set V =̇
⋂n
i=1 Vxi . We clearly have y ∈ V so that X × {y} ⊆ X × V . If

(x, z) ∈ X × V =

( n⋃
i=1

Wxi

)
×
( n⋂
i=1

Vxi

)

there exists j ∈ {1, · · · , n} such that x ∈Wxj and one has (x, z) ∈Wxj × Vxj ⊆ U . This concludes
the proof.

Corollary 1.16. Let X be compact, Y be an arbitrary topological space and S ⊆ Y . If U is an
open subset of X × Y such that X × S ⊆ U , then there exists an open set V ⊆ Y such that
X × S ⊆ X × V ⊆ U .

Proof. For each y ∈ S we have X × {y} ⊆ U . By Tube Lemma, there exists an open set Vy ⊆ Y

such that X × {y} ⊆ X × Vy ⊆ U . The set V =̇
⋃
y∈S Vy satisfies the desired conditions.

Lemma 1.17. Let X and Y be topological spaces, and denote by Bx a local basis at a point x ∈ X.
Let f : X → Y be a continuous bijection. If f(B) is a neighborhood of f(x) in Y for every B ∈ Bx
and for every x ∈ X, then f is a homeomorphism.

Proof. Fix x ∈ X. It suffices to prove that f−1 is continuous at f(x). Let V be a neighborhood of
x in X and consider B ∈ Bx such that B ⊆ V . By hypothesis, there exists an open set U ⊆ Y such
that f(x) ∈ U ⊆ f(B). Applying f−1, we obtain x ∈ f(U) ⊆ B ⊆ V , and it follows that f−1 is
continuous at f(x), as desired.

1.3.1 Quotient Topology

LetX be a topological space and∼ be an equivalence relation inX. Denote by [x] the equivalence
class of an element x ∈ X, and let π : X → X/∼ be the quotient projection, π(x) = [x]. The quotient
topology in X/∼ is defined by
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A is open in X/∼ ⇐⇒ π−1(A) is open in X ,

and it is the finest topology that makes continuous the map π.

Proposition 1.18. Let X and Y be topological spaces, ∼ be an equivalence relation in X and π be
as above. Consider a continuous map f : X → Y . If f(x) = f(x′) whenever x ∼ x′, then there exists
a continuous map f̃ : X/∼ → Y such that f̃([x]) = f(x) for every x ∈ X, making commutative the
following diagram

X Y

X/∼

f

π
f̃

Proposition 1.19. Let X and Y be topological spaces, ∼ be an equivalence relation in X and π
be as above. Suppose we have maps f : X → Y and g : X/∼ → Y such that g([x]) = f(x) for every
x ∈ X, that is, such that the diagram

X Y

X/∼

f

π
g

is commutative. Then f is continuous if and only if g is continuous.

1.4 Functional Analysis

Let V1 and V2 be normed vector spaces over R or C.

Definition 1.20. A linear operator T : V1 → V2 is said to be bounded if there exists C > 0 such
that ‖T (v)‖ ≤ C ‖v‖ for every v ∈ V . The set of bounded linear operators from V1 to V2 is denoted
by B(V1, V2) and it is itself a normed space under the operator norm

‖T‖ =̇ inf{c > 0 : ‖T (v)‖ ≤ c ‖v‖ for every v ∈ V1}

= sup{‖T (v)‖ : v ∈ V1 and ‖v‖ = 1} .

Theorem 1.21 (Open Mapping Theorem). If V1 and V2 are Banach spaces and T ∈ B(V1, V2) is
surjective, then T is an open map.

Recalling that boundedness of a linear operator between normed spaces is equivalent to conti-
nuity, we have the following

Corollary 1.22. Let V1 and V2 be Banach spaces. If T ∈ B(V1, V2) is a bijection, then T−1 belongs
to B(V2, V1).

Definition 1.23. A normed algebra is an algebra A over R or C equipped with a map ‖ · ‖ : A→
[0,∞) that turns (A, ‖ · ‖) into a normed vector space and that satisfies

‖ab‖ ≤ ‖a‖ ‖b‖ for every a, b ∈ A .

If the algebra A is unital, we also require that ‖1‖ = 1.
Besides, if (A, ‖ · ‖) is a Banach space, we say that A is a Banach algebra.
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Lemma 1.24. Let A be a unital Banach algebra. If a ∈ A is such that ‖1 − a‖ < 1, then a is
invertible and a−1 =

∑∞
n=0(1− a)n.

Proof. First note that
∑∞

n=0(1 − a)n is absolutely convergent since ‖1 − a‖ < 1. Completeness of
A provides convergence of this series. Now we have

a
N∑
n=0

(1− a)n = (1− (1− a))
N∑
n=0

(1− a)n

=
N∑
n=0

(1− a)n −
N∑
n=0

(1− a)n+1

= 1− (1− a)N+1 −→ 1 ,

implying the equality a
(∑∞

n=0(1− a)n
)

= 1. Similarly,
(∑∞

n=0(1− a)n
)
a = 1.

Proposition 1.25. Let V1 be a Banach space and V2 be a normed vector space. The subset of linear
isomorphisms in B(V1, V2) is open.

Proof. Let T ∈ B(V1, V2) be an isomorphism. Let S ∈ B(V1, V2) be such that ‖T − S‖ < 1/‖T−1‖.
Then ‖idV1 − T−1S‖ = ‖T−1(T − S)‖ ≤ ‖T−1‖‖T − S‖ < 1 and Lemma 1.24 gives that T−1S
is invertible in the Banach algebra B(V1, V1) (since V1 is Banach, so is B(V1, V1)). Therefore S =

T (T−1S) is an isomorphism in B(V1, V2). The arbitrariness of T implies the desired result.

1.4.1 Spectral Theory

Let us deal with some spectral results. For references, see [Sch12].

Definition 1.26. Let H be a Hilbert space. The spectrum of a bounded operator T ∈ B(H,H) is
the set

σ(T ) =̇ {λ ∈ C : λ− T ∈ B(H,H) is not invertible} .

It can be shown that σ(T ) is a nonempty compact subset of C (in fact, one shows that σ(T ) is
contained in {λ ∈ C : |λ| ≤ ‖T‖}). Moreover, if T is a self-adjoint operator, we have that σ(T ) is
entirely contained in R.

Definition 1.27. Let H be a Hilbert space and (Ω,M) be a measurable space. A spectral measure
onM is a map

E : M→ {P ∈ B(H,H) : P 2 = P = P ∗} ,

from the σ-algebraM into the set of orthogonal projections on H, satisfying

(i) E(Ω) = idH

(ii) E
(⋃∞

n=1Mn

)
=
∑∞

n=1E(Mn) for any sequence {Mn}∞n=1 ⊆ M such that Mj ∩ Mk = ∅
whenever j 6= k (this infinite sum is taken on the strong operator topology).

We can state the Spectral Theorem. For a clear proof of this theorem, see Chapter 5 of [Sch12].
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Theorem 1.28 (Spectral Theorem for Bounded Self-Adjoint Operators). Let H be a Hilbert space
and T ∈ B(H,H) be a self-adjoint operator. Let a, b ∈ R be such that σ(T ) ⊆ [a, b]. There exists a
unique spectral measure ET on the Borel σ-algebra B([a, b]) such that

T =

∫
[a,b]

λ dET (λ) .

Let T ∈ B(H,H) be self-adjoint, a, b ∈ R be such that σ(T ) ⊆ [a, b] and ET be the measure
given in the Spectral Theorem. For a continuous function f : [a, b]→ C we define

f(T ) =̇

∫
[a,b]

f(λ) dET (λ) .

Proposition 1.29 (Properties of the Continuous Functional Calculus). Let T ∈ B(H,H) be a
self-adjoint operator, a, b ∈ R be such that σ(T ) ⊆ [a, b] and ET be given by the Spectral Theorem.
For continuous functions f, g : [a, b]→ C, we have

(i) ‖f(T )‖ ≤ ‖f‖∞ =̇ sup{ |f(λ)| : λ ∈ [a, b]} .

(ii) f(T ) = f(T )∗. In particular, f(T ) is self-adjoint if and only if f(λ) = f(λ) for every λ ∈ σ(T ).

(iii) (fg)(T ) = f(T )g(T ) .

(iv) p(T ) =
∑d

k=0 αkT
k for every polynomial function p(λ) =

∑d
k=0 αkλ

k .

(v) If f(λ) ≥ 0 for every λ ∈ σ(T ), then f(T ) is positive2.

Let {Tn : n ≥ 1} be a sequence of bounded self-adjoint operators in H such that Tn −→ T in
B(H,H). Since ‖Tn‖ −→ ‖T‖, the set {‖Tn‖ : n ≥ 1} ∪ {‖T‖} is bounded in R, which allows us
to choose a, b ∈ R such that σ(T ) ∪

⋃
n≥1 σ(Tn) ⊆ [a, b]. Let f : [a, b] → C be continuous. Let us

prove that f(Tn) −→ f(T ) in B(H,H). Fix ε > 0. Weierstrass Approximation Theorem gives a
polynomial function p : [a, b]→ C such that ‖f − p‖∞ ≤ ε/3. Since Tn → T , we have T kn → T k for
every k ≥ 0, so that p(Tn) −→ p(T ). This gives n0 ∈ N such that ‖p(Tn)− p(T )‖ ≤ ε/3 whenever
n ≥ n0. Thus, for n ≥ n0,

‖f(Tn)− f(T )‖ ≤ ‖f(Tn)− p(Tn)‖+ ‖p(Tn)− p(T )‖+ ‖p(T )− f(T )‖

≤ ‖f − p‖∞ + ‖p(Tn)− p(T )‖+ ‖p− f‖∞
≤ ε/3 + ε/3 + ε/3 ,

and we have established the following

Proposition 1.30. Let {Tn : n ≥ 1} is a sequence of bounded self-adjoint operators in H such that
Tn → T in B(H,H). Consider a, b ∈ R such that σ(T ) ∪

⋃
n≥1 σ(Tn) ⊆ [a, b]. If f : [a, b] → C is

continuous, then f(Tn)→ f(T ) in B(H,H) .

Let T is a positive bounded self-adjoint operator in H. Letting f and g be the map λ 7−→ λ1/2

2A self-adjoint operator T in a Hilbert space H is called positive if 〈T (v), v〉 ≥ 0 for every v ∈ H. It can be shown
that a positive operator T satisfies σ(T ) ⊆ [0,∞).
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and applying items (iii) and (v) of Proposition 1.29, we see that

T 1/2 =̇

∫
[0,b]

λ1/2 dET (λ)

is a positive operator that satisfies (T 1/2)2 = T . It can be shown that this is the unique positive
bounded operator satisfying such condition.

Corollary 1.31. Let X be the set of positive bounded self-adjoint operators in H. The map X → X,
T 7−→ T 1/2, is continuous.

Proof. Let Tn, T ∈ X with Tn −→ T . We can choose b > 0 such that σ(T ) ∪
⋃
n≥1 σ(Tn) ⊆ [0, b].

Then f : [0, b] → R, given by f(λ) = λ1/2, is a well defined continuous function. By Proposition
1.30, it follows that T 1/2

n = f(Tn) −→ f(T ) = T 1/2, as desired.
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Chapter 2

Topological K-Theory

K-theory is a generalized cohomology theory (in the sense of [Whi62]), for example) introduced by
Grothendieck in his work on Algebraic Geometry. It was then transposed to topology by Hirzebruch
and Atiyah as expounded in [Ati67], which is the approach we are concerned with.

In this chapter, we will see basic properties about topological K-theory, a functor from the
category of compact Hausdorff topological spaces to the category of abelian groups. The elements
needed to construct the K-group of a compact Hausdorff space are discussed in details.

2.1 Vector Bundles

The concept of a vector bundle formalizes the idea of a collection of vector spaces parameterized
by a topological space in a continuous manner. We will focus on collections of finite dimensional
complex vector spaces, although many of these results can be generalized to the case of real vector
spaces or to the case of infinite dimensional spaces.

In this section, X denotes a topological space and our vector spaces are finite dimensional and
complex.

2.1.1 Basics

Definition 2.1. A family of vector spaces over X is a pair (E, p), where E is a topological space
and p : E → X is a surjective continuous map, such that

1. Ex =̇ p−1(x) has the structure of a vector space for every x ∈ X.

2. the vector space structures vary continuously with x, meaning that the scalar multiplication
map

C× E −→ E, (λ, e) 7−→ λ · e

and the addition map

{
(e1, e2) ∈ E × E : p(e1) = p(e2)

}
−→ E, (e1, e2) 7−→ e1 + e2

are continuous.

The map p is called projection, and each Ex is called a fiber of E at x or simply a fiber.
We often denote such a family by p : E → X, or E → X, or simply E.

13
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Example 2.2. Let N be a nonnegative integer and consider X × CN with the product topology.
The coordinate projection π1 : X × CN → X, given by π1(x, v) = x, is a surjective continuous
map such that, for every x ∈ X, the set π−11 (x) = {x} × CN has the structure of a vector space
(isomorphic to CN ). Besides, the operation maps

(λ;x, ξ) 7−→ (x, λξ) and
(
(x, ξ1), (x, ξ2)

)
7−→ (x, ξ1 + ξ2)

are continuous, meaning that the linear structures vary continuously with x ∈ X. This shows that
π1 : X × CN → X is a family of vector spaces.

More generally (and for the same reasons), if V is a finite dimensional vector space1, then
X × V → X is a family of vector spaces.

Definition 2.3. Let p1 : E1 → X and p2 : E2 → X be families of vector spaces. A morphism of
families of vector spaces is a continuous map ϕ : E1 → E2 which commutes with the projections
(i.e., ϕ satisfies p2 ◦ ϕ = p1, so that the diagram

E1 E2

X

ϕ

p1 p2

is commutative) and ϕx =̇ ϕ|(E1)x : (E1)x → (E2)x is a linear map for every x ∈ X.
We say that a morphism of families of vector spaces ϕ : E1 → E2 is an isomorphism if it is a

homeomorphism. In this case, E1 is said to be isomorphic to E2, and we write E1
∼= E2.

Remark 2.4. If ϕ : E1 → E2 is a morphism of families of vector spaces over X, then ϕ(E1) is
itself a family of vector spaces over X with topology and operations inherited from E2, and whose
projection is precisely the restriction of the projection of E2 to ϕ(E1).

We can “pull back” families of vector spaces, as in the following

Proposition 2.5. Let X and Y be topological spaces, and f : Y → X be a continuous map. If
p : E → X is a family of vector spaces over X, then

f∗E =̇ {(y, e) ∈ Y × E : f(y) = p(e)}

is a family of vector spaces over Y with projection given by f∗p : f∗E → Y , f∗p(y, e) = y. Moreover,
if f : Y → X and g : Z → Y are continuous maps, then (f ◦ g)∗E ∼= g∗f∗E.

Proof. Note that f∗p is precisely the restriction to f∗E of the projection onto the first factor
Y × E → Y , being therefore continuous. Also, it is surjective since for y ∈ Y we can choose e ∈ E
with p(e) = f(y) and notice that f∗p(y, e) = y.

For y0 ∈ Y , we have

(f∗p)−1(y0) = {(y, e) ∈ Y × E : f(y) = p(e), y = f∗p(y, e) = y0}

= {y0} × {e ∈ E : p(e) = f(y0)}

= {y0} × p−1(f(y0)) = {y0} × Ef(y0) .
1Here V is assumed to be equipped with the unique Hausdorff topological vector space structure (which is linearly

homeomorphic to Ck, k = dimV ); for references, see [Rud91], Theorem 1.21
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Besides, the operation maps

C× f∗E → f∗E, (λ; y, e) 7−→ (y, λe)

and {(
(y, e), (y′, e′)

)
∈ f∗E × f∗E : y = y′

}
→ f∗E,

(
(y, e), (y, e′)

)
7−→ (y, e+ e′)

are continuous by the continuity of operations in E. This shows that f∗p : f∗E → Y is a family of
vector spaces.

Moreover,
(f ◦ g)∗E = {(z, e) ∈ Z × E : (f ◦ g)(z) = p(e)}

and

g∗f∗E = {(z, e′) ∈ Z × f∗E : g(z) = f∗p(e′)}

= {(z, y, e) ∈ Z × Y × E : f(y) = p(e), g(z) = y}

are isomorphic since ϕ : (f ◦ g)∗E → g∗f∗E, given by ϕ(z, e) = (z, g(z), e), is a bijective morphism
with continuous inverse ϕ−1(z, y, e) = (z, e).

Corollary 2.6. Let p : E → X be a family of vector spaces over X and U a subspace of X. The
restriction of E to U , defined by E|U =̇ p−1(U), is a family of vector spaces over U .

Proof. If i : U → X is the inclusion of U into X, then i∗E = {(x, e) ∈ U ×E : p(e) = x} ∼= p−1(U),
where such isomorphism can be given by ϕ(x, e) = e whose inverse is ϕ−1(e) = (p(e), e).

Definition 2.7. A family of vector spaces E → X is trivial if there exists a vector space V such
that E ∼= X × V . A family of vector spaces p : E → X is said to be locally trivial if every x ∈ X
admits an open neighborhood U such that E|U is trivial. An isomorphism E|U ∼= U × V will be
called a local trivialization for the family E → X. A vector bundle over X is a locally trivial family
of vector spaces over X.

If ϕ : E1 → E2 is a morphism of families of vector spaces and if E1 and E2 are vector bundles
over X, we shall call ϕ a bundle morphism (or bundle map). The definition of bundle isomorphism
is similar.

It follows directly from the definition of “local triviality” that the dimension of the fibers of a
vector bundle is locally constant: if E → X is vector bundle and if x ∈ X, the existence of the open
neighborhood U of x such that E|U is trivial tells us that dimEy = dimEx for every y ∈ U simply
because these vector spaces are isomorphic.

The rank of a vector bundle E → X at a connected component of X is the dimension of the
fibers of E at any point of the component. If the rank of E at every connected component of X is
the same, we call this integer number simply rank of E → X.

Remark 2.8. Let E → X be a vector bundle and let ϕi : E|Ui → Ui × CN , i = 1, 2, be local
trivializations. The transition map ϕ12 =̇ ϕ2 ◦ϕ−11 : (U1∩U2)×CN → (U1∩U2)×CN is of the form
(x, v) 7−→ (x, g12(x)v) for a unique g12(x) ∈ GL(CN ). This gives a map g12 : U1 ∩ U2 → GL(CN )

that must be continuous by the continuity of ϕ12. We will explore this fact in Section 2.1.3.
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Example 2.9. 1. The family of vector spaces X × V → X is a vector bundle.

2. The pullback object, described in Proposition 2.5, remains a vector bundle if the “pulled-back”
object is a vector bundle. Indeed, let f : Y → X be a continuous map and E → X be a vector
bundle. For y ∈ Y , consider an open neighborhood U of f(y) in X such that E|U is trivial.
Let ϕ : E|U → U × V be an isomorphism. Then f−1(U) is an open neighborhood of y in Y
and ψ : f∗E|f−1(U) → f−1(U)×V , given by ψ(z, e) = (z, π2 ◦ϕ(e)), is an isomorphism, whose
inverse is precisely ψ−1(z, v) = (z, ϕ−1(f(z), v)).

Proposition 2.10. Let p : E → X be a vector bundle. If X is Hausdorff, so is E.

Proof. Let v1, v2 ∈ E, v1 6= v2. If p(v1) 6= p(v2), there exist disjoint open subsets U1, U2 ⊆ X such
that p(vi) ∈ Ui, and therefore Vi =̇ p−1(Ui), i = 1, 2, are disjoint open subsets of E with vi ∈ Vi.
Suppose p(v1) = p(v2) =̇ x. There exist N ∈ N, an open neighborhood U of x in X and a bundle
isomorphism ϕ : E|U → U × CN . Write ϕ(vi) = (x, ξi) and notice that ξ1 6= ξ2 ∈ CN , from where
we get disjoint open subsets Ω1,Ω2 ⊆ CN such that ξi ∈ Ωi. Then Vi =̇ ϕ−1(U × Ωi) are disjoint
open subsets of E such that vi ∈ Vi, i = 1, 2.

Proposition 2.10 does not hold for general families of vector spaces, as one can see in the following

Example 2.11. Let V be the vector space Ck equipped with the trivial topology {∅,Ck}. For a
Hausdorff topological space X, let E be the product space X × V , which is not Hausdorff. The
projection onto the first coordinate π1 : E → X, π1(x, v) = x, is a continuous surjective map such
that π−11 (x) = {x}×V has the structure of a vector space for every x ∈ X. One can easily see that
the operation maps

C× E −→ E, (λ, (x, v)) 7−→ (x, λv)

and
{((x, v), (x, v′)) : x ∈ X, v, v′ ∈ V } −→ E, ((x, v), (x, v′)) 7−→ (x, v + v′)

are continuous, so that π1 : E → X is a family of vector spaces.

The following result shows that a bijective bundle morphism is a bundle isomorphism, proving
that the continuity of the inverse morphism is automatic in the context of vector bundles.

Proposition 2.12. Let E1 → X and E2 → X be vector bundles. A bundle morphism ϕ : E1 → E2

is an isomorphism if and only if ϕx : (E1)x → (E2)x is a vector space isomorphism for each x ∈ X.

Proof. If ϕ is an isomorphism, it is clear that ϕx is a linear isomorphism for each given x ∈ X.
Conversely, suppose ϕx is a linear isomorphism for every x ∈ X. Then ϕ is a bijection and it

remains to prove that ϕ−1 is continuous. Let U be an open subset of X such that Ei|U is trivial,
i = 1, 2. Let ψi : Ei|U → U×CN be bundle isomorphisms. The map ψ2◦ϕ◦ψ−11 : U×CN → U×CN

is of the form (x, ξ) 7−→ (x, fx(ξ)), where x 7−→ fx is a continuous map U → GL(CN ). Since
g =̇ ψ1 ◦ϕ−1 ◦ψ−12 is given by (x, ξ) 7−→ (x, f−1x (ξ)) and the inversion map A 7−→ A−1 is continuous
inGL(CN ), it follows that g is continuous. This gives the continuity of ϕ−1 in E2|U . The arbitrariness
of U provides the global continuity of ϕ−1, as required.

Definition 2.13. A continuous section of a family of vector spaces p : E → X is a continuous map
s : X → E that satisfies p ◦ s = idX .
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Remark 2.14. Observe that a section s : X → E of a family of vector spaces p : E → X is
a homeomorphism from X to its image s(X), since p|s(X) ◦ s = idX and s ◦ p|s(X) = ids(X). In
particular, X is homeomorphic to a subspace of E whenever the family E → X admits a continuous
section.

Unfortunately, it is not always true that a family of vector spaces admits a section, as we can
see in the following

Example 2.15. Fix some nonnegative integer k and consider E =̇
(
[0, 1) × Ck

)
∪
(
[2, 3] × Ck

)
,

X =̇ [0, 2] and p : E → X be given by

p(x, ξ) =

{
x, if x ∈ [0, 1)

x− 1, if x ∈ [2, 3]

The operation maps
C× E → E, (λ;x, ξ) 7−→ (x, λξ) ,

and {(
(x, ξ), (y, η)

)
∈ E × E : x = y

}
→ E,

(
(x, ξ), (x, η)

)
7−→ (x, ξ + η) ,

are continuous. Then p : E → X is a family of vector spaces. If s : X → E is such that p ◦ s = idX ,
then necessarily s is of the form

s(x) =

{
(x, f(x)) if x ∈ [0, 1)

(x+ 1, g(x)) if x ∈ [1, 2]

for some f : [0, 1)→ Ck and g : [1, 2]→ Ck, so that s cannot be a continuous map. Thus, E → X

admits no continuous section.

Proposition 2.16. If a family of vector spaces p : E → X is trivial, then there exists N ∈ N and
sections s1, · · · , sN : X → E such that {si(x)}Ni=1 forms a basis for Ex for every x ∈ X.

Proof. If E is trivial, there exists N ∈ N and a bundle isomorphism ϕ : X × CN → E. Let {ωi}Ni=1

be a basis for CN . For i = 1, · · · , N , consider si : X → E given by si(x) = ϕ(x, ωi). The continuity
of ϕ and

p ◦ si(x) = p ◦ ϕ(x, ωi) = x

gives that each si is a section of E. Since {ωi} is a basis for CN and since ϕx : CN → Ex is a linear
isomorphism, we have that {si(x)} is a basis for Ex for every x ∈ X.

Let us proceed to prove a converse of the previous result.

Lemma 2.17. Let p : E → X be a family of vector spaces, Z =̇ {0x ∈ Ex : x ∈ X} and U ⊆ E be
an open set such that Z ⊆ U . There exists an open set V ⊆ E such that Z ⊆ V and tv ∈ U for
every (t, v) ∈ [0, 1]× V .

Proof. By the continuity of the linear operations in E, it follows that

W =̇ {(t, v) ∈ [0, 1]× E : tv ∈ U}
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is an open subset of [0, 1]×E. Besides, [0, 1]×Z ⊆W . By the Tube Lemma (Corollary 1.16), there
exists an open set V ⊆ E such that

[0, 1]× Z ⊆ [0, 1]× V ⊆W .

The first inclusion implies Z ⊆ V and the last one implies tv ∈ U for every (t, v) ∈ [0, 1] × V , as
desired.

Suppose p : E → X is a family of vector spaces and that there exist N ∈ N and sections
s1, · · · , sN : X → E such that {si(x)}Ni=1 is a basis for Ex for every x ∈ X. The map L : X×CN → E,
defined by

L(x, ξ) =
N∑
i=1

ξisi(x)

is a morphism of families of vector spaces and satisfies L(x, ej) = sj(x) for every x ∈ X, where
{ei} is the standard basis for CN , so that L is a continuous bijection. Next, we show that L−1 is
continuous.

Lemma 2.18. Let p : E → X, {s1, · · · , sN} and L : X × CN → E be as above. Let S =̇ {ξ ∈ CN :

|ξ| = 1} be the unit sphere in CN . If E is Hausdorff and X is locally compact, then L(X × S) is
closed in E.

Proof. Let v ∈ E \L(X ×S), x = p(v). Let V be a compact neighborhood of x in X. We have that
L(V × S) is compact and, therefore, closed in E. There exists an open neighborhood W of v in E
such that W ∩ L(V × S) = ∅. Then W ∩ p−1(V ) is an open neighborhood of v in E such that

W ∩ p−1(V ) ∩ L(X × S) ⊆W ∩ L(V × S) = ∅ .

This concludes the proof.

Corollary 2.19. Let p : E → X, {s1, · · · , sN} and L be as in Lemma 2.18. Let S =̇ {ξ ∈ CN :

|ξ| = 1} and B =̇ {ξ ∈ CN : |ξ| < 1} be the unit sphere and the open unit ball in CN , respectively.
If E is Hausdorff and X is locally compact, then there exists an open set V ⊆ E such that

Z =̇ {0x ∈ Ex : x ∈ X} ⊆ V ⊆ L(X ×B) .

Proof. By Lemma 2.18, U =̇ E \ L(X × S) is open and Z ⊆ U . By Lemma 2.17, there exists
an open set V ⊆ E such that Z ⊆ V and tv ∈ U for every (t, v) ∈ [0, 1] × V . It remains to
show that V ⊆ L(X × B). Let v ∈ E \ L(X × B) = L(X × (CN \ B)), say v = L(x, ξ) for some
(x, ξ) ∈ X × (CN \ B). If v ∈ V , then tv = tL(x, ξ) = L(x, tξ) ∈ U for every t ∈ [0, 1]. Letting
t = 1/|ξ| ∈ [0, 1], we would have

1

|ξ|
v = L

(
x,

ξ

|ξ|

)
∈ U ∩ L(X × S) ,

a contradiction. Thus, we must have V ⊆ L(X ×B).



2.1 VECTOR BUNDLES 19

Lemma 2.20. Let p : E → X be a family of vector spaces, s : X → E be a section of E and
λ ∈ C \ {0}. The maps

v 7−→ λv and v 7−→ v + s(p(v))

are homeomorphisms E → E.

Proof. The continuity of these maps follows from the fact that the linear structures of the fibers
Ex vary continuously with x. Notice that their inverses

v 7−→ 1

λ
v and v 7−→ v − s(p(v))

are also continuous.

We are now ready to prove the following converse of Proposition 2.16, whose proof I have learned
from Daniel Tausk.

Proposition 2.21 (Daniel Tausk - Private communication). Let p : E → X be a family of vector
spaces and assume that there exist N ∈ N and sections s1, · · · , sN : X → E such that {si(x)}Ni=1 is
a basis for Ex for every x ∈ X. If E is Hausdorff and X is locally compact, then the continuous
bijection L : X × CN → E,

L(x, ξ) =

N∑
i=1

ξisi(x) ,

is a homeomorphism. In particular, E is trivial.

Proof. Fix (x, ξ) ∈ X ×CN , r > 0 and V an open neighborhood of x in X. Due to Lemma 1.17, it
suffices to prove that L(V ×B(ξ, r)) is a neighborhood of L(x, ξ) in E, where B(ξ, r) =̇ {η ∈ CN :

|ξ−η| < r}. Since E → X admits sections, we have that X is homeomorphic to a subspace of E (see
Remark 2.14), so that X is Hausdorff. From the fact that every open subset of a locally compact
Hausdorff space is itself locally compact, one obtain that V is locally compact. The restriction of p
to p−1(V ), p : p−1(V ) → V , is a family of vector spaces over V . By Corollary 2.19, there exists an
open set W ⊆ p−1(V ) such that

L(V × {0}) ⊆W ⊆ L(V ×B(0, 1)) .

Consider the section s : X → E given by s(y) = L(y, ξ). By Lemma 2.20, W ′ =̇ {rw + s(p(w)) :

w ∈W} is an open subset of E. For y ∈ V , since L(y, 0) ∈W , we have

rL(y, 0) + s(p(L(y, 0))) = L(y, 0) + s(y)

= L(y, 0) + L(y, ξ)

= L(y, ξ) ∈W ′ .
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For w ∈W , since W ⊆ L(V ×B(0, 1)), there exists (y, η) ∈ B(0, 1) such that L(y, η) = w. Then

rw + s(p(w)) = rL(y, η) + s(p(L(y, η)))

= L(y, rη) + s(y)

= L(y, rη) + L(y, ξ)

= L(y, ξ + rη) ∈ L(V ×B(ξ, r))

Therefore
L(V × {ξ}) ⊆W ′ ⊆ L(V ×B(ξ, r) .

This proves that L(X ×B(ξ, r)) is a neighborhood of L(x, ξ) in E, as desired.

2.1.2 Subbundles

Propositions 2.16 and 2.21 give a useful tool for proving that a family of vector spaces is a vector
bundle. Here is an example.

Proposition 2.22. Let E and F be vector bundles over a locally compact Hausdorff space X, and
let ϕ : E → F be a bundle morphism. If x 7−→ dimϕ(Ex) is locally constant, then ϕ(E) is itself a
vector bundle.

Proof. By Proposition 2.10, we have that E is Hausdorff. In Remark 2.4 we have already seen that
ϕ(E) is a family of vector spaces over X. It remains to show it is locally trivial, so let x0 ∈ X be
fixed. Since E is a vector bundle, there exists an open neighborhood U of x0 such that E|U ∼= U×CN

and Proposition 2.16 gives sections s1, · · · , sN : U → E such that {si(x)}Ni=1 is a basis for Ex for
every x ∈ U . Then {ϕ◦si(x0)}Ni=1 spans ϕ(Ex0), and we can choose 1 ≤ i1 < · · · < ik ≤ N such that
{ϕ ◦ sij (x0)}kj=1 is a basis for ϕ(Ex0). By continuity, there exists an open neighborhood V ⊆ U of
x0 such that {ϕ◦sij (x)}kj=1 is linear independent for all x ∈ V . Since dimϕ(Ex) is locally constant,
it turns out that {ϕ◦sij (x)}kj=1 is a basis for ϕ(Ex) for every x ∈ V . By Proposition 2.21, it follows
that ϕ(E)|V is trivial, as desired.

Definition 2.23. A vector bundle E → X is said to be a (vector) subbundle of another vector
bundle E′ → X if there exists an injective bundle morphism σ : E → E′.

Let E′ → X be a vector bundle and E ⊆ E′ be such that p|E : E → X is itself a vector
bundle. Then the inclusion i : E → E′ is an injective bundle morphism. On the other hand, let
ϕ : E → E′ be an injective bundle morphism. Since dimϕ(Ex) = dimEx for every x ∈ X, we have
that dimϕ(Ex) is locally constant. By Proposition 2.22, ϕ(E) is itself a vector bundle whenever X
is locally compact Hausdorff, and it is isomorphic to E due to Proposition 2.12.

Therefore, provided that X is locally compact Hausdorff, the previous paragraph allows us to
say that a subbundle of a vector bundle E′ → X is simply a subspace E ⊆ E′ that is itself a vector
bundle.

Lemma 2.24. Let N ∈ N, E → X be a rank N vector bundle, V ⊆ X be an open set and
s1, · · · , sk : V → E such that {si(x)}ki=1 is linearly independent for each x ∈ V . There exist an
open set U ⊆ V and sections sk+1, · · · , sN : U → E such that {si(x)}Ni=1 is a basis for Ex for every
x ∈ U .
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Proof. Let x0 ∈ V , W ⊆ V be an open neighborhood of x0 and ϕ : E|W → W × CN a lo-
cal trivialization. For i ∈ {1, · · · , k}, let vi : W → CN be given by vi(x) = π2 ◦ ϕ ◦ si(x).
Fix vk+1, · · · , vN ∈ CN such that {v1(x0), · · · , vk(x0), vk+1, · · · , vN} is a basis for CN . Since
x

f7−→ det[v1(x), · · · , vk(x), vk+1, · · · , vN ] is continuous and f(x0) 6= 0, there exists an open set
U ⊆W such that f(x) 6= 0 whenever x ∈ U . Thus Bx =̇ {v1(x), · · · , vk(x), vk+1, · · · , vN} is a basis
for CN for each x ∈ U . For j ∈ {k+ 1, · · · , N}, define sj : U → E by sj(x) = ϕ−1(x, vj). Each sj is
a section and, for x ∈ U , we have that {si(x)}Ni=1 is a basis for Ex since ϕx is a linear isomorphism
that sends {si(x)} to Bx.

Proposition 2.25. Let E → X be a vector bundle of rank N . For each x ∈ X, suppose we have
a k-dimensional linear subspace Fx ⊆ Ex. Then F =̇

⊔
x∈X Fx is a subbundle of E if and only

if every x0 ∈ X admits a neighborhood U and a local trivialization ϕ : E|U → U × CN such that
ϕ(Fx) = {x} × (Ck ⊕ {0}) for x ∈ U .

Proof. Fix x0 ∈ X. Consider U a neighborhood of x0 and ϕ : E|U → U × CN a local trivialization
such that ϕ(Fx) = {x} × (Ck ⊕ {0}) for x ∈ U . Let π : CN → Ck be the projection onto the first k
coordinates, π(v1, · · · , vN ) = (v1, · · · , vk). The map ψ : F |U → U ×Ck, given by ψ =̇ (idU × π) ◦ϕ,
is a local trivialization for F . Since x0 ∈ X was arbitrary, we have proved that F → X is a vector
bundle, begin therefore a subbundle of E → X.

Conversely, assume F → X is a subbundle. For x0 ∈ X, let V be a neighborhood of x0 such
that F |V ∼= V × Ck. Proposition 2.16 gives sections s1, · · · , sk : V → F such that {si(x)}ki=1 is a
basis for Fx ∀x ∈ V . By Lemma 2.24, there exists U ⊆ V and sections sk+1, · · · , sN : U → E such
that {si(x)}Ni=1 is a basis for Ex ∀x ∈ U . Let {ei}Ni=1 be the standard basis for CN and {e∗i }Ni=1 its
dual basis. Define χ : U × CN → E|U by χ(x, v) =

∑N
i=1 e

∗
i (v)si(x). Then χ is a bijective bundle

morphism and Proposition 2.12 allows us to say that χ is an isomorphism. The map ϕ =̇ χ−1 is
the desired local trivialization, since ϕ(si(x)) = (x, ei) for x ∈ U , i ∈ {1, · · · , N}.

Notice that X is an arbitrary topological space in the previous result, no hypothesis on com-
pactness or Hausdorffness was necessary.

2.1.3 Transition Data

Let p : E → X be a vector bundle of rank N . By definition, there exist open subsets of X,
{Uα}α∈A, such that

⋃
α∈A Uα = X, together with isomorphisms ϕα : E|Uα → Uα × CN . For each

α, β ∈ A, the composition

ϕαβ =̇ ϕβ ◦ ϕ−1α : (Uα ∩ Uβ)× CN → (Uα ∩ Uβ)× CN

is an isomophism, which must be of the form (x, u) 7−→ (x, gαβ(x)u), for a unique linear bijection
gαβ(x) ∈ GL(CN ). This implies that the map ϕαβ is determined by gαβ : Uα∩Uβ → GL(CN ) (and,
of course, gαβ is determined by ϕαβ). From the continuity of ϕαβ we obtain the continuity of gαβ .

The collection
{gαβ : Uα ∩ Uβ → GL(CN )}α,β∈A

is called transition data of the vector bundle E → X. Note that such collection satisfies the cocycle
condition

gαβ(x)gβγ(x) = gαγ(x) ∀x ∈ Uα ∩ Uβ ∩ Uγ ∀α, β, γ ∈ A. (2.1)
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It turns out that this condition describes vector bundles completely, in the sense of the following

Proposition 2.26. Suppose we have an open cover {Uα}α∈A of a topological space X together with
continuous maps {gαβ : Uα ∩ Uβ → GL(CN )}α,β∈A satisfying cocycle condition (2.1). Then there
exists a vector bundle E → X of rank N whose transition data is precisely the given collection
{gαβ}.

Moreover, if the transition data {gαβ} arises from a vector bundle F → X, then the previous
bundle E is isomorphic to F .

Proof. First note that condition (2.1) implies gαα(x)gαα(x) = gαα(x), so we have

gαα(x) = idCN ∀x ∈ Uα ∀α ∈ A. (2.2)

It also follows that gαβ(x)gβα(x) = gαα(x) = idCN , and therefore

gαβ(x)−1 = gβα(x) ∀x ∈ Uα ∩ Uβ ∀α, β ∈ A . (2.3)

Let Z =̇
⊔
α∈A Uα×CN equipped with the disjoint union topology. In Z, consider the following

relation: for (x, u) ∈ Uα × CN and (y, v) ∈ Uβ × CN ,

(x, u) ∼ (y, v) ⇐⇒

{
x = y

v = gβα(x)u

We have, for (x, u) ∈ Uα × CN , (y, v) ∈ Uβ × CN and (z, w) ∈ Uγ × CN ,

• (x, u) ∼ (x, u) by (2.2),

• (x, u) ∼ (y, v) =⇒ (y, v) ∼ (x, u) by (2.3),

•

{
(x, u) ∼ (y, v)

(y, v) ∼ (z, w)
=⇒ (x, u) ∼ (z, w) by (2.1).

This shows that ∼ is an equivalence relation in Z and we are allowed to consider the quotient space
E =̇ Z/∼. Let q : Z → E be the quotient map, q(x, u) = [x, u]α for (x, u) ∈ Uα × CN , and define
p : E → X by p[x, u]α = π1(x, u) = x (note that p is well defined since [x, u]α = [y, v]β implies
x = y). Next, we prove that p : E → X is the desired vector bundle.

For α, β ∈ A, let ϕαβ : (Uα ∩Uβ)×CN → (Uα ∩Uβ)×CN be given by ϕαβ(x, u) = (x, gαβ(x)u).
It is easy to see that ϕαβ is a bijective bundle morphism and hence an isomorphism, by Proposition
2.12. IfW ⊆ Uβ×CN for some β ∈ A, then q−1(q(W )) =

⊔
α∈A ϕαβ(W ∩ (Uα×CN )). This, and the

fact that each ϕαβ is open, imply that q is an open map (to see that, just let W be an open set).
For α ∈ A, let qα =̇ q|Uα×CN . Since qα is an injective open map, it is a homeomorphism between
Uα × CN and q(Uα × CN ) = p−1(Uα) = E|Uα , which is linear in the fibers and clearly commutes
with projections. Thus,

ϕα =̇ q−1α : E|Uα → Uα × CN

is a bundle isomorphism. This proves that p : E → X is a vector bundle.
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Note that, for (x, u) ∈ (Uα ∩ Uβ)× CN ,

ϕβ ◦ ϕ−1α (x, u) = ϕβ[x, u]α

= ϕβ[x, gαβ(x)u]β

= (x, gαβ(x)u) ,

proving that the transition data of p : E → X is precisely {gαβ}, as desired.
Now, let p′ : E′ → X be a vector bundle with transition data {gαβ}. For α ∈ A, consider

ϕ′α : p′−1(Uα)→ Uα×CN an isomorphism such that ϕ′β ◦ϕ′−1α are given by (x, u) 7−→ (x, gαβ(x)u).
Define ψ : E′ → E by ψ(ω) = [ϕ′α(ω)]α whenever p′(ω) ∈ Uα

(
ψ depends only on ω and not on α,

since [ϕ′α(ω)]α = [ϕαβ(ϕ′α(ω))]β = [ϕ′β(ω)]β for p′(ω) ∈ Uα ∩Uβ
)
. Observe that, if (x, u) ∈ Uα×CN

for some α ∈ A, then
ψ ◦ ϕ′−1α (x, u) = [ϕ′α ◦ ϕ′−1α (x, u)]α = [x, u]α ,

so that the map ρα =̇ q−1α ◦ψ ◦ϕ′−1α : Uα×CN → Uα×CN coincides with the identity. In particular,
qα ◦ ρα ◦ ϕ′α is continuous. This proves that ψ is continuous. Also,

p ◦ ψ(ω) = p[ϕ′α(ω)]α

= π1 ◦ ϕ′α(ω)

= p′(ω) ,

and we conclude that ψ is a bundle morphism. Since qα and ϕ′α are isomorphisms, we have that ψ
is a bijective bundle morphism and therefore an isomorphism, by Proposition 2.12.

2.1.4 Operations with Vector Bundles

Just like in the case of vector spaces, there is a natural way to construct the direct sum of two
vector bundles, called Whitney sum.

Proposition 2.27. Let p : E → X and q : F → X be vector bundles. Consider

E ⊕ F =̇ {(e, f) ∈ E × F : p(e) = q(f)} .

Then p ⊕ q : E ⊕ F → X, given by (p ⊕ q)(e, f) =̇ p(e) = q(f), is a vector bundle with fiber at x
isomorphic to Ex ⊕ Fx.

Proof. Note that p ⊕ q is precisely the restriction of the composition E × F π1−→ E
p−→ X to the

subspace E ⊕ F , then it is continuous and surjective. Besides, for x ∈ X,

(E ⊕ F )x = (p⊕ q)−1(x) = {(e, f) ∈ E ⊕ F : p(e) = q(f) = x}

= p−1(x)× q−1(x)

∼= Ex ⊕ Fx .

To see local triviality at a fixed point x, let U be an open neighborhood of x and consider local
trivializations

ϕ : E|U → U × Cm and ψ : F |U → U × Cn



24 TOPOLOGICAL K-THEORY 2.1

and define χ : (E ⊕ F )|U → U × (Cm ⊕ Cn) by

χ(e, f) =
(
p(e);ϕp(e)(e), ψq(f)(f)

)
.

It is not hard to see that χ is continuous, fiberwise linear and bijective, with inverse χ−1(x;u, v) =

(ϕ−1x (u), ψ−1x (v)). Thus, χ is an isomorphism and the local triviality of E ⊕ F → X follows.

Remark 2.28. It can be proved that the Whitney sum satisfies the same properties that the direct
sum of vector spaces does. For instance, if E1, E2 and E3 are vector bundles over X, one can easily
see that E1⊕E2

∼= E2⊕E1 and (E1⊕E2)⊕E3
∼= E1⊕ (E2⊕E3). Besides, if E ∼= E′ and F ∼= F ′

as vector bundles over X, it follows that E ⊕ F ∼= E′ ⊕ F ′.

Proposition 2.29. Let E1 → X and E2 → X be vector bundles and let f : Y → X be a continuous
map. Then f∗(E1 ⊕ E2) ∼= f∗E1 ⊕ f∗E2 as vector bundles over Y .

Proof. It follows directly from the definitions. If pi denotes the projection of the bundle Ei, we have

E1 ⊕ E2 = {(e1, e2) ∈ E1 × E2 : p1(e1) = p2(e2)},
f∗Ei = {(y, ei) ∈ Y × Ei : pi(ei) = f(y)}, (i = 1, 2)

f∗(E1 ⊕ E2) = {(y; e1, e2) ∈ Y × (E1 ⊕ E2) : p1(e1) = f(y) = p2(e2)}

and

f∗E1 ⊕ f∗E2 = {(u, v) ∈ f∗E1 × f∗E2 : f∗p1(u) = f∗p2(v)}

= {(y, e1; z, e2) ∈ (Y × E1)× (Y × E2) : p1(e1) = f(y), p2(e2) = f(z), y = z}

= {(y, e1; y, e2) ∈ (Y × E1)× (Y × E2) : p1(e1) = f(y) = p2(e2)} .

The map f∗(E1 ⊕ E2) 3 (y; e1, e2) 7−→ (y, e1; y, e2) ∈ f∗E1 ⊕ f∗E2 is an isomorphism.

Proposition 2.30. Let X be a locally compact topological space. Let E1, E2 and E3 be vector
bundles over X. Assume that we have bundle morphisms f : E1 → E2 and g : E2 → E3 such that

0 E1 E2 E3 0
f g (2.4)

is a short exact sequence of vector bundles. If there exists a bundle morphism s : E2 → E1 such that
s ◦ f = idE1, then

(i) there exists a bundle morphism s′ : E3 → E2 such that g ◦ s′ = idE3 , and

(ii) E2
∼= E1 ⊕ E3 .

Proof. Fix x ∈ X. Given v ∈ (E2)x, we have v = (v−f ◦s(v))+f ◦s(v), where v−f ◦s(v) ∈ Ker sx

and f ◦ s(v) ∈ f((E1)x). Thus (E2)x = Ker sx + f((E1)x). Besides, if v ∈ Ker sx ∩ f((E1)x),
there exists u ∈ (E1)x such that f(u) = v, and we have 0 = s(v) = s ◦ f(u) = u, so that
v = f(u) = f(0) = 0. This proves that (E2)x = Ker sx ⊕ f((E1)x). In particular, since f is
injective, we have that x 7−→ dim Ker sx is locally constant. Let us prove that Ker s is a subbundle
of E2. Consider the bundle morphism ψ : E2 → E2 given by ψ = idE2 − f ◦ s, ψ(v) = v − f ◦ s(v).
Observe that, for x ∈ X, ψ((E2)x) = Ker sx, so that x 7−→ dimψ((E2)x) is locally constant. By
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Proposition 2.22, Ker s = ψ(E2) is a vector bundle over X, and therefore it is a subbundle of E2.
For every x ∈ X,

(E2)x = Ker sx ⊕ f((E1)x) = Ker sx ⊕Ker gx (2.5)

by exactness of (2.4). Thus, g sends Ker sx isomorphically onto (E3)x. Therefore, by Proposition
2.12, the restriction g|Ker s : Ker s→ E3 is a bundle isomorphism. The map s′ =̇ (g|Ker s)

−1 satisfies
(i). To see (ii), observe that ϕ : E1⊕E3 → E2, given by ϕ(v1, v3) = f(v1)+s′(v3), is an isomorphism,
again by Proposition 2.12 and (2.5).

We can also construct quotient vector bundles.

Proposition 2.31. Let p : E → X be a vector bundle and E′ → X be a subbundle of E. There
exist a vector bundle E/E′ → X and a bundle map σ : E → E/E′ such that

(i) (E/E′)x ∼= Ex/E
′
x for every x ∈ X , and

(ii) for every vector bundle E1 → X and every bundle map ϕ : E → E1, there exists a bundle map
ϕ̂ : E/E′ → E1 such that ϕ = ϕ̂ ◦ σ .

Proof. In E, consider the equivalence relation

u ∼ v ⇐⇒

{
p(u) = p(v)

u− v ∈ E′p(u)

Let E/E′ =̇ E/∼ and q : E/E′ → X be given by q([u]) = p(u) (it is well defined since [u] = [v]

implies p(u) = p(v)). Continuity and surjectivity of p imply the same properties for q. Also,

(E/E′)x = q−1(x) = {[u] ∈ E/E′ : q([u]) = x}

= {[u] ∈ E/E′ : p(u) = x}
∼= Ex/E

′
x

for every x ∈ X. Next we prove local triviality. Fix x0 ∈ X. By Proposition 2.25, there exist an
open neighborhood U of x and a local trivialization

ϕ : E|U → U × CN+k = U × (CN ⊕ Ck)

such that ϕ(E′x) = {x} × (CN ⊕ {0}) for every x ∈ U . Let π : CN ⊕ Ck → Ck be the standard
projection. If u, v ∈ E|U satisfy u ∼ v, then

(idU × π) ◦ ϕ(u− v) = (idU × π)(p(u); z, 0) = (p(u), 0)

(for some z ∈ CN ) implying (idU × π) ◦ ϕ(u) = (idU × π) ◦ ϕ(v). Thus, we have a well defined
continuous map ψ : q−1(U) → U × ({0} ⊕ Ck) given by ψ([u]) = (idU × π) ◦ ϕ(u). It is easy to
check that ψ is bijective and ψ−1 is precisely (x; 0, ω) 7−→ [ϕ−1(x; 0, ω)]. It follows that ψ is an
isomorphism, proving the local triviality of E/E′.

Let σ : E → E/E′ be the quotient map u 7−→ [u], which is a bundle map by the very definition
of q . By properties of quotient topology (described in Proposition 1.18), one establishes (ii).
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2.1.5 Vector Bundles over Compact Hausdorff Spaces

To study some nice properties that vector bundles over compact Hausdorff spaces satisfy, we
begin with a few technical lemmas. In this section, X will always denote a compact Hausdorff
topological space unless otherwise specified.

Lemma 2.32. Let Y be a closed subset of X and E,F → X be vector bundles. If σ : E|Y → F |Y
is a bundle morphism, there exists a bundle morphism σ̃ : E → F such that σ̃(e) = σ(e) ∀e ∈ E|Y .

Proof. Arguing in each connected component, we can assume that X is connected. By compactness,
there exists a finite open cover {U1, · · · , Un} of X and local trivializations ϕk : E|Uk → Uk×CN and
ψk : F |Uk → Uk ×CM . Defining σk : E|Y ∩Uk → F |Y ∩Uk to be the restriction of σ to E|Y ∩Uk , we see
that the map ψk ◦ σk ◦ϕ−1k : (Y ∩Uk)×CN → (Y ∩Uk)×CM has the form (x, v) 7−→

(
x, fk(x)(v)

)
for some continuous map fk : Y ∩Uk → B(CN ,CM ) ∼= CMN . By Tietze extension theorem2 (since X
is compact Hausdorff, so is Uk), there exists a continuous map f̃k : Uk → B(CN ,CM ) ∼= CMN such
that f̃k(x) = fk(x) ∀x ∈ Y ∩ Uk. Let σ′k : E|Uk → F |Uk be the map induced by f̃k (σ′k is a bundle
morphism that extends σk) and consider {λk}nk=1 a partition of unity subordinate to {Uk}nk=1. If
p : E → X is the bundle projection, define σ̃k : E → F by

σ̃k(e) =

{
λk(p(e))σ

′
k(e) if e ∈ p−1(Uk),

0 otherwise.

Let σ̃ =̇
∑n

k=1 σ̃k : E → F . We clearly have that σ̃ is a bundle morphism and ∀e ∈ E|Y

σ̃(e) =
n∑
k=1

σ̃k(e)

=
∑
j

e∈p−1(Uj)

λj(p(e))σ
′
j(e)

=
∑
j

e∈p−1(Uj)

λj(p(e))σj(e)

=
∑
j

e∈p−1(Uj)

λj(p(e))σ(e)

= σ(e) .

Lemma 2.33. Let E → X and F → X be vector bundles over an arbitrary topological space X,
and let σ : E → F be a bundle morphism. Then Oσ =̇ {x ∈ X | σx : Ex → Fx is an isomorphism }
is open.

Proof. Let x ∈ Oσ. There exists an open neighborhood U of x such that E|U ∼= U × CN ∼= F |U .
The restriction of σ to E|U , σU : E|U → F |U induces a continuous map fU : U → B(CN ,CN ). Since
fU (x) belongs to the open set GL(CN ), there exists an open set V ⊆ U such that x ∈ V and
fU (V ) ⊆ GL(CN ). Then clearly V ⊆ Oσ, concluding that Oσ is open.

Lemma 2.34. Let p : E → X × [0, 1] be a vector bundle and it : X → X × [0, 1] be given by
it(x) = (x, t). Then i∗0E ∼= i∗1E.

2Theorem 1.14
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Proof. For τ ∈ [0, 1] we have E|X×{τ} ∼= i∗τE (ϕ(x, e) = e is an isomorphism). Define Eτ =̇ i∗τE ×
[0, 1] and pτ : Eτ → X × [0, 1], pτ (x, e; t) = (x, t). Fix (x, t) ∈ X × [0, 1] and let U be an open
neighborhood of x such that (i∗τE)|U ∼= U × CN . Then U × [0, 1] is an open neighborhood of (x, t)

in X × [0, 1] satisfying p−1τ (U × [0, 1]) = (i∗τE)|U × [0, 1] ∼= (U × [0, 1]) × CN . This shows that
pτ : Eτ → X × [0, 1] is a vector bundle.

Using Proposition 2.12, we see that σ : E|X×{τ} → Eτ |X×{τ}, given by σ(e) = (π1p(e), e, τ), is
a bundle isomorphism, where π1 : X × [0, 1] → X is the projection onto the first coordinate. By
Lemma 2.32, there exists a bundle morphism σ̃ : E → Eτ extending σ. Lemma 2.33 gives that the
set

Oσ̃ = {(x, t) ∈ X × [0, 1] | σ̃(x,t) : E(x,t) → Eτ(x,t) is an isomorphism }

is open in X× [0, 1]. Besides, X×{τ} ⊆ Oσ̃, since σ itself is an isomorphism. By the Tube Lemma3,
there exists an interval Iτ 3 τ open in [0, 1] such that X × Iτ ⊆ Oσ̃. It follows from Proposition
2.12 that E|X×Iτ

σ̃−→ Eτ |X×Iτ is a bundle isomorphism.
Now, for t ∈ Iτ , we have i∗tE ∼= E|X×{t} ∼= Eτ |X×{t} ∼= i∗τE (here, the map (x, e; t) 7−→ (x, e)

provides the latter isomorphism). Thus, i∗tE ∼= i∗τE for every t ∈ Iτ .
Since [0, 1] is compact, we can write [0, 1] = I0 ∪ Iτ1 ∪ · · · Iτn ∪ I1 and conclude that i∗0E ∼= i∗1E,

as desired.

We are now ready to prove the following

Theorem 2.35. Let X be a compact Hausdorff space, Y be any topological space and E → Y be a
vector bundle. If f, g : X → Y are homotopic, then f∗E ∼= g∗E.

Proof. Let H : X × [0, 1] → Y be a homotopy between f and g. For t ∈ [0, 1], denote it : X →
X× [0, 1], it(x) = (x, t). We have f = H ◦ i0 and g = H ◦ i1. Then Proposition 2.5 and Lemma 2.34
give

f∗E = (H ◦ i0)∗E ∼= i∗0(H
∗E) ∼= i∗1(H

∗E) ∼= (H ◦ i1)∗E = g∗E.

There is also a way to embed a vector bundle into a trivial one.

Proposition 2.36. Every vector bundle over a compact Hausdorff space is a subbundle of a trivial
vector bundle.

Proof. Let p : E → X be a vector bundle. Arguing in each connected component, we can assume
that X is connected. By compactness, there exists a finite open cover {Uk}nk=1 of X and local
trivializations ϕk : E|Uk → Uk × CN . Let {λk}nk=1 be a partition of unity subordinate to {Uk}nk=1.
If π2 : X × CN → CN denotes the standard projection, consider Φk : E → CN given by

Φk(e) =

{
λk(p(e))π2(ϕk(e)) if e ∈ p−1(Uk),

0 otherwise.

and define Φ: E → (CN ⊕ · · · ⊕ CN ) by Φ =̇ Φ1 ⊕ · · · ⊕ Φn, that is,

Φ(e) =̇ (Φ1(e), · · · ,Φn(e)) , e ∈ E.
3Lemma 1.15
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Let σ : E → X × (CN ⊕ · · · ⊕ CN ) be given by σ(e) = (p(e),Φ(e)). By construction, σ is a bundle
morphism. To see that σ is injective, it suffices to prove that Φ is injective. For every x ∈ X, consider
Φx =̇ Φ|Ex : Ex → (CN ⊕ · · · ⊕ CN ). It suffices to prove that Φx is injective. If e ∈ Ker (Φx), then
0 = Φk(e) = λk(p(e))π2(ϕk(e)) for all k ∈ {1, · · · , n}. If k is such that λk(p(e)) 6= 0, and hence
p(e) ∈ Uk, then π2(ϕk(e)) = 0 and we have e = 0 since ϕk is an isomorphism.

The following technical Lemma is useful when dealing with continuity of orthogonal projections.
It will be used right below and in Chapter 3.

Lemma 2.37. Let X be an arbitrary topological space and E → X be a vector subbundle of X×CN .
For x ∈ X, let Px ∈ B(CN ,CN ) be the orthogonal projection onto Ex. The map P : X → B(CN ,CN ),
x 7−→ Px, is continuous.

Proof. By Proposition 2.25, for y ∈ X there exists an open neighborhood U ⊆ X of y and a
bundle isomorphism ϕ : U × CN → U × CN such that ϕ(Ex) = {x} × (Ck ⊕ {0}) for every x ∈ U .
Let ψ : U × Ck → U × CN be given by ψ(x, ξ) = ϕ−1(x; ξ, 0). There exists a continuous map
A : X → B(Ck,CN ), x 7−→ Ax, such that ψ(x, ξ) = (x,Axξ). For x ∈ X, Ax : Ck → Ex is a
linear isomorphism. For each x ∈ X, A∗xAx ∈ B(Ck,Ck) is a positive self-adjoint operator such that
Ker (A∗xAx) ⊆ Ker Ax = {0} (since 〈A∗xAxξ, ξ〉 = ‖Aξ‖2), so that A∗xAx is invertible. Consider
the map R =̇ A(A∗A)−1/2 : X → B(Ck,CN ), which is continuous because taking the square root
of a linear operator is a continuous map4. We have (RR∗)2 = RR∗ = (RR∗)∗ so that RxR∗x is the
orthogonal projection of CN onto Rx(Ck) = Ax(Ck) = Ex. Thus P = RR∗, which concludes the
proof.

Proposition 2.38. Let E → X be a vector bundle. There exists a vector bundle E⊥ → X such
that E ⊕ E⊥ is trivial.

Proof. By Proposition 2.36, E → X is a subbundle of X × CN for some N ∈ N. Thus, E can be
seen as a topological subspace of X ×CN . Seeing each fiber Ex as a linear subspace of CN , we can
consider

E⊥ =̇
⊔
x∈X

(Ex)⊥ ⊆ X × CN .

First, let us see that E⊥ is a subbundle of X × CN . For every x ∈ X, let Px ∈ B(CN ,CN ) be the
orthogonal projection onto Ex. By Lemma 2.37, the map x 7−→ Px is continuous. We have then
a bundle morphism ϕ : X × CN → X × CN given by ϕ(x, ξ) = (x, ξ − Px(ξ)). Observe that
ϕ({x} × CN ) = (Ex)⊥ for every x ∈ X, so that ϕ(X × CN ) = E⊥. Since x 7−→ dimEx is locally
constant, it follows that x 7−→ dimϕ({x} × CN ) is locally constant, and we can apply Proposition
2.22 to conclude that E⊥ is a vector bundle.

Notice that ψ : X ×CN → E ⊕E⊥, given by ψ(x, ξ) =
(
(x, Px(ξ)); (x, ξ − Px(ξ))

)
is a bundle

isomorphism, concluding the proof.

2.2 K-Theory

The construction of topological K-theory relies on the concept of Grothendieck completion of a
commutative monoid (see Section 1.1), a notion that generalizes the way we obtain Z from N.

4See Corollary 1.31.
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2.2.1 The Functor G

A Grothendieck completion of a commutative monoid M is a pair (A, i), where A is an abelian
group and i : M → A is a monoid morphism, satisfying the universal property: for every abelian
group G and every monoid morphism f : M → G there exists a unique group morphism ϕ : A→ G

such that f = ϕ ◦ i, that is, such that the diagram

G

M A
i

f
ϕ

is commutative.
As usual, this universal property gives uniqueness up to isomorphism of such object. For let M

be a commutative monoid and let (A1.i1) and (A2, i2) be Grothendieck completions of M . We have
group morphisms ϕ : A1 → A2 and ψ : A2 → A1 that commutes the diagrams

A1

M A2

A1

i2

i1

i1

ψ

ϕ

A2

M A1

A2

i1

i2

i2

ϕ

ψ

implying ψ ◦ϕ◦ i1 = i1 and ϕ◦ψ ◦ i2 = i2. Since idAj : Aj → Aj , j = 1, 2, also satisfies idAj ◦ ij = ij ,
we conclude that ψ ◦ ϕ = idA1 and ϕ ◦ ψ = idA2 . Thus, ϕ is an isomorphism between the groups
A1 and A2 which satisfies i2 = ϕ ◦ i1.

With that said, we can write “the” Grothendieck completion of a commutative monoid M , and
we will denote it by (G(M), iM ).

Theorem 2.39. Every commutative monoid admits a Grothendieck completion.

Proof. Let M be a commutative monoid. In M ×M , consider the relation

(a, b) ∼ (a′, b′) ⇐⇒ there exists c ∈M such that a+ b′ + c = a′ + b+ c .

This is an equivalence relation since

• (a, b) ∼ (a, b) as a+ b+ 0 = a+ b+ 0,

• (a, b) ∼ (a′, b′) =⇒ a+ b′ + c = a′ + b+ c =⇒ a′ + b+ c = a+ b′ + c =⇒ (a′, b′) ∼ (a, b),

•

{
(a, b) ∼ (a′, b′)

(a′, b′) ∼ (a′′, b′′)
=⇒

{
a+ b′ + c = a′ + b+ c

a′ + b′′ + d = a′′ + b′ + d
=⇒ a+ b′′ + z = a′′ + b+ z, where

z = a′ + b′ + c+ d, and it follows that (a, b) ∼ (a′′, b′′).

Let G(M) =̇ M ×M/ ∼ and denote [(a, b)] the equivalence class of (a, b). By the very definition
of the equivalence relation, the operation +: G(M)× G(M)→ G(M) given by [(a, b)] + [(a′, b′)] =

[(a+ a′, b+ b′)] is well defined. Associativity and commutativity of + follow from similar properties
of the operation of M . Note that, for every a, b ∈M ,
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• [(a, b)] + [(0, 0)] = [(a+ 0, b+ 0)] = [(a, b)],

• [(a, b)] + [(b, a)] = [(a+ b, a+ b)] = [(0, 0)] since (a+ b) + 0 + 0 = 0 + (a+ b) + 0.

Thus G(M) is an abelian group with [(0, 0)] as neutral element and −[(a, b)] = [(b, a)] for a, b ∈M .
Let iM : M → G(M) be given by iM (a) = [(a, 0)]. Since iM (0) = [(0, 0)] and ∀a, b ∈M

iM (a+ b) = [(a+ b, 0)] = [(a+ b, 0 + 0)] = [(a, 0)] + [(b, 0)] = iM (a) + iM (b),

we have that iM is a monoid morphism. Now let G be an abelian group and f : M → G be a monoid
morphism. Observe that, if [(a, b)] = [(a′, b′)], there exists c ∈ M such that a + b′ + c = a′ + b + c

and therefore f(a)− f(b) = f(a′)− f(b′) in G. Then the map ϕ : G(M)→ G given by ϕ([(a, b)]) =

f(a)− f(b) is well defined. Note that ϕ([(0, 0)]) = f(0)− f(0) = 0 and for every a, a′, b, b′ ∈M

• ϕ([(a, b)]+[(a′, b′)]) = ϕ([(a+a′, b+b′)]) = f(a+a′)−f(b+b′) = f(a)+f(a′)−f(b)−f(b′) =

f(a)− f(b) + f(a′)− f(b′) = ϕ([(a, b)]) + ϕ([(a′, b′)])

• ϕ(−[(a, b)]) = ϕ([(b, a)]) = f(b)− f(a) = −(f(a)− f(b)) = −ϕ([(a, b)])

• ϕ(iM (a)) = ϕ([(a, 0)]) = f(a)− f(0) = f(a)

proving that ϕ is a group morphism satisfying ϕ◦ iM = f . Since iM (M) generates the group G(M),
we have that ϕ is the only map with such properties.

Example 2.40. The Grothendieck completion of N is isomorphic to Z. An obvious isomorphism is
ϕ : G(N)→ Z, given by ϕ([(n+, n−)]) = n+ − n−.

Example 2.41. The Grothendieck completion of (Z×, ·) is (Q×, ·). The map ψ : G(Z×) → Q×,
given by ψ([(a, b)]) = a/b, is easily seen to be a group isomorphism.

Proposition 2.42. Let M1 and M2 be commutative monoids. If f : M1 → M2 is a monoid mor-
phism, there exists a unique group morphism G(f) : G(M1)→ G(M2) such that

G(M1) G(M2)

M1 M2

G(f)

f

iM1
iM2

is a commutative diagram. Moreover, if M3 is a commutative monoid and g : M2 →M3 is a monoid
morphism, we have G(g◦f) = G(g)◦G(f). Besides, G(idM ) = idG(M) for every commutative monoid
M .

Proof. Since iM2 ◦ f : M1 → G(M2) is a monoid morphism, there exists a unique group morphism
ϕ : G(M1)→ G(M2) such that iM2 ◦ f = ϕ ◦ iM1 . Define G(f) =̇ ϕ.

In case M1 = M2 = M , we have iM ◦ idM = idG(M) ◦ iM , and uniqueness of G(idM ) implies
G(idM ) = idG(M). Similarly, we have the commutative diagram

G(M1) G(M2) G(M3)

M1 M2 M3

G(f) G(g)

f

iM1

g

iM2
iM3
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implying that G(g) ◦ G(f) ◦ iM1 = G(g) ◦ iM2 ◦ f = iM3 ◦ g ◦ f . This, together with uniqueness of
G(g ◦ f), gives G(g ◦ f) = G(g) ◦ G(f).

To sum up, Proposition 2.42 shows that G is a covariant functor from the category of commu-
tative monoids into the category of abelian groups.

The following result is a consequence of the general fact of category theory that left adjoint
functors respect limits as well as right adjont functors respect colimits (see [Mac98]). The functor
G is the left adjoint of the forgetful functor from the category of abelian groups into the category
of commutative monoids, that sends an abelian group to itself seen as a commutative monoid. We
will give a more elementary proof though.

Proposition 2.43. For {Mα}α a family of commutative monoids, it is true that

G
(⊕

α

Mα

)
∼=
⊕
α

G(Mα) .

Proof. The universal property of G gives ϕ : G
(⊕

αMα

)
→
⊕

α G(Mα) commuting the diagram

⊕
α G(Mα)

⊕
αMα G

(⊕
αMα

)
i⊕
α Mα

⊕
α iMα ϕ

Let us prove that ϕ is an isomorphism. For each β, consider the natural inclusions

jβ : Mβ ↪−→
⊕
α

Mα and kβ : G(Mβ) ↪−→
⊕
α

G(Mα) .

The universal property of direct sum allows us to join the dashed arrows obtained in the commu-
tative diagrams

Mβ
⊕

αMα G
(⊕

αMα

)

G(Mβ)

iMβ

jβ
i⊕
α Mα

to get a map ψ :
⊕

α G(Mα)→ G
(⊕

αMα

)
satisfying ψ ◦ kβ ◦ iMβ

=
(
i⊕

α Mα

)
◦ jβ for all β.

Now, the diagram

G
(⊕

αMα

)

⊕
αMα G

(⊕
αMα

)
i⊕
α Mα

i⊕
α Mα ψ◦ϕ

commutes since

ψ ◦ ϕ ◦
(
i⊕

α Mα

)
◦ jβ = ψ ◦

(⊕
α

iMα

)
◦ jβ = ψ ◦ kβ ◦ iMβ

=
(
i⊕

α Mα

)
◦ jβ

for all β. Notice that this diagram still commutes if we exchange ψ ◦ ϕ for id
G
(⊕

αMα

). Thus
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ψ ◦ ϕ = id
G
(⊕

αMα

).
Furthermore, the diagram ⊕

α G(Mα)

G(Mβ)
⊕

α G(Mα)
kβ

kβ
ϕ◦ψ

also commutes since

ϕ ◦ ψ ◦ kβ ◦ iMβ
= ϕ ◦

(
i⊕

α Mα

)
◦ jβ =

(⊕
α

iMα

)
◦ jβ = kβ ◦ iMβ

As before, this diagram remains commutative if we exchange ϕ ◦ ψ for id⊕
α G(Mα), and this allows

us to conclude that ϕ ◦ ψ = id⊕
α G(Mα).

This proves that ϕ is an isomorphism between G
(⊕

αMα

)
and

⊕
α G(Mα).

2.2.2 The Functor Vect

Now that we have constructed the Grothendieck completion of a commutative monoid and
established some of its properties, we are ready to introduce the K-theory group of a compact
Hausdorff topological space. For such a space X, denote by Vect X the set of all isomorphism
classes of vector bundles over X. Formally, an element of Vect X is represented by a vector bundle
E → X:

[E] =
{
F | F → X is a vector bundle over X and F ∼= E

}
.

Using the Whitney sum of vector spaces, we can equip Vect X with the operation

[E] + [E′] =̇ [E ⊕ E′]

that, due to Remark 2.28, turns out to be well defined, associative and commutative. It obviously
has [X × {0}] as neutral element. Thus, Vect X is a commutative monoid.

If f : Y → X is a continuous map between compact Hausdorff topological spaces, Proposition
2.5 and Example 2.9.2 say that f induces a map f∗ : Vect X → Vect Y that sends [E → X] to
[f∗E → Y ]. Indeed, if E1 → X and E2 → X are isomorphic vector bundles and if ϕ : E1 → E2 is a
bundle isomorphism, the map ψ : f∗E1 → f∗E2, given by ψ(y, e1) = (y, ϕ(e1)), is an isomorphism.
Due to Proposition 2.29, the induced map f∗ : Vect X → Vect Y is a monoid morphism. Besides, if
g : Y → X is another continuous map homotopic to f , then f∗ = g∗ by Theorem 2.35. In particular,
f∗ is a monoid isomorphism between Vect X and Vect Y if f is a homotopy equivalence5. All of
this discussion can be summarized in the following

Theorem 2.44. Vect is a contravariant homotopy-invariant functor from the category of compact
Hausdorff topological spaces into the category of commutative monoids.

5A homotopy equivalence is a continuous map f : Y → X such that there exists a continuous map g : X → Y
satisfying the property: f ◦ g and g ◦ f are homotopic to idX and idY , respectively. If there exists a homotopy
equivalence f : Y → X, the spaces X and Y are said to be homotopy equivalent (or are said to have the same
homotopy type).
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Example 2.45. 1. If X is a point, a vector bundle over X is simply a vector space, so the
isomorphism classes of vector bundles are completely characterized by the dimension of such
space. Thus Vect X ∼= N.

2. If X is contractible6, the homotopy-invariance of the functor Vect implies immediately that
Vect X ∼= Vect {p} ∼= N for every p ∈ X, so that every vector bundle over X is trivial.

2.2.3 The Functor K

We define the K-theory functor by composing the functor Vect with the functor G.

Definition 2.46. The K-theory group (or K-group) of a compact Hausdorff topological space X,
denoted by K(X) (or K0(X)), is defined to be

K(X) =̇ G(Vect X) .

For simplicity, we will denote [E] ∈ Vect X and iVect X([E]) ∈ K(X) by the same symbol [E].
So a typical element of K(X) can be written as [E]− [F ], where E and F are vector bundles over
X.

If X and Y are compact Hausdorff spaces and f : X → Y is a continuous map, we have a monoid
morphism f∗ : Vect Y → VectX and, by Proposition 2.42, a group morphism K(f) =̇ G(f∗) : K(Y )→
K(X).

The main properties about K will be summarized as follows.

Theorem 2.47. K is a contravariant homotopy-invariant functor from the category of compact
Hausdorff topological spaces into the category of abelian groups.

Proof. Composition of a contravariant functor with a covariant functor gives a contravariant functor.
It remains to show the homotopy invariance of K. If X and Y are homotopy equivalent compact
Hausdorff topological spaces, there exists a homotopy equivalence f : X → Y . In the discussion
before Theorem 2.44, f∗ : Vect Y → Vect X is a monoid isomorphism. Functoriality of G implies
that K(f) = G(f∗) : K(Y )→ K(X) is a group isomorphism.

Example 2.48. If X is a contractible space, we have Vect X ∼= N and therefore K(X) ∼= G(N) ∼= Z.
In particular, the K-group of a point space is isomorphic to Z.

Given a family of topological spaces {Xα∈A}, we denote by
⊔
α∈AXα its disjoint union equipped

with its canonical topology.
If A is finite and eachXα is compact Hausdorff, the disjoint union

⊔
α∈AXα is compact Hausdorff

as well.

Proposition 2.49. If {X1, · · · , Xn} is a family of compact Hausdorff spaces, then

K
( n⊔
k=1

Xk

)
∼=

n⊕
k=1

K(Xk) .

6A topological space is contractible if it has the same homotopy type of {p} for every p ∈ X.
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Proof. Let X =̇
⊔n
k=1Xk. Observe that a vector bundle over X is just a choice of a vector bundle

over each Xk, so that Vect X ∼=
⊕n

k=1 Vect Xk. By Proposition 2.43, we have

K(X) = G(Vect X) ∼= G
( n⊕
k=1

Vect Xk

)
∼=

n⊕
k=1

G(Vect Xk) =

n⊕
k=1

K(Xk) ,

as desired.

Proposition 2.50. Let X be a compact Hausdorff space. Every element in K(X) can be written in
the form [E]− [X ×CN ] for some vector bundle E → X and some N ∈ N. Moreover, two elements
[E] − [X × CN ] and [F ] − [X × CM ] are equal in K(X) if and only if there exists r ≥ 0 such that
E ⊕ (X × CM+r) ∼= F ⊕ (X × CN+r).

Proof. Let [E1]−[E2] ∈ K(X). Proposition 2.38 gives a vector bundle E⊥2 → X such that E2⊕E⊥2 ∼=
X × CN for some N ∈ N. Then, in K(X), we have

[E1]− [E2] = ([E1]− [E2]) + ([E⊥2 ]− [E⊥2 ]) = [E1 ⊕ E⊥2 ]− [E2 ⊕ E⊥2 ] = [E]− [X × CN ]

where E =̇ E1 ⊕ E⊥2 .
Recall that, in K(X), we have

[E]− [X × CN ] = [F ]− [X × CM ] ⇐⇒
there exists a vector bundle G→ X such that
E ⊕ (X × CM )⊕G ∼= F ⊕ (X × CN )⊕G

(2.6)

Suppose there exists r ≥ 0 as in the hypothesis. Letting G =̇ X × Cr, (2.6) implies that

[E]− [X × CN ] = [F ]− [X × CM ] in K(X) . (2.7)

Conversely, suppose equation (2.7) holds. Then there exists G→ X as in (2.6). Using again Propo-
sition 2.38, there exists r ≥ 0 such that G⊕G⊥ ∼= X × Cr. Thus

E ⊕ (X × CM )⊕G⊕G⊥ ∼= F ⊕ (X × CN )⊕G⊕G⊥ ,

which is precisely
E ⊕ (X × CM+r) ∼= F ⊕ (X × CN+r) ,

concluding the proof.



Chapter 3

Families-Index and Atiyah-Jänich
Theorem

In this chapter we are mainly interested in understand the elements of functional analysis behind
the Atiyah-Jänich Theorem. We give details of what was done in [Ati67], [Muk13] and [Bre16].

3.1 Fredholm Operators

Let V1 and V2 be arbitrary vector spaces.

Definition 3.1. A linear map T : V1 → V2 is said to be a Fredholm operator if Ker T =̇ T−1(0) and
Coker T =̇ V2/T (V1) are both finite dimensional. In case V1 and V2 are normed spaces, a Fredholm
operator from V1 into V2 is assumed to be continuous unless otherwise specified.

The set of all Fredholm operators from V1 into V2 is denoted by F(V1, V2) (so, using the con-
tinuity convention, we have F(V1, V2) ⊆ B(V1, V2) whenever V1 and V2 are normed spaces). The
Fredholm index of a T ∈ F(V1, V2) is the integer

ind(T ) =̇ dim Ker T − dim Coker T.

Example 3.2. Let H be an infinite dimensional Hilbert space and let B = {ei}i∈N t {eα}α∈A be a
Hilbert basis for H. Let k ≥ 0.

Consider the linear operator Sk =̇ S
(B)
k : H → H (that depends on B) given by

S
(B)
k (ej) =


ej−k if j ∈ N and j > k,

0 if j ∈ N and j ≤ k,
ej if j ∈ A.

We have Ker Sk = span{e1, · · · , ek} and Sk(H) = H, so that dim Ker Sk = k and dim Coker Sk = 0.
Thus, Sk is a Fredholm operator and ind(Sk) = k.

Besides, the linear map S−k =̇ S
(B)
−k : H → H, defined by

S
(B)
−k (ej) =

{
ej+k if j ∈ N,
ej if j ∈ A,

is also a Fredholm operator and satisfies ind(S−k) = −k as well.

35



36 FAMILIES-INDEX AND ATIYAH-JÄNICH THEOREM 3.1

Lemma 3.3. Let V1
f1−→ V2

f2−→ V3 be an exact sequence of vector spaces and linear maps. If V1
and V3 are finite dimensional, so is V2.

Proof. By the Rank-Nullity Theorem, it follows that

dimV2 = dim Ker f2 + dim f2(V2)

= dim f1(V1) + dim f2(V2)

= dimV1 − dim Ker f1 + dim f2(V2)

≤ dimV1 + dimV3 .

Lemma 3.4. If

0 V1 V2 V3 · · · Vn−1 Vn 0
f1 f2 fn−1

is an exact sequence of finite dimensional vector spaces and linear maps, then

n∑
k=1

(−1)k dimVk = 0 .

Proof. The proof follows by induction on the length n of the exact sequence. The cases n = 1, 2 are
obvious, because in these cases we have respectively V1 ∼= 0 and V1 ∼= V2. For the inductive step,
fix n > 2 and assume the result is true for exact sequences of lengths less than n. We can consider
the exact sequences

0 f2(V2) V3 · · · Vn−1 Vn 0
fn−1

and
0 V1 V2 f2(V2) 0

f1 f2

By the induction hypothesis, we have

− dim f2(V2)−
n∑
k=3

(−1)k dimVk = 0 (3.1)

and
− dimV1 + dimV2 − dim f2(V2) = 0. (3.2)

The result follows adding equation (3.2) to opposite sign equation (3.1).

Lemma 3.5. In a commutative diagram of vector spaces and linear maps with exact rows

0 V1 V2 V3 0

0 V ′1 V ′2 V ′3 0

f

T

g

R S

f ′ g′
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if the vertical arrows T and S are Fredholm operators, then the middle vertical arrow R is also a
Fredholm operator, and ind(R) = ind(T ) + ind(S).

Proof. There exists a linear map δ : Ker S → Coker T such that the sequence

0 −→ Ker T −→ Ker R −→ Ker S
δ−→ Coker T −→ Coker R −→ Coker S −→ 0

is exact, where the other maps are induced by f , g, f ′ and g′ (note that the commutativity of
the given diagram implies that f(Ker T ) ⊆ Ker R, g(Ker R) ⊆ Ker S, f ′(T (V1)) ⊆ R(V2) and
g′(R(V2)) ⊆ S(V3)). This can be proved by diagram chasing and is known as the Snake Lemma1.
By Lemma 3.3, Ker R and Coker R are finite dimensional and we can apply Lemma 3.4 to conclude
that

0 = −dim Ker T + dim Ker R− dim Ker S

+ dim Coker T − dim Coker R− dim Coker S

= −ind(T ) + ind(R)− ind(S) ,

as desired.

Proposition 3.6. If T ∈ F(V1, V2) and T ′ ∈ F(V ′1 , V
′
2), then T ⊕ T ′ ∈ F(V1 ⊕ V ′1 , V2 ⊕ V ′2) and

ind(T ⊕ T ′) = ind(T ) + ind(T ′).

Proof. Observe that we have the commutative diagram of vector spaces and linear maps with exact
rows

0 V1 V1 ⊕ V2 V2 0

0 V ′1 V ′1 ⊕ V ′2 V ′2 0

f

T

g

T⊕T ′ T ′

f ′ g′

where f(v1) = (v1, 0), g(v1, v2) = v2, and f ′ and g′ are defined similarly. The result follows from
Lemma 3.5.

Proposition 3.7. If T ∈ F(V1, V2) and S ∈ F(V2, V3), then ST ∈ F(V1, V3) and ind(ST ) =

ind(T ) + ind(S).

Proof. Consider the diagram of vector spaces and linear maps

0 V1 V1 ⊕ V2 V2 0

0 V2 V3 ⊕ V2 V3 0

i

T

p

ST⊕idV2 S

j q

where i(v1) = (v1, T (v1)), p(v1, v2) = T (v1)−v2, j(v2) = (S(v2), v2) and q(v3, v2) = v3−S(v2). It is
straightforward to check that this is a commutative diagram and that it has exact rows. Applying
Lemma 3.5 and Proposition 3.6, we have that ST is Fredholm and

ind(ST ) = ind(ST ⊕ idV2) = ind(T ) + ind(S).

1For an elementary proof, see Lemma 7.8 of [Alu09]. One can also see [Mac98] for a category theoretical proof.
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Lemma 3.8. Let H1 and H2 be Hilbert spaces. If T ∈ F(H1, H2), then T (H1) is closed in H2.

Proof. Let V =̇ T (H1)
⊥, which is finite dimensional since Coker T is. Hence, V is a Hilbert space.

The map T ′ : (Ker T )⊥⊕V → H2, given by T ′(u, v) =̇ T (u) + v, is a continuous linear bijection. It
follows from the Open Mapping Theorem that T ′ is a linear homeomorphism. Therefore T (H1) =

T ′((kerT )⊥) is closed in H2.

Proposition 3.9. A linear map T ∈ B(H1, H2) is Fredholm if and only if Ker T and Ker T ∗ are
finite dimensional and T (H1) is closed in H2. In this case, we have that ind(T ) = dim Ker T −
dim Ker T ∗.

Proof. We have Ker T ∗ = T (H1)
⊥. Closedness of T (H1) gives (Ker T ∗)⊥ = T (H1)

⊥⊥ = T (H1).
This, together with Ker T ∗ ⊕ (Ker T ∗)⊥ = H2, gives Coker T ∼= Ker T ∗.

Take T ∈ F(H1, H2). By Lemma 3.8, T (H1) is closed and the above argument shows that
Ker T ∗ is finite dimensional and ind(T ) = dim Ker T − dim Ker T ∗.

Conversely, if Ker T and Ker T ∗ are finite dimensional and if T (H1) is closed, the above argument
shows that Coker T ∼= Ker T ∗ is finite dimensional and therefore T is Fredholm with ind(T ) =

dim Ker T − dim Ker T ∗.

Corollary 3.10. Let H1 and H2 be Hilbert spaces. Then T ∈ B(H1, H2) is Fredholm if and only if
T ∗ ∈ F(H2, H1). In this case, ind(T ) = −ind(T ∗).

Proposition 3.11. Let H1 and H2 be infinite dimensional Hilbert spaces. If there exists a Fredholm
operator T ∈ F(H1, H2), then H1 and H2 are isomorphic as Banach spaces.

Proof. By the Open Mapping Theorem, T |(Ker T )⊥ : (Ker T )⊥ → T (H1) is an isomorphism of infinite
dimensional Banach spaces (recall that T (H1) is closed by Lemma 3.8). Since Ker T and T (H1)

⊥

are finite dimensional subspaces, we have that

dimH1 = dim
(
Ker T ⊕ (Ker T )⊥

)
= dim Ker T + dim(Ker T )⊥

= dim(Ker T )⊥

= dimT (H1)

= dimT (H1) + dimT (H1)
⊥

= dim
(
T (H1)⊕ T (H1)

⊥)
= dimH2 ,

where dimH denotes the cardinality of a complete orthonormal system of the Hilbert space H. We
have used that κ+ n = κ for every n ∈ N and every infinite cardinal κ.

3.2 Compact Operators

In this section, V1 and V2 denote normed vector spaces.

Definition 3.12. A linear map T : V1 → V2 is called a compact operator if it maps the open unit
ball {v ∈ V1 : ‖v‖ < 1} (and hence any bounded subset of V1) into a relatively compact set in V2.
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Equivalently, T : V1 → V2 is compact if every bounded sequence {vn} in V1 admits a subsequence
{vnk} such that {T (vnk)} converges to a point in V2.

The set of all compact operators from V1 into V2 is denoted by K(V1, V2).

Example 3.13. If T : V1 → V2 is a bounded finite rank operator (i.e. if T (V1) is finite dimensional)
and if {vn} is a bounded sequence in V1, then {T (vn)} is a bounded sequence contained in the
finite dimensional subspace T (V1). It is well known that every finite dimensional linear subspace of
a normed space is isomorphic (as normed vector spaces) to an euclidean space CN . We can then
apply Bolzano-Weierstrass Theorem to conclude that {T (vn)} admits a convergent subsequence.
Thus, any bounded finite rank operator is compact.

Proposition 3.14. K(V1, V2) is a closed linear subspace of B(V1, V2).

Proof. A compact operator is bounded since the image of the unit ball is relatively compact, and
hence bounded. Thus K(V1, V2) ⊆ B(V1, V2).

Now, let T, S ∈ K(V1, V2), λ ∈ C and let {vn} be a bounded sequence in V1. Compactness of T
gives a subsequence {vnk} such that {T (vnk)} is convergent. Compactness of S gives a subsequence
{vnkj } of {vnk} such that {S(vnkj )} is convergent. Then, since operations in V2 are continuous, the
sequence {(T + λS)(vnkj )} is convergent. This proves that T + λS ∈ K(V1, V2).

Let us prove that K(V1, V2) is closed in B(V1, V2). For let T ∈ B(V1, V2) and assume that
T ∈ K(V1, V2). Given ε > 0, there exists S ∈ K(V1, V2) such that ‖T − S‖ < ε/3. This means
‖T (v) − S(v)‖ < ε/3 for all v ∈ V1 with ‖v‖ ≤ 1. Denote by B1 the unit ball in V1 and let {vn}
be any sequence in B1. Compactness of S gives a subsequence {vnk} such that {S(vnk)} converges
to some y ∈ S(B1). Consider x ∈ B1 such that ‖y − S(x)‖ < ε/6. Since S(vnk) → y, there exists
k0 ∈ N such that ∀k ≥ k0

‖S(vnk)− S(x)‖ ≤ ‖S(vnk)− y‖+ ‖y − S(x)‖ < ε/6 + ε/6 = ε/3

Then ∀k ≥ k0

‖T (vnk)− T (x)‖ ≤ ‖T (vnk)− S(vnk)‖+ ‖S(vnk)− S(x)‖+ ‖S(x)− T (x)‖ < ε.

This proves that T is compact, as desired.

Proposition 3.15. Let V1, V2 and V3 are normed spaces. Consider T ∈ K(V1, V2), S ∈ B(V2, V3),
T ′ ∈ B(V1, V2) and S′ ∈ K(V2, V3). Then ST, S′T ′ ∈ K(V1, V3).

Consequently, K(V1, V1) is a closed two-sided ideal of the normed algebra B(V1, V1).

Proof. Let {vn} be a bounded sequence in V1.
To see ST ∈ K(V1, V3), just notice that compactness of T gives a subsequence {vnk} such that

{T (vnk)} is convergent, and boundedness of S implies convergence of {S(T (vnk))}.
To see S′T ′ ∈ K(V1, V3), note that boundedness of T ′ implies boundedness of {T ′(vn)}, and

compactness of S′ gives a subsequence {vnk} such that {S′(T ′(vnk))} is convergent.

Proposition 3.16. Let H1 and H2 be Hilbert spaces. T ∈ K(H1, H2) if and only if T ∗ ∈ K(H2, H1).
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Proof. Since T ∗∗ = T , it suffices to show that T ∗ ∈ K(H2, H1) whenever T ∈ K(H1, H2). Let {yn}
be a sequence in H2 such that ‖yn‖ ≤ 1 for every n ∈ N. Define xn =̇ T ∗(yn). Since

‖xn‖ = ‖T ∗(yn)‖ ≤ ‖T ∗‖‖yn‖ ≤ ‖T ∗‖,

we have that {xn} is a bounded sequence in H1. By compactness of T , there exists a subsequence
{xnj} such that {T (xnj )} is convergent (Cauchy). Notice that, for k, j ∈ N,

‖T ∗(ynj )− T ∗(ynk)‖2 = 〈T (xnj )− T (xnk), ynj − ynk〉

≤ ‖T (xnj )− T (xnk)‖ ‖ynj − ynk‖

≤ 2 ‖T (xnj )− T (xnk)‖ ,

so that {T ∗(ynj )} is a Cauchy sequence, and therefore it converges. This concludes the proof.

Corollary 3.17. Let H be a Hilbert space. Then K(H,H) is a closed two-sided ∗-ideal of the
C∗-algebra B(H,H).

In Hilbert spaces, Fredholm operators are precisely those that are invertible modulo the compact
operators, as we can see in the following

Theorem 3.18 (Atkinson). Let H1 and H2 be Hilbert spaces. If T ∈ F(H1, H2), there exists
S ∈ B(H2, H1) such that ST − idH1 ∈ K(H1, H1) and TS − idH2 ∈ K(H2, H2).

Conversely, if T ∈ B(H1, H2) and there are S, S′ ∈ B(H2, H1) such that ST − idH1 ∈ K(H1, H1)

and TS′ − idH2 ∈ K(H2, H2), then T ∈ F(H1, H2).

Proof. Assume T is Fredholm. Restricting T to (Ker T )⊥, one obtains an invertible operator
T1 : (Ker T )⊥ → T (H1). Let S : H2 → H1 be given by

S(y) =

{
T−11 (y) if y ∈ T (H1),

0 if y ∈ T (H1)
⊥.

Let P ∈ B(H1, H1) and Q ∈ B(H2, H2) be the orthogonal projections to Ker T and T (H1)
⊥,

respectively. Then ST + P = idH1 and TS + Q = idH2 . Since Ker T and T (H1)
⊥ ∼= Coker T are

finite dimensional, it follows that P and Q are finite rank operators and, therefore, compact.
Conversely, assume that there exist such S and S′. Then there exists K ∈ K(H1, H1) such that

idH1 − ST = K. For x ∈ Ker T , we have K(x) = x − ST (x) = x. So, if x ∈ Ker T and B is a
bounded neighborhood of x in Ker T , it is true that K(B) = B is relatively compact. This proves
that Ker T is locally compact. Thus, Ker T is finite dimensional. By Proposition 3.16, the operator
(idH2 − TS′)∗ = idH2 − (S′)∗T ∗ is compact and we can repeat the previous argument to show that
Ker T ∗ is finite dimensional.

By Proposition 3.9, it remains to show that T (H1) is closed. Let yn ∈ T (H1) and suppose
yn → y for some y ∈ H2. We may write yn = T (xn) with xn ∈ (Ker T )⊥. Note that {xn} admits
a bounded subsequence. In fact, if ‖xn‖ → ∞, we can consider x′n = xn/‖xn‖ ∈ (Ker T )⊥ and
observe that T (x′n) = yn/‖xn‖ → 0. On the other hand, boundedness of {x′n} and compactness of
K gives a subsequence {x′nk} such that K(x′nk) converges to some x′ ∈ H1. Since K = idH1 − ST
and T (x′nk) → 0, we have that limx′nk = limK(x′nk) = x′. But then 0 = limT (x′nk) = T (x′) and
this is impossible since ‖x′‖ = 1 and x′ ∈ (Ker T )⊥.
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Let {xnk} be a bounded subsequence of {xn}. Again, compactness of K gives a subsequence
{xnkj } such that K(xnkj ) = xnkj − S(ynkj ) is convergent. Since S(yn) → S(y), the subsequence
{xnkj } converges to some x ∈ H1, and we conclude that y = lim ynkj = limT (xnkj ) = T (x), as
desired.

Corollary 3.19. Let H1 and H2 be Hilbert spaces. If T ∈ F(H1, H2) and K ∈ K(H1, H2), then
T +K ∈ F(H1, H2).

Proof. Choose S ∈ B(H2, H1) such that ST − idH1 and TS − idH2 are compact operators. Then
S(T + K) − idH1 = (ST − idH1) + SK and (T + K)S − idH2 = (TS − idH2) + KS are compact
operators by Corollary 3.17. The result follows from Atkinson’s Theorem.

Lemma 3.20. The Fredholm index ind: F(H1, H2) → Z is locally constant. In particular, it is
continuous and homotopy invariant.

Proof. Fix T ∈ F(H1.H2) and consider V =̇ (Ker T )⊥ and W =̇ T (H1)
⊥. Let α : V → H1 and

β : H2 → T (H1) be the inclusion be the orthogonal projection onto T (H1), respectively. Then
Ker α = {0}, Coker α = H1/V ∼= Ker T , Ker β = T (H1)

⊥ ∼= Coker T and Coker β = {0}, so that
ind(α) = −dim Ker T and ind(β) = dim Coker T . Then ind(βTα) = ind(β) + ind(T ) + ind(α) = 0.
Also, the map βTα : V → T (H1) is a continuous bijection and, by the Open Mapping Theorem, it
is an isomorphism in B(V, T (H1)). Continuity of F(H1, H2) 3 S 7−→ βSα ∈ B(V, T (H1)) gives that
βT ′α is an isomorphism for T ′ sufficiently close to T , so that 0 = ind(βT ′α) = ind(β) + ind(T ′) +

ind(α), implying ind(T ′) = ind(T ). Then ind is locally constant, as desired.

Corollary 3.21. If T ∈ F(H1, H2) and K ∈ K(H1, H2), then ind(T +K) = ind(T ).

Proof. Let γ : [0, 1] → B(H1, H2) be given by γ(t) = T + tK. By Corollary 3.19, we have γ(t) ∈
F(H1, H2). Lemma 3.20 gives that ind(γ(t)) does not depend on t ∈ [0, 1], so that ind(T ) =

ind(T +K).

3.3 The Families-Index

In this section, H1 and H2 denote Hilbert spaces.
LetX be a topological space. Equip F(H1, H2) with the norm topology inherited from B(H1, H2),

and consider T : X → F(H1, H2) to be a continuous map (we say that T is a continuous family of
bounded Fredholm operators on X). For x ∈ X, the vector spaces Ker Tx and Coker Tx are finite
dimensional. If the dimension of such spaces were locally constant, one could possibly ask if

Ker T =̇
⊔
x∈X

Ker Tx and Coker T =̇
⊔
x∈X

Coker Tx

are vector bundles over X. One might then consider [Ker T ]− [Coker T ] ∈ K(X) as the index of T .
Unfortunately, it does not always work this way.

Example 3.22. The continuous map T : S1 → F(C,C), given by Tz(ω) = (z + 1)ω, satisfies

dim Ker Tz = dim Coker Tz =

{
0 if z ∈ S1 \ {−1},
1 if z = −1.
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In order for the idea of considering [Ker T ] − [Coker T ] ∈ K(X) to work, one needs to make
some adjustments. There are at least three approaches for doing this: one given in the Appendix of
[Ati67] and in [Muk13], another one discussed in [Bre16] and a third one given in [BB13]. We are
concerned with the first two approaches and our main interest in this section is to discuss them and
prove their equivalence.

We can operate with family of operators in the same way we operate with single operators. Let
T : X → B(H1, H2), T ′ : X → B(H ′1, H

′
2) and S : X → B(H2, H3). The direct sum T ⊕ T ′ : X →

B(H1 ⊕H ′1, H2 ⊕H ′2) is defined to be (T ⊕ T )x =̇ Tx ⊕ T ′x for x ∈ X. If T and T ′ are families of
Fredholm operators, then T ⊕T ′ is also a family of Fredholm operators by Proposition 3.6. If T and
T ′ are continuous, then T ⊕ T ′ is also continuous since we have continuity of the direct sum map
B(H1, H2)×B(H ′1, H

′
2)→ B(H1⊕H ′1, H2⊕H ′2), (A,B) 7−→ A⊕B. We define the product ST : X →

B(H1, H3) by (ST )x =̇ SxTx for x ∈ X. If T and S are families of Fredholm operators, Proposition
3.7 gives that ST is also a family of Fredholm operators. Since the composition map B(H1, H2)×
B(H2, H3)→ B(H1, H3), (A,B) 7−→ BA is continuous, we have that ST is a continuous map if S and
T are continuous. The adjoint of T is the map T ∗ : X → B(H2, H1) given by (T ∗)x =̇ (Tx)∗ = T ∗x ,
which is continuous if T is continuous since the adjoint B(H1, H2) → B(H2, H1), A 7−→ A∗, is
continuous. Moreover, since A ∈ F(H1, H2) if and only if A∗ ∈ F(H2, H1) (see Corollary 3.10), we
have that T ∗ is a family of Fredholm operators if and only if so is T . If T is a family of invertible
operators, we can define T−1 : X → B(H2, H1) by (T−1)x =̇ (Tx)−1 = T−1x . By the continuity of
the inversion A 7−→ A−1, we have that T−1 is continuous if T is continuous. If H1 = H2 and
if T is a family of nonnegative selfadjoint invertible operators, the square root of T is the map
T 1/2 : X → B(H1, H1) given by (T 1/2)x =̇ (Tx)1/2 = T

1/2
x . Since the square root A 7−→ A1/2 is

continuous (see Corollary 1.31), it follows that T 1/2 is continuous if T is continuous. The list of
operations could continue.

Let us begin with the constructions of the families-index.

3.3.1 First Approach

In this section, we follow closely what was done in [Bre16].
Let X be a topological space and T : X → F(H1, H2) be a continuous map. In the beginning of

this chapter it was wondered if

Ker T =̇
⊔
x∈X

Ker Tx and Coker T =̇
⊔
x∈X

Coker Tx

would be vector bundles if dim Ker Tx and dim Coker Tx were locally constant on x ∈ X. Let us
answer this question.

Proposition 3.23. Let T : X → F(H1, H2) be as above and suppose that the dimension of Ker Tx

is locally constant on x ∈ X. Then

Ker T =
⊔
x∈X

Ker Tx ,

seen as a topological subspace of X ×H1, is a vector bundle over X.

Proof. Denoting by p : Ker T → X the restriction of the projection onto the first coordinate X ×
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H1 → X, we can easily see that Ker T is a family of vector spaces over X. It remains to prove that
it is locally trivial.

Fix x ∈ X. Let Px : H1 → Ker Tx and Qx : H2 → Tx(H1) be the orthogonal projections. For
y ∈ X, consider the map T̂ xy : H1 → Ker Tx ⊕ Tx(H1) given by T̂ xy (u) = (Pxu,QxTyu). The map
T̂ x : X → B(H1,Ker Tx ⊕ Tx(H1)), y 7−→ T̂ xy , is continuous since for u ∈ H1

‖(T̂ xy − T̂ xy′)u‖ = ‖(0, Qx(Ty − Ty′)u)‖ = ‖Qx(Ty − Ty′)u‖ ≤ ‖Ty − Ty′‖‖u‖

(recall ‖Qx‖ ≤ 1), which implies ‖T̂ xy − T̂ xy′‖ ≤ ‖Ty − Ty′‖.
Notice that T̂ xx is surjective: for (v, w) ∈ Ker Tx⊕Tx(H1) we can let u ∈ H1 be such that Txu = w

and see that Px(v + u− Pxu) = v and QxTx(v + u− Pxu) = w, so that T̂ xx (v + u− Pxu) = (v, w).
Besides, T̂ xx is injective: if u ∈ Ker T̂ xx we have Pxu = 0, implying u ∈ (Ker Tx)⊥, and QxTxu = 0,
implying Txu ∈ (Tx(H1))

⊥ which is only possible if u ∈ Ker Tx, hence u = 0.
By the Open Mapping Theorem, T̂ xx is an isomorphism. Since the set of isomorphisms in

B(H1,Ker Tx ⊕ Tx(H1)) is open (see Proposition 1.25), there exists an open neighborhood Ux

of x such that T̂ xy is an isomorphism for every y ∈ Ux. Replacing Ux by the connected component
of Ux that contains x if necessary, we can assume that Ux is connected.

Observe that T̂ xy (Ker Ty) ⊆ Ker Tx ⊕ {0} since T̂ xy (u) = (Pu, 0) whenever u ∈ Ker Ty. By
hypothesis and connectedness of Ux, dim Ker Ty = dim Ker Tx for y ∈ Ux. Thus T̂ xy induces an
isomorphism from Ker Ty onto Ker Tx. Then the continuous map p−1(Ux)→ Ux × (Ker Tx ⊕ {0}),
given by (y, u) 7−→

(
y, T̂ xy (u)

)
, is bijective and its inverse is given by (y; v, 0) 7−→ (y, (T̂ xy )−1(v, 0)).

This proves the local triviality of p : Ker T → X.

Corollary 3.24. Let T : X → F(H1, H2) be continuous. If Tx is surjective for every x ∈ X, then
Ker T → X is a vector bundle.

Proof. By Lemma 3.20, ind(Tx) = dim Ker Tx − dim Coker Tx = dim Ker Tx is locally constant.
The result follows from Proposition 3.23.

We need some technical results before defining a families-index.

Lemma 3.25. Let V1 and V2 be arbitrary vector spaces, L : V1 → V2 be a linear map and W ⊆ V2

be a linear subspace. Suppose Ker L is finite dimensional. If W is finite dimensional, then L−1(W )

is finite dimensional.

Proof. By contradiction, assume that {vn : n ≥ 1} is an infinite linearly independent subset of
L−1(W ). Let V =̇ span{vn : n ≥ 1}. We clearly have that Ker L|V ⊆ Ker L and L(V ) ⊆ W .
Applying the Rank-Nullity Theorem for L|V : V → V2, we have that

dimV = dim Ker L|V + dimL(V ) ≤ dim Ker L+ dimW ,

which is a contradiction since V has infinite dimension.

Lemma 3.26. The set {T ∈ B(H1, H2) : T (H1) = H2} is open in B(H1, H2).

Proof. Let T0 ∈ B(H1, H2) be such that T0(H1) = H2 and denote the inclusion (Ker T0)
⊥ ↪−→ H1

by α. We have that the map B(H1, H2) → B((Ker T0)
⊥, H2), S 7−→ Sα, is continuous and T0α is

invertible. Since the set of invertible elements of B((Ker T0)
⊥, H2) is open (see Proposition 1.25),
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there exists an open set U ⊆ B(H1, H2) such that T0 ∈ U and Sα is invertible for every S ∈ U .
Notice that H2 = S((Ker T0)

⊥) ⊆ S(H1) for every S ∈ U , so that U is an open neighborhood of
T0 entirely contained in {T ∈ B(H1, H2) : T (H1) = H2}.

Proposition 3.27. Let X be compact and T : X → F(H1, H2) be continuous. There exists a finite
dimensional linear subspace W ⊆ H2 such that Tx(H1) +W = H2 for every x ∈ X.

Proof. Fix x ∈ X. Let Wx =̇ Tx(H1)
⊥, which is finite dimensional since Tx is Fredholm. Consider

T̃ x : X → B(H1 ⊕Wx, H2), given by T̃ xy (v, w) = Ty(v) + w. Since (T̃ xy − T̃ xy′)(v, w) = (Ty − Ty′)(v),
we have

‖(T̃ xy − T̃ xy′)(v, w)‖ ≤ ‖Ty − Ty′‖‖v‖ ≤ ‖Ty − Ty′‖‖(v, w)‖ ,

so that ‖T̃ xy − T̃ xy′‖ ≤ ‖Ty − Ty′‖. This proves that T̃ x is continuous. Observe that

T̃ xx (H1 ⊕Wx) = Tx(H1) +Wx = H2

because Tx(H1) is closed. The previous Lemma and the continuity of T̃ x give an open neighborhood
Ux of x in X such that T̃ xy (H1 ⊕Wx) = H2 for every y ∈ Ux. Thus Ty(H1) + Wx = H2 for every
y ∈ Ux.

The collection {Ux : x ∈ X} is an open cover of X. By compactness, there are x1, · · · , xn ∈ X
such that X =

⋃n
i=1 Uxi . Consider the finite dimensional subspace W =̇ Wx1 + · · ·+Wxn ⊆ H2. If

x ∈ X, we have x ∈ Uxj for some j, so that Tx(H1) + W ⊇ Tx(H1) + Wxj = H2. This concludes
the proof.

Let X be compact and T : X → F(H1, H2) be continuous. Consider W ⊆ H2 given by the
previous Proposition, and define TW : X → B(H1 ⊕W,H2) by TWx (v, w) = Tx(v) + w. Since

‖(TWx − TWy )(v, w)‖ = ‖(Tx − Ty)(v)‖ ≤ ‖Tx − Ty‖‖v‖ ≤ ‖Tx − Ty‖‖(v, w)‖

for every x, y ∈ X, we have that ‖TWx − TWy ‖ ≤ ‖Tx − Ty‖, from where it follows that TW

is continuous. Let x ∈ X. If TWx (v, w) = 0, then Tx(v) = −w, so that w ∈ Tx(H1) ∩ W and
v ∈ T−1x (W ). Thus, Ker TWx ⊆ T−1x (W ) ⊕ (Tx(H1) ∩W ), from where it follows that Ker TWx is
finite dimensional (the space T−1x (W ) is finite dimensional by Lemma 3.25). Besides, the equality
Tx(H1) + W = H2 gives the surjectivity of TWx . In particular, we have that TWx is Fredholm for
every x ∈ X, and we can write TW : X → F(H1 ⊕W,H2). Applying Corollary 3.24, we obtain

Theorem 3.28. Let X be a compact space, T : X → F(H1, H2) be continuous, W be as in Propo-
sition 3.27 and TW be as above. Then Ker TW , seen as a topological subspace of X × (H1⊕W ), is
a vector bundle over X.

Proposition 3.29. Let X be a compact Hausdorff space and T : X → F(H1, H2) be continuous.
Let W,W ′ ⊆ H2 be finite dimensional subspaces such that Tx(H1) + W = H2 = Tx(H1) + W ′ for
every x ∈ X, and consider the respective associated continuous maps TW : X → F(H1 ⊕W,H2)

and TW ′ : X → F(H1 ⊕W ′, H2). Then the following equality holds in K(X):

[Ker TW ]− [X ×W ] = [Ker TW
′
]− [X ×W ′] . (3.3)
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Proof. First assume we have W ⊆ W ′ and dimW + 1 = dimW ′. Write W ′ = W ⊕ span{ω0}, for
some ω0 ∈ W ′ \W . We have that TW : X → F(H1 ⊕W,H2) and TW ′ : X → F(H1 ⊕W ′, H2) are
defined by

TWx (v, w) = Tx(v) + w and TW
′

x (v, w + λω0) = Tx(v) + w + λω0 .

Define F : X × [0, 1] → F(H1 ⊕ W ′, H2) by F(x,t)(v, w + λω0) =̇ Tx(v) + w + tλω0. Since
Tx(H1) +W = H2, we have that F(x,t) is surjective for every (x, t) ∈ X × [0, 1]. By Corollary 3.24
we have a vector bundle p : Ker F → X × [0, 1]. For t ∈ [0, 1], consider it : X → X × [0, 1] given by
it(x) =̇ (x, t). Lemma 2.34 gives

i∗0(Ker F ) ∼= i∗1(Ker F ).

If we let S : X → F(H1⊕W ⊕C, H2) be given by Sx(v, w, λ) =̇ Tx(v) +w = F(x,0)(v, w+λω0),
then Corollary 3.24 implies that Ker S, seen as a topological subspace of X × (H1 ⊕W ⊕ C), is a
vector bundle, because Sx is surjective ∀x ∈ X. Observe that Ker S is isomorphic to

i∗0(Ker F ) = {(x, e) ∈ X ×Ker F : p(e) = (x, 0)}

= {(x, (y, t), (v, w′)) ∈ X × (X × [0, 1])× (H1 ⊕W ′) : (y, t) = (x, 0), (v, w′) ∈ Ker F(y,t)}

= {(x, (x, 0), (v, w + λω0)) : x ∈ X, v ∈ H1, w ∈W,λ ∈ C, (v, w + λω0) ∈ Ker F(x,0)}

via
Ker S 3 (x, (v, w, λ)) 7−→ (x, (x, 0), (v, w + λω0)) ∈ i∗0(Ker F ).

Besides, notice that TW ′x = F(x,1) for every x ∈ X, so that Ker TW
′ is isomorphic to

i∗1(Ker F ) = {(x, e) ∈ X ×Ker F : p(e) = (x, 1)}

= {(x, (y, t), (v, w′)) ∈ X × (X × [0, 1])× (H1 ⊕W ′) : (y, t) = (x, 1), (v, w′) ∈ Ker F(y,t)}

= {(x, (x, 1), (v, w + λω0)) : x ∈ X, v ∈ H1, w ∈W,λ ∈ C, (v, w + λω0) ∈ Ker F(x,1)}

via
Ker TW

′ 3 (x, (v, w + λω0)) 7−→ (x, (x, 1), (v, w + λω0)) ∈ i∗1(Ker F ).

Moreover, we have that Ker S is isomorphic to

Ker TW ⊕ (X × C) = {((x, (v, w)), (y, λ)) ∈ Ker TW × (X × C) : x = y}

= {((x, (v, w)), (x, λ)) : x ∈ X,λ ∈ C, (v, w) ∈ Ker TWx }

via
Ker S 3 (x, (v, w, λ)) 7−→ ((x, (v, w)), (x, λ)) ∈ Ker TW ⊕ (X × C).
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Considering these isomorphisms together, we have

Ker TW ⊕ (X ×W ′) ∼= Ker TW ⊕ (X × (C⊕W ))

∼= Ker TW ⊕ (X × C)⊕ (X ×W )

∼= Ker S ⊕ (X ×W )

∼= i∗0(Ker F )⊕ (X ×W )

∼= i∗1(Ker F )⊕ (X ×W )

∼= Ker TW
′ ⊕ (X ×W ) ,

from where it follows that [Ker TW ] + [X ×W ′] = [Ker TW
′
] + [X ×W ] in K(X). This proves (3.3)

for this case.
The second step is to drop the assumption dimW + 1 = dimW ′, so that we assume only that

W ⊆W ′. WriteW ′ = W⊕ span{ω1, · · · , ωn} for a linearly independent set {ω1, · · · , ωn} ⊆W ′\W .
Using induction on n we can apply the first step to prove that (3.3) also holds for this case.

Finally, dropping all extra assumptions about W and W ′ that we have made in steps one and
two, we observe that bothW andW ′ are contained in the finite dimensional subspaceW+W ′ ⊆ H2.
Applying the second step, we have

[Ker TW ]− [X ×W ] = [Ker TW+W ′ ]− [X × (W +W ′)]

= [Ker TW
′
]− [X ×W ′] ,

concluding the proof.

We are ready to define the notion of index of a family of Fredholm operators given in [Bre16].

Definition 3.30. Let X be a compact Hausdorff space and T : X → F(H1, H2) be continuous.
The B-index bundle of T is

indB(T ) =̇ [Ker TW ]− [X ×W ] ∈ K(X) ,

where W ⊆ H2 is a finite dimensional subspace such that Tx(H1) + W = H2 for every x ∈ X and
TW : X → F(H1 ⊕W,H2) is defined by TWx (v, w) = Tx(v) + w.

Proposition 3.29 shows that the above definition of index depends only on T and not on the
choice of W .

Remark 3.31. In the case one has a single point space X = {x0}, the map T : {x0} → F(H1, H2)

can be seen as a single Fredholm operator T =̇ Tx0 ∈ F(H1, H2). Choosing W =̇ T (H1)
⊥, we have

Ker T ∼= Ker TW and Coker T ∼= W as vector spaces. Since K({x0}) = Z, it follows that indB(T )

equals dim Ker T − dim Coker T . This proves that the B-index bundle coincides with the classical
Fredholm index under these assumptions.

We finish this section proving some properties about the B-index bundle.

Lemma 3.32. Let X and Y be compact Hausdorff spaces, and let f : Y → X and T : X →
F(H1, H2) be continuous maps. Then we have the equality indB(T ◦ f) = f∗(indB(T )) in K(Y ).
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Proof. Let W ⊆ H2 be a finite dimensional linear subspace such that Tx(H1) +W = H2 for every
x ∈ X. Then Tf(y)(H1) +W = H2 for every y ∈ Y , so that

indB(T ◦ f) = [Ker (T ◦ f)W ]− [Y ×W ].

The associated map (T ◦ f)W : Y → F(H1 ⊕W,H2) is given by

(T ◦ f)Wy (v, w) = (T ◦ f)y(v) + w

= Tf(y)(v) + w

= (TW ◦ f)y(v, w) ,

so that (T ◦ f)W = TW ◦ f . Denoting by p : Ker TW → X the bundle projection, we have that

f∗(Ker TW ) = {(y, e) ∈ Y ×Ker TW : p(e) = f(y)}

= {(y, x, (v, w)) ∈ Y ×X × (H1 ⊕W ) : f(y) = x, (v, w) ∈ Ker TWx }

= {(y, f(y), (v, w)) : y ∈ Y, (v, w) ∈ Ker TWf(y)}

is isomorphic to

Ker (TW ◦ f) = {(y, (v, w)) ∈ Y × (H1 ⊕W ) : (v, w) ∈ Ker (TW ◦ f)x}

= {(y, (v, w)) : y ∈ Y, (v, w) ∈ Ker TWf(y)}

via
f∗(Ker TW ) 3 (y, f(y), (v, w)) 7−→ (y, (v, w)) ∈ Ker (TW ◦ f) .

Similarly, Y ×W is isomorphic to

f∗(X ×W ) = {(y, x, w) ∈ Y ×X ×W : x = f(y)}

= {(y, f(y), w) : y ∈ Y,w ∈W}

via
Y ×W 3 (y, w) 7−→ (y, f(y), w) ∈ f∗(X ×W ) .

In conclusion, we have

indB(T ◦ f) = [Ker (T ◦ f)W ]− [Y ×W ]

= [Ker (TW ◦ f)]− [Y ×W ]

= [f∗(Ker TW )]− [f∗(X ×W )]

= f∗([Ker TW ]− [X ×W ])

= f∗(indB(T )) ,

as desired.

The following result concerns the invariance of indB(T ) under homotopies, in analogy to Lemma
3.20.
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Proposition 3.33. Let X be a compact Hausdorff space and S, T : X → F(H1, H2) be continuous
maps. If S and T are homotopic, then indB(S) = indB(T ).

Proof. As usual, for t ∈ [0, 1] let it : X → X × [0, 1] be given by it(x) =̇ (x, t). Let F : X × [0, 1]→
F(H1, H2) be a homotopy between S and T , that is, F ◦ i0 = S and F ◦ i1 = T . We have then

indB(S) = indB(F ◦ i0)
(1)
= i∗0(indB(F ))

(2)
= i∗1(indB(F ))

(1)
= indB(F ◦ i1)

= indB(T ) ,

where (1) follows from Lemma 3.32 and (2) follows from Lemma 2.34.

Proposition 3.34. Let X be a compact Hausdorff space, H1, H2, H ′1 and H ′2 be Hilbert spaces.
For continuous maps S : X → F(H1, H2) and T : X → F(H ′1, H

′
2), we have

indB(S ⊕ T ) = indB(S) + indB(T ) .

Proof. Let W ⊆ H2 and W ′ ⊆ H ′2 be finite dimensional subspaces such that Sx(H1)+W = H2 and
Tx(H ′1) +W ′ = H ′2 for every x ∈ X. We have, for all x ∈ X,

(S ⊕ T )x(H1 ⊕H ′1) +W ⊕W ′ = (Sx(H1) +W )⊕ (Tx(H ′1) +W ′) = H2 ⊕H ′2 .

Also, (S ⊕ T )W⊕W
′
: X → F((H1 ⊕H ′1)⊕ (W ⊕W ′), H2 ⊕H ′2) satisfies

(S ⊕ T )W⊕W
′

x ((v, v′), (w,w′)) = (S ⊕ T )x(v, v′) + (w,w′)

= (Sx(v) + w, Tx(v′) + w′)

= (SW ⊕ TW ′)x((v, w), (v′, w′))

Observe that

Ker (S ⊕ T )W⊕W
′

= {(x, ((v, v′), (w,w′))) ∈ X × ((H1 ⊕H ′1)⊕ (W ⊕W ′)) :

(v, w) ∈ Ker SWx , (v′, w′) ∈ Ker TW
′

x }

is isomorphic to

Ker (SW ⊕ TW ′) = {(x, ((v, w), (v′, w′))) ∈ X × ((H1 ⊕W )⊕ (H ′1 ⊕W ′)) :

(v, w) ∈ Ker SWx , (v′, w′) ∈ Ker TW
′

x }

via

Ker (S ⊕ T )W⊕W
′ 3 (x, ((v, v′), (w,w′))) 7−→ (x, ((v, w), (v′, w′))) ∈ Ker (SW ⊕ TW ′) ,
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which in turn is isomorphic to

Ker SW ⊕Ker TW
′

= {((x, (v, w)), (y, (v′, w′))) ∈ Ker SW ×Ker TW
′

: x = y}

= {((x, (v, w)), (x, (v′, w′))) : x ∈ X, (v, w) ∈ Ker SW , (v′, w′) ∈ Ker TW
′}

via

Ker (SW ⊕ TW ′) 3 (x, ((v, w), (v′, w′))) 7−→ (x, ((v, w), (v′, w′))) ∈ Ker SW ⊕Ker TW
′
.

Therefore

indB(S ⊕ T ) = [Ker (S ⊕ T )W⊕W
′
]− [X × (W ⊕W ′)]

= [Ker (SW ⊕ TW ′)]− [X × (W ⊕W ′)]

= [Ker SW ⊕Ker TW
′
]− [(X ×W )⊕ (X ×W ′)]

= [Ker SW ] + [Ker TW ]− ([X ×W ] + [X ×W ′])

= ([Ker SW ]− [X ×W ]) + ([Ker TW
′
]− [X ×W ′])

= indB(S) + indB(T ) .

Corollary 3.35. Let X, S and T be as in Proposition 3.34. Then indB(S ⊕ T ) = indB(T ⊕ S).

Proof. K(X) is an abelian group.

Proposition 3.7 can be generalized by the as follows.

Proposition 3.36. Let X be a compact Hausdorff space and H be a Hilbert space. If S, T : X →
F(H,H) are continuous maps, then

indB(ST ) = indB(S) + indB(T ).

Proof. Let I : X → F(H,H), x 7−→ idH . We obviously have indB(I) = 0 ∈ K(X) and Proposition
3.34 gives

indB(ST ) = indB(ST ) + indB(I) = indB(ST ⊕ I) .

For t ∈ R, consider

Rt =

(
cos(t)idH sin(t)idH

− sin(t)idH cos(t)idH

)
∈ B(H ⊕H,H ⊕H).

It is clear that Rt is an invertible operator, which implies Rt ∈ F(H ⊕ H,H ⊕ H) for t ∈ R.
Proposition 3.7 allows us to define the continuous map F : X × [0, π/2] → F(H ⊕ H,H ⊕ H) by
F (x, t) = (S ⊕ I)x ◦Rt ◦ (T ⊕ I)x ◦R−t. Straightforward calculations give F (x, 0) = (ST ⊕ I)x and
F (x, π/2) = (S ⊕ T )x for every x ∈ X, so that F is a homotopy between ST ⊕ I and S ⊕ T . Thus,
by Propositions 3.33 and 3.34,

indB(ST ) = indB(ST ⊕ I) = indB(S ⊕ T ) = indB(S) + indB(T ),



50 FAMILIES-INDEX AND ATIYAH-JÄNICH THEOREM 3.3

as desired.

Corollary 3.37. Let X, S and T be as in Proposition 3.36. Then indB(ST ) = indB(TS).

Proof. K(X) is an abelian group.

Lemma 3.38. Let X be a compact Hausdorff space, H1, H2 and H3 be Hilbert spaces.

(a) If T : X → F(H1, H2) is continuous and I ∈ B(H2, H3) is invertible, then

indB(IT ) = indB(T ).

(b) If I ∈ B(H1, H2) is invertible and T : X → F(H2, H3) is continuous, then

indB(TI) = indB(T ).

Proof. (a) Let W ⊆ H2 be a finite dimensional subspace such that W + Tx(H1) = H2 for every
x ∈ X. Consider W ′ =̇ I(W ) ⊆ H3, which has the same dimension of W because I is invertible.
We have, for every x ∈ X,

W ′ + ITx(H1) = I(W ) + ITx(H1) = I(W + Tx(H1)) = I(H2) = H3 .

Then

indB(T ) = [Ker TW ]− [X ×W ] and indB(IT ) = [Ker (IT )W
′
]− [X ×W ′] ,

where TW : X → F(H1 ⊕W,H2) is given by TWx (v, w) = Tx(v) +w, and (IT )W
′
: X → F(H1, H3)

is given by (IT )W
′

x (v, w′) = ITx(v) + w′.
Since dimW ′ = dimW , we have [X ×W ] = [X ×W ′]. Besides, the vector bundle

Ker TW = {(x, (v, w)) ∈ X × (H1 ⊕W ) : (v, w) ∈ Ker TWx }

= {(x, (v, w) ∈ X × (H1 ⊕W ) : Tx(v) = −w}

is isomorphic to

Ker (IT )W
′

= {(x, (v, w′)) ∈ X × (H1 ⊕W ′) : (v, w′) ∈ Ker (IT )W
′

x }

= {(x, (v, w′) ∈ X × (H1 ⊕W ′) : ITx(v) = −w′}

via
Ker TW 3 (x, (v, w)) 7−→ (x, (v, I(w))) ∈ Ker (IT )W

′
.

This shows that [Ker TW ] = [Ker (IT )W
′
], from where the result follows.

(b) Let W ⊆ H3 be a finite dimensional subspace such that W + Tx(H2) = H3 for every x ∈ X.
We have, for every x ∈ X, W + TxI(H1) = W + Tx(H2) = H3. Then

indB(T ) = [Ker TW ]− [X ×W ] and indB(TI) = [Ker (TI)W ]− [X ×W ] ,
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where TW : X → F(H2⊕W,H3) is given by TWx (v2, w) = Tx(v2)+w, and (TI)W : X → F(H1, H3)

is given by (TI)Wx (v1, w) = TxI(v1) + w.
The vector bundle

Ker (TI)W = {(x, (v1, w)) ∈ X × (H1 ⊕W ) : TxI(v1) = −w}

is isomorphic to
Ker TW = {(x, (v2, w)) ∈ X × (H2 ⊕W ) : Tx(v2) = −w}

via
Ker (TI)W 3 (x, (v1, w)) 7−→ (x, (I(v1), w)) ∈ Ker TW .

Therefore, we have [Ker TW ]− [X ×W ] = [Ker (TI)W ]− [X ×W ], concluding the proof.

Proposition 3.39. Let X be a compact Hausdorff space, and H1, H2 and H3 be infinite dimensional
Hilbert spaces. If T : X → F(H1, H2) and S : X → F(H2, H3) are continuous maps, then

indB(ST ) = indB(S) + indB(T ) .

Proof. The existence of Fredholm operators between H1, H2 and H3 gives Banach space isomor-
phisms I12 : H2 → H1 and I13 : H3 → H1 (see Proposition 3.11). Notice that I13ST is a family
of Fredholm operators from H1 to itself, as well as I13SI−112 and I12T . This allows us to apply
Proposition 3.36 to obtain the equality

indB(I13ST ) = indB((I13SI
−1
12 )(I12T )) = indB(I13SI

−1
12 ) + indB(I12T ) . (3.4)

By Lemma 3.38, we have that indB(I13ST ) = indB(ST ), indB(I13SI
−1
12 ) = indB(S) and

indB(I12T ) = indB(T ), so that equation (3.4) becomes

indB(ST ) = indB(S) + indB(T ) .

Proposition 3.40. Let X be a compact Hausdorff space and T : X → F(H1, H2) be continuous. If
Tx is surjective for every x ∈ X, then indB(T ) = [Ker T ] .

Proof. By Corollary 3.24 we have that Ker T , seen as a topological subspace of X ×H1, is a vector
bundle over X. Since Tx is surjective for every x ∈ X, we can choose W =̇ {0} ⊆ H2 to see that
Tx(H1) +W = H2 + {0} = H2 for every x ∈ X. Therefore,

indB(T ) = [Ker TW ]− [X ×W ] = [Ker T {0}]− [X × {0}] = [Ker T {0}] ,

where T {0} : X → F(H1 ⊕ {0}, H2) is given by T {0}x (v, 0) = Tx(v) + 0 = Tx(v). Observe that

Ker T = {(x, v) ∈ X ×H1 : v ∈ Ker Tx}

is isomorphic to

Ker T {0} = {(x, (v, 0)) ∈ X × (H1 ⊕ {0}) : (v, 0) ∈ Ker T {0}x }
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via
Ker T 3 (x, v) 7−→ (x, (v, 0)) ∈ Ker T {0} .

Therefore indB(T ) = [Ker T {0}] = [Ker T ] .

Corollary 3.41. Let X be a compact Hausdorff space and T : X → F(H1, H2) be a continuous
family of invertible operators. Then indB(T ) = 0.

Proof. By Proposition 3.40, we have indB(T ) = [Ker T ] . Notice that

Ker T =
⊔
x∈X

Ker Tx =
⊔
x∈X
{0} = X × {0} ,

from where it follows that indB(T ) = [X × {0}] = 0 ∈ K(X).

Proposition 3.42. Let X be a compact Hausdorff space, H be a Hilbert space and T : X → F(H,H)

be a continuous family of self-adjoint operators. Then indB(T ) = 0.

Proof. Preliminarily, note that a bounded operator L ∈ B(H,H) satisfies λ− (z+L) = (λ− z)−L
for every λ, z ∈ C, so that

λ ∈ σ(z + L) ⇐⇒ λ− z ∈ σ(L)

and therefore σ(z + L) = z + σ(L) for every z ∈ C (as subsets of C).
For x ∈ X, we have a self-adjoint operator Tx ∈ F(H,H). It is a well known fact that the

spectrum of a selfadjoint operator is contained in R (see [Sch12], for example), so that σ(Tx) ⊆ R.
Then, for t ∈ [0, 1] it is true that σ(it+Tx) = it+σ(Tx) ⊆ it+R. This gives 0 /∈ σ(it+Tx) whenever
t ∈ (0, 1], which means that it + Tx is invertible for every t ∈ (0, 1]. The map F : X × [0, 1] →
F(H,H), F (x, t) = it+ Tx, is a homotopy between T and the family of invertible operators i+ T .
Applying Propositions 3.33 and 3.41, we obtain indB(T ) = indB(i+ T ) = 0.

Corollary 3.43. Let X be a compact Hausdorff space and T : X → F(H1, H2) be continuous.
Suppose that either H1 = H2 or that both H1 and H2 are infinite dimensional. The following
equality holds in K(X):

indB(T ) = −indB(T ∗) .

Proof. It follows from the fact that the product T ∗T : X → F(H1, H1) is a family of selfadjoint
Fredholm operators and from either Proposition 3.36 or Proposition 3.39 that

0 = indB(T ∗T ) = indB(T ∗) + indB(T ) ,

as desired.

3.3.2 Second Approach

In this section, we follow closely what was done in the Appendix of [Ati67] and in [Muk13].
We begin with some preliminary results. I learned the following proof from Ruy Exel in [1].

Lemma 3.44 (Ruy Exel). Let X be a topological space and T : X → F(H1, H2) be continuous. Let
V ⊆ H1 be a closed linear subspace of finite codimension such that V ∩ Ker Tx = {0} for every
x ∈ X. For x ∈ X, let Px ∈ B(H2, H2) be the orthogonal projection onto Tx(V ). Then the map
P : X → B(H2, H2), x 7−→ Px, is continuous.
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Proof. For x ∈ X, let Sx =̇ Tx|V : V → H2. Since V has finite codimension and Tx induces a
surjective linear map H1/V → Tx(H1)/Tx(V ), we have that Tx(H1)/Tx(V ) is finite dimensional.
We have Ker Sx = {0} because V ∩ Ker Tx = {0}, and Coker Sx = H2/Sx(V ) = H2/Tx(V ) is
finite dimensional because dimH2/Tx(V ) = dimH2/Tx(H1) + dimTx(H1)/Tx(V ), so that Sx is
Fredholm. Then S∗x : H2 → V is also Fredholm, and S∗x(H2) = S∗x(H2) = (Ker Sx)⊥ = V . The map
S : X → F(V,H2), x 7−→ Sx, is continuous since

‖Sx − Sy‖ = ‖Tx|V − Ty|V ‖ ≤ ‖Tx − Ty‖ .

Consider the product S∗S : X → F(V, V ). For x ∈ X, we have that S∗xSx is a nonnegative selfadjoint
Fredholm operator. Also, 〈S∗xSx(v), v〉 = ‖Sx(v)‖2 gives Ker S∗xSx ⊆ Ker Sx = {0}. So S∗xSx(V ) =

(Ker S∗xSx)⊥ = V . By the Open Mapping Theorem, S∗xSx is an isomorphism. This allows us to define
the continuous map R =̇ S(S∗S)−1/2 : X → B(V,H2). Notice that, for x ∈ X, R∗x = (S∗xSx)−1/2S∗x

and
R∗xRx = (S∗xSx)−1/2S∗xSx(S∗xSx)−1/2 = idV

and this implies
(RxR

∗
x)2 = RxR

∗
xRxR

∗
x = RxR

∗
x .

Since (RxR
∗
x)∗ = RxR

∗
x, we have that RxR∗x is the orthogonal projection onto

RxR
∗
x(H2) = Sx(S∗xSx)−1/2(S∗xSx)−1/2S∗x(H2)

= Sx(S∗xSx)−1S∗x(H2)

= Sx(S∗xSx)−1(V )

= Sx(V )

= Tx(V ) .

Thus, RR∗ = P and we conclude that P is continuous.

Proposition 3.45. Let V ⊆ H1 and W ⊆ H2 be closed linear subspaces. For S ∈ B(H1, H2), define
φS : V ⊕W → H2 by φS(v, w) = S(v) + w. The map φ : B(H1, H2) → B(V ⊕W,H2), S 7−→ φS,
is continuous. Moreover, if S0 ∈ B(H1, H2) is such that φS0 is a Banach space isomorphism, then
there exists an open set U ⊆ B(H1, H2), with S0 ∈ U , such that for all S ∈ U ,

(i) V ∩Ker S = {0}

(ii) S(V ) is closed in H2

(iii) the map W → H2/S(V ), given by w 7−→ w + S(V ), is a Banach space isomorphism.

Proof. The map φ is continuous because from

‖(φS − φS′)(v, w)‖ = ‖(S − S′)(v)‖ ≤ ‖S − S′‖‖v‖ ≤ ‖S − S′‖‖(v, w)‖

one obtains ‖φS − φS′‖ ≤ ‖S − S′‖.
Now, since the set of invertible elements of B(V ⊕W,H2) is open (see Proposition 1.25) and

φS0 is invertible, there exists U open in B(H1, H2) with S0 ∈ U and such that φS is invertible for
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every S ∈ U . Let S ∈ U . One can easily see that (V ∩ Ker S) ⊕ {0} ⊆ Ker φS , showing that
V ∩Ker S = {0} since φS is injective. This proves (i). (ii) follows from S(V ) = φS(V ⊕ {0}). Note
that

W → V ⊕W
V ⊕ {0}

, w 7−→ (0, w) + (V ⊕ {0}),

is a linear isomorphism, as well as the map
V ⊕W
V ⊕ {0}

−→ φS(V ⊕W )

φS(V ⊕ {0})
=

H2

S(V )
, given by

(v, w) + (V ⊕ {0}) 7−→ φS(v, w) + φS(V ⊕ {0}) = w + S(V ) .

The composition of these maps is precisely the map described in (iii), concluding the proof.

Proposition 3.46. Let T ∈ F(H1, H2) and let V ⊆ H1 be a closed linear subspace of finite
codimension such that V ∩ Ker T = {0}. Then H2/T (V ) is finite dimensional and T (V ) is closed
in H2.

Moreover, there is an open set U ⊆ B(H1, H2), with T ∈ U , such that for all S ∈ U ,

(i) V ∩Ker S = {0}

(ii) S(V ) is closed in H2

(iii) the map T (V )⊥ → H2/S(V ), given by w 7−→ w + S(V ), is a Banach space isomorphism.

Proof. Since V has finite codimension and T induces a surjective linear map H1/V → T (H1)/T (V ),
we have that T (H1)/T (V ) is finite dimensional. The sequence

0 T (H1)/T (V ) H2/T (V ) H2/T (H1) 0

is a short exact sequence of vector spaces, and therefore it splits. Then H2/T (V ) is isomorphic to
T (H1)/T (V ) ⊕ H2/T (H1) and one has dimH2/T (V ) < ∞. The operator T1 =̇ T |V : V → H2 is
Fredholm, so that T (V ) = T1(V ) is closed in H2.

Now, let W =̇ T (V )⊥. The linear map T ′ : V ⊕W → H2, T ′(v, w) = T (v) + w, is a continuous
bijection since V ∩ Ker T = {0} and H2 = T (V ) ⊕W . By the Open Mapping Theorem, T ′ is an
isomorphism. We can then apply Proposition 3.45 noting that T ′ = φT to obtain the neighborhood
U of T in B(H1, H2) satisfying the desired properties.

Let T ∈ F(H1, H2). Take V =̇ (Ker T )⊥ and let U be given by Proposition 3.46. Fix S ∈ U .
We have a surjection H2/S(V ) −→ H2/S(H1), y+S(V ) 7−→ y+S(H1), so that Coker S has finite
dimension (recall that H2/S(V ) ∼= T (V )⊥ is finite dimensional). Similarly, taking Ṽ =̇ (Ker T ∗)⊥,
we obtain an open set Ũ ⊆ B(H2, H1) satisfying properties corresponding to (i), (ii) and (iii) of
Proposition 3.46. Denote by U∗ the set {S∗ : S ∈ U}, which is an open set because the adjoint
map is a homeomorphism. Without loss of generality, eventually replacing Ũ by Ũ ∩ U∗ and U by
(Ũ)∗ ∩ U = (Ũ ∩ U∗)∗, we can assume that Ũ = U∗. By the above argument, Coker S∗ is finite
dimensional, so that

Ker S = S∗(H2)
⊥ ∼= H1/S

∗(H2) = Coker S∗

is also finite dimensional. Therefore, every S ∈ U is Fredholm.
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Remark 3.47. The above discussion shows that we can eventually shrink the open subset U of
B(H1, H2) given by Proposition 3.46 to obtain a neighborhood of T that is entirely contained in
F(H1, H2).

In particular, we obtain the following

Corollary 3.48. F(H1, H2) is open in B(H1, H2).

Theorem 3.49. Let T ∈ F(H1, H2) and let V ⊆ H1 be a closed linear subspace of finite codimension
such that V ∩ Ker T = {0}. Then there exists an open set U ⊆ B(H1, H2), with T ∈ U , such that
the disjoint union ⊔

S∈U
H2/S(V ) ,

topologized as a quotient space of U ×H2, has the structure of a vector bundle over U .

Proof. Consider U as described in Proposition 3.46. By Remark 3.47, we can assume that U is
entirely contained in F(H1, H2).

Let us be more explicit about the topology of
⊔
S∈U H2/S(V ). In U ×H2 , consider the equiv-

alence relation
(S, x) ∼ (T, y) ⇐⇒

(
S = T and y − x ∈ S(V )

)
.

The quotient space (U ×H2)/∼ is precisely
⊔
S∈U H2/S(V ). It is clear that the projection onto the

first coordinate U × H2 → U , (S, x) 7−→ S, induces a continuous map p :
⊔
S∈U H2/S(V ) −→ U ,

acting as p(x+ S(V )) = S. For every S ∈ U , we have that p−1(S) = H2/S(V ).
Given S ∈ U , let S|V ∈ B(V,H2) be the restriction of S to V . Since V ∩Ker S = {0} and S(V )

has finite codimension, we have that S|V is Fredholm. The dimension of Ker (S|V )∗ = S(V )⊥ is
constant on S ∈ U because S(V )⊥ ∼= H2/S(V ) ∼= T (V )⊥ (due to Proposition 3.46), so that we can
apply Proposition 3.23 to conclude that the disjoint union⊔

S∈U
S(V )⊥ =

⊔
S∈U

Ker (S|V )∗,

seen as a topological subspace of U × H2, is a vector bundle over U (its projection arises from
restricting the projection onto the first coordinate U ×H2 → U).

To conclude that
⊔
S∈U H2/S(V ) is a vector bundle over U , we are going to prove that there

exists a homeomorphism between

E =̇
⊔
S∈U

S(V )⊥ ⊆ U ×H2 and F =̇
⊔
S∈U

H2/S(V ) = (U ×H2)/∼

that commutes with projections and is linear on fibers. The restriction of the quotient projection
U × H2 → F to E is a continuous map ϕ : E → F , given by ϕ(S, x) = x + S(V ), that clearly
commutes with projections and is linear on fibers. Let us construct a continuous inverse for ϕ. For
S ∈ U , let PS : H2 → H2 be the orthogonal projection onto S(V ). By Lemma 3.44, the map U 3
S 7−→ PS ∈ B(H2, H2) is continuous, from where we obtain the continuity of the map U ×H2 → E,
(S, x) 7−→ (S, x − PS(x)). Notice that the former map is compatible with the equivalence relation
∼, so that it induces a continuous map ψ : F → E satisfying ψ(x + S(V )) = (S, x − PS(x)). It is
straightforward to see that ψ is the desired inverse for ϕ.



56 FAMILIES-INDEX AND ATIYAH-JÄNICH THEOREM 3.3

Proposition 3.50. Let X be a compact topological space and T : X → F(H1, H2), x 7−→ Tx, be a
continuous map. Then

(i) there exists a closed subspace V ⊆ H1 of finite codimension such that V ∩ Ker Tx = {0} for
every x ∈ X.

(ii) the set ⊔
x∈X

H2/Tx(V ) ,

topologized as a quotient space of X ×H2, is a vector bundle over X. This vector bundle will
be denoted by H2/T (V ).

Proof. Fix x ∈ X and let Vx =̇ (Ker Tx)⊥. From Proposition 3.46 and Remark 3.47, there exists
an open neighborhood Ux of Tx in F(H1, H2) such that each S ∈ Ux satisfies Vx ∩ Ker S = {0}.
Consider Ux =̇ T−1(Ux) ⊆ X. Notice that Vx ∩Ker Ty = {0} for every y ∈ Ux. Compactness of X
provides a finite cover Ux1 , · · · , Uxn of X. We can then define V =̇

⋂n
k=1 Vxk , which satisfies (i).

Now, for each x ∈ X one can apply Theorem 3.49 to Tx to obtain an open neighborhood U of
x such that

⊔
y∈X H2/Ty(V )

∣∣
U

=
⊔
y∈U H2/Ty(V ) is trivial, proving (ii).

We need one more technical result before we are able to give Atiyah’s definition of the index of
a family of Fredholm operators.

Proposition 3.51. Let X be a compact space and T : X → F(H1, H2) be continuous. Let V, V ′ ⊆
H1 be closed linear subspaces with finite codimension such that V ∩ Ker Tx = {0} = V ′ ∩ Ker Tx

for every x ∈ X. Then we have the following equality in K(X):

[X × (H1/V )]− [H2/T (V )] = [X × (H1/V
′)]− [H2/T (V ′)] .

Proof. First assume V ′ ⊆ V . We have the short exact sequence of trivial vector bundles

0 X × (V/V ′) X × (H1/V
′) X × (H1/V ) 0

f g

where f and g are bundle morphisms induced by the inclusion V ↪−→ H1 and the surjective map
H1/V

′ � H1/V , respectively. This sequence splits since these vector bundles are trivial and every
short exact sequence of vector spaces splits, so that

X × (H1/V
′) ∼= (X × (H1/V ))⊕ (X × (V/V ′)) . (3.5)

Notice that T induces a bundle isomorphism between X × (V/V ′) and

T (V )/T (V ′) =
⊔
x∈X

Tx(V )/Tx(V ′)

as follows: we compose the continuous map T ′ : X×V → X×H2 given by T ′(x, v) = (x, Tx(v)) with
the quotient projectionX×H2 −→ H2/T (V ′), obtaining a continuous map that sends (x, v) ∈ X×V
to Tx(v)+Tx(V ′) ∈ H2/T (V ′). Notice that (x, v1−v2) ∈ X×V ′ is sent to Tx(v1−v2)+Tx(V ′) = 0

via this composition. This allows us to define ϕ : X × (V/V ′) → H2/T (V ′) by ϕ(x, v + V ′) =
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Tx(v) + Tx(V ′), making the diagram

X × V X ×H2

X × (V/V ′) H2/T (V ′)

T ′

ϕ

commutative. Since V ∩Ker T = {0}, we have that Tx(v) ∈ Tx(V ′) =⇒ v ∈ V ′, implying that ϕ
is injective. Thus ϕ is a bundle isomorphism between X × V/V ′ and ϕ(X × V/V ′) = T (V )/T (V ′)

due to Propositions 2.22 and 2.12. Besides, we have the short exact sequence

0 T (V )/T (V ′) H2/T (V ′) H2/T (V ) 0i j (3.6)

where i is an inclusion and j is defined via the diagram (just like the map ϕ above)

X ×H2 X ×H2

H2/T (V ′) H2/T (V )

idX×H2

j

(explicitly, we have j(v+Tx(V ′)) = v+Tx(V )). Let us prove that sequence (3.6) splits. For x ∈ X,
we consider Px ∈ B(H2, H2) to be the orthogonal projection onto Tx(V ). Lemma 3.44 shows that
P : X → B(H2, H2), x 7−→ Px, is continuous. The continuous map p : H2/T (V ′) → H2/T (V ′)

defined by the commutative diagram

X ×H2 X ×H2

H2/T (V ′) H2/T (V ′)

P

p

satisfies p(v + Tx(V ′)) = Px(v) + Tx(V ′). Thus

p ◦ i(Tx(v) + Tx(V ′)) = p(Tx(v) + Tx(V ′)) = Px(Tx(v)) + Tx(V ′) = Tx(v) + Tx(V ′) .

This shows that p defines a splitting at the left of the sequence (3.6). Therefore, by Proposition
2.30,

H2/T (V ′) ∼= H2/T (V )⊕ T (V )/T (V ′) ∼= H2/T (V )⊕ (X × (V/V ′)) . (3.7)

By (3.5) and (3.7), we have

[X × (H1/V
′)] = [X ×H1/V ] + [X × (V/V ′)]

and
[H2/T (V ′)] = [H2/T (V )] + [X × (V/V ′)],

from where it follows that

[X × (H1/V
′)]− [X × (H1/V )] = [X × (V/V ′)] = [H2/T (V ′)]− [H2/T (V )] ,
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which proves the desired result.
Now we can drop the assumption V ′ ⊆ V simply noticing that V ∩ V ′ is a closed subspace of

H1 and
H1

V ∩ V ′
∼=
H1

V
⊕ V

V ∩ V ′
∼=
H1

V
⊕ V + V ′

V ′

so that V ∩ V ′ has finite codimension. Besides, (V ∩ V ′) ∩ Ker Tx ⊆ V ∩ Ker Tx = {0} for every
x ∈ X. From what we have proved above, it follows that

[X × (H1/V )]− [H2/T (V )] = [X × (H1/(V ∩ V ′))]− [H2/T (V ∩ V ′)]

= [X × (H1/V
′)]− [H2/T (V ′)] .

This concludes the proof.

Definition 3.52. Let X be a compact space and T : X → F(H1, H2) be continuous.The A-index
bundle of T is

indA(T ) = [X × (H1/V )]− [H2/T (V )] ∈ K(X) ,

where V is a closed linear subspace of H1 with finite codimension such that V ∩Ker Tx = {0} for
every x ∈ X.

Proposition 3.51 shows that the above definition of index depends only on T and not on the
choice of V .

Remark 3.53. As in Remark 3.31, let X = {x0} and see the map T : {x0} → F(H1, H2) as a single
Fredholm operator T =̇ Tx0 ∈ F(H1, H2). Choosing V =̇ (Ker T )⊥, it follows that H1/V ∼= Ker T

and H2/T (V ) ∼= Coker T . Recall that Vect {x0} = N (see Examples 2.45 and 2.48), so K({x0}) = Z
and this allows us to say that indA(T ) is the difference of integers dim Ker T − dim Coker T . This
proves that the A-index bundle coincides with the classical Fredholm index in these conditions.

3.3.3 Equivalence of the two Indices

Our goal in this section is to prove that our two approaches to define the index bundle give the
same object.

Let X be a compact Hausdorff space, H1 and H2 be Hilbert spaces, and T : X → F(H1, H2) be
a continuous map. Suppose that either H1 = H2 or that both H1 and H2 are infinite dimensional.
We shall prove that indA(T ) = indB(T ) in K(X).

Let W ⊆ H2 be a finite dimensional linear subspace such that Tx(H1) + W = H2 for every
x ∈ X. Recall that the B-index bundle of T is

indB(T ) = [Ker TW ]− [X ×W ] , (3.8)

where TW : X → F(H1 ⊕W,H2) is defined by TWx (v, w) = Tx(v) + w.
Observe that W⊥ is a closed linear subspace of finite codimension and, for x ∈ X,

W⊥ ∩Ker T ∗x = W⊥ ∩ Tx(H1)
⊥ ⊆ (W + Tx(H1))

⊥ = H⊥2 = {0} .
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Therefore, we can take V = W⊥ in Definition 3.52 and write

indA(T ∗) = [X ×H2/W
⊥]− [H1/T

∗(W⊥)] = [X ×W ]− [H1/T
∗(W⊥)] , (3.9)

where H1/T
∗(W⊥) =

⊔
x∈X

H1/T
∗
x (W⊥) is topologized as the quotient space of X ×H1 obtained via

the equivalence relation (x, v) ∼ (x′, v′) ⇐⇒
(
x = x′ and v − v′ ∈ T ∗x (W⊥)

)
.

Consider the continuous map ψ : Ker TW → X ×H1 given by ψ(x, (v, w)) = (x, v). Composing
ψ with the quotient map X ×H1 −→ H1/T

∗(W⊥), we obtain the continuous map ϕ : Ker TW →
H1/T

∗(W⊥) given by ϕ(x, (v, w)) = v + T ∗x (W⊥). Clearly, ϕ is fiberwise linear, being therefore a
bundle morphism.

We are going to prove that ϕ is a bundle isomorphism. By Proposition 2.12, it suffices to prove
that ϕ is fiberwise bijective. Fix x ∈ X. Since W is closed, we have that T−1x (W ) = T ∗(W⊥)⊥.
Besides, every (v, w) ∈ Ker TWx ⊆ H1⊕W satisfies Tx(v) = −w, so that v ∈ T−1x (W ) = T ∗x (W⊥)⊥.
Therefore, an element of Ker TWx is of the form (v, Tx(−v)) for a suitable v ∈ T ∗x (W⊥)⊥.

Since W has finite dimension, T ∗|W⊥ : W⊥ → H1 is also Fredholm, and therefore T ∗(W⊥) is
closed in H1. We can then write

H1 = T ∗x (W⊥)⊕ T ∗x (W⊥)⊥ = T ∗x (W⊥)⊕ T−1x (W ).

For every v = v1 + v2 ∈ T ∗x (W⊥)⊕ T−1x (W ), with v1 ∈ T ∗x (W⊥) and v2 ∈ T−1x (W ), we have

v + T ∗x (W⊥) = v2 + T ∗x (W⊥) = ϕ(x, (v2, Tx(−v2)))

which proves that ϕx : Ker TWx → H1/T
∗
x (W⊥) is surjective.

On the other hand, if we let (v, Tx(−v)), (v′, Tx(−v′)) ∈ Ker TWx be such that v, v′ ∈ T ∗x (W⊥)⊥,
it follows that

ϕ(x, (v, Tx(−v))) = ϕ(x, (v′, Tx(−v′))) =⇒ v + T ∗x (W⊥) = v′ + T ∗x (W⊥)

=⇒ v − v′ ∈ T ∗x (W⊥)

=⇒ v = v′ ,

proving that ϕx is injective.
In conclusion, ϕ : Ker TW → H1/T

∗(W⊥) is a bundle isomorphism.
Comparing equations (3.8) and (3.9) and using Corollary 3.43, it follows that

indB(T ∗) = −indB(T ) = indA(T ∗) .

Applying the above argument to T ∗, we obtain

Theorem 3.54. Let X be a compact Hausdorff space. Assume that either H1 = H2 or that both
H1 and H2 have infinite dimension. Every continuous map T : X → F(H1, H2) satisfies indA(T ) =

indB(T ).

Definition 3.55. Let X be a compact Hausdorff topological space. Assume that either H1 = H2

or that both H1 and H2 have infinite dimension. The index bundle of a continuous map T : X →
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F(H1, H2) is
ind(T ) =̇ indA(T ) = indB(T ) .

To sum up, given a compact Hausdorff topological space X, to each pair of Hilbert spaces
(H1, H2) such that either H1 = H2 or both H1 and H2 are infinite dimensional, we have a map
ind: C(X,F(H1, H2))→ K(X), from the set of continuous maps X → F(H1, H2) into the K-group
of X, satisfying the following equations in K(X):

(a) ind(S) = ind(T ) if S is homotopic to T ;

(b) ind(S ⊕ T ) = ind(S) + ind(T ) ;

(c) ind(ST ) = ind(S) + ind(T ) ;

(d) ind(T ) = 0 if Tx is invertible for every x ∈ X ;

(e) ind(T ) = 0 if Tx is self-adjoint for every x ∈ X ;

(f) ind(T ) = −ind(T ∗) .

From (a), it follows that ind: C(X,F(H1, H2))→ K(X) induces a map [X,F(H1, H2)]→ K(X),
defined on the set of homotopy classes of continuous maps X → F(H1, H2), which we will also
denote by ind . This latter map is called families-index.

3.4 The Atiyah-Jänich Theorem

In this section, X will denote a compact Hausdorff topological space as well as H will denote an
infinite dimensional Hilbert space. For simplicity, we will denote B(H,H) by B(H), and F(H,H)

by F(H).
The monoid structure on F(H) induces a monoid structure in C(X,F(H)) under the pointwise

product of families of operators. If F : X×[0, 1]→ F(H) is a homotopy between S, S′ ∈ C(X,F(H))

and G : X × [0, 1] → F(H) is a homotopy between T, T ′ ∈ C(X,F(H)), then FG is a homotopy
between ST and S′T ′. Therefore, the pointwise product on C(X,F(H)) induces a monoid structure
in [X,F(H)], the set of homotopy classes of continuous maps X → F(H).

From (a) and (c) above, we have

Theorem 3.56. The families-index

ind: [X,F(H)] −→ K(X)

is a monoid morphism.

Lemma 3.57. Let B = {ei}i∈Nt{eα}α∈A be a Hilbert basis for H (we could take A to be the empty
set in case H is separable). For k ∈ Z, let Sk = S

(B)
k ∈ F(H) be the operator defined in Example

3.2 and denote by Sk : X → F(H) the constant map x 7−→ Sk. If k ≥ 0, we have

ind(Sk) = [X × Ck] and ind(S−k) = −[X × Ck] .
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Proof. Let k ≥ 0. Recall that the linear maps Sk = S
(B)
k ∈ F(H) and S−k = S

(B)
−k ∈ F(H) are

defined by

S
(B)
k (ej) =


ej−k if j ∈ N and j > k,

0 if j ∈ N and j ≤ k,
ej if j ∈ A.

and S
(B)
−k (ej) =

{
ej+k if j ∈ N,
ej if j ∈ A,

Since the operator Sk ∈ F(H) is surjective, we have that the index of the family Sk is given by
ind(Sk) = [Ker Sk] . Since Ker Sk = span{e1, · · · , ek} ∼= Ck, it follows that

Ker Sk =
⊔
x∈X

Ker Sk =
⊔
x∈X

span{e1, · · · , ek} = X × span{e1, · · · , ek} ∼= X × Ck ,

proving that ind(Sk) = [X × Ck].
Let I : X → F(H) denote the constant map x 7−→ idH . Since SkS−k = I, it follows that

0 = ind(I) = ind(SkS−k) = ind(Sk) + ind(S−k) ,

from where we obtain ind(S−k) = −[X × Ck] .

Lemma 3.58. Let V and W be vector spaces, {v1, · · · , vN} be a linearly independent subset of
V and {w1, · · · , wN} be an arbitrary subset of W . If

∑N
i=1 vi ⊗ wi = 0, then wj = 0 for every

j = 1, · · · , N .

Proof. Let {u1, · · · , un} be a basis for span{w1, · · · , wN}. Complete {v1, · · · , vN} and {u1, · · · , un}
and get basis for V and W , respectively, say BV and BW . Recall that {v ⊗ w : v ∈ BV , w ∈ BW }
forms a basis for V ⊗W . Writing wi =

∑n
j=1 λijuj , we have

0 =
N∑
i=1

vi ⊗ wi =
N∑
i=1

vi ⊗
( n∑
j=1

λijuj

)
=

N∑
i=1

n∑
j=1

λij
(
vi ⊗ uj

)
so that λij = 0 for every i, j, finishing the proof.

Proposition 3.59. The bundle index ind: [X,F(H)]→ K(X) is surjective.

Proof. Let B = {ei}i∈N t {eα}α∈A be a Hilbert basis for H. Let

H1 =̇ span{ei}i∈N and H2 =̇ span{eα}α∈A ,

so that H = H1 ⊕H2.2

By Proposition 2.50, every element in K(X) is of the form [E]− [X×Ck] for some vector bundle
E → X and some k ≥ 0. Let E → X be a vector bundle. It suffices to construct a family T such
that ind(T ) = [E] since then it will follow that

ind(TS−k) = ind(T ) + ind(S−k) = [E]− [X × Ck] ,

where S−k = S
(B)
−k is the operator associated to B as in Lemma 3.57. By Proposition 2.36 there

exists N > 0 such that E is a subbundle of X×CN . For x ∈ X, let Px : CN → CN be the orthogonal
2Here, span W stands for the closure of the linear space generated by a subset W ⊆ H.
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projection onto Ex and let Qx =̇ idCN−Px (Qx is the orthogonal projection onto E⊥x ). Let S1 = S
(B)
1

be as in Lemma 3.57:

S1(ej) =


ej−1 if j ∈ N and j > 1,

0 if j = 1,

ej if j ∈ A.

Define T : X → B(CN ⊗H) by
Tx =̇ Px ⊗ S1 +Qx ⊗ idH

By Lemma 2.37, x 7−→ Px is continuous, so that T is a continuous map. Fix x ∈ X. First note that
Tx restricts to the identity map over CN ⊗H2: if ξ ∈ CN and v ∈ H2, then

Tx(ξ ⊗ v) = Px(ξ)⊗ S1(v) +Qx(ξ)⊗ idH(v) = (Px(ξ) +Qx(ξ))⊗ v = ξ ⊗ v

Moreover, Tx restricts to a surjective map over CN ⊗H1: given ξ ∈ CN and i ∈ N, we have

Tx(Qx(ξ)⊗ ei + Px(ξ)⊗ ei+1) = (Px ⊗ S1 +Qx ⊗ idH)(Qx(ξ)⊗ ei + Px(ξ)⊗ ei+1)

= PxQx(ξ)⊗ S1(ei) + P 2
x (ξ)⊗ S1(ei+1) +Q2

x(ξ)⊗ ei +QxPx(ξ)⊗ ei+1

= Px(ξ)⊗ ei +Qx(ξ)⊗ ei
= (Px(ξ) +Qx(ξ))⊗ ei
= ξ ⊗ ei

(boundedness of each Tx gives surjectivity because span{ξ ⊗ ei : ξ ∈ CN , i ∈ N} = CN ⊗ H1).
Therefore, Tx is a surjective map.

Now, let
∑n

i=1 ξi ⊗ vi ∈ Ker Tx. We can assume {vi}ni=1 is linearly independent. Using the
decomposition CN = Ex ⊕ E⊥x , write ξi = ωi + ηi with ωi ∈ Ex and ηi ∈ E⊥x . Let {aj}mj=1 and
{bj}N−mj=1 be bases for Ex and E⊥x , respectively. Write ωi =

∑m
j=1 αijaj and ηi =

∑N−m
j=1 βijbj .

Applying Tx to

n∑
i=1

ξi ⊗ vi =
n∑
i=1

ωi ⊗ vi +
n∑
i=1

ηi ⊗ vi

=
n∑
i=1

m∑
j=1

αijaj ⊗ vi +
n∑
i=1

N−m∑
j=1

βijbj ⊗ vi

leads us to (observe that Px(ωi) = ωi, Px(ηi) = 0 = Qx(ωi) and Qx(ηi) = ηi)

0 =

n∑
i=1

ωi ⊗ S1(vi) +

n∑
i=1

ηi ⊗ vi

=
n∑
i=1

m∑
j=1

αijaj ⊗ S1(vi) +
n∑
i=1

N−m∑
j=1

βijbj ⊗ vi

=

m∑
j=1

aj ⊗ S1
( n∑
i=1

αijvi

)
+

N−m∑
j=1

bj ⊗
( n∑
i=1

βijvi

)
.
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By Lemma 3.58, it follows that

n∑
i=1

αijvi ∈ Ker S1 = span{e1} ∀j = 1, · · · ,m

and
n∑
i=1

βijvi = 0 ∀j = 1, · · · , N −m.

Since {vi}ni=1 is linearly independent, one has βij = 0 for every j = 1, · · · , N and every i = 1, · · · , n,
which imply ηi = 0 for all i = 1, · · · , n. Putting all this together, we have

n∑
i=1

ξi ⊗ vi =

n∑
i=1

ωi ⊗ vi

=

n∑
i=1

m∑
j=1

αijaj ⊗ vi

=
m∑
j=1

aj ⊗
( n∑
i=1

αijvi

)
∈ Ex ⊗ span{e1} .

This shows that Ker Tx ⊆ Ex ⊗ span{e1}. On the other hand, for ξ ∈ Ex,

Tx(ξ ⊗ e1) = Px(ξ)⊗ S1(e1) +Qx(ξ)⊗ e1 = 0 .

Thus Ker Tx = Ex ⊗ span{e1}. This proves in particular that Tx is a Fredholm operator for each
x ∈ X. We can then regard T as a continuous map X → F(CN ⊗H). Since each Tx is surjective,
Proposition 3.40 gives that

ind(T ) = [Ker T ] .

Notice that E ⊆ X × CN is isomorphic to

Ker T = {(x, u) ∈ X × (CN ⊗H) : u ∈ Ker Tx}

= {(x, u) ∈ X × (CN ⊗H) : u ∈ Ex ⊗ span{e1}}

via
E 3 (x, ξ) 7−→ (x, ξ ⊗ e1) ∈ Ker T .

Therefore, we obtain ind(T ) = [Ker T ] = [E].
We have obtained a continuous map T : X → F(CN⊗H) with ind(T ) = [E]. Let I : CN⊗H → H

be an isomorphism of Banach spaces. The product ITI−1 : X → F(H), given by x 7−→ ITxI
−1, is

a continuous family of Fredholm operators in H that, by Lemma 3.38, satisfies

ind(ITI−1) = ind(T ) = [E] ,

as desired.

Denote by GL(H) ⊆ B(H) the set of invertible bounded linear operators in H.

Lemma 3.60. Let T : X → F(H) be continuous. If ind(T ) = 0, then T is homotopic to a continuous
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map X → GL(H).

Proof. Let V ⊆ H be a closed linear subspace of finite codimension such that V ∩Ker Tx = {0} for
every x ∈ X. We have

0 = ind(T ) = indA(T ) = [X × (H/V )]− [H/T (V )] .

Now, since [X × (H/V )] = [H/T (V )], by Proposition 2.50 there exists k ≥ 0 such that

X ×
(
(H/V )⊕ Ck

) ∼= (X × Ck)⊕H/T (V ) .

Let W be a closed linear subspace of V with dimV/W = k. We clearly have

X × (H/W ) ∼= X ×
(
(H/V )⊕ (V/W )

) ∼= X ×
(
(H/V )⊕ Ck

)
.

Now we need to read again the proof of Proposition 3.51 and invoke Equation (3.7) with W instead
of V ′, obtaining

H/T (W ) ∼= H/T (V )⊕ (X × (V/W )) ∼= H/T (V )⊕ (X × Ck) .

Putting together the three previous isomorphisms, we get a bundle isomorphism

α : X × (H/W ) −→ H/T (W ) . (3.10)

For x ∈ X, let Px ∈ B(H) be the orthogonal projection onto Tx(W ). Lemma 3.44 gives the
continuity of P : X → B(H), x 7−→ Px. Consider the continuous map χ : X × H → X × H

given by χ(x, v) = (x, v − Px(v)). Note that for (x, v), (x, v′) ∈ X × H with v − v′ ∈ Tx(W )

we have that Px(v − v′) = v − v′, so that χ(x, v) = χ(x, v′). Thus, χ induces a continuous map
ψ : H/T (W )→ X ×H making the diagram

X ×H X ×H

H/T (W )

χ

ψ

commutative, that is, for (x, v) ∈ X×H the map ψ sends v+Tx(W ) to (x, v−Px(v)) continuously.
Note that, for every x ∈ X, ψ maps H/Tx(W ) isomorphically onto Tx(W )⊥. The composition
ψ ◦ α : X × (H/W ) → X × H induces a continuous map S : X → B(H/W,H) such that Sx is a
linear isomorphism from H/W onto Tx(W )⊥ for every x ∈ X. Since W ∩ Ker Tx = {0} for every
x ∈ X, we have that Tx is a linear isomorphism from W onto Tx(W ).

Let Q ∈ B(H) be the orthogonal projection onto W⊥, and define F : X × [0, 1]→ F(H) by

F(x,t)(v) = Tx(v − tQ(v)) + Sx(tQ(v) +W ) .

We have that F is a homotopy between T and T ′ : X → F(H), T ′x(v) = Tx(v−Q(v))+Sx(Q(v)+W ).
Fix x ∈ X and let us prove that T ′x is an isomorphism from H onto itself. Since

H = Tx(W )⊕ Tx(W )⊥ = Tx(W )⊕ Sx(H/W ) ,
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we have that T ′x is surjective. Besides, if v ∈ H is such that T ′x(v) = 0, then Tx(v − Q(v)) =

−Sx(Q(v) + W ) ∈ Tx(W ) ∩ Tx(W )⊥, so that Tx(v − Q(v)) = 0 = Sx(Q(v) + W ). Since T |W is
injective, we obtain v = Q(v). On the other hand, injectivity of Sx gives Q(v) ∈ W , which is
only possible if Q(v) = 0. Thus v = 0. In conclusion, T is homotopic to the continuous family of
invertible operators T ′.

Let i : [X,GL(H)] → [X,F(H)] be the map induced by the inclusion GL(H) ↪−→ F(H).
Corollary 3.41 gives that the index bundle of a family of invertible operators is trivial, so that
i([X,GL(H)]) ⊆ Ker ind . On the other hand, Lemma 3.60 shows that Ker ind ⊆ i([X,GL(H)]).
Therefore

Ker ind = i([X,GL(H)]) . (3.11)

A theorem by Kuiper [Kui65] states that [X,GL(H)] = 0 whenever H is a separable Hilbert
space. This result remains true for arbitrary infinite dimensional Hilbert spaces (see [Ill65]).

Applying this to equation (3.11), one obtain that the index bundle ind has trivial kernel. Since
ind was already shown to be surjective (Proposition 3.59), Proposition 1.6 allows us to say that ind

is also injective. We have proved the main result of this text.

Theorem 3.61 (Atiyah-Jänich). Let X be a compact Hausdorff topological space and H be an
infinite dimensional Hilbert space. The families-index

ind: [X,F(H)] −→ K(X)

is an isomorphism.

Corollary 3.62. If X is a compact Hausdorff space and H is an infinite dimensional Hilbert space,
then the monoid [X,F(H)] is actually an abelian group.

Let us interpret the Atiyah-Jänich Theorem from the viewpoint of Category Theory.
Fix an infinite dimensional Hilbert space H. For every compact Hausdorff topological space X,

we can associate the monoid [X,F(H)]. Let X and Y be compact Hausdorff spaces and f : X → Y

be continuous. We have the associated map

C(Y,F(H)) −→ C(X,F(H)), T 7−→ T ◦ f . (3.12)

Notice that this map is compactible with the pointwise product, that is,

(ST ) ◦ f = (S ◦ f)(T ◦ f), for every S, T ∈ C(Y,F(H)) ,

so that it is a monoid morphism. Now, suppose that S, T ∈ C(Y,F(H)) are homotopic, and let
G : Y × [0, 1]→ F(H) be a homotopy between them. The continuous map H : X × [0, 1]→ F(H),
given by H(x, t) = G(f(x), t), is then a homotopy between S ◦ f and T ◦ f . Thus, (3.12) induces a
monoid morphism

f∗ : [Y,F(H)] −→ [X,F(H)] .

Therefore, this association provides a contravariant functor from the category of compact Hausdorff
topological spaces into the category of monoids, which we shall call F.
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Recalling that every abelian group can be seen as a monoid, the K-theory functor can be seen as
a contravariant functor from the category of compact Hausdorff topological spaces into the category
of monoids. It is a consequence of Lemma 3.32 that the families-index

ind: [X,F(H)] −→ K(X)

is a natural transformation between the functors F and K. In this context, what the Atiyah-Jänich
Theorem actually states is that ind is a natural isomorphism.
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