


THIRD 	EDITION 

V 

ELEMENTARY GEOMETRY 
from an 

Advanced Standpoint 

Edwin E. Moise 
Emeritus, Queens College of the City University of New York 

• 
7' 

ADDISON-WESLEY PUBLISHING COMPANY 

Reading, Massachusetts • Menlo Park, California 
New York • Don Mills, Ontario • Wokingham, England 

Amsterdam • Bonn • Sydney • Singapore Tokyo • Madrid San Juan 



Sponsoring Editor: Charles B. Glaser 
Production Administrator: Catherine Felgar 
Editorial and Production Services: The Book Company 
Text Design: Adriane Bosworth 
Manufacturing Supervisor: Roy Logan 

Library of Congress Cataloging-in-Publication Data 

Moise, Edwin E. 
Elementary geometry from an advanced standpoint / by Edwin E. 

Moise. —3rd ed. 

P. 	cm. 
ISBN 0-201-50867-2 
1. Geometry. 	I. Title. 

QA445.M58 1990 	 89-37241 
516.2 — dc20 	 CIP 

Photos on pages 92, 138, 249, 416, 454 
Courtesy of The Bettman Archive. 

Copyright © 1990 by Addison-Wesley Publishing Company, Inc. 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system or transmitted, in any form or by any means, electronic, mechanical, photocopying, 
recording, or otherwise, without the prior written permission of the publisher. Printed in 
the United States of America. 

3 4 5 6 7 8 9 10 DO 9594939291 



Preface 

The title of this book is the best brief description of its content and purposes 
that the author was able to think of. These purposes are rather different from 
those of most books on "higher geometry" or the foundations of geometry. 
The difference that is involved here is somewhat like the difference between 
the two types of advanced calculus courses now commonly taught. Some courses 
in advanced calculus teach material which has not appeared in the preceding 
courses at all. There are others which might more accurately be called courses in 
elementary calculus from an advanced standpoint: their purpose is to clean up 
behind the introductory courses, furnishing valid definitions and valid proofs 
for concepts and theorems which were already known, at least in some sense 
and in some form. One of the purposes of the present book is to reexamine 
geometry in the same spirit. 

If we grant that elementary geometry deserves to be thoroughly understood, 
then it is plain that such a job needs to be done; and no such job is done in any 
college course now widely taught. The usual senior-level courses in higher ge-
ometry proceed on the very doubtful assumption that the foundations are well 
understood. And courses in the foundations (when they are taught at all) are 
usually based on such delicate postulate sets, and move so slowly, that they 
cover little of the substance of the theory. The upshot of this is that mathemat-
ics students commonly leave college with an understanding of elementary 
geometry which is not much better than the understanding that they acquired 
in high school. 

The purpose of this book is to elucidate, as thoroughly as possible, both this 
elementary material and its surrounding folklore. My own experience, in teach-
ing the course to good classes, indicates that it is not safe to presuppose an 
exact knowledge of anything. Moreover, the style and the language of traditional 
geometry courses are rather incongruous with the style and the language of 
the rest of mathematics today. This means that ideas which are, essentially, well 
understood may need to be reformulated before we proceed. (See, for example, 
Chapter 6, on Congruences Between Triangles.) In some cases, the reasons for 
reformulation are more compelling. For example, the theory of geometry in-
equalities is used in the chapter on hyperbolic geometry; and this would hardly 
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be reasonable if the student had not seen these theorems proved without the 
use of the Euclidean parallel postulate. 

For these reasons, the book begins at the beginning. Some of the chapters 
are quite easy, for a strong class, and can simply be assigned as outside reading. 
Others, such as Chapters 20 and 24, are more difficult. These differences are 
due to the nature of the material: it is not always possible to get from one place 
to another by walking along a path of constant slope. 

This unevenness in level of difficulty makes the book rather flexible. A well-
prepared class may go rapidly through Chapters 1-7, and devote most of its 
time to the sort of material presented in Chapters 8, 10, 14, 19, and 20. A 
poorly prepared class may go carefully through Chapter 1-7, omit such chap-
ters as 14 and 20, and still not get to Chapter 25. 

The book is virtually self-contained. The necessary fragments of the theory 
of equations and the theory of numbers are presented in Chapters 28 and 29, 
at the end. At many points, ideas from algebra and analysis are needed in the 
discussion of the geometry. These ideas are explained in full, on the ground 
that it is easier to skip explanations of things that are known than to find con-
venient and readable references. The only exception to this is in Chapter 22, 
where it seemed safe to assume that epsilon-delta limits are understood. 

In some chapters, especially Chapters 20 and 25, we give full expositions of 
topics which are commonly dismissed rather briefly and almost casually. The 
process by which the real numbers are introduced into an Archimedean geome-
try, for purposes of measurement, is highly important and far from trivial. The 
same is true of the consistency proof for the hyperbolic postulates. Here (as 
elsewhere) the purpose of this book is to explain, with all possible lucidity and 
thoroughness, ideas which are widely alluded to but not so widely understood. 

This third edition differs from the first and second in the following ways. 

1. I have added biographical notes on various eminent mathematicians: 
Euclid, Descartes, Lobachevsky, Hilbert, and Birkhoff, with the emphasis on 
their contributions to geometry. 

2. Section 4.6, The Seven Bridges of Konigsberg, is new. 

3. Section 13.6, The Euclidian Program, continued: Equal-area without Area, 
is new. 

4. Chapter 28 of the first edition gave an example of an ordered field 
which is not Archimedean. The example is more significant if the field is Eu-
clidian, that is, if every positive element has a square root. The new Chapter 32 
makes the example Euclidian. 

I believe that these changes are improvements; and am sure, at least, none 
of them are deleterious. 

The manuscript of this edition was reviewed, thoroughly and thoughtfully, 
by Chris Coray, Utah State University; Richard Rogers, Weber State University; James 
Slifker, Florida International University; Jerry L. Young, Boise State University. 

I have had the benefit of their comments, and am accordingly grateful. 

E. E. M. 
September 1989 
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CHAPTER v 
The Algebra of the 

Real Numbers 

	 1.1 Introduction  	
In this book, we shall be concerned mainly with geometry. We shall begin at the 
beginning, and base our work on carefully stated postulates. Thus, in a way, we 
shall be using the scheme which has been used in the study of geometry ever 
since Euclid wrote the Elements. 

But our postulates will be different from Euclid's. The main reason for this 
is that in modern mathematics, geometry does not stand alone as it did at the 
time when the Elements were written. In modern mathematics, the real number 
system plays a central role, and geometry is far easier to deal with and to under-
stand if real numbers are allowed to play their natural part. For this reason, the 
first step in our program is to put the real number system on the same solid 
basis that we intend to provide for geometry, by first stating our assumptions 
clearly and then building on them. 

1.2 Addition and Multiplication 
	  of Real Numbers  	
We shall think of the real numbers as being arranged as points on a line, 
like this: 

	

1 	1 	1 

	

—3 	—2 	—1 
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The real numbers include, at least, all of the following: 

(1) the positive integers 1,2,3, ... , and so on; 

(2) the integer 0; 

(3) the negative integers —1, —2, —3, ... , and so on; 

(4) the numbers expressible as fractions with integers as numerators and integers 
different from 0 as denominators. For example, 2, — and 1,000,000/1 are 
numbers of this type. 

Note that this fourth kind of number includes the first three, because every 
integer n is equal to n/1. What we have so far, then, are the numbers of the 
form p/q, where p and q are integers and q is not 0. These are called the rational 
numbers. This term is not meant to suggest that any other kind of number 
must be crazy. It merely refers to the fact that a rational number is the ratio of 
two integers. As you know, there are many real numbers that are not of this 
type. For example, '\/ is not the ratio of any two integers. Such numbers are 
called irrational. 

We proceed to state the basic properties of the real number system in the 
form of postulates. We have given a set IR, whose elements are called real num-
bers (or simply numbers, if the context makes it clear what is meant). We have 
given two operations, addition and multiplication, denoted by + and • . Thus 
the algebraic structure that we are dealing with is a triplet 

[R, +, .] . 

The properties of the system are as follows: 

A-I. D is closed under addition. That is, if a and b belong to R, then a + b 
also belongs to R. 

A-2. Addition in R is associative. That is, if a, b, and c belong to R, then 

a + (b + c) = (a + b) + c . 

A-3. There is exactly one element of IR, denoted by 0, such that 

a + 0 = 0 +a=a 

for every a in R. 

A-4. For every a in R there is exactly one number —a in IR, called the negative 
of a, such that 

a + (—a) = (—a) + a = 0 . 

A-5. Addition in R is commutative. That is, if a and b belong to IR, then 

a+b=b+a. 

These postulates are numbered A-1 through A-5 because they are the pos-
tulates that deal with addition. We now move on to multiplication. 
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M-1. R is closed under multiplication. That is, if a and b belong to [R, then ab 
belongs to [R. 

(Here and hereafter, we denote the product a • b simply as ab. This is a 
matter of convenience, and we shall not do it consistently. For example, when 
we write 26, we mean twenty-six, not twelve.) 

M-2. Multiplication in E is associative. That is, if a, b, and c belong to [R, then 

a(bc) = (ab)c 

M-3. There is exactly one element of R, denoted by 1, such that 

al = la = a 

for every a in R. 

M-4. For every a in [R, other than 0, there is exactly one number a-1, called 
the reciprocal of a, such that 

as-t = 	= 1. 

M-5. Multiplication in E is commutative. That is, if a and b belong to R, then 

ab = ba. 

M-6. 1 is different from 0. 

This postulate may look peculiar, but it is necessary. Under the preceding 
postulates, we have no guarantee that [1:R contains any number at all except 0. 

The postulates, so far, have dealt with addition and multiplication sepa-
rately. These two operations are connected by the following postulate. 

AM-1. The Distributive Law. If a, b, and c belong to [R, then 

a(b + c) = ab + ac. 

In addition to these postulates, you may feel the need for the following two 
statements: 

E-1. If 

then 

E-2. If 

then 

a = b and c = d, 

a + c = b + d . 

a = b and c = d, 

ac = bd . 
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Here it should be understood that a, b, c, and d belong to R But these state-
ments are not really postulates for the real number system. They merely serve 
to remind us of what addition and multiplication are all about. The first one 
says that the sum of two numbers depends only on the numbers, and does not 
depend on the letters that we use to denote the numbers; similarly for the sec-
ond "law" E-2. 

Throughout this book, the symbol "=" will always mean "is the same as." 
As usual, the symbol "0" means "is different from." 

Subtraction is defined by means of the negatives given by A-4. That is, 

a — b = a + (— b) , 

by definition. Similarly, division is defined by means of the reciprocals given by 
M-4. Thus, if b 0, then 

—
a 

= a + b = ab 1 , 

by definition. 
From the above postulates, all of the usual laws governing addition and 

multiplication can be derived. We start the process as follows. 

■ THEOREM 1. a0 = 0 for every a. 

PROOF. By A-3, we have 

Therefore 

Hence 

1 = 1 + 0. 

a • 1 = a(1 + 0). 

a = al + a0, 

a = a + a0, 

(—a) + a = (—a) + (a + a0), 

0 = [(—a) + a] + a0, 

0 = 0 + a0 , 

and 

0 = a0 , 

which was to be proved. (You should be able to give the reasons for each step 
by citing the appropriate postulates.) ❑ 
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■ THEOREM 2. If ab = 0, then either a = 0 or b = 0. 

PROOF. Given ab = 0. We need to show that if a 0 0, then b = 0. If a 0 0, 
then a has a reciprocal a-1. Therefore 

a-1(ab) = a-10 

= 0. 

But 

a -1(ab) = (a-la)b 

= lb = b. 

Thus b = 0, which was to be proved. ❑ 

This, of course, is the theorem that you use when you solve equations by 
factoring. If 

(x — 1) (x — 2) = 0 , 

then either x = 1 or x = 2, because the product of the numbers x — 1 and 
x — 2 cannot be 0 unless one of the factors x — 1 and x — 2 is 0. You need this 
principle to be sure that nobody is going to find an extra root by investigating 
the equation by some other method. 

■ THEOREM 3. 0 has no reciprocal. That is, there is no number x such 
that Ox = 1. 

PROOF. We know that Ox = 0 for every x. If we had Ox = 1 for some x, it would 
follow that 0 = 1. This is impossible, because M-6 tells us that 0 0 1. ❑ 

This theorem gives the reason why division by 0 is impossible. If division by 
0 meant anything, it would mean multiplication by the "reciprocal of 0." Since 
there is no such reciprocal, there is no such operation as division by 0. 

■ THEOREM 4. The Cancellation Law of Addition. If a + b = a + c, then 
b = c. 

PROOF. If 

a+b=a+c, 

then 

(—a) + (a + b) = (—a) + (a + c), 

[(— a) + a] + b = [(— a) + a] + c , 

0 + b = 0 + c, 
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and 

b = c. ❑ 

• THEOREM 5. The Cancellation Law of Multiplication. If ab = ac, and 
a 0, then b = c. 

PROOF. If ab = ac, and a 0, then a has a reciprocal a -1. Therefore 

ct -'(ab) = a-'(ac), 

(a-la)b = (c1-1a)c, 

lb = lc, 

and 

b = c . ❑ 

■ THEOREM 6. —(—a) = a, for every a. 

PROOF. By definition of the negative, the number —(—a) is the number x 
such that 

(—a) + x = x + (—a) = 0 . 

The number a has this property, because 

(—a) + a = a + (—a) = 0 . 

But A-4 tells us that every number has exactly one negative. Therefore a is the 
negative of —a, which was to be proved. ❑ 

■ THEOREM 7. (—a)b = —(ab), for every a and b. 

PROOF. What we need to show is that 

(—a)b + ab = ab + (—a)b = 0 , 

because this is what it means to say that (—a)b is the negative of ab. Be the com-
mutative law, it will be sufficient to show that 

(—a)b + ab = 0. 

By the distributive law, 

(—a)b + ab = [(—a) + cdb. 
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Since (—a) + a = 0, and Ob = 0, we have 

(—a)b + ab = 0 , 

which was to be proved. ❑ 

This theorem gives the "rule of signs" under which (-2) • 4 = —8, (-7) • 4 
= —28. 

■ THEOREM 8. (—a) (—b) = ab for every a and b. 

PROOF. 

(—a)(—b) = —[a(—b)] 

= —[(—b)a] 

= —[—(ba)] 

= ba 

= ab. 

(What is the reason for each step?) ❑ 

This, of course, is the second "rule of signs," which tells us that (-3) (-4) = 
12. 

■ THEOREM 9. The reciprocal of the product is the product of the recip-
rocals. That is, 

(ab)-1  = 

for every a 0 0, b 0. 

PROOF. We need to show that 

(ab)(a-lb -1) = 1. 

Now 

(ab)(a-lb-i) = a[b(a-lb -1)] 

= a[b(b-1  a-1)] 

= a[(bb-1)a-1] 

= a[la-1] 

= as-' 

= 1. ❑ 
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■ THEOREM 10. The negative of the sum is the sum of the negatives. 
That is, 

—(a + b) = (—a) + (—b). 

PROOF. We need to show that 

(a + b) + R—a) + (—b)] = 0 . 

To avoid an excessive accumulation of parentheses, let us agree, in this proof 
only, to denote —x by x'. We then have 

(a + b) + R—a) + (—b)] = (a + b) + (a' + b') 

= a + [b + (a' + b')] 

= a + [b + (b' + a')] 

= a + Rb + b') + al 

= a + [0 + a'] 

= a + a' 

= o . 

Note that this proof is precisely analogous to the proof of the preceding theorem. 
0 

Obviously, we could go on proving theorems like this indefinitely. In fact, if 
you stop to think, you will realize that nearly every time you have performed 
an algebraic calculation, you have in effect proved a theorem of this sort. For 
example, when you factor x2  — a2

, and get (x — a) (x + a), you are claiming 
that the following theorem holds. 

• THEOREM 11. For every x, a, we have 

(x — a) (x + a) = x2  — a2. 

Proof? 

An equation which holds for all real numbers is called an algebraic identity. 
Stated in this language, the two associative laws say that the equations 

a + (b + c) = (a + b) + c , 

a(bc) = (ab)c , 

are algebraic identities; the distributive law says that the equation 

a(b + c) = ab + ac 

is an algebraic identity, and so on. 
In the following exercises, you may use the two associative laws without 

comment. In fact, since it doesn't matter how the terms or factors are grouped, 
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we don't need to indicate a grouping at all; we can write a + b + c to denote 
a + (b + c) or (a + b) + c, and similarly for multiplication. We can do the same 
for n-fold products of the form aia2 ...a„, although the justification for this is 
more complicated than you might think. (See Section 1.10.) 

As usual, a 2  means aa, a 3  means aaa, and so on. Similarly, 2 means 1 + 1, 3 
means 2 + 1 = 1 + 1 + 1, and so on. 

	  Problem Set 1.2 	  

Show that the following equations are algebraic identities. All these statements are to be 
regarded as theorems, and should be proved on the basis of the postulates and the theo-
rems that have previously been proved. Give a reason for each step in the proofs. 

1. b(—a) = —(ab) 

2. ( —a) (—b) = ba 

3. a(b + c) = ca + ba 

4. a(b — c) = ab — ac 

5. —0 = 0 

6. a —fa = a 

7. a 3b = ba 3  (Try to get a very short proof.) 

8. a + a = 2a 

9. (—a) + (—a) = (-2)a 
10. a 2(b 2 	c 2)  = a 2b2 + 

11. a2(b2 — c 2)  = 
—a2c2 
	a2b2 

12. (a + b)(c + d) = ac + bc + ad + bd 

13. (a + b)2  = a 2  + 2ab + b 2  

14. Let 1 be the number given by M-3. As usual, we define: 

2 = I + 1, 	3 = 2 + 1, 	4 = 3 + I . 

Prove, using only the postulates of this section, that 

2 + 2 = 4 . 

(Or, if you like, prove that 4 = 2 + 2.) 

The following are discussion questions. 

15. Suppose that subtraction is regarded as an operation. Does this operation obey the 
associative law? That is, is the equation (a — b) — c = a — (b — c) an algebraic iden-
tity? If not, under what condition does the equation hold? (It is not necessary to an-
swer this question on the basis of the postulates; you are free to use all the algebra 
that you know.) 
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16. Suppose that division is regarded as an operation. Does this operation obey the as-
sociative law? That is, is the equation, (alb)lc = a/(b/c), an algebraic identity? If not, 
under what conditions does the equation hold? 

17. Does subtraction obey the commutative law? How about division? 

The answers to the preceding three questions indicate why we do not regard sub-
traction and division as basic operations when we are formulating the basic properties of 
the real numbers. 

18. Postulate M-6 (which says that 1 0 0) may seem superfluous. Is it? Can it be 
proved, on the basis of the other postulates, that there is any number at all other 
than 0? 

19. Suppose that the only elements of P were 0 and 1, with addition and multiplication 
defined by these tables. Which of the postulates would hold true? 

0 1 0 	1 

0 
1 

0 
1 

1 
0 

0 
1 

0 	0 
0 	1 

20. Suppose that we replace A-3 by the following: 

A-3'. There is at least one element 0 of P such that 0 + a = a + 0 = a for every a. 

Show that A-3 can be proved as a theorem, on the basis of A-3' and the other pos-
tulates. To do this, you need to show that if 0 + a = a + 0 = a and 0' + a = a + 
0' = a, for every a, then 0 = 0'. 

21. Similarly, suppose that we replace A-4 by the following: 

A-4'. For each a there is at least one number —a such that a + (—a) = (—a) + a = 0. 

Show that A-4 can be proved as a theorem. To do this, you need to show that if 
a +x=x+a= 0, then x = —a. 

	  1.3 Fields  	

An algebraic structure satisfying the postulates of the preceding section is 
called a field. Since we have explained that P denotes the set of real numbers, it 
may be worth while to state the definition of a field over again from the begin-
ning, allowing the possibility that the field may not be the real number system. 

Given a set F, of objects called numbers, with two operations + and • , called 
addition and multiplication. The structure 

[F, +, •] 

is called a field if the following conditions hold. 
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A-1. F is closed under addition. 

A-2. Addition in F is associative. 

A-3. F contains exactly one number 0 such that 

a +0=0+a=a 

for each a in F. 

A-4. Every a in F has exactly one negative —a in F such that 

a + (—a) = (—a) + a = 0 . 

A-5. Addition in F is commutative. 

M-1. F is closed under multiplication. 

M-2. Multiplication in F is associative. 

M-3. F contains exactly one element 1, such that al = la = a for every a in E 

M-4. Every a 0 in F has exactly one reciprocal a -' such that 

aa -1  = 	a = 1 . 

M-5. Multiplication in F is commutative. 

M-6. 1 	0. 

AM-1. For every a, b, c in F, we have 

a(b + c) = ab + ac . 

All the theorems of the preceding section were proved merely on the basis 
of the above postulates. It follows that all these theorems hold true not merely 
in the real number system but in any field. For example, they all hold true in 
the algebraic system described in Problem 19 of Problem Set 1.2. 

	  Problem Set 1.3 	  

The purpose of this problem set is merely to clarify the meaning of the postulates for a 
field. In answering the questions below, you may make free use of all the algebra which 
in fact you know. In the following section of the text, we shall return to our "official" 
mathematics, based on postulates. 

1. Let F be the set of all numbers of the form p/ 2q,where p and q are integers and 
q--  0. These numbers are called dyadic rationals. Do the dyadic rationals form a 
field, under the usual definition of + and • ? Which, if any, of the field postulates 
fail to hold? 
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2. Let F be the set of all complex numbers with absolute value = 1. Does F form a 
field, under the usual definitions of + and • ? Which, if any, of the field postulates 
fail to hold? (You may assume, of course, that the set of all complex numbers forms 
a field; it does.) 

3. Same question, for the set of all positive real numbers. 

4. Assume that 	is irrational. Show that if a and b are rational, and a + b"\/ = 0, 
then a = b = 0. 

5. Show that if a, b, c, and d are rational, and 

a + b"\/ =7c+dam , 

then a = c and b = d. 

6. Let F be the set of all real numbers of the form a + b\,/, where a and b are ratio-
nal. Is [F, +, -] a field? 

7. An algebraic structure [F, +, •] is called a commutative ring with unity if it satisfies all 
of the field postulates except possibly for M-4. Obviously every field is a commuta-
tive ring with unity, but not every commutative ring with unity is a field. Exactly 
one of the algebraic structures described in the preceding problems forms a com-
mutative ring with unity but does not form a field. Which one is it? 

8. In the algebra of the real numbers, the following theorem holds. 

THEOREM. If 642  — a2b, 0 0, then the system of equations 

ai x + bl y = c1 , 	a2 x + b2 y = c2, 

is satisfied by exactly one pair of numbers (x,y). 
Does this theorem hold true in any commutative ring with unity? Does it hold 

true in any field? 

9. Consider a coordinate plane, with points identified by pairs (x,y) of numbers. We 
define the "sum" of two points (u, v) and (x , y) to be the point (u + x, v + y). 

Does this system satisfy A-1 through A-5? Is it possible to define the "product" 
of two points in such a way as to get a field? If so, how? 

1.4 The Ordering of the 
	  Real Numbers 	  

We remember that the real numbers can be thought of, informally, as being 
arranged on a line, like this: 

1 
— 	 2 

—3 	—2 	—I 	 0 	 1 	 2 	3 

Figure 1.2 



1.4 The Ordering of the Real Numbers 	 13 

When we write a < b, this means, graphically speaking, that a lies to the left of 
b on the number scale. Thus —2 < 1, and —1,000,000 < -,j;-3. 

The laws governing the relation < are as follows. 

0-1. Trichotomy. Every pair of real numbers a, b satisfies one, and only one, 
of the conditions a < b, a = b, b < a. 

0-2. Transitivity. If a < b and b < c, then a < c. 

The expression a < b is pronounced "a is less than b." When we write 
b > a, this means (by definition) that a < b. When we write 

alb,  

this means that either a < b or a = b. The relation < is connected up with addi-
tion and multiplication by the following conditions. 

MO-1. If a > 0 and b > 0, then ab > O. 

AO-1. If a < b, then a+ c<b+ c for every c. 

From these four conditions (together with our other postulates), all of the 
laws governing inequalities can be derived. Let us take some examples. 

■ THEOREM 1. Any two inequalities can be added. That is, if 

a < b 

and 

then 

PROOF. By A0-1, 

by AO-1, 

c < d, 

a + c < b + d . 

a + c < b + c; 

b+c<b+d. 

(From now on, we are going to use the commutative law and similar principles 
without comment.) By 0-2, this means that 

a+c<b+d, 

which was to be proved. ❑ 
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■ THEOREM 2. a < b if and only if b — a > 0. 

PROOF. If a < b, then a — a < b — a, by AO-1. Therefore b — a > 0. Con-
versely, if b — a > 0, then b — a + a > a, and b > a. 1=1 

■ THEOREM 3. An inequality is preserved if we multiply both sides by the 
same positive number. That is, if 

a < b , 

and 

c > 0 , 

then 

PROOF. Since a < b, we have 

Therefore 

by MO-1. Hence 

ac < bc. 

b — a > 0 . 

c(b — a) > 0 , 

bc — ac > 0 ; 

and by Theorem 2 this means that ac < bc, which was to be proved. ❑ 

■ THEOREM 4. If a > 0, —a < 0. 

PROOF. If a > 0, then a — a > 0 — a, by A0-1. Thus 0 > —a, and —a < 0, 
which was to be proved. ❑ 

■ THEOREM 5. If a < 0, then —a > 0. 

PROOF. If a < 0, then 0 — a > 0, by Theorem 2. Therefore —a > 0, which 
was to be proved. ❑ 

■ THEOREM 6. 1 > 0. 

(The question here is not whether the real number 1 is greater than the real 
number 0; everybody knows that it is. The question is whether the statement 
1 > 0 follows from the postulates and definitions that we have written down so 
far. If this statement does not follow, then we need another postulate.) 
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PROOF. Suppose that the theorem is false. Since we know that 1 	0, it fol- 
lows by 0-1 that 1 < 0. By Theorem 5 it follows that —1 > 0. By MO-1, 
(-1)2  > 0. Since (-1)2  = 1, we have 1 > 0, which contradicts the assumption 
0 < 1. ❑ 

• THEOREM 7. An inequality is reversed if we multiply both sides by the 
same negative number. That is, if a < b, and c < 0, then ac > bc. 

PROOF. If a < b, then 

b — a > 0 , 

by Theorem 2. If 

c < 0 , 

then 

—c > 0, 

by Theorem 5. Therefore 

—bc + ac > 0 , 

by MO-1. Therefore 

ac > bc, 

by Theorem 2. ❑ 

Suppose that we have an inequality involving an unknown number x, such as 

2x — 5 < 7x + 3 . 

Every number x either satisfies the inequality or doesn't. For example, x = 1 
satisfies the inequality, because —3 < 10; but x = —2 does not, because —9 > 
—11. An expression of this sort, involving a letter for which we can substitute 
anything we want, is called an open sentence. When we substitute 1 for x, we get 
the statement —3 < 10, which is true. When we substitute —2 for x, we get the 
statement —9 < —11, which is false. The set of all numbers which give true 
statements when substituted for x is called the solution set of the open sentence. 
Here are a few examples. 

Open sentence 	Solution set 

x + 2 = 7 	 {5} 
x + 0 = x 	 R 

x 2  — 4 = 0 	{2, —2} 
x + 2 = 2 + x 	R 
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In the column on the right, {5} denotes the set whose only element is 5, and 
{2, —2} denotes the set whose elements are 2 and —2. The same notation is used 
whenever we want to describe a finite set by giving a complete list of its ele-
ments. For example, 

{1, 3, 5, 7, 9} 

is the set of all positive odd integers less than 10. The braces are used to de-
scribe sets, rather than sequences, and so the order in which the elements are 
listed makes no difference. For example, 

{1,3,5,7,9} = {7,3,9,1,5}; 

the sets described are exactly the same. 
It sometimes happens, of course, that an open sentence never becomes a 

true statement, no matter what you substitute for x. For example, the equation 
(x + 1)2  = x2  + 2 • x has no roots. In this case, the solution set is the empty set, 
that is, the set that has no elements. The empty set is denoted by 0, to avoid 
confusion with the number 0. Here are more examples: 

Open sentence 

 

Solution set 

0 
{0} 

0 
{0} 

x 2  + 2x + 2 = (x + 1)2  
x 2  = 0 
x < x 

2x = x 

 

   

There is a short notation for the solution set of an open sentence. When 
we write 

{X I X 2  = 0} , 

this means the set of all real numbers x such that x2  = 0. Thus 

{x1x2  = 0} = {0}, 

{xIx2  - 5x + 6 = 0} = {2, 3}, 

and so on. 
To solve an equation or an inequality means to find the solution set of the 

corresponding open sentence. For inequalities, the "answer" usually takes the 
form of a second open sentence which is simpler and easier to interpret than 
the first. The simplification process might look like this: If 

(15) —5x — 5 < 3 , 

(16) —5x<8. 

then by A0-1 we have 

and 

(1) 2x — 5 < 7x 	+ 3 , 
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By Theorem 7, we have 

x> – 5 —
8

. 

(We have multiplied by the negative number – [..) Therefore every number x which 
satisfies (1) also satisfies (4). Conversely if (4) holds, then so does (3); if (3) holds, 
then so does (2), and if (2) holds, then so does (1). The inequalities (1) and (4) are 
called equivalent; by this we mean that every number which satisfies one of them 
also satisfies the other. Expression (4) is called the solution of (1). The process 
that we have gone through can be written in an abbreviated form as follows: 

2x – 5 < 7x + 3, 

<=> – 5x – 5 < 3, 

<=> –5x < 8 , 

<=> x > – —
8 
5 

The double-headed arrow on the left should be pronounced "is equivalent to"; 
when we write 

2x – 5 < 7x + 3 <=> x > – 8 
5 

we mean that the open sentences connected by the symbol <=> have exactly the 
same solution set. The advantage of the abbreviation is that it makes it easy to 
write at each stage exactly what we have on our minds. (When we write long 
strings of formulas, it is not always easy to tell or to remember what the logical 
connection between them is supposed to be.) The result of our work on the 
problem above can be written as follows: 

Ix 2x – 5 < 7x – 3} ---- 	I x > – 	. 

We use a single-headed arrow to indicate that one condition implies an-
other. For example, when we write 

x> 2 x2 > 4, 

we mean that if x > 2, then x 2  > 4. This is true, because if x > 2, then x 2  > 2x, 
by Theorem 3. Also by Theorem 3, if x > 2, then 2x > 4. By 0-2, x2  > 4, 
which was to be proved. 

Note that it is not true that 

x > 2 <=> x > 4 , 

because any number less than –2 satisfies the second inequality but not the 
first. (As one step in the proof above, we showed that x > 2 x2  > 2x. Is it 
true that x2  > 2x x > 2? Why or why not?) 

(4) 
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The absolute value of a number x is denoted by lx1. It is defined by the fol-
lowing two conditions. 

(1) If x 	0, then 1x1 = x. 

(2) If x < 0, then 1x1 = —x. 

For example, 121 = 2, because 2 0, and 1-21 = —(-2) = 2, because —2 < 0. 
In other words, the absolute value of a positive number is the same positive 
number, and the absolute value of a negative number x is the corresponding 
positive number, which is —x. 

■ THEOREM 8. For every x, 1x1 0. 

PROOF. 

(1) If x 	0, then 1x1 	0, because in this case 1x1 = x. 

(2) If x < 0, then —x > 0. Therefore Ix' > 0, because lxi = —x. ❑ 

■ THEOREM 9. For every x, l—xl = lxl. 

PROOF. 

(1) If x 0, then —x 0. Thus 

and 

1 -xl = 	= x 

Therefore, in this case, 1—xl = lx1. 

(2) If x < 0, then —x > 0. Therefore 

lxi = 

and 

= 

Hence, in this case also, I 	= Ixl. ❑ 

■ THEOREM 10. For every x, 1x1 x. 

PROOF. If x 0, this is true because x x. If x < 0, then x < Ix', because 
lx1 	O. ❑ 

■ THEOREM 11. For every x and y, Ixyl = lxi • I Yl. 
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PROOF. When x is replaced by —x, both sides of the equation are unchanged; 
therefore we can assume that x .-- 0. For the same reason, we can assume that 
y ?...-' 0. If x -. 0 and y -- 0, the equation takes the form xy = xy. ❑ 

When we write a "double inequality" 

a < b < c , 

we mean that both of the inequalities a < b and b < c hold true. 

■ THEOREM 12. Let a be > 0. Then 

Ixi < a 
if and only if 

—a < x < a. 

Graphically speaking, this theorem says that the numbers that satisfy the 
inequality lx1 < a are the numbers between a and —a, like this: 

—a 	0 	a 

I 	I 	I 
.y./ 

'xi < a 

Figure 1.3 

PROOF. 

e 'xi < a is true when (1) If x ..- 0, then Ix! < a means that x < a. Therefor 
0 x < a. 

(2) If x < 0, then lx1 < a means that —x < a, or —a < 
when —a < x < 0. 

Therefore Ix' < a holds whenever —a < x < a. It 
versely, that if I'd < a, then —a < x < a. (There are two 
as in Conditions (1) and (2) above.) Therefore 

Ix' < a <=> —a < x < a , 

which was to be proved. ❑ 

x. Hence Ix' < a is true 

is easy to check, con-
cases to be considered, 

■ THEOREM 13. For every a, b, 

la + bl .--. lal + Ibl . 

PROOF. 

Case 1. Suppose that a + b .-- 0. In this case, 

la + bl = a + b. 
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By Theorem 10, 

a 	lal and b –_< I bl  . 

Therefore 

a + b IS_ lal + lbl , 

and since a + b = la + bl in Case 1, the theorem follows. 

Case 2. Suppose that a + b < 0. Then (–a) + (–b) > 0. By our result for 
Case 1, we have 

1(-0 + (-01 =< 1–al + 1– b1 . 

But by Theorem 9, we know that 

1–a – bl = la + bl, 	1–al = lal, 	1–bl = lbl . 

Substituting, we get 

la + bl --.- lal + 1bl , 

which was to be proved. ❑ 

	  Problem Set 1.4 	  

1. Show that if a > 0, then a -1  > 0. 

2. Show that if a < 0, then a -1  < 0. 

3. Given x > 0 and y > 0, show that x3  = y3  x = y. Does this hold for every x and y? 

4. Solve the following inequalities. The answers should be in one of the forms 

— <=> — or Ix 1 • • •}. = fx 1-1. 

(a) 5 — 3 • x > 17 + x 

(b) 5 • x — 3 < 17 • x + 1 

(c) x + 5 > 6 — x 

(d) Ix' < 1 
(e) lx — 31 < 2 

(f) lx — 51 < 5 

5.'Is it true that lx21 = 1x12  for every x? Why or why not? 

6. Is it true that lx31 = 1x13  for every x? Why or why not? 

7. Show that x2  — 2x + 1 	0 for every x. 

8. For what numbers x (if any) does each of the following conditions hold? 
(a) k 2  — 5 • x + 61 = lx — 31 ' 1x — 21 
(b) lx 2  — 5 • x + 61 = x2  — 5 • x + 6 



1.5 Order Relations and Ordered Fields 	 21 

(c) lx — 51 = 12 x — 31 
(d) 1x + 11 = 1 1  — x1 
(e) Vx 2  + 1 = x 

(f) 1/x 2  — 1 = x 

(g) 12 • x — 11 + Ix + 31 	13 x + 21 
(h) 17 • x + 31 + 13 — xl >= 6Ix + 11 

9. Indicate graphically, on a number scale, the places where the following conditions 
hold. 
(a) I'd< 2 	 (d) Ix — lI < 2 and (also) lx — 21 < 1 

(b) k — 21 < 	 (e) 13 — 2 • x1 < 

(c) 12 • x — 31 < 	 (f) lx — 21 < and x > 2 

10. Show that if b 0 0, then 

1 
b 

1 
1bl 

  

11. Show that if b 	0, then 

  

 

a 

b 
lal 
Ibl .  

   

12. Show that for every a and b, a — b1 	lal — 1bl. 
13. Show that for every a and b, a + I 	I al — IbI  
14. For what numbers a is the fraction a/Ial defined? What is this fraction equal to, for 

various values of a? 

1.5 Order Relations and 
	  Ordered Fields  	

So far, we have described the properties of the real number system relative to 
addition, multiplication, and order. A system which satisfies all the postulates 
that we have stated so far is called an ordered field. We repeat the definition of 
an ordered field in its general form, as follows. 

Given a set F. Let * be a relation defined on F, satisfying the following two 
conditions. 

0-1. Every pair a, b of elements of F satisfies one and only one of the condi-
tions a * b, a = b, and b * a. 

0-2. If a * b and b * c, then a * c. 

Then * is called an order relation. 
Order relations are usually denoted by the symbol <. But we need a more 

general notation, such as *, because we may want to talk about two different re-
lations defined on the same set. 
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Suppose now that we have a field 

[F, +,-]. 

Suppose that we also have given an order relation <, defined on F, satisfying 
the following two conditions. 

MO-1. If a > 0 and b > 0, then ab > 0. 

AO-1. If a < b, then a+c<b+c for every c. 

Then the structure 	 [F, +, • ,<] 

is called an ordered field. 
Thus what we have said, so far, about the real number system is that it 

forms an ordered field. 
It should be emphasized that an ordered field is not merely a field which is 

somehow arranged in an order. To know that we have an ordered field, we 
need to know that the order relation < is related to multiplication and addition 
by Conditions MO-1 and A0-1. 

In the preceding section, all the theorems were proved on the basis of Con-
ditions 0-1, 0-2, MO-1, and AO-1. Therefore these theorems hold true in any 
ordered field. You are free to use them in solving the following problems. 

	  Problem Set 1.5 	  

1. In Problem 6 of Problem Set 1.3 you showed that the real numbers of the form 
a + 	where a and b are rational, form a field. Is this an ordered field, under 
the usual order relation? Why or why not? 

2. Consider the field F described in Problem 19 of Problem Set 1.2. Here F = {0, 1}, 
and addition and multiplication are described by the following tables. 

+ 0 1 0 	1 

0 
1 

0 
1 

1 
0 

0 
1 

0 	0 
0 	1 

Is it possible to define an order relation in such a way as to make this system an or-
dered field? 

3. Show that an order relation can be defined for the set of points (x,y) of a coordinate 
plane. (The verification of 0-2 requires a discussion of four cases.) 

4. Let 084  be the set of all ordered quadruples (w,x,y,z) of real numbers. Is it possible 
to define an order relation on 084? 

5. Show that an order relation can be defined for the complex numbers. 

6. Show that it is not possible to define an order relation for the complex numbers in 
such a way as to get an ordered field. [Hint: Suppose that such an order has been 
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defined. Show that each of the conditions z > 0, and z < 0 leads to a contradiction 
of one of the postulates or one of the theorems for ordered fields.] 

1.6 The Positive Integers and the 
	  Induction Principle  	

We know that 1 > 0. We get the rest of the positive integers by starting with 1, 
and then adding 1 as often as we like. Thus the first few positive integers are 

1, 

2 = 1 + 1 , 

3 = 2 + 1 = 1 + 1 + 1 , 

4 = 3 + 1 = 1 + 1 + 1 + 1 , 

and so on. We let N be the set of all positive integers. (Here N stands for natu-
ral; the positive integers are often referred to as the natural numbers.) 

The above common-sense remarks, about the way we get positive integers 
by adding 1 to other positive integers, suggest the pattern of an exact definition 
of the set N. The set N is defined by the following three conditions. 

(1) 1 belongs to N. 

(2) N is closed under the operation of adding 1. That is, if n belongs to N, then 
so also does n + 1. 

(3) Of all sets of numbers satisfying (1) and (2), N is the smallest. That is, N is 
the intersection, or common part, of all sets of numbers satisfying (1) and (2). 

From Condition (3) we get the following result immediately. 

■ THEOREM 1. The Induction Principle. Let S be a set of numbers. If (1) S 
contains 1, and (2) S is closed under the operation of adding 1, then (3) S con-
tains all of the positive integers. 

The reason is simple. Since N is the smallest set that satisfies (1) and (2), it 
follows that every other such set contains N. 

Let us see how the induction principle, in the form in which we have stated 
it, can be put to work. 

• THEOREM A. For every positive integer n, the sum of the squares of the 
first n positive integers is (n/6) (n + 1) (2n + 1). That is, for every n we have 

12  + 22  + 	+ n 2  = 
6
— (n + 1) (2n + 1) . 
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The induction proof is as follows. Let S be the set of all positive integers n 
for which it is true that 

12  + 22  + • • • + n2  = 6(n + 1)(2n + 1). 

Thus, if we say that 1 belongs to S, this means that 

12  = 6 (1 + 1)(2 1 + 1). 

To say that 2 belongs to S means that 

12  + 22  = 6(2+ + 1)(2 • 2 + 1) , 

and so on. 
We shall show that (1) S contains 1, and (2) S is closed under the operation 

of adding 1. 

(1) S contains 1, because the equation 

12  = 6 (1 + 1)(2 • 1 + 1) 

is true. 

(2) To prove (2), we must show that if a given integer n belongs to S, then so 
also does n + 1. Thus we must show that if 

(a) 12  

then 

(b) 12 

+ 22  

+ 22 

+ • 

+ 

• + n 2  = 

± n2 + 

—
6

(n + 1)(2n + 1), 

+ 1 
1)2 2)(2n (n + 	= n 
	

(n + + 3). 
6 

(The first equation tells us that n belongs to S, and the second tells us that 
n + 1 belongs to S.) 

Given that (a) holds, it follows that 

(c) 12  + 22  + 	+ n2  + (n + 1)2  = 

Therefore (b) holds. 

(n 

n + 1 

+ 1) (2n + 1) + (n + 1)2  

(2n 2  + n + 6n + 6) 

(2n2  + 7n + 6) 

(n + 2)(2n + 3). 

6 

n + 1 
6 

n 	1 
6 
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This is the way a proof based on Theorem 1 always works. Always, you are 
proving that a certain open sentence gives true statements for every positive in-
teger n. Always, you start by letting S be the set of all positive integers in the 
solution set. You then show that your set S satisfies (1) and (2) of Theorem 1. 
Then you conclude from Theorem 1 that your solution set S contains all of the 
positive integers. 

The following alternative form of the induction principle may be more 
familiar. 

■ THEOREM 2. Let 

PI,  P2,  • • • 

be a sequence of propositions (one proposition Pr, for each positive integer n). If 

(1) P1  is true, and 

(2) for each n, Pr, implies /3„+1, 

then 

(3) all of the propositions Pi , P2, . . . are true. 

For example, we might consider the case where Pr, says that 

n 
12  + 22  + • • • ± n2  = 

6
— (n + 1) (2n + 1) . 

P,: 12  = 6(1 + 1) (2 • 1 + 1) , 

P2:  12  + 22  = e (2 + 1) (2 • 2 + 1) , 

P3:  12  ± 22  + 32  = -6-3  (3 + 1) (2 • 3 + 1) 

and so on. 
Theorem 2 is a consequence of Theorem 1. To prove this, we begin the 

same way that we always begin when applying Theorem 1. We let S be the set of 
all positive integers n for which Pr, is true. Statement (1) now tells us that S con-
tains 1. Statement (2) tells us that S is closed under the operation of adding 1. 
By Theorem 1, S contains all positive integers. Therefore all the propositions 
PI, P2, • • • are true, which was to be proved. 

There is a third form of the induction principle, known as the well-ordering 
principle, which is useful for some purposes. It asserts that every nonempty 
set of positive integers has a least element. To prove it, we need some prelimi-
nary results. 

Thus the first few propositions in the sequence would be the following: 

, 



26 	 The Algebra of the Real Numbers 

■ THEOREM 3. Let n be a positive integer. Then either n = 1 or n = k + 1 
for some positive integer k. 

PROOF. Let S be the set of all positive integers satisfying the conditions of the 
theorem. Then 1 belongs to S. If n belongs to S, and n = 1, then n + 1 belongs 
to S, with k = 1. If n belongs to S, and n 1, then n = k + 1 for some positive 
integer k, and n + 1 = (k + 1) + 1, so that n + 1 belongs to S. By the induc-
tion principle, the theorem follows. ❑ 

■ THEOREM 4. 1 is the least positive integer. That is, if n 1, then n > 1. 

PROOF. If n 	1, then n = k + 1, for some positive integer k. Therefore 
n — 1 = k > 0, and n > 1, by Theorem 2 of Section 1.4. ❑ 

■ THEOREM 5. For each positive integer n, n + 1 is the smallest positive 
integer that is greater than n. 

PROOF. Let S be the set of all positive integers for which this holds. 

(1) 1 belongs to S. Proof: Suppose that there is a positive integer p such that 

1 < p < 1 + 1 . 

Since p > 1, it follows that p = k + 1 for some positive integer k. Thus 
p - 1 = k > 0. Therefore 

0 < p - 1 < 1 , 

and 

0 < k < 1 , 

which contradicts Theorem 4. 

(2) If n belongs to S, then n + 1 belongs to S. The proof is like that of (1). Sup- 
pose that n + 1 does not belong to S. Then there is a positive integer p 
such that 

n+ 1 < p < (n + 1) + 1, 

and p = k + 1 for some positive integer k. Therefore 

n < p - 1 = k < n + 1 , 

and n does not belong to S. 

By the induction principle, the theorem follows. ❑ 

■ THEOREM 6. The Well-Ordering Principle. Every nonempty set of posi-
tive integers has a smallest element. 
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PROOF. Let K be a nonempty subset of N. If K contains 1, then K has a least 
element, namely 1, and so there is nothing to prove. 

Suppose then that K does not contain 1. Let S be the set of all positive in-
tegers n for which it is true that K contains none of the integers 1,2, ... , n. (For 
example, if K were the set {10, 20, 30, S would be the set {1, 2, 3, , 9}. Fif-
teen would not belong to S, because 10 < 15, and 10 belongs to K.) 

We know that (1) S contains 1, because K does not contain 1. If it were true 
that (2) S is closed under the operation of adding 1, then S would contain all of 
the positive integers, and K would be empty. Therefore S must not be closed 
under the operation of adding 1. Hence there is an integer n such that n be-
longs to S and n + 1 does not. This means that K contains none of the numbers 
1,2, ... , n, but does contain n + 1. It follows that n + 1 is the smallest element 
of K. ❑ 

(In the example given above, the smallest element of K is obviously 10. You 
should check to see that 10 is the number that we get when we apply the gen-
eral proof to this particular set K.) 

The choice between Theorems 1 and 2 is merely a matter of taste. But 
there are times when the well-ordering principle is easier to use than either of 
them. (See, for example, the chapter on the theory of numbers.) 

In the following problem set (and hereafter), when you prove things by in-
duction, you are supposed to use the induction principle in one of the forms 
given in this section. Thus your proofs should be in one of the following forms. 

"Let S be .... Then 

(1) 1 belongs to S. Proof. 	 

(2) For each n, if n belongs to S, then n + 1 belongs to S. Proof: ... . 

By the induction principle, the theorem follows." 
Or: 

"For each n, let P,, be the proposition that .... Then: 

(1) P„ is true. Proof. 	 

(2) For each n, Pn  implies Pn+1. Proof: ... . 

Therefore, all the propositions Pn  are true, which was to be proved." 
If you use either of these forms, the reader can tell what principle you are 

applying. Very often, "proofs by induction" are written in forms that give the 
reader no inkling of what the induction principle is supposed to be. 

	  Problem Set 1.6 	  

1. Show by induction that for every n > 0, 

1 + 2 + • • • + n = 2 (n + 1) . 
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2. Show that the sum of the first n odd positive integers is n2. That is, 

1 + 3 + 5 + • • • + (2n — 1) = n2. 

3. Show that for every n > 0, 

2 
13  + 	+ • • • + 	

2
(n+ + 1)) . 

4. Assume that for every positive real number x there is a positive integer n > x. (This 
is true; it is a consequence of the Archimedean property of the real numbers, discussed 
in Section 1.8.) Show that for every positive real number x there is a nonnegative 
integer n such that n x < n + 1. 

5. Now show that for every real number x there is an integer n such that n x < 
n+ 1. 

*6. The game known as the Towers of Hanoi is played as follows. We have three spin-
dles A, B, and C, of the sort used as targets in quoits. On spindle A we have a stack 
of n disks, diminishing in size from bottom to top. These are numbered 1, 2, ... , n, 
in the order from top to bottom. A legal move in the game consists in taking the 
topmost disk from one spindle and placing it at the top of the stack on another 
spindle, provided that we do not, at any stage, place a disk above a disk which is 
smaller. (Thus, at the outset, there are exactly two legal moves: disk 1 can be moved 
either to spindle B or to spindle C.) The object of the game is to move all the disks 
to spindle B. Show that for every positive integer n, the game can be completed. 

*7. Let N. be the number of moves required to complete the game with n disks. Show 
that for each n, 

pn, = 2p„ + 1 . 

8. Given that p, = 1, and that p„+1  = 2p„ + 1 for each n, show that 

pn = 2" — 1. 

(Since 210  = 1024, this means that the game with 20 disks requires more than a mil-
lion moves.) 

1.7 The Integers and the 
	  Rational Numbers  	

If we add to the set N the number 0 and then all of the negatives of the num- 
bers in N, we get all of the integers. The set of integers is denoted by Z. Thus 

Z = {..., —3, —2, 

If a number x can be expressed in the form of p/q, where p and q are in-
tegers and q 0, then x is called a rational number. The set of all rational num- 
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bers is denoted by 4l. (Here 	stands for quotient; the rational numbers are 
those which are quotients of integers.) 

We would now like to prove the well-known fact that the rational numbers 
form a field. Under the scheme that we have been using in this chapter, the 
proof involves an unexpected difficulty. Following a procedure which is the re-
verse of the usual one, we have defined the positive integers in terms of the 
real numbers; and at the present stage we do not officially know that sums and 
products of integers are always integers. This can be proved, but we postpone 
the proof until the end of this chapter; in the meantime we regard the closure 
of the integers as a postulate. 
CL. The Closure Postulate. The integers are closed under addition and 
multiplication. 

The following theorem is now easy. 

■ THEOREM 1. The rational numbers form an ordered field. 

PROOF. We shall verify the field postulates one at a time. 

A-1. Closure Under Addition. 
p + r = p•s +—r _p•s + q•r =  1 ( 	 p•s+q • r  
q 	s 	q-s 	s 	q•s 	q•s 	q•s

p s+q• r)= 
q • s 

which is rational. 

A-2. Since addition is associative for real numbers in general, it follows that 
addition is associative for rational numbers in particular. 

(This is an instance of a general principle. If a postulate says that a certain 
equation is an algebraic identity, then this postulate automatically holds in any 
subsystem of the given system.) 

A-3. Zero is rational, because 0 = 0/1. 

A-4. Given a rational number p/q, we have —(p/q) = (—p)/q, which is rational. 

A-5. Since addition is commutative for all real numbers, it is commutative for 
all rational numbers. 

M-1. p/q • r/s = pr/qs, which is rational. 

M-2. See the verifications of A-2 and A-5. 

M-3. 1 is rational, because 1 = 1/1. 

M-4. If p/q 0 0, then p 0. Therefore (p/q)-1  = q/p, which is rational. 

M-5. See the verifications of A-2, A-5, and M-2. 

AM-1. The distributive law holds for rational numbers, because it holds for 
all real numbers. ❑ 
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Thus 0 forms a field. And the order relation <, given for all real numbers, 
applies in particular to the rational numbers, and the order postulates auto-
matically hold. 

Finally we remark, by way of preparation for some of the problems below, 
that if a number is rational, = p/q, then it can be expressed as a fraction in low-
est terms. That is, p and q can be chosen in such a way that no positive integer 
other than 1 is a factor of both of them. Thus, for example, if x = p/q, then x 
can be expressed as a fraction r/s, where r and s are not both even, are not both 
divisible by 3, and so on. Here we are really appealing to a theorem in the the-
ory of numbers, to be proved in Appendix B at the end of the book. 

	  Problem Set 1.7 	  

1. A positive integer n is even if n = 2k, where k is an integer; n is odd if n = 2/ + 1, 
where/ is an integer. Show that every positive integer is either even or odd. [Hint: 
Let S be the set of all positive integers which are either even or odd. What you 
need to show is that S = N. Verify that S satisfies conditions (1) and (2) of Theo-
rem 1 of Section 1.6.] 

2. Show that if n is odd, then n2  is odd. 

3. Show that if n 2  is even, then n is even. 

4. Show that if 	= p/q, then p is even. 

5. Show that if V = p/q, then q is also even. 

6. Show that "N7 is not = p/q for any integers p and q. 

7. Show that every positive integer n has one of the three forms 3k, 3j + 1, or 
3m + 2. 

8. Show that if n = 3j + 1, then n 2  has the same form. 

9. Show that if n = 3m + 2, then n 2  has the form 3k + 1. 

10. Show that if n 2  is divisible by 3, then so also is n. 

11. Show that "\/ is irrational. 

12. Now try to use the same pattern of proof to "prove" that V71 is irrational. The 
"proof" must break down at some point, because the theorem is ridiculous. Where 
does the proof break down? 

13. Show that if a is rational and x is irrational, then a + x is irrational. 

14. Show that if a and b are rational, with b 	0, and x is irrational, then a + bx is 
irrational. 

The results of the preceding two problems show that irrational numbers are not 
scarce: given one of them, we can find lots of others. 
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*15. Let n and p be positive integers. Show that n can always be expressed in the form 

n = pq + r, 

where 0 r < p. (Two of the preceding exercises assert that this is true for p = 2 
and p = 3.) 

1.8 The Archimedean Postulate; 
	 Euclidean Completeness  	

It may appear that the postulates for an ordered field are an adequate descrip-
tion of the real number system. But this is far from true; our postulates, so far, 
allow some strange possibilities indeed. (See Chapter 32). We shall not discuss 
these, but merely state postulates which rule them out. 

Throughout this section, F is an ordered field. 
The easiest way to see the meaning of the following postulate is to think of 

it geometrically. Suppose we have given two linear segments, like this: 

M 

• 

Figure 1.4 

The case of interest is the one in which the first segment is "very long" and the 
second is "very short." It is reasonable to suppose that if you take enough 
copies of the second segment, and lay them end to end, you get a segment 
longer than the first one. And this should be true no matter how long the first 
may be, and no matter how short the second may be. If the lengths of the seg-
ments are the real numbers M and 8, as indicated in the figure, and n copies of 
the second segment are enough, then we have ns > M. 

(This is the idea that Archimedes had in mind when he said that, if you 
gave him a long enough lever and a fulcrum to rest it on, he could move the 
world. Let s be the weight of Archimedes, and let M be the weight of the world. 
Then Archimedes wanted a lever long enough to give him a mechanical advan-
tage of n to 1, where ns > M.) 

The algebraic form of this statement follows. 

A. The Archimedean Postulate. Let M ands be any two positive numbers. 
Then there is a positive integer n such that 

ns > M . 

An ordered field which satisfies this condition is called Archimedean. Hence-
forth we shall assume that the real number system forms an Archimedean or-
dered field. 
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Note that if a certain integer n gives us ns > M, then any larger integer has 
the same property. Therefore the postulate might equally well have gone on to 
say that we have ns > M for every integer n greater than or equal to a certain n0. 

Even our latest postulate, however, is still not enough for the purposes 
either of algebra or of geometry. The easiest way to see this is to observe that 
the field al of rational numbers satisfies all our postulates so far, and in CD the 
number 2 has no square root. We need to know that our number field is com-
plete in such a sense as to permit the ordinary processes of algebra. For a long 
time to come, it will be sufficient for us to know that every positive number has 
a square root. 

If a > 0, then x is a square root of a if x2  = a. Obviously, if x is a square root 
of a, then so also is —x. Therefore, if a number has one square root, it must 
have two. On the other hand, no number a has two different positive square 
roots x, and x2; if this were so, we would have 

	

2 = = 2 
	x2i - x22  = 0,  

	

xi - a — x 2, 	 (x1 — x2) (x, + x2) = 0. 

Here x, — x2  0 0, because x, 0 x2, and x, + x2  > 0, because x1  > 0 and x2  > 0. 
Therefore the product (x, — x2) (x, + x2) cannot be = 0. 

An ordered field is called Euclidean if it satisfies the following condition. 

C-1. The Euclidean Completeness Postulate. Every positive number has a posi-
tive square root. 

We call this the Euclidean postulate because of the part that it will play in 
geometry. Eventually, this postulate will ensure that circles will intersect lines, 
and intersect each other, in the ways that we would expect. 

It follows, as shown above, that every a > 0 has exactly one positive square 
root. This is denoted by V. The other square root of a is —Va. We agree that 

= 0. 
This terminology may be confusing. Consider the following statements. 

(1) x is a square root of a. 

(2) x = Va. 

The second of these statements is not merely a shorthand transcription of 
the first. Statement (1) means merely that x2  = a. Statement (2) means not only 
that x2  = a but also that x -. 0. Strictly speaking, it is never correct to speak of 
"the square root of a," except when a = 0, because every a 0 has either two 
square roots or none at all (in the real number system). One way to avoid this 
confusion is to pronounce the symbol Vi as "root a," thus warning people that 
you are pronouncing a formula. 

Much later, we shall need another completeness postulate, to guarantee, for 
example, the existence of 7r. We shall postpone this discussion until we need it. 

The following trivial looking observations turn out to be surprisingly useful. 

■ THEOREM 1. For every real number a there is an integer n > a and an 
integer m < a. 
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PROOF. In getting n, we can assume a > 0. In the Archimedean postulate, 
take M = a, e = 1. This gives an n such that n • 1 > a, as desired. To get m < a, 
we merely take n > —a, and let m = —n. ❑ 

■ THEOREM 2. Between any two real numbers, there is at least one ratio-
nal number. 

(Obviously there are more.) 

PROOF. Given x < y. If there is a rational number r, with x +n <r<y + n, 
then there is a rational number r' = r — n between x and y. We may therefore 
suppose that 

1 < x < y . 

0 	1 

Figure 1.5 

Let e = y — x. By the Archimedean postulate, we have 

ps > 1 

for some integer p. Thus 

1 
< E. 

p 

The rational numbers with denominator p now divide the whole number 
line into segments of length 1/p, like this: 

x 	 y 
I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 

—2 	—1 	0 	1 	2 	. k-1 	k 	k+1 	k+2  
P 	P 	 P 	P 	P 	P 	P 	P 

Figure 1.6 

If k/p is the first one of them that lies to the right of x, then k/p ought to be 
between x and y, because 

1 
< 8 = y — x . 

To be more precise, let 

  

 

K= tn 
n 
—>x . 
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By the well-ordering principle, K has a least element k. Thus 

but 

Therefore 

1 
— 
k 

x-F—<x+ e 
P 	p 

x + (y — x) 
= y . 

Therefore 

x< —
k 

P 
<y, 

which was to be proved. ❑ 

In using the Archimedean postulate to prove this trivial looking theorem, 
we are not making any sort of joke; the postulate is needed. There are ordered 
fields that are Euclidean but not Archimedean. (See Chapter 32.) In such 
fields, Theorems 1 and 2 do not hold true; in them, some numbers x and y are 
greater than every integer and hence greater than every rational number. For 
many of the purposes of geometry we need the Archimedean postulate to rule 
out such phenomena. 

	  Problem Set 1.8 	  

1. Show that if 0 < x < y, then x2  < y 2. Does this conclusion follow if we know only 
that x < y? Why or why not? 

2. Show that if x,y > 0, and x2  < y 2, then x < y. 

3. Show that if 0 < a < b, then VT/ < Vb . 

4. Show that there is such a number as V1 + V2 • 

5. Same as Problem 4, for V2 — .\/ • 

6. Same as Problem 4, for V(3 — V-2)/(7 — 	 ) . 

7. Show that VVi cannot be expressed in the form a + li\/, where a and b are ratio-
nal. [Hint: You need a theorem from Problem Set 1.3.] 

8. For each x, let C„, be the set of all rational numbers less than x. Show that if C„, = C.,,, 
then x = y. 

9. Show that if p3  is even, then p is even. 
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10. Show that 	is irrational. 

11. Show that 1■/ cannot be expressed in the form a + b-\,/, where a and b are rational. 

12. Show that for every s > 0 there is a positive integer no  such that 

n > no —
1 

< e . 
n 

1.9 The Language and Notation 
	  of Sets  	

So far, we have been using the language of sets rather sparingly and with a 
minimum of special notation. There is a standard shorthand, however, which is 
worth learning partly because it is widely used, and partly because it enables us 
to be both brief and exact in notebooks and on blackboards. 

Throughout this section, capital letters denote sets. If a is an element of A, 
then we write 

a E A . 

The symbol E is pronounced "belongs to." When we write a g A, this means 
that a does not belong to A. If every element of A is also an element of B, then 
A is called a subset of B, and we write 

A C B, 

B D- A . 

Note that here we are allowing the possibility that A = B; that is, every set is a 
subset of itself. 

The intersection of A and B is the set of all objects that are elements of A and 
also elements of B. The intersection is denoted by A fl B. (This is pronounced 
"A cap B," because the symbol fl looks vaguely like a cap.) Thus 

A (1B ={xIxEAandxCB}. 

A word of caution is in order about the use of the word intersection. When 
we speak of the intersection of A and B, and write A fl B, this allows the possibility 
that A fl B is the empty set 0. But when we say that two sets A and B intersect, 
we always mean that A and B have at least one element in common. This dis-
tinction in usage, between the noun and the verb, is not logical, but it is conve-
nient; besides, it is nearly universal, and there is not much to be done about it. 

The union of A and B is the set of all objects that are elements either of A or 
of B, or of both. The union is denoted A U B. (This is pronounced "A cup B," 
because the symbol looks vaguely like a cup.) Thus 

A U B = {x1xEAorxEB}. 
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(Here, and everywhere else in mathematics, when we say "either ... or ... ," we 
allow the possibility that both of the stated conditions hold. If we really mean 

.. but not both," we have to say so.) 
The difference between two sets A and B is the set of all objects that belong 

to A but not to B. The difference is denoted by A — B. (This is pronounced "A 
minus B.") Thus 

A — B = {xlx E A and x cEB}. 

Some books have been written making very free use of this symbolism, but 
this book is not one of them. Most of the time, we shall use words. We shall, of 
course, make constant use of the concepts represented by the symbols E, cE, C, 
D, 11, U, and —. The following problem set is designed merely to give you 
some practice in writing and interpreting the symbols. These problems should 
be worked out on the basis of your "common sense" knowledge of how sets 
behave; in this book, we shall make no attempt to treat sets formally by means 
of postulates. 

Finally, we mention two common and useful blackboard abbreviations: 

(1) 3 means "there exists." 

(2) 3 means "such that." 

For example, the Euclidean completeness postulate C-1 might be stated as follows: 
IfaERanda>0,then3xDx>Oandx2 = a. 
The symbol 3 means "there does not exist." 

	  Problem Set 1.9 	  

Which of the following statements hold true for all sets A, B, C, ... ? 

1.ACAUB 

2.ADArl B 

3.ACArl B 

4. A n (B — A) = 0 

5.IfACB,thenxEA xEB 

6. If A C B and B C C, then A C C 

7.EitherACBor 3 aDaEAandaB 

8.A —B CA 

9. If A = A n B, then A C B 

10. If A C B, then A = A fl B 

11. If A = A U B, then B C A 

12. (A — B) n (A — C) = A — (B U C) 

13. (A — B) 11 (A U B) =AFIB 
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1.10 n-Fold Sums and Products; 

	

   the Generalized Associative Law  	

There is a certain trouble with the associative laws of addition and multiplication. 
As they stand, they are not adequate to justify the things that we talk about, and 
the things we do, when we do algebra. At the end of Section 1.2, we remarked 
that it was quite all right to write triple products abc, because (ab)c is always the 
same number as a(bc); and similarly for addition. In practice, however, as soon 
as you get past Chapter 1 of anybody's book, you are writing n-fold sums 

a, + a2  + • • • + an , 
and n-fold products 

a,a2  • • a„, 

for n > 3. We insert and delete parentheses in these sums and products, at will. 
All this is fine, but it has not been connected up, so far, with the operations that 
are supposed to be given for pairs of numbers (a, b) and with the associative 
laws for triplets (a, b, c). It would be a pity if mathematics appeared to be split 
down the middle, with the postulates and definitions on one side, and the mathe-
matical content on the other. Let us therefore bridge the gap between our postu-
lates and the things that we intend to do. 

The key to our problem is the induction idea. What is given in a field is the 
twofold product ab, for every a and b in the field. Given al , a2, a3, we define 
the threefold product by the formula 

a ia2a3  = (a,a2)a3 . 

Similarly, we define 

a ,a2a3a, = (a,a2a3)a4  , 

where the parenthesis on the right is defined by the preceding equation. In 
general, 

a ia2 	a„a„+, = (a,a2 	cir )an,, . 

That is, to form an (n + 1)-fold product, we first form the n-fold product (of 
the first n factors) and then multiply the result by the last factor. 

This is our official definition of the n-fold product. But there is another 
scheme that we might have used. We might have defined the triple product as 

a ,a2a3  = a1(a2a3) • 

We could then have said, in general, that 

a ,a2 	anan+, = a,(a2a3  . . . anan+,) ; 

that is, to form an (n + 1)-fold product, we could first form the product of the 
last n factors and then multiply the result by the first factor. In fact, the first 
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thing that we need to prove is that the choice between these two schemes makes 
no difference. In the following theorem, we change our notation slightly, to 
avoid getting peculiar looking statements for n = 1 and n = 2. 

• THEOREM 1. For every positive integer n, 

aba ia2 	= a(ba,a2 . an) . 

PROOF. Let S be the set of all positive integers for which this formula holds. 
We shall show, by induction, that S contains all of the positive integers. Thus we 
need to show two things: 

(1) S contains 1. 

(2) S is closed under the operation of adding 1. 

PROOF of (1). S contains 1 if 
aba, = a(ba,) . 

Now aba, = (ab)a,, by definition. And (ab)a, = a(ba,), by the ordinary associa-
tive law for triplets. Therefore S contains 1. ❑ 

PROOF of (2). Here we need to show that if S contains n, then S also contains 
n + 1. This means that if 

(i) aba,a2  . an  = a(ba,a2 	an), 

then 

(ii) aba,a2 	anon+, = a(ba,a2 	anan,i )• 

This is shown as follows. We have 

aba ia2 	anann  = (aba,a2 	, 

by definition. By (i), the expression on the right is 

= [a(ba ia2 	an)lann  . 

By the associative law, this is 

= a[(ba,a2 . an)a„,,] 

By definition of the (n + 2)-fold product, the expression on the right is 

= a(ba,a2 	anan+,) . 

Therefore (ii) holds. ❑ 

With the aid of this theorem, we shall prove the following. 

■ THEOREM 2. The General Associative Law. In any n-fold product, the in-
sertion of one pair of parentheses leaves the value of the product unchanged. 
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PROOF. Let S be the set of all positive integers n for which it is true that 
parentheses can be inserted in any n-fold product without changing its value. 
To prove our theorem, we need to show that 

(1) S contains 1, and 

(2) S is closed under the operation of adding 1. 

PROOF of (1). Obviously a, = (a1) for every a. Therefore S contains 1. 

PROOF of (2). Given an (n + 1)-fold product 

a1a2 ...a„a,1  . 

Suppose that we insert a pair of parentheses. These are three cases to be 
considered. 

(i) The opening parenthesis comes somewhere after a,, as 

a,a2 . .a,(a, . . . ak) 	an+ , 

(Here we allow the possibility that k = n + 1.) 

(ii) The closing parenthesis comes somewhere before ann. 

(iii) The parentheses enclose the entire product. 

Obviously, in Case (iii) there is nothing to prove. In Case (i), 

a1a 2 . .a,(a,, 	ak) 	. an+ , = a 1 [a 2 . .a,(a,, 	ak ) . . . an+1], 

by Theorem 1. This is 

= a1[a2 ...a„,,], 

because S contains n, and in turn, this becomes 

= ti lt/2 	a„,, , 

by Theorem 1. Thus, in Case (i), if S contains n, it follows that S contains n + 1. 
In Case (ii), we have 

a,a2 ...a,(a,,...ak) . . . an+ , , 

where k < n + 1, but i + 1 may be = 1. By definition of an (n + 1)-fold prod-
uct, this becomes. 

= [a1 a2 . .(ai+, 	ak ) . . . an ]an+ ,; 

which in turn becomes 

= [a1a2 . an]an+,, 
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because S contains n; this is 

= .21612 ... ana,,, i  , 

by definition of (n + 1)-fold product. This completes our induction proof. ❑ 

The things that we ordinarily do with n-fold products can be justified by 
repeated applications of this theorem. For example, 

ab—
b

c—
c

1  
d = ad . 

PROOF. The expression on the left is equal to 

a(b 
b
1 ) ( 

c  
1 ) d 

by two applications of Theorem 2. This is 

= alld 

= (a1) (1d) 

= ad. 

We define n-fold sums in exactly the same way and conclude by the same 
proof that n-fold sums satisfy the general associative law. That is, insertion of 
one pair of parentheses in an n-fold sum, 

a i  + a2  + • • • + an, 

leaves the value of the sum unchanged. Finally we observe that we always have 

a(b, + b2  + • • • + bn) = ab1  + ab2  + • • • + abn . 

The proof is by an easy induction. For n = 1, we have ab1  = ab1. Given that 

a(b, + b2  + • • • + bn) = ab, + ab2  + - - • + abn , 

it follows that 

a(b, + b2  + • • • + bn  + b,,+1) = a[(b, + b2  + • • • + bn) + bn+1] 

= a(b, + b2  + • • • + bn) + abn+, 

= (ab1  + ab2  + • • • + abn) + abn+i 

= ab1  + ab2  + • • • + abn  + abn+, . ❑ 

1.11 The Closure of the Integers Under 
	 Addition and Multiplication 	 

We found, in Section 1.7, that to prove that the set 0 of rational numbers 
forms a field, we needed to know that sums and products of integers are always 



1.11 The Closure of the Integers Under Addition and Multiplication 	41 

integers. Under our definition of integers, this requires proof; the proof is 
merely a series of exercises in the use of induction. 

We recall that the set N of positive integers was defined by the following 
three conditions: 

(1) N contains 1, 

(2) N is closed under the operation of adding 1, and 

(3) of all sets of numbers satisfying (1) and (2), N is the smallest. 

To get the set Z of integers, we added to N the number 0, and also the neg-
atives of all of the positive integers. 

■ THEOREM 1. If a and n are positive integers, then so also is a + n. 

PROOF. Let a be fixed. Let S be the set of all positive integers n for which 
a + n E N. Then (1) 1 E S, because N is closed under the operation of adding 
1, and (2) if n E S, then n + 1 E S. For if a + n E N, we have 

a + (n + 1) = (a + n) + 1, 

which belongs to N. ❑ 

■ THEOREM 2. If a and n are positive integers, then so also is an. 

PROOF. Let a be fixed, and let 

S = In I an E NI . 

Then (1) 1 E S, because al = a. (2) If n E S, then n + 1 E S. For 

a(n + 1) = an + al = an + a , 

which is the sum of two positive integers. ❑ 

■ THEOREM 3. If x and y are integers, then so also is xy. 

PROOF. If x,y > 0, this follows from Theorem 2. If x > 0 and y < 0, then 

xy = —[x(—y)] , 

which is the negative of the positive integer x( —y). The case x < 0, y > 0 is the 
same. If x,y < 0, then xy is the positive integer (—x) (—y). Finally, if x = 0 or 
y = 0, we have xy = 0, which is an integer. This takes care of closure under 
multiplication. ❑ 

Rather oddly, addition is more troublesome. 

■ THEOREM 4. If n E 1, then n — 1 E/. 
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PROOF. 

(1) If n > 1, then n = k + 1 for some k in N. (Theorem 6 of Section 1.6.) 
Therefore n — 1 = k E Z. 

(2) If n= 1, then n — 1 = 0 E Z. 

(3) If n = 0, then n — 1 = —1 E Z. 

(4) If n < 0, then n = —k, where k > 0. Therefore n — 1 = (—k) + (-1) = 
—(k + 1), which is the negative of a positive integer. ❑ 

■ THEOREMS. If a E 1 and n E N, then a — n E 1. 

PROOF. Let S = {n la — n E LL}. Then (1) 1 E 5, by Theorem 4, and (2) if 
n E S, then n + 1 E S. For if a — n E 1, then 

a — (n + 1) = (a — n) — 1, 

which belongs to 1, by Theorem 4. ❑ 

■ THEOREM 6. If x,y E 1, then x + y E Z. 

PROOF. 

Case 1. If either x = 0 or y = 0, this holds trivially. 

Case 2. If x,y > 0, then x + y E N, and so belongs to Z. 

Case 3. If x,y < 0, then x + y = —[(—x) + (—y)], which is the negative of 
the positive integer (—x) + (—y). 

Case 4. If x < 0 < y, let n = —x. Then n > 0, and x + y = y — n. We 
know by Theorem 5 that y — n E Z. ❑ 

These verifications are tedious, but they are needed. We need to know 
about the integers, the real numbers, and the relation between them. One way 
to do this is first to set up the integers, and then to build the real numbers from 
them. (For such a treatment see, for example, Edmund Landau's Foundations 
of Analysis.) In this chapter we have first stated postulates for the real numbers 
and then "moved from the top downward" to get the integers. The latter 
scheme is by far the quicker and easier, but no scheme can reduce our technical 
difficulties to zero. 



CHAPTER V 
Incidence Geometry in 

Planes and Space 

You will recall that when we started to discuss the real numbers from a postula-
tional point of view, we began with three things: a set R (whose elements were 
called numbers) and two laws of combination (called addition and multiplication, 
and denoted by + and •). Thus, in Section 1.2, the structure that we were work-
ing with was a triplet [R, +, •], where l was a set and + and • were operations 
defined in R. A little later, we assumed that we had an order relation <, defined 
in D and subject to certain conditions. Thus, at the end of Chapter 1, the struc-
ture that we were working with was a quadruplet [R, +, -, <]; and all of our pos-
tulates were stated in terms of these four objects. 

We shall follow the same scheme in our postulational treatment of the ge-
ometry of planes and space. In the scheme that we shall be using, space will be 
regarded as a set S; the points of space will be the elements of this set. We will 
also have given a collection of subsets of S, called lines, and another collection 
of subsets of S, called planes. Thus the structure that we start with is a triplet 

[S, 2, g'] , 

where the elements of S, 2, and P are called points, lines and planes, respec-
tively. Later, we shall add to this structure, just as we added to our algebraic 
structure in the latter part of Chapter 1. For the present, however, our postu-
lates are going to be stated in terms of the sets S, 2, and P. 

The above presentation is equivalent to one in which we say that the terms 
point, line, and plane are taken as undefined. 

In our formal mathematics, we are going to use postulates; and the only 
things that we shall claim to know about points, lines, and planes will be the 
things stated in the postulates. Informally, however, it may be a good idea to 
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remind ourselves of the sort of things that lines and planes will turn out to be. 
A line is going to stretch out infinitely far in both directions, like this: 

Figure 2.1 

Here the arrowheads are supposed to indicate that the line doesn't stop where 
the picture of it stops. We shall have another term, segment, for a figure which 
looks like this: 

P• 	 •Q 

Figure 2.2 

If the end points are P and Q, then this figure will be called the segment from P 
to Q. For a "line" to stretch out infinitely far in only one direction is not enough: 

P 

 

Q • 	 

 

■ 

   

Figure 2.3 

A figure like this will be called a ray. Similarly, a plane stretches out infinitely far 
in every direction. Thus the floor of your room would not form a plane, even if 
it were perfectly flat. It would form a part of a plane. 

Logically speaking, we are getting ahead of ourselves when we draw these 
pictures. The postulates of this section are nowhere nearly enough to guarantee 
that lines look like our pictures, as you will see in the next set of problems. 

Our first postulate is merely a reminder. 

I-0. All lines and planes are sets of points. 

If a line L is a subset of a plane E, then we shall say that L lies in E. (The 
same term is used in general, to mean that one set is a subset of another.) If a 
point P belongs to a line L, then we may say that P lies on L or that L passes 
through P. Similarly, if P belongs to a plane E, then we may say that P lies in E or 
that E passes through P. (Here we are merely defining the familiar language of 
geometry in terms of the set-theoretic apparatus that is used in our postulates.) 
By a figure we mean a set of points. 

Points lying on one line are called collinear, and points lying in one plane 
are coplanar. 

I-1. Given any two different points, there is exactly one line containing them. 

If the points are P and Q, then the line containing them is denoted by PQ. 
The arrowheads are meant to remind us of the usual representation of lines in 
figures. 

1-2. Given any three different noncollinear points, there is exactly one plane 
containing them. 
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If the three points are P, Q and R, then the plane containing them is de-
noted by PQR. 

1-3. If two points lie in a plane, then the line containing them lies in the plane. 

1-4. If two planes intersect, then their intersection is a line. 

If you check back carefully, you will see that postulates I-0 through 1-4 are 
satisfied by the "geometry" in which there is exactly one point P in S, and this 
point P is both a line and a plane. To rule out such cases, we state another pos-
tulate immediately. 

1-5. Every line contains at least two points. S contains at least three non-
collinear points. Every plane contains at least three noncollinear points. And S 
contains at least four noncoplanar points. 

(Throughout this book, if we say that "P and Q are points," we allow the 
possibility that P = Q. But if we speak of "two points," we mean that there are 
really two of them; that is, the points must be different; similarly for planes, 
and so forth. Sometimes we may speak of "two different points," as in I-1, but 
this is merely for emphasis.) 

■ THEOREM 1. Two different lines intersect in at most one point. 

PROOF. Let L 1  and L2 be two lines, and suppose that their intersection con- 
tains two points P and Q. This is impossible by Postulate I-1, because I-1 says 
that there is exactly one line, and hence only one line, containing P and Q. ❑ 

■ THEOREM 2. If a line intersects a plane not containing it, then the inter-
section is a single point. 

L 

\P  \ •Q? 	X 

\ 

 

/ 
Figure 2.4 

PROOF. Let L be a line intersecting a plane E, but not lying in E. We have 
given that L fl E contains at least one point P ; and we need to prove that 
L fl E contains no other point Q. 
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Suppose that there is a second point Q in L fl E. Then L = PQ, by Theo-
rem 1. By 1-3, PQ lies in E. Therefore L lies in E, which contradicts the hy-
pothesis for L. ❑ 

■ THEOREM 3. Given a line and a point not on the line, there is exactly 
one plane containing both of them. 

Restatement. Let L be a line, and let P be a point not on L. Then there is 
one and only one plane containing L U P. 

(Here we introduce a device which will be convenient later. Whenever we 
can, we shall state theorems in ordinary English, with little or no notation. This 
way, the theorems are easier to read and to remember. The restatement fur-
nishes us with the notation that will be used in the proof, and in some cases it 
may remove some vagueness or ambiguity.) 

PROOF. 

(1) By 1-5, L contains at least two points Q and R. 

(2) P, Q, and R are not collinear. The reason is that by I-1, L is the only line that 
contains Q and R; and L does not contain P. Therefore no line contains P, 
Q, and R. 

(3) By (2) and 1-2, there is a plane E = PQR, containing P, Q, and R. By 1-3, E 
also contains L. 

Thus there is at least one plane containing L U P. If there were two such 
planes, then both of them would contain P, Q, and R. This is impossible, by 1-2, 
because P, Q, and R are noncollinear. ❑ 

■ THEOREM 4. If two lines intersect, then their union lies in exactly 
one plane. 

Let L and L' be two intersecting lines. The following statements are the 
main steps in the proof; you should be able to supply the reasons for each of 
these statements. 

(1) L n L' is a point P. 

(2) L' contains a point Q 0 P. 

(3) There is a plane E, containing L and Q. 

(4) E contains L U L'. 

(5) No other plane contains L U L'. 

Theorems of the kind that we have just been proving are called incidence 
theorems; such a theorem deals with the question whether two sets intersect 
(and if so, how?) or the question whether one set lies in another. Incidence theo- 
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rems are used constantly, but the incidence postulates on which they are based 
do not go very far in describing space geometry, as Problem 1 below will indicate. 

Problem Set 2.1 

1. Consider the system [S,2,?], where S contains exactly four points A, B, C, and D, 
the lines are the sets with exactly two points, and the planes are the sets with exactly 
three points. This "space" is illustrated by the following figure: 

Figure 2.5 

Here it should be remembered that A, B, C, and D are the only points that count. 
Verify that all the incidence postulates hold in this system. 

2. Let Pi, P2, ... P5 be five points, no three of which are collinear. How many lines 
contain two of these five points? 

3. If no four of the five points are coplanar, how many planes contain three of the five 
points. 

4. Given PI , P2, 	,P„, all different, such that no three of them are collinear and no 
four of them are coplanar. How many lines contain two of them? How many planes 
contain three of them? 

5. Show that under our incidence postulates, S cannot be a line. 

6. Show that there is at least one plane. 

7. Show that there are at least two planes. 



CHAPTER 

Distance 
and Congruence 

   3.1 The Idea of a Function  	

The word function is most commonly used in connection with calculus and its 
various elaborations, but the idea occurs, often without the word, in nearly all 
mathematics. In fact, the first two chapters of this book have been full of func-
tions, as we shall now see. 

(1) In a field F, to every element a there corresponds a unique negative, —a. 
Here we have a function 

F —> F 

a1--> —a 

for every a. (We use —> between sets, and 1—> between elements of the sets.) 

(2) In an ordered field F, to every element x there corresponds a unique num-
ber jxl, called the absolute value of x. The rule of correspondence is that if 
x _.: 0, then the number corresponding to x is x itself, and if x < 0, then the 
number corresponding to x is —x. Thus we have a function, 

F—* F, 

x 1—* Ix' 

for every x. 

under which 

under which 
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(3) Suppose that F is a Euclidean ordered field. Let F+  be the set of all ele-
ments of F that are 0. To each element a of F+  there corresponds a 
unique element VC; of F. (Recall the Euclidean completeness postulate 
and the definition of "\/7z.) Here we have a function, 

F+  ---> F+ , 

under which 

a 1--> Vet 

for every a in F. 

(4) The operation of addition in a field F can be considered as a function, once 
we have the idea of the product of two sets. For any pair of sets A, B, the 
product A x B is the set of all ordered pairs (a, b), where a E A and b E B. 
We allow the possibility that A = B. Thus, when we identify a point P of 
a coordinate plane by giving a pair of coordinates (x,y), we are associ-
ating with P an element of the product fIB x FR of the real numbers with 
themselves. 
Consider now the operation of addition in a field E Under this operation, 

to every pair (a, b) of numbers in F there corresponds a number a + b, called 
their sum. This can be regarded as a function, 

F X F ---> F, 

where 

(a, b)i--> a + b 

for every (a, b) in F x E 
Obviously multiplication can be regarded in the same way. 
Note that in these situations there are always three objects involved: first, a 

set A of objects to which things are going to correspond; second, a set B which 
contains the objects that correspond to elements of A ; and third, the correspon-
dence itself, which associates with every element of A a unique element of B. 
The set A is called the domain of definition, or simply the domain. The set B is 
called the range. The correspondence itself is called the function. In the ex-
amples that we have been discussing, these are as follows. 

Table 3.1 

Domain Range Law 

F 

F 

F±  
F X F 

F 

F 

F+  

F 

a 1—> —a 

a 1—> lal 

a 1--> Va 
(a, b) i— a + b 
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In the third column, we have described the function by giving the law of 
correspondence. 

A less simple example would be the function which assigns to every positive 
real number its common logarithm. Here the domain A is the set of all positive 
real numbers, the range B is the set of all real numbers, and the law of corre-
spondence is xi—> log, x. Here the expression log', x is an example of func-
tional notation. If the function itself is denoted by f, then f(x) denotes the 
object corresponding to x. For example, if f is the absolute value function, then 

f(1) = 1, 	f(-1) = 1, 	f(-5) = 5, 

and so on. Similarly, if g is the "positive square root function," then 

g(4) = 2, 	g(16) = 4, 	g(8) = 2g(2) = 2 • "\/, 

and so on. We can also use functional notation for addition, if we want to 
(which we usually don't). If s is the "sum function," then 

s(a, b) = a + b , 

so that 

s(2, 3) = 5, 	s(5, 4) = 9 , 

and so on. Similarly, if p is the "product function," then 

p(a, b) = ab , 

so that 

p(5, 4) = 20 and p(7, 5) = 35 . 

To sum up, a function f is defined if we describe three things: (1) a set A, 
called the domain, (2) a set B called the range, and (3) a law of correspondence 
under which to every element a of A there corresponds a unique element b of 
B. If a E A, then f(a) denotes the corresponding element of B. We indicate the 
function f, the domain A, and the range B by writing 

f: A .--> B , 

and we say that f is a function of A into B. 
We define composition of functions in the way which is familiar from cal-

culus. Thus, given 

f: A --> B 

and 

g: B --> C, 

the composition g(f) is the function A —> C under which, for every a in A, 
al—* g(f(a)). For example, if we are using the functions s and p to describe sums 
and products, then 
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means ab + ac, and 

means 

s(p(a, b),p(a, c)) 

p(a , s(b, c)) 

a(b + c). 

Finally, we define two special types of function which have special impor-
tance. If every b in B is = f (a) for at least one a in A, then we say that f is a func-
tion of A onto B. If every b in B is = f(a) for exactly one a in A, then we say that 
f is a one-to-one correspondence between A and B, and we write 

f: A <---> B . 

For example, the function f: D --> R, x 1—> x 3  is a one-to-one correspondence. 
The function g: D --> R, x 1—* x 2  is not a one-to-one correspondence because, in 
the range, every positive number appears twice, and no negative number ap-
pears at all. The function under which x 1—> —x is a one-to-one correspondence. 
(Proof? You need to check that each number y is = —x for exactly one number 
x.) Similarly, the function x —> 1/x is a one-to-one correspondence; here 

A = B = {xlx 0}. 

If f is a one-to-one correspondence, then there is a function 

f -': B <---> A , 

called the inverse of f, which reverses the action of f. That is, f -'(b) = a if 
f(a) = b. The symbol f -1  is pronounced "f-inverse." When we say that a func-
tion has an inverse, this is merely another way of saying that the function is a 
one-to-one correspondence. 

Given a function 

f: A ---> B . 

The image of A is the set of all elements of B that appear as values of the func-
tion. Thus the image is 

{b la E A and b = f(a)}. 

In other words, the image is the smallest set that might have been used as the 
range of the function. For example, if the function 

f: [1:R ---> [1:R 

is defined by the condition f(x) = x2  for every x, then the range is the set R of 
all real numbers, and the image is the set of all nonnegative real numbers. 

The question may arise why we define functions in such a way as to per-
mit the range to be a bigger set than the image. We might have stated the 
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definition in such a way that every function would be onto. But such a defini-
tion would be unmanageable. For example, suppose that we define a function, 
in calculus, by the equation 

f(x) = x4  — 7x3  + 3x2  — 17x + 3 . 

This is a function of R into R. To find out what the image is, we would have to 
find out where this function assumes its minimum; this is a problem in calculus, 
leading to a difficult problem in algebra. If we required that the image be 
known for the function to be properly defined, we could not state our calculus 
problem without first solving it; and this would be an awkward proceeding. 

(The definitions given in this section are standard, but in some books on 
modern algebra, different definitions are given, as follows. Given a function 
f: A ---> B. B is called the co-domain. If f (a) = f (b) implies a = b, then f is injective. 
If f (A) = B —that is, if B is the image—then f is surjective. If both these condi-
tions hold, then f is bijective, and f is called a bijection. Thus a bijection is a one-
to-one correspondence.) 

	  Problem Set 3.1 

1. Using the functional notations s(a, b) and p(a, b) for sums and products, rewrite the 
associative, commutative, and distributive laws for an ordered field. Now rewrite 
the Postulates MO-1 and AO-1 which related the field structure to the order rela-
tion in an ordered field. 

2. We recall that Z is the set of all integers. For each i,/ in 7L, let f(1, j) be the larger of 
the two integers i ands. Do these remarks define a function? If so, what are the do-
main and the image? 

3. Let f: R --> R be defined by the condition f(x) = x2. Does f have an inverse? Why or 
why not? 

4. Let R+  be the set of all nonnegative real numbers. Let g: 	—> R+  be defined by 
the condition g(x) = x 2. Does g have an inverse? Why or why not? 

5. The same question, for f: 118 —> R, f(x) = sin x. 

6. Let A be the closed interval [-7r/2, 7r/2]. That is, 

7r 
5- A={ xixERand--

2
x— 

2
} . 

Let 

B = [-1, 1] = {x Ix E R and —1 x 	1}. 
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Let 

g: A —> B 

be the function defined by the condition 

g(x) = sin x. 

Does g have an inverse? Why or why not? 

3.2 The Set-Theoretic 
Interpretation of 

	 Functions and Relations  	

In the preceding section, we have explained, with numerous examples, what 
people are talking about when they talk about functions. And in fact the idea of 
a function, in the form in which we have explained it, is adequate for nearly all 
the uses that you will need to make of it for a long time to come. 

You will find, however, if you re-read the last section carefully, that at no 
point have we given a straightforward definition of a function; we have ex-
plained the conditions under which a function is defined, but we have not said 
what kind of object a function is. This we shall now do. But first we shall give 
some preliminary discussion, to indicate the idea behind the definition. 

Consider first the case where the domain is a finite set, say, 

A = {0, 1,2,3,4,5}. 

For any function f with A as domain, we can write down a complete table, giv-
ing the values of the function f. 

a f(a) 

0 0 

1 1 

2 4 

3 3 

4 4 

5 1 

There was a system used in making up the table; and you may be able to figure 
out what this system was. But even if you can't figure it out, the function is de-
fined by the table. To define a function, you have to explain what its value is, 
for each element of the domain A, but you don't necessarily have to give this 
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explanation tersely. In fact, if you remember the kind of functions that were 
important in calculus, you will recall that it took quite a while to explain what 
they were. The expression sin x was not a formula for the sine function, but 
merely a name for the sine function; and the explanation of what sin x really 
meant was given in words, at considerable length. For a function like the sine, 
you could write down only a partial table of values, because the domain A was 
the set of all real numbers, which is infinite. Under the definition, however, a 
correspondence was defined under which to every x in R there corresponded a 
unique real number y which was sin x. 

From a finite table, such as the one that we have written above, it is easy to 
read off a set of ordered pairs which describe the function. Each line of the 
table gives us an ordered pair (a, b), in which a is in A and b is the correspond-
ing element of B. From our table for f, we get the pairs 

(0, 0), 	(1, 1), 	(2, 4), 	(3, 3), 	(4, 4), 	(5, 1) . 

If the set A is infinite, then so is the table. 
A partial table for the sine might look like this. 

x sin x 

0 0 
IT 0 

7r/2 1 
7r/3 "\//2 
7r/4 V/2 
-7, 0 

—7r/2 -1 

From this table we could read off a partial collection of ordered pairs 

{

(0, 0), (7r, 0), (7r/2, 1), (7r/3, "\//2), 

(7r/4, \/2),  (-7r, 0), (-7r/2, —1) 1 • 

If we formed the set of all ordered pairs of the type (x, sin x), then this infinite 
collection would describe the sine function completely. Similarly, every function 
can be described by a collection of ordered pairs. If the domain of the function 
is finite, then so is the collection, and if A is infinite, then so is the collection. If 
the collection describes a function, then every a in A must appear as the first 
term of exactly one pair in the collection, because the function assigns a unique 
value to a. 

Thus, given a function f: A —> B, we have a collection of ordered pairs 
(a, b), where (1) a E A, (2) b E B, and (3) every element of A appears exactly 
once as the first term of an ordered pair in the collection. And conversely, given 
a collection of ordered pairs (a, b), satisfying (1), (2), and (3), we always have a 
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function f: A --> B. These observations are the basis of the following definition. 
In this definition, we are saying merely that the function is the sort of collection 
of ordered pairs that we have been discussing. 

DEFINITION. Let A and B be sets. A function with domain A and range B is a 
collection f of ordered pairs (a, b), such that 

(1) for each (a, b) in f, a E A ; 

(2) each a in A is the first term of exactly one pair (a, b) in f; and 

(3) for each (a, b) in f, b e B. 

When we write b = f (a), we mean that (a, b) belongs to the collection f. 
From here on, we proceed to handle functions exactly as before. 

A somewhat similar device enables us to give an explicit definition of the 
idea of a relation defined on a set A. We have been using this idea informally, writ-
ing a < b to mean that a has the relation < to b, and, more generally, a * b is 
written to mean that a has the relation * to b. Now, given a relation *, defined 
on the set A, we can form the collection 

{(a,b)la * 

Conversely, given any collection of ordered pairs of elements of A, we can de-
fine a relation *, by saying that a * b if the pair (a, b) belongs to the collection. 
In the following definition, we are saying that the relation is the collection. Re-
call, of course, that A x A is the set of all ordered pairs of elements of A. 

DEFINITION. A relation defined on a set A is a subset of A x A. 

For example, let 

A =11,2,31, 

and let 

* = 1(1, 2), (1, 3), (2, 3)1. 

Then * is a relation. (It is, in fact, the usual relation <.) 
It is not necessary, of course, to denote relations by peculiar symbols. For 

example, if A = 11, 2, 31, as before, we may let 

G = {(2, 1), (3, 1), (3, 2)1. 

Thus 2G1, 3G1, and 3G2, because (2, 1), (3, 1), and (3, 2) belong to G. (In fact, 
G is the relation >.) 
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	  Problem Set 3.2 	  

1. Let A = {1, 2, 3, 4}. Let 

G = {(4, 2), (4, 1), (4, 3), (2, 1), (2, 3), (1, 3)1. 

Is G a relation? Is G an order relation? 

2. Let A be as before, and let G be the set of all ordered pairs (a, b) such that a and b 
belong to A and a 0 b. Is G a relation? Is G an order relation? 

3. Is the following collection a function? If so, what are its domain and image? 

1(0, 0), (1, 1), (2, 4), (3, 2), (4, 2), (5, 4), (6, 1)} 

Can you see a systematic way in which this collection might have been constructed? 

4. Is the following collection a function? 

{(0, 1), (1, 0), (0, 0)1 

5. Let f be the set of all ordered pairs (x,y) such that x and y belong to R and y = x 2. Is 
this a function? 

6. The same question, for the set of all ordered pairs (x,y) such that x and y belong to 
11andx=y2. 

7. Consider a rectangular coordinate system in the plane, in the usual sense of analytic 
geometry. Every point has a pair of coordinates (x,y). For the purposes of this ques-
tion, let us regard points as indistinguishable from the ordered pairs (x,y) that de-
scribe them. Thus every figure, that is, every set of points, becomes a collection of 
ordered pairs of real numbers. Under what conditions, if any, do the following fig-
ures represent functions? 
(a) a triangle 

(b) a single point 

(c) a line 

(d) a circle 

(e) a semicircle, including the end points 

(f) an ellipse 
What, in general, is the geometric condition that a figure in the coordinate plane 
must satisfy, to be a function? 

   3.3 The Distance Function 	 

So far, the structure dealt with in our geometry has been the triplet 

We shall now add to the structure by introducing the idea of distance. To each 
pair of points there will correspond a real number called the distance between 
them. Thus we want a distance function d, subject to the following postulates. 
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D-0. d is a function 

d:Sx,S-->R. 

D-1. For every P, Q, d (P, Q) 	0. 

D-2. d (P, Q) = 0 if and only if P = Q. 

D-3. d (P, Q) = d (Q, P) for every P and Q in S. 

Here we have numbered our first postulate D-0 because it is never going to 
be cited in proofs; it merely explains what sort of object d is. Of course d (P, Q) 
will be called the distance between P and Q, and, for the sake of brevity, we 
shall write d(P, Q) simply as PQ. (We shall be using distances so often that we 
ought to reserve for them the simplest notation available.) 

Any reasonable notion of distance ought to satisfy D-1 through D-3. We 
might have required also that 

PQ + QR ?...-' PR , 

which would say, approximately, that "a straight line is the shortest distance be-
tween two points." But as it happens, we don't need to make this statement a 
postulate, because it can be proved on the basis of other geometric postulates, 
to be stated later. 

Henceforth, until further notice, the distance function d is going to be part 
of our structure. Thus the structure, at the present stage, is 

[S,2,g,d]. 

The distance function is connected up with the rest of the geometry by the 
ruler postulate D-4, which we shall state presently. 

We ordinarily think of the real numbers as being arranged on a line, like this: 

-2 	-1 	0 	1 	2 	3 

Figure 3.1 

If the "lines" in our geometry, that is, the elements of 2, really "behave like 
lines," then we ought to be able to apply the same process in reverse and label 
the points of any line L with numbers in the way that we label the points of the 
x-axis in analytic geometry: 

T P 

0 

Figure 3.2 

R 	Q 

x2 	 —1 1 	x1  

If this is done in the usual way, then we have a one-to-one correspondence, 

f: L <- FR , 
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between the points of L and the real numbers. This correspondence will turn 
out to be a coordinate system, in a sense which we shall soon define. Meanwhile, 
therefore, if x = f(P), we shall refer to x as the coordinate of P. In the figure, the 
coordinates of P, Q, R, and T are 0, x,, 1, and x2. If the coordinates are related 
to distance in the usual way, then 

PQ = 14 and PT = 1x21. 

In fact, no matter where Q and T may lie on the line, we will always have 

QT = lx 2  — x 1 I . 

(You can check this for the cases x2  < x, < 0, x2  < 0 < x,, and 0 < x2  < x,. 
There is no harm in assuming that x2  < x,, because when x, and x2  are inter-
changed, both sides of our equation are unchanged.) 

Obviously nothing can be proved by this discussion, because the postulates 
that we have stated so far do not describe any connection at all between the dis-
tance function and lines. All that we have been trying to do is to indicate why 
the following definition, and the following postulate, are reasonable. 

DEFINITION. Let 
f: L H E 

be a one-to-one correspondence between a line L and the real numbers. If for 
all points P, Q of L, we have 

PQ = If(P) -PO, 
then f is a coordinate system for L. For each point P of L, the number x = f(P) is 
called the coordinate of P. 

D-4. The Ruler Postulate. Every line has a coordinate system. 

The postulate D-4 is called the ruler postulate because, in effect, it fur-
nishes us with an infinite ruler which can be laid down on any line and used to 
measure distances along the line. This kind of ruler is not available in classical 
Euclidean geometry. When we speak of "ruler-and-compass constructions" in 
classical geometry, the first of these abstract drawing instruments is not really a 
ruler, because it has no marks on it. It is, properly speaking, merely a straight-
edge. You can use it to draw the line containing two different points, but you 
can't use it to measure distances with numbers, or even to tell whether two dis-
tances PQ, RT are the same. 

As it stands, D-4 says merely that every line has at least one coordinate sys-
tem. It is easy to show, however, that there are lots of others. 

• THEOREM 1. If f is a coordinate system for L, and 

g(P) = — f(P) 

for each point P of L, then g is a coordinate system for L. 
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PROOF. It is plain that the condition g(P) = —f (P) defines a function L ----> R. 
And this function is one to one, because if x = g(P), it follows that —x = f (P), 
and P = f -1  (— x), so that P is uniquely determined by x. 

It remains to check the distance formula. Given that 

	

x = g(P), 	y = g(Q), 

we want to prove that 

PQ = Ix — YI. 

We know that 

	

-x = f(P), 	-y = f(Q) 

Since f is a coordinate system, it follows that 

PQ = 1(-4 — ( —.0. 
Therefore 

PQ = IY - xl 
= Ix - yl . 

which was to be proved. ❑ 

Theorem 1 amounts to a statement that if we reverse the direction of the 
coordinate system, then we get another coordinate system. We can also shift the 
coordinates to left or right. 

■ THEOREM 2. Let f be a coordinate system for the line L. Let a be any 
real number, and for each P E L, let 

g(P) = f(P) + a . 

Then g: L --> l is a coordinate system for L. 

The proof is very similar to that of the preceding theorem. Combining the 
two, we get the following theorem. 

• THEOREM 3. The Ruler Placement Theorem. Let L be a line, and let P 
and Q be any two points of L. Then L has a coordinate system in which the co-
ordinate of P is 0 and the coordinate of Q is positive. 

PROOF. Let f be any coordinate system for L. Let a = f (P); and for each 
point T of L, let g(T) = f(T) — a. 

Then g is a coordinate system for L, and g(P) = 0. If g(Q) > 0, then g is the 
system that we were looking for. If g(Q) < 0, let h(T) = —g(T) for every T E L. 
Then h satisfies the conditions of the theorem. ❑ 
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	  Problem Set 3.3 	  

1. Show that D-1, D-2, and D-3 are consequences of the ruler postulate. 

	  3.4 Betweenness  	

One of the simplest ideas in geometry is that of betweenness for points on 
a line. In fact, Euclid seems to have regarded it as too simple to analyze at all, 
and he uses it, without comment, in proofs, but doesn't mention it at all in his 
postulates. 

Roughly speaking, B is between A and C on the line L if the points are situ-
ated like this: 

A 
	

B 	 C 

Figure 3.3 

or like this: 

C 	B 	 A 

Figure 3.4 

(Logically speaking, of course, the second figure is superfluous, because on 
a line, there is no way to tell left from right or up from down.) What we need, 
to handle betweenness mathematically, is an exact definition which conveys our 
common-sense idea of what betweenness ought to mean. One such definition is 
as follows. 

DEFINITION. Let A, B, and C be three collinear points. If 

AB + BC = AC, 

then B is between A and C. In this case we write A-B-C. 
As we shall see, this definition is workable. It enables us to prove that be-

tweenness has the properties that it ought to have. 

■ THEOREM B-1. If A-B-C, then C-B-A. 

This is a triviality. If AB + BC = AC, then CB + BA = CA. 
The rest of the basic theorems on betweenness are going to depend essen-

tially on the ruler postulate. 
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Betweenness for real numbers is defined in the expected way; y is between 
x and z if either x < y < z or z < y < x. In this case we write x-y-z. (Confusion 
with subtraction is unlikely to occur, because "x minus y minus z" would be am-
biguous anyway.) 

LEMMA 1. Given a line L with a coordinate system f and three points A, B, C 
with coordinates x, y, z, respectively. If x-y-z, then A-B-C. 

PROOF OF LEMMA. 

(1) If x < y < z, then 

AB = 1Y — xl = y — x , 

because y — x > 0. For the same reasons, 

BC = lz 
— yl = z — y 

and 

AC = lz — xl = z — x. 

Therefore 

AB + BC = (y — x) + (z — y) 

= z — x 

= lz — xl 

= AC 

so that A-B-C. 

(2) If z < y < x, it follows by a precisely similar argument that C-B-A, which 
means that A-B-C, as before. ❑ 

■ THEOREM B-2. Of any three points on a line exactly one is between the 
other two. 

PROOF. 

(1) Let f be a coordinate system for the line; and let x, y, z be the coordinates of 
the points A, B, C. One of the numbers x, y, z is between the other two. By 
Lemma 1, this means that the corresponding point A, B, or C is between 
the other two points. 

(2) We now need to prove that if A-B-C, then neither of the conditions B-A-C, 
A-C-B holds. If B-A-C, we have 

BA + AC = BC. 
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But we have given that 

AB + BC =- AC. 

By addition, we get 

BA + AC + AB + BC = BC + AC, 

or 

2AB = 0. 

Therefore AB = 0. This is impossible, because A B. 

The proof that both A-B-C and A-C-B cannot hold is precisely analogous. 
Consider now four points A, B, C, D of a line L. In the list below, we indi- 

cate the four possible triplets that can be formed from these; opposite each 
triplet we have listed the three possible betweenness relations. 

A, B, C: A-B-C, A-C-B, B-A-C , 

A, B, D: A-B-D, A-D-B, B-A-D , 

A, C, D: A-C-D, A-D-C, C-A-D , 

B, C,D: B-C-D, B-D-C, C-B-D . 

When we write 

A-B-C-D , 

we mean that all the overscored betweenness relations A-B-C, A-B-D, A-C-D, and B-C-D 
hold, but none of the other eight relations hold. (Thus A-B-C-D is an efficient short-
hand.) The scheme is easy to remember; the relations that hold are the ones 
that you get by leaving out one of the letters in the expression A-B-C-D. ❑ 

■ THEOREM B-3. Any four points of a line can be named in an order A, 
B, C, D, in such a way that A-B-C-D. 

PROOF. Let f be a coordinate system for the line that contains our four points 
P, Q, R, S. The coordinates of our points are four numbers; and these appear 
in some order 

w <x<y <z. 

Here w, x, y, and z are f(P), f (Q), f(R), f(S ), but not necessarily respectively. Let 

A= f -1(w), 	B= f (x), 	C= f (y), 	D=  f (z) 

From the double inequalities w < x < y, w < x < z, w < y < z, x < y < z, we get 
(by Lemma 1) the betweenness relations A-B-C, A-B-D, A-C-D, B-C-D. Thus, 
for each three of our four points, we have a betweenness relation; and Theo- 
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rem B-2 tells us that every three points stand in only one betweenness relation. 
Therefore our list is complete, and A-B-C-D, which was to be proved. ❑ 

■ THEOREM B-4. If A and B are any two points, then (1) there is a point C 
such that A-B-C, and (2) there is a point D such that A-D-B. 

PROOF. Take a coordinate system f for the line AB that contains A and B. 

A 

x 	x+y 	y 	 y+1 
2 

Figure 3.5 

There is no loss of generality in supposing that x < y. (See Theorem 1, Sec-
tion 3.3.) As in the figure, let 

C = f -1(y + 1) . 

Then A-B-C, because x < y < y + 1. 
As in the figure again, let 

D = r i (x 	+2  . 

Since x < y, we have 

2x < x + y < 2y . 

(Why?) Therefore 

x + y  
x < 	< y , 

2 

so that A-D-B. ❑ 

In the next few chapters, we shall want to handle betweenness by referring 
only to the theorems of this section, without going back to the definition. (The 
reasons for this will be explained much later.) It turns out that the theorems 
above are adequate, if we include the following trivial one. 

• THEOREM B-5. IF A-B-C, then A, B, and C are three different points of 
the same line. 

This held, of course, under our original definition of the relation A-B-C. 
For convenience of reference, we list the basic properties of betweenness. 

B-1. If A-B-C, then C-B-A. 

B-2. Of any three points on a line, exactly one is between the other two. 
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B-3. Any four points of a line can be named in an order A, B, C, D, in such a 
way that A-B-C-D. 

B-4. If A and B are any two points, then (1) there is a point C such that A-B-C, 
and (2) there is a point D such that A-D-B. 

B-5. If A-B-C, then A, B, and C are three different points of the same line. 

	  Problem Set 3.4 	  

1. Show that if A-B-C and B-C-D, then A-B-D and A-C-D. 

2. Show that if A-B-C and A-D-C, then A-B-D-C, A-D-B-C, or B = D. 

3. Given four spherical beads of different colors. In how many different ways is it pos-
sible to arrange them in a trough, in order from left to right? (This is a problem 
in order.) 

4. Given four beads as in Problem 3. In how many essentially different ways is it pos-
sible to arrange them on a rigid symmetrical rod? (This is a problem in betweenness.) 

5. Given four beads as in the preceding problems. In how many essentially different 
ways is it possible to arrange them on a string so as to make a four-bead necklace? 
(The string is so thin that the knot can slip through the holes in the beads. This is a 
problem in "betweenness on a circle," and the answer indicates that the idea of "be-
tweenness on a circle" is more peculiar than one might have supposed.) 

6. Prove the following converse of Lemma 1. 

■ LEMMA 2. Given a line L with a coordinate system f, and three points A, B, 
and C with coordinates x, y, and z, respectively. If A-B-C, then x-y-z. 

7. In this section, we defined a betweenness relation for real numbers, by saying that 
x-y-z if either x < y < z or z < y < x. Show that, for this betweenness relation, Con-
ditions B-1 through B-4 hold true. 

3.5 Segments, Rays, Angles, 
   and Triangles  	

If A and B are two points, then the segment between A and B is the set whose 
points are A and B, together with all points between A and B. By B-5, the seg-
ment lies on the line AB , and we have the figure below. As indicated, the seg-
ment is denoted by AB. 

 

• 

 

AB 	 AB • 

  

A 

  

Figure 3.6 
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If A and B are two points, then the ray from A through B is the figure that 
looks like this: 

AB 

.--) 

AB.- 
A 
	

B 

Figure 3.7 

As indicated, the ray is denoted by AB . 
More precisely, the ray AB is the set of all points C of the line AB such that 

A is not between C and B. The point A is called the end point of the ray AB. 
If this definition looks peculiar, you should check it against the figure to 

make sure that it agrees with our rough notion of what points of the line ought 
to be on the ray. It is fairly easy to see that AB is the union of (1) the segment 
AB, and (2) the set of all points C such that A-B-C. If this latter description 
seems more natural to you, you may regard it as the definition of a ray. 

Roughly speaking, an angle is a figure that looks like this: 

More precisely, an angle is a figure which is the union of two rays which have 
the same end point, but do not lie on the same line. If the angle is the union of 
AB and AC , then these rays are called the sides of the angle; the point A is 
called the vertex; and the angle itself is denoted by the symbol 

LBAC. 

Notice that we always have LBAC = LCAB. 
Finally, if A, B, and C are three noncollinear points, then the set 

AB U BC U AC 

is called a triangle. 

AC 

Figure 3.9 

The three segments AB, BC, and AC are called its sides; and the points A, B, and 
C are called its vertices. (The English plural vertexes is used by some authors.) 
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The triangle itself is denoted by the symbol 

AABC. 

The angles of AABC are LBAC, LACB, and LABC. Note that AABC contains 
none of these three angles, because the sides of an angle are rays and the sides 
of a triangle are segments. If we drew in all the angles, the figure would look 
like this: 

Figure 3.10 

The following theorems look easy, but some of them are not. 

• THEOREM 1. If A and B are any two points, then AB = BA. 

■ THEOREM 2. If C is a point of AB, other than A, then AB = AC. 

■ THEOREM 3. If B, and CI  are points of AB and AC, other than A, then 
LBAC = LB, AC,. 

C 
	

CI  

Figure 3.11 

• THEOREM 4. If AB = CD, then the points A, B are the same as the 
points C, D, in some order. (That is, the end points of a segment are uniquely 
determined by the segment.) 

■ THEOREM 5. If AABC = ADEF, then the points A, B, and C are the 
same as the points D, E, and F, in some order. (That is, the vertices of a triangle 
are uniquely determined by the triangle.) 
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If you review the definitions of AB, AB , LBAC, and AABC, you will see 
that all of these definitions are based on the idea of betweenness. The proofs of 
Theorems 1 through 5 must, therefore, be based on Theorems B-1 through B-5. 

A word of caution: Here and hereafter, the symbol = is going to be used in 
one and only one sense; it means "is exactly the same as." Thus, when we write 
AB = BA, we mean that the sets AB and BA have exactly the same elements. 

Finally, a few remarks may be in order about the way in which we have de-
fined the idea of an angle. Under our definition, an angle is simply a set which 
is the union of two noncollinear rays with the same end-point. Angles, in this 
sense, are quite adequate for the purposes of Euclidean geometry. 

Much later, in analytic geometry and in trigonometry, we shall need to talk 
about directed angles in which the initial side can be distinguished from the ter-
minal side, like this: 

Figure 3.12 

An angle, in this sense, is not a set of points but rather an ordered pair (AB, AC) 
of rays; thus (AB, AC) is different from (AC, AB). For directed angles, we allow 
the possibility that the sides are collinear, and also the possibility that the sides 
are the same. We have not used this more complicated idea of an angle, because 
at the present stage we have no use for it. For example, the angles of a triangle 
never consist of two collinear rays, and there is no natural way to assign direc-
tions to them. 

For the purposes of this book, there are good reasons for ruling out "zero 
angles" and "straight angles." In the first place, these terms are superfluous: a 
zero angle is simply a ray, and a straight angle is a line. In the second place, an-
gles, rays, and lines are different figures, in important ways; and if we used the 
same word "angle" to apply to all three, then we would continually be involved 
in discussions of special cases. (Contrary to popular impression, Euclid did not 
use "straight angles.") 

	  Problem Set 3.5 	  

1. Prove Theorem 1. 

2. Show that, given a ray AB , there is a coordinate system f on the line AB such that 

AB = {Plf(P) 0}. 
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3. Prove Theorem 2. 

4. Prove Theorem 3. 

*5. Prove the following. Let A and B be two points, and let D, E, and F be three non-
collinear points. If AB contains only one of the points D, E, or F, then each of the 
lines DE, DF, EF intersects AB in at most one point. 

*6. Prove the following. If LABC = ADEF, then each of the lines AB , BC, AC contains 
two of the points D, E, and F. 

*7. Show that for any AABC, we have AB 11 LABC = AB. That is, the only points of 
AB that lie on the triangle are the points of the side AB. 

*8. Prove the following. If LABC = ADEF, then each side of AABC contains two of the 
points D, E, and F. 

9. Show that A is not between any two points of /ABC. 

10. Prove Theorem 5. 

	

   3.6 Congruence of Segments  	

The intuitive idea of congruence, for any two figures at all, is always the same. 
Two figures F and G are congruent if one can be moved so as to coincide with 
the other. Thus two equilateral triangles of the same size are always congruent; 
two circles of the same radius are always congruent; two squares of the same 
size are always congruent, and so on. 

LA 
00 

Figure 3.13 

In the same way, two segments of the same length are always congruent. 

. 	• 	• 	• 
A 	 B C 	 D 

Figure 3.14 

Here, by the length of a segment, we mean the distance between its end points. 
Our problem, in our mathematical study of congruence, is to formulate the 

idea in sufficiently exact form to be able to prove things about it. In the present 
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section, we shall do this for the case in which the figures are segments. Later we 
shall do the same for the case in which the figures are angles; and still later, we 
shall discuss triangles. Finally, in the chapter on rigid motion, we shall discuss 
congruence in a form sufficiently general to apply to any two sets of points. 

We start with our official definition. 

DEFINITION. Let AB and CD be segments. If AB = CD, then the segments 
are called congruent, and we write AB = CD. 

On the basis of this definition, it is easy to prove the familiar and fairly triv-
ial facts about congruence of segments. 

A relation —, defined on a set A, is called an equivalence relation if the fol-
lowing conditions hold. 

(1) Reflexity. a — a, for every a. 

(2) Symmetry. If a — b, then b — a. 

(3) Transitivity. If a — b and b 	c, then a — c. 

■ THEOREM C-1. For segments, congruence is an equivalence relation. 
That is, every segment is congruent to itself; if AB = CD, then CD = AB; if 

AB = CD and CD == EF, then AB -=-• EF. 
Proof? 

■ THEOREM C-2. The Segment-Construction Theorem. Given a segment AB 
and a ray CD. There is exactly one point E of CD such that AB = CE. 

A 

AB-CE 

Figure 3.15 

That is, starting at the end point of a ray, you can measure off a segment of 
any desired length, and the resulting segment is unique. 

PROOF. By the ruler placement theorem, set up a coordinate system f for the 
line CD, in such a way that f(C) = 0 and f(D) > 0. 

C 	D 	E 

0 	CD 	x = AB 

Figure 3.16 

In the figure, we have indicated that the number CD is the coordinate of the 
point D, and this is correct, because f(D) > 0. If E is a point of CD, then 



70 	 Distance and Congruence 

CE = AB if and only if f (E) = AB as in the figure. Thus CE = AB if and only if 
E = f -'(AB). There is exactly one such point f -'(AB), and therefore there is ex-
actly one such point E. 

The following theorem says, in effect, that if congruent segments are laid 
end to end, the resulting segments are congruent. 

Figure 3.17 

IN THEOREM C-3. The Segment-Addition Theorem. If 

(1) A-B-C, 

(2) A' -B' -C' , 

(3) AB = A' B' , 

and 

(4) BC = B'C', 

then 

(5) AC = A'C'. 

We also have a converse. 

IN THEOREM C-4. The Segment-Subtraction Theorem. If (1) A-B-C, (2) A' -B' -C', 
(3) AB = A' B' , and (4) AC = A'C', then (5) BC = B'C'.  

These theorems can most conveniently be proved by means of the defini-
tion of betweenness. You should work out the proofs in full. 

Note that we have called Theorem C-4 a converse of Theorem C-3, rather 
than the converse of Theorem C-3. The reason is that most theorems have 
more than one converse (each of which, of course, may or may not be true). 
For statements of the form P 	Q, where P and Q are propositions, the situ- 
ation is simple. The converse of the implication P 	Q is the implication 
Q P. A theorem may, however, be stated in the following form: "If (a), (b), 
and (c), then (d), (e), and (f)." This says that 

[(a) and (b) and (c)] 	[(d) and (e) and (f)]. 

In this case, any statement that you get by interchanging part of the hypothesis 
and part of the conclusion is called a converse. Thus, to get Theorem C-4 from 
Theorem C-3, we moved (5) into the hypothesis, and moved (4) into the con- 
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clusion. Theorem C-3 has three more converses. You should state them and 
find out which of them are true. 

If A-B-C, and AB =--- BC, then B is a mzdpoznt of AC. The following theorem 
justifies us in referring to B as the midpoint. 

■ THEOREM C-5. Every segment has exactly one midpoint. 

PROOF. Given AC. By the ruler placement theorem, take a coordinate system 
f, for the line AC, such that f (A) = 0 and f(C) > 0. 

A 	 B • 	 
0 	 x 	AC 

Figure 3.18 

If B is between A and C, then 

AB = Ix — 01 = x 

and 

BC = 1AC — xl = AC — x . 

Thus, for the case where A-B-C, the condition AB --=---- BC is equivalent to the 
condition 

x = AC — x , 

or 

2x = AC , 

or 

AC 
x= 7. 

There is exactly one such number x, and therefore there is exactly one such 
point B. ❑ 

C 
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CHAPTER v 
Separation in Planes 

and Space 

   4.1 Convexity and Separation 	 

A set A is called convex if for every two points P, Q of A, the entire segment PQ 
lies in A. For example, the three figures below are convex: 

Figure 4.1 

Here each of the sets A, B, and C is a region in the plane; for example, A is the 
union of a triangle and the set of all points that lie inside the triangle. We have 
illustrated the convexity of the sets A, B, and C by drawing in some of the seg-
ments PQ. 



F 
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On the other hand, none of the sets D, E, and F below are convex: 

Figure 4.2 

To show that a set, say D, is not convex, you have to show that there are two 
points P and Q, both belonging to D, such that PQ does not lie in D. This is 
what we have indicated, for each of our last three figures. 

A convex set may be "thin and small." For example, every segment PQ is a 
convex set. In fact, a set with only one point is convex. (Since such a set does not 
contain any two points, it follows that every two points of it have any property we 
feel like mentioning.) 

A convex set may also be large. For example, the whole space S is a convex 
set; and all lines and planes are convex. (Proof?) Given a line L in a plane E, 
the parts of E that lie on the two sides of L are both convex. 

Figure 4.3 

In Fig. 4.3, H1  is the part of the plane lying above and to the left of the 
line L, and H2 is the part of the plane that lies below and to the right of L. The 
sets H1  and H2 are called half planes. As before, we have illustrated their convexity 
by showing a few sample segments PQ. We notice, of course, that if T belongs 
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to H, and U belongs to H2, then the segment TU always intersects the line. The 
situation described in this discussion is fundamental in plane geometry. It is 
covered by the following postulate. 

PS-1. The Plane-Separation Postulate. Given a line and a plane containing it, 
the set of all points of the plane that do not lie on the line is the union of two 
disjoint sets such that (1) each of the sets is convex, and (2) if P belongs to one 
of the sets and Q belongs to the other, then the segment PQ intersects the line. 

We can now begin to state definitions based on our postulates. If E and L 
are a plane and a line, as in the postulate, and H, and H2 are the two sets given 
by the postulate, then each of the sets H, and H2 is called a half plane, and L is 
called the edge of each of them. 

Obviously there is no natural way to decide which of the half planes should 
be mentioned first, but except for this question of order, the two half planes 
are uniquely determined by E and L. To see this, we observe that if P E H 1, 
then the points of H 1  are the point P and the points Q such that PQ fl L = 0. 
Similarly, H2 = {QjQEE —L andPQFIL O}. 

Figure 4.4 

■ THEOREM 1. The Postulate of Pasch. Given a triangle AABC, and a 
line L in the same plane. If L contains a point E, between A and C, then L inter-
sects either AB or BC. 

(In the work of Pasch this statement was used as a postulate, in place of 
PS-1 above.) 

PROOF. Suppose not. Then (1) A and B are on the same side of L, and (2) B 
and C are on the same side of L. Therefore (3) A and C are on the same side of 
L. This is impossible, because A-E-C. ❑ 

	  Problem Set 4.1 

Prove the following theorems. In all these theorems, it should be understood that E, L, 
H1, and H2 are a plane, a line, and the two half planes given by PS-1. The proofs are of 
a sort that may not be at all familiar to you. Obviously, PS-1 uses the idea of a segment, 
and segments were defined in terms of betweenness. Therefore the chances are that you 
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will have to appeal to a fair number of postulates (and theorems) other than PS-1. Use 
of the ruler postulate or the ruler placement theorem is not allowed; the proofs should 
use, instead, the theorems B-1 through B-5 which were based on them. 

1. Theorem 2. The sets H1  and H2 are not both empty. 

2. Theorem 3. Neither of the sets HI  and H2 is empty. 

3. Theorem 4. HI  contains at least two points. 

4. Theorem 5. H1  contains at least three noncollinear points. 

5. Theorem 6. E is uniquely determined by H 1. That is, every half plane lies in only 
one plane. 

6. Theorem 7. L is uniquely determined by H I . That is, every half plane has only 
one edge. 

7. Theorem 8. If A and B are convex, then so also is A (1 B. 

8. Theorem 9. If G is any collection of convex sets g„ then the intersection of all of 
the sets g, in the collection is convex. 

The convex hull of a set A is the intersection of all convex sets that contain A. 

9. Theorem 10. If A is any set of points, then the convex hull of A is convex. 

10. Theorem 11. H I  UL is convex. 

11. Theorem 12. Every ray is convex. 

12. Let A be a set of points. Let B be the union of all segments of the form PQ, where P 
and Q belong to A. Does it follow that B is convex? Why or why not? 

13. Theorem 13. Given a triangle IABC, and a line L in the same plane. If L contains 
no vertex of the triangle, then L cannot intersect all of the three sides. 

Figure 4.5 

14. Show that if the Postulate of Pasch is taken as a postulate, then Theorem 13 can be 
proved as a theorem. 

15. Show that if the Postulate of Pasch is used as a postulate, then PS-1 can be proved 
as a theorem. 
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4.2 Incidence Theorems Based on the 
	 Plane-Separation Postulate  	

If 

E — L = H, U H2 , 

as in the plane-separation postulate, then we say that the sets H 1  and H2 are half 
planes of L or sides of L. Notice that every line has two sides in every plane that 
contains it, but if P and Q are on the same side of a line L, this automatically 
means that L, P, and Q are coplanar. On the other hand, to say that P and Q are 
on different sides of L, in space, may mean merely that no one plane contains L, 
P, and Q. If E — L = H1  U H2, as in the plane-separation postulate, then H, 
and H2 are called opposite sides of L; and if P belongs to H, and Q belongs to 
H2, we say that P and Q are on opposite sides of L. 

The following two theorems are easy. 

■ THEOREM I. If P and Q are on opposite sides of the line L, and Q and T 
are on opposite sides of L, then P and T are on the same side of L. 

■ THEOREM 2. If P and Q are on opposite sides of the line L, and Q and T 
are on the same side of L, then P and T are on opposite sides of L. 

We use a similar terminology for the "sides of a point" on a line. That is, if 
A-B-C, then the rays BA and BC are called opposite rays. 

BA 
	

BC 

• 

 

• • 	►  

 

A 

 

Figure 4.6 

■ THEOREM 3. Given a line, and a ray which has its end point on the line 
but does not lie on the line. Then all points of the ray, except for the end point, 
are on the same side of the line. 

PROOF. Let L be the line, and let AB be the ray, with A E L. 

Figure 4.7 



4.2 Incidence Theorems Based on the Plane-Separation Postulate 	 77 

Suppose that AB contains a point C such that B and C are on opposite sides of L 
(in the plane that contains L and AB). Then BC intersects L in some point, and 
this point must be A, because BC lies in AB , and AB intersects L only in A. 
Therefore C-A-B. But this is impossible. By definition, the ray AB is the set of 
all points C of the line AB for which it is not true that C-A-B. Therefore all 
points of the ray, other than A, are on the same side of L, namely, the side that 
contains B. ❑ 

Similarly for segments: 

■ THEOREM 4. Let L be a line, let A be a point of L, and let B be a point 
not on L. Then all points of AB — A lie on the same side of L. 

B 

A 

Figure 4.8 

This is true because AB — A lies in AB — A. 

Given LBAC. 

Figure 4.9 

Roughly speaking, the interior of the angle is the set of all points that lie inside 
it, and the exterior is the set of all points that lie outside it. We can make this 
idea precise in the following way. 

The interior of LBAC is the intersection of the side of AC that contains B, 
and the side of AB that contains C. Thus a point D lies in the interior (1) if 
D and B are on the same side of AC, and (2) if D and C are on the same side 
of AB . 

For this definition to be valid, it has to depend only on the angle that we 
started with, and not on the points B and C that we happened to choose to 

L 
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describe the angle. Thus, in the figure below, it would be sad if our definition 
gave us two different interiors for LB'AC' and LBAC: 

C 	C' 

Figure 4.10 

Theorem 3 shows, however, that our definition depends only on the angle, be-
cause B and B' are on the same side of AC, and C and C' are on the same side 
of AB . 

Given an angle LAB C, there is exactly one plane E that contains it. The ex-
terior of the angle is the set of all points of E that lie neither on the angle nor in 
its interior. 

• THEOREM 5. Every side of a triangle lies, except for its end points, in 
the interior of the opposite angle. 

Here we are using the ordinary terminology; that is, in AABC, the angle LA = 
LBAC is opposite the side BC. 

Figure 4.11 

PROOF. 

(1) First we apply Theorem 4 to the line AC and the segment BC. By Theorem 4, 
BC — C lies on the side of AC that contains B. 

(2) Next we apply Theorem 4 to the line AB and the segment BC. By Theo-
rem 4, BC — B lies on the side of AB that contains C. 

(3) By (1) and (2), BC — {B,C} lies in the interior of LBAC. ❑ 

■ THEOREM 6. If F is in the interior of LBAC, then AF — F lies in the in-
terior of LBAC. 
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c 

Figure 4.12 

PROOF. 

(1) By definition of the interior of an angle, F and B are on the same side of 
AC. By Theorem 3, AF — F lies on the side of AC that contains F. There-
fore AF — F lies on the side of AC that contains B. 

(2) By definition of the interior of an angle, F and C are on the same side of 
AB. By Theorem 3, AF — F lies on the side of AB that contains F. There-
fore AF — F lies on the side of AB that contains C. 

By (1) and (2) it follows that AF — F lies in the interior of LBAC. ❑ 

■ THEOREM 7. Let AABC be a triangle, and let F, D, and G be points, 
such that B-F-C, A-C-D, and A-F-G. Then G is in the interior of LBCD. 

C D 

Figure 4.13 

PROOF. 

(1) Since A-F-G, G lies on AF, and A is not between G and F. Therefore G lies 
on AF. Since G 0 A, G lies on AF — A. 

(2) By Theorem 5, F is in the interior of LBAC. It follows by Theorem 6 that 
AF — A lies in the interior of LBAC. Therefore G and B lie on the same 
side of AC(= CD). 

(3) A and G are on opposite sides of BC, and A and D are on opposite sides of 
BC. Therefore G and D are on the same side of BC. 

By (2) and (3), G is in the interior of LBCD. ❑ 

Throughout this section, we have been using figures to help us keep track 
of what is going on. (Here us, of course, includes the author. All authors use 
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figures, whether or not they show these to the reader.) You should watch closely, 
however, to be sure that the figures are playing merely their legitimate part as 
memoranda. It is customary, in elementary texts, for the reader to be assured 
that "the proofs do not depend on the figure," but these promises are almost 
never kept. (Whether such promises ought to be kept, in an elementary course, 
is another question, and the answer should probably be "No.") In a mathemati-
cally thorough treatment, however, the hypothesis and conclusion ought to be 
stated in such a way that no figure is actually necessary to make them plain; and 
in the same way, the proofs ought to rest on the postulates and the previous 
theorems. This point is especially relevant in the present context, because in 
most informal treatments of geometry it is customary to convey betweenness 
relations and separation properties only by figures, without ever mentioning 
them in words at all. 

You may be able to remember a situation, in elementary geometry, where 
Theorem 7 is needed. 

The interior of /ABC is defined as the intersection of the following three sets: 

(1) The side of AB that contains C. 

(2) The side of AC that contains B. 

(3) The side of BC that contains A. 

Figure 4.14 

■ THEOREM 8. The interior of a triangle is always a convex set. 

Proof? 

■ THEOREM 9. The interior of a triangle is the intersection of the interi-
ors of its angles. 

Proof? 

   4.3 Incidence Theorems Continued  	

In the figure below, D is supposed to be in the interior of LBAC. It is intuitively 
clear that AD must intersect BC, as the figure suggests. But it is not obvious 



4.3 Incidence Theorems Continued 	 81 

Figure 4.15 

that this can be proved on the basis of the postulates that we have stated so far, 
and in fact the proof is hard. We shall need some preliminary results. 

• THEOREM 1. Let L be a line, let A and F be two (different) points of L, and 
let B and G be points on opposite sides of L. Then FB does not intersect AG. 

Figure 4.16 

PROOF. 

(1) By Theorem 3 of Section 4.2, AG — A lies on the side of L that contains G. 

(2) By Theorem 4 of Section 4.2, FB — F lies on the side of L that contains B. 

(3) By (1) and (2) it follows that AG — A does not intersect FB — F. Therefore 
FB and AG cannot intersect, except possibly at For A. But this is not pos-
sible: A does not lie on FB, and F does not lie on AG. The theorem follows. 

The following theorem is a stronger form of the Postulate of Pasch. 

■ THEOREM 2. In AFBC, let A be a point between F and C, and let D be a 
point such that D and B are on the same side of FC . Then AD intersects either 
FB or BC. 

Figure 4.17 
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PROOF. 

(1) Let G be a point such that G-A-D. Then G and D are on opposite sides of 
FC, and so G and B are on opposite sides of FC. Evidently 

AD = AD U AG . 

(2) We apply Theorem 1 to the line FC, the segment FB, and the ray AG. It 
follows that AG does not intersect FB. 

(3) In exactly the same way, we conclude that AG does not intersect BC. 

(4) We know by the Postulate of Pasch that the line AD intersects either FB or 
BC. Since AG intersects neither of these segments, it follows that AD inter-
sects one of them, which was to be proved. ❑ 

■ THEOREM 3. The Crossbar Theorem. If D is in the interior of LBAC, 
then AD intersects BC, in a point between B and C. 

Figure 4.18 

PROOF. 

(1) Let F be a point such that F-A-C. Then FC = AC, and F and C are on op-
posite sides of AB. 

(2) Since D is in the interior of LBAC, it follows that B and D are on the same 
side of AC (= FC). It follows by Theorem 2 that AD intersects either FB 
or BC. 

(3) Since F and C are on opposite sides of AB, and C and D are on the same 
side of AB, it follows that F and D are on opposite sides of AB . 

(4) We now apply Theorem 1 to the line AB, the segment FB, and the ray AD. 
By Theorem 1, AD does not intersect FB. 

(5) From (2) and (4) it follows that AD intersects BC, in a point E which is dif-
ferent from B. If E = C, then A, D, and C are collinear, which is false. 
Therefore B-E-C, which was to be proved. ❑ 

You may remember that one of the first theorems in plane geometry that 
most people learn is the one dealing with the base angles of an isosceles tri- 
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Figure 4.20 
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angle. These are always "equal," that is, congruent in the sense in which we shall 
define the latter term later in this book. That is, if AB --== AC, then LB -=-- LC. 

Figure 4.19 

Although a good proof of the theorem was known in antiquity, it has become 
customary in later centuries to prove it in needlessly complicated ways; and 
probably the worst of these rambling detours is the proof that starts by tellini  
you (1) to bisect LBAC, (2) to "let" D be the point where the bisecting ray AF 
intersects the base, and (3) to show that AADB and AADC are congruent. 

Of course, a light-hearted use of the word let is no substitute for a proof 
that AF intersects BC. This method of proof thus depends essentially on the 
crossbar theorem. We shall see, however, that for the simple theorem that we 
have been discussing, the crossbar theorem is not needed. 

	  Problem Set 4.3 	  

1. Theorem 4. Given a triangle, and a line lying in the same plane. If the line inter-
sects the interior of the triangle, then it intersects at least one of the sides. 

   4.4 Convex Quadrilaterals 	 

Given four points A, B, C, and D, such that they all lie in the same plane, but no 
three are collinear. If the segments AB, BC, CD, and DA intersect only at their 
end points, then their union is called a quadrilateral, and is denoted by ❑ABCD. 
This notation is not meant to suggest that every quadrilateral is a square, any 
more than the analogous notation AABC is meant to suggest that every triangle 
is equilateral. 

The angles A, B, C, D of ❑ABCD are LDAB, LABC, and so on. 
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The sides of ❑ABCD are AB, BC, and so on. Two sides which have a common 
end point are called adjacent; two sides which are not adjacent are opposite. Two 
angles of a quadrilateral are adjacent if their intersection contains a side; and 
two angles which are not adjacent are opposite. 

The diagonals of ❑ABCD are the segments AC and BD. 
A quadrilateral is called convex if each of its sides lies in one of the half 

planes determined by the opposite side. Note that if A and B are on the same 
side of CD, then all points of AB are on the same side of CD. (The converse is 
trivial.) Thus ❑ABCD is a convex quadrilateral if and only if all four of the fol-
lowing conditions hold. 

(1) A and B are on the same side of CD. 

(2) B and C are on the same side of DA. 

(3) C and D are on the same side of AB . 

(4) D and A are on the same side of BC. 

Note that the use of the word convex in geometry is inconsistent; no quadri-
lateral can possibly form a convex set in the sense in which the latter term was 
defined in Section 4.1. This usage is universal, however. 

The following theorem is widely known but seldom proved. 

• THEOREM 1. The diagonals of a convex quadrilateral always intersect 
each other. 

PROOF. Let ❑ABCD be a convex quadrilateral. We need to show that AC in-
tersects BD. 

Figure 4.21 

By conditions (1) and (2) above, we conclude that B is in the interior of 
LADC. Therefore, by the crossbar theorem, DB intersects AC at a point P. 

Similarly, by conditions (1) and (4) we conclude that A is in the interior of 
LB CD. Therefore, by the crossbar theorem, CA intersects BD at a point Q. 

Since each of these ra's and segments lies in the corresponding line, it fol- 
lows that DB intersects AC at P and also at Q. Therefore P = Q. Since P lies on 
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AC and Q lies on BD, it follows that AC and BD have a point in common, which 
was to be proved. ❑ 

If you review this chapter and observe how much of it is needed for the 
proof of the theorem above, it will be obvious to you why the proof is com-
monly omitted in elementary treatments. 

	  Problem Set 4.4 	  

1. Prove the converse of Theorem 1. That is, show that if the diagonals of a quadrilat-
eral intersect each other, then the quadrilateral is convex. 

2. Show that if each vertex of a quadrilateral lies in the interior of the opposite angle, 
then the quadrilateral is convex. (In ❑ABCD, if the vertex is A, then the opposite 
angle is LB CD. Similarly for the other vertices.) 

3. Show that for any quadrilateral (convex or not), the lines containing the diagonals 
always intersect. 

4. Show that every quadrilateral (convex or not) has a side XY such that the other 
two vertices lie on the same side of the line XY. 

5. Prove the converse of the theorem stated in Problem 2. 

4.5 Separation of Space 
	  by Planes  	

The behavior of planes in space, with regard to separation properties, is very 
closely analogous to the behavior of lines in a plane. We therefore merely state the 
basic postulate, definitions, and theorems, and leave the verifications to the reader. 

SS-1. The Space-Separation Postulate. Given a plane in space. The set of all 
points that do not lie in the plane is the union of two sets H 1 ,•H2  such that 
(1) each of the sets is convex, and (2) if P belongs to one of the sets and Q be-
longs to the other, then the segment PQ intersects the plane. 

The two sets H1 , H2 described in SS-1 are called half spaces, or sides of the 
plane E, and E is called the face of each of them. As in the case of half planes, 
there is no natural way to decide which of them should be mentioned first; but 
except for order, the sets H1  and H2 are uniquely determined by E. The reason 
is that if P E H1 , then 

111 = {OP = Q or PQn E = 0}, 

and 

H2 = {Q.I PQ n E 0}. 
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The following theorems are merely the appropriate revisions of some of 
the theorems in Section 4.1. 

■ THEOREM 1. The sets H 1  and H2 are not both empty. 

■ THEOREM 2. Neither of the sets H 1, H2 is empty. 

■ THEOREM 3. Each of the sets H 1  and H2 contains at least four noncopla-
nar points. 

■ THEOREM 4. E is uniquely determined by H1. That is, every half space 
has only one face. 

A dihedral angle is a figure that looks like this: 

Figure 4.22 

More precisely, if two half planes H 1  and H2 have the same edge L, but do not 
lie in the same plane, then the set H, U H2 U L is called a dihedral angle. The 
line L is called the edge of the dihedral angle, and the sets H1  U L and H2 U L 
are called its sides. (Note that just as the sides of an angle contain their common 
end point, so the sides of a dihedral angle contain their common edge.) 

The following theorem is analogous to Theorem 3, Section 4.2. 

■ THEOREM 5. Let H be a half plane with edge L, and let E be a plane 
which contains L but not H. Then all points of H are on the same side of E. 

Given a dihedral angle 

D= H, U H2 U L . 

Let E1  and E2 be the planes that contain H1  and H2, respectively. Then the tnte-
rior of D is the intersection of (1) the side of E 1  that contains H2 and (2) the side 
of E2 that contains H1. 

■ THEOREM 6. The interior of a dihedral angle is always a convex set. 
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• THEOREM 7. If P and Q are in different sides of a dihedral angle, then 
every point between P and Q is in the interior of the dihedral angle. 

This section, of course, is hardly more than an introduction to the follow-
ing problems. 

	  Problem Set 4.5 	  

1. Prove Theorems 1 through 7. 

4.6 The Seven Bridges 

	

   of Konigsberg  	

Plane separation and betweenness were among the last geometric ideas to be 
treated exactly; the definitions and postulates are only about a hundred years 
old. When the situation is simple and the facts are plain, we can speak loosely 
without being aware of it. For example, Euclid did not realize that he was taking 
some terms as undefined, and he used plane separation and betweenness with-
out mentioning them explicitly. The foundations of geometry were investigated 
in the nineteenth century, because geometry had ceased to be simple. For ex-
ample, consider the following theorem. 

• THEOREM. In a plane, let L,, L2, and L 3  be lines, no two of which inter-
sect. Then there is a line T that intersects all three of them. 

A figure is persuasive: 

L I  

	  L2  

L3  AI 	 

Figure 4.23 

But this "theorem" has unsuspected depth. It is true if the Euclidean parallel 
postulate holds, but it is false in non-Euclidean geometry. In a non-Euclidean 
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plane, it may happen that the "lines" look like this: 

II k 
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If the walk starts on the north bank or on one of the islands, the proof 
works in the same way. 

Euler's solution of this problem was a very important event, because it was 
the first time that anybody had solved this kind of problem. Note that, if you 
draw the map of the islands on a sheet of rubber, you can stretch the rubber 
any way you like without changing the problem at all. 

Figure 4.30 

From Euler's analysis of the "Konigsberg Walk" developed a whole branch of 
mathematics, dealing with problems of this kind. This is called topology. 

	  Problem Set 	  

1. In this problem, you "win" if you can cross each segment of the figure exactly once 
without lifting your pencil from the paper. Copy the figures on a piece of paper, 
and see whether you can discover in which two of the five figures it is possible for 
you to "win." Is there a way to make up figures for which you must always "lose"? 

(a) (b) (c) 

(d) (e) 

2. Of the three figures shown, two can be drawn without lifting your pencil or retrac-
ing a line segment, while the third one cannot. Which two can be drawn in this 
manner? Try to reproduce each figure on your paper without lifting your pencil or 
retracing a segment. Is there an easier way of arriving at a conclusion? 



(d) (e) (1) 

(a) (b) 
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3. Which figures can be drawn without retracing any line segment? 

4. A figure of the sort shown below is called a network, and each point indicated by a 
heavy dot is called a vertex. A vertex is said to be odd or even according to the num-
ber of segments leading from it. 

(a) (b) 

Which figures can be drawn without retracing any segment? 

5. The Manus Strip. (Here o is pronounced as ur, as in Konigsberg.) You may already 
have seen a Mobius strip, which is a piece of paper having only one side and one 
edge. It is easy to make one. Cut a fairly long strip of paper, about 8 cm wide, from 
a standard sheet of paper. Better yet, take a piece of adding machine tape about 
60 cm long. Next, glue the ends of the strip together, first giving the tape a half-
twist, as illustrated below. 

A 
	

B 

B 
	

A 

AA 

You can investigate many of the peculiar properties of the Mobius strip. For in-
stance, a pencil mark down the center, lengthwise, will return to its starting point 
without ever crossing an edge or retracing itself. Call this mark the midline. 

(a) With scissors, cut the Mobius strip along its midline. What happens? 
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(b) Take the strip (or strips), and cut again, along the midline (or midlines). What 
do you get? 

, 	7,1 



CHAPTER V 
Angular Measure 

You will recall that when we started doing geometry, we began with the 
structure 

[S, 2, ] . 

Later we included in the structure the distance function 

d: S x S—> R . 

This gave us the structure 

[S,2,g,d]• 

In terms of distances between points, we defined betweenness, and also con-
gruence for segments. 

We now complete the structure by introducing measure for angles. This 
will turn out to be the familiar degree measure. The situation here is closely 
analogous to that for distance. We could equally well use radians, or any con-
stant multiple of degrees or of radians; but since all of these measures for an-
gles behave in essentially the same way, we may as well simplify the discussion 
by choosing one of them, once for all, and using it consistently thereafter. (In 
analysis, radian measure is obligatory, and degree measure is out of the ques-
tion, but in elementary geometry one unit of measure is as good as another.) 

Angular measure is going to be a function m, defined for angles, with real 
numbers as values of the function. Let si be the set of all angles. We shall study 
the structure 

[S,2,g',d,m], 

where 

m : sii -- IR 
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is a function of the angles into the real numbers. In the usual functional nota-
tion, we would write 

m(LABC) 

to denote the measure of LAB C, but since no confusion with multiplication 
could possibly occur, we omit the parentheses and write merely 

mLABC . 

Since we shall be talking about only one measure function for angles, we can 
write merely 

m LABC = 90, mLDBC = 45 . 

Figure 5.1 

We do not write mLABC = 90°, because the values of the function m are simply 
real numbers; they stand alone and don't need to carry little flags to indicate 
where they came from. On the other hand, in labeling figures, it is convenient 
to use the degree sign merely to indicate that certain letters or numbers are 
meant to be the degree measures of angles. 

Q 

Figure 5.2 

The figures above tell us that 

mLABC = 30 , 

and 

mLPQR = r. 

The postulates governing the function m are merely abstract descriptions 
of the familiar properties of protractors. With a protractor placed with its edge 
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on the edge of the half plane H, as in the figure below, we can read off the 
measures of a large number of angles. 

For example, 

mLPAB = 10 , 

mLQAB = 40 , 

mLRAB = 75. 

By subtraction, we also get 

mLQAP = 40 — 10 = 30 , 

mLSAR = 90 — 75 = 15, 

mLCAU = 180 — 130 = 50 , 

and so on. These and other uses of a protractor are reflected in the following 
postulates. 

M-1. m is a function .91 —> R, where .91 is the set of all angles, and Ell is the set 
of all real numbers. 

M-2. For every angle LA, mLA is between 0 and 180. 

M-3. The Angle-Construction Postulate. Let AB be a ray on the edge of the half 
plane H. For every number r between 0 and 180, there is exactly one ray AP, 
with P in H, such that mLPAB = r. 

Figure 5.4 



r+s=180 
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M-4. The Angle-Addition Postulate. If D is in the interior of LBAC, then 

mLBAC = mLBAD + mLDAC . 

Figure 5.5 

(This, of course, is the property of m that we use when we compute the 
measure of an angle by subtraction.) 

Two angles form a linear pair if they look like this: 

•11 	• 	 a 	II. 

C 	A 	B 

Figure 5.6 

That is, if AB and AC are opposite rays, and AD is any third ray, then LDAB 
and LDAC form a linear pair. If mLABC + mLDEF = 180, then the two angles 
are called supplementary. Notice that this definition says nothing at all about 
where the angles are; it deals only with their measures. 

M-5. The Supplement Postulate. If two angles form a linear pair, then they are 
supplementary. 

Figure 5.7 

Just as we defined congruence for segments in terms of distance, so we de-
fine congruence for angles in terms of measure. That is, if 

mLABC = mLDEF, 
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then the angles are congruent, and we write 

LABC _-----= LDEF . 

If the angles in a linear pair are congruent, then each of them is called a 
right angle. If LABC is a right angle, and mLABC = r, then, of course, we have 
r = 90; the reason is that since the angles in a linear pair are always supple-
mentary, we must have r + r = 180. The converse is also true (and easy). Thus 
an angle is a right angle if and only if its measure is 90. 

The following theorems are closely analogous to our first few theorems on 
congruence for segments. To see the analogy, we observe that a sort of "be-
tweenness" relation can be defined for rays with the same end point; we might 
say that AD is "between" AB and AC if AD — A lies in the interior of LBAC. 

The analogy is incomplete, because it is not true that given any three rays with 
the same end point, one of them is between the other two. (Example?) We do 
have, however, the following theorems. 

■ THEOREM I. For angles, congruence is an equivalence relation. 

• THEOREM 2. The Angle-Construction Theorem. Let LABC be an angle, let 
B'C' be a ray, and let H be a half plane whose edge contains B'C' . Then there 
is exactly one ray B'A' , with A' in H, such that 

LABC --- LA'B'C'. 

■ THEOREM 3. The Angle-Addition Theorem. If (1) D is in the interior of 
LBAC, (2) D' is in the interior of LB' A'C' , (3) LBAD -=-' LB'A'D', and 
(4) LDAC -2--' LB'A'C', then (5) LBAC ,--- LB'A'C'. 

c 

Figure 5.9 
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■ THEOREM 4. The Angle-Subtraction Theorem. If (1) D is in the interior of 
LBAC, (2) D' is in the interior of LB'A'C', (3) LBAD = LB'A'D', and 
(4) LBAC = LB'A'C', then (5) LDAC = LD' A'C' 

If we translate these theorems into the language of angular measure, using 
our definition of congruence for angles, they are seen to be trivial conse-
quences of the postulates for m. 

Two rays are called perpendicular if their union is a right angle. If AB and 
AC are perpendicular, then we write 

AB 1 AC . 

In this case we also say that the lines AB and AC are perpendicular, and write 

AB 1 AC . 

Two segments AB, BC are perpendicular if the lines containing them are per-
pendicular. We use the same term and the same notation for asegment and a 
line, a line and a ray, and so on. Thus AB 1 PQ means that AB 1 PQ; this in 
turn means that the union of the two lines contains a right angle. 

An angle with measure less than 90 is called acute, and an angle with mea-
sure greater than 90 is called obtuse. Two angles are called complementary if the 
sum of their measures is 90. 

If mLBAC < mLB'A'C', then we say that LBAC is smaller than LB' A' C' , 
and we write 

LBAC < LB'A'C'. 

Note that the relation "is smaller than" is not an order relation; it is quite pos-
sible for two angles to be different, without either of them being smaller than 
the other. In fact, this happens whenever the angles are congruent. 

Two angles form a vertical pair if their sides form pairs of opposite rays, 
like this: 

Figure 5.10 

Here LBAC and LB'AC' form a vertical pair. To be more precise, if B-A-C', 
C-A-B', and the lines AB and AB' are different, then LBAC and LB'AC' form a 
vertical pair. 

THEOREM 5. The Vertical Angle Theorem. If two angles form a vertical 
pair, then they are congruent. 
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Restatement. If B-A-C' , C-A-B', and the lines AB and AB' are different, 
then LBAC =-= LB'AC'. 

 

PROOF. Let 

Figure 5.11 

r = mLBAB'. 

Since B-A-C' , it follows that AB and AC' are opposite rays. Therefore LBAB' 
and LB'AC' form a linear pair. Therefore these angles are supplementary, and 
we have 

mLB'AC' = 180 — r. 

Similarly, C-A-B' , and LBAC and LBAB' form a linear pair; these angles 
are therefore supplementary; and we have 

mLBAC = 180 — r. 

Therefore mLBAC = mLB'AC', and LBAC === LB'AC', which was to be proved. 
0 

If you suspect that the apparatus with which we stated the theorem and 
worked out the proof was superfluous, try "proving" the theorem while gazing 
at the following figure: 

Figure 5.12 

The point is that to prove anything at all about vertical angles, we have to have 
a definition of a vertical pair that is sufficiently exact to be usable. 

■ THEOREM 6. If two intersecting lines form one right angle, then they 
form four right angles. 

Proof? 



CHAPTER 

Congruences Between 
Triangles 

   6.1 The Idea of a Congruence  	

As we explained in Chapter 3, the intuitive idea of congruence is the same for 
all types of figures. It means in every case that the first figure can be moved 
without changing its size or shape, so as to coincide with the second figure. 
There are two possible approaches to the problem of treating the idea of con-
gruence mathematically. One way is to take it as undefined, state enough postu-
lates to describe its essential properties, and then go on to prove whatever 
theorems turn out to be true. In later chapters, we shall show how such a pos-
tulational treatment works. For the present, however, we shall use a different 
scheme: we shall define congruence, in terms of distance and angular measure, 
and then proceed to prove our theorems on the basis of only one additional 
postulate. 

The first of these approaches to congruence is called the synthetic approach, 
and the second, which we shall be using for some time to come, is called the 
metric method. We have already applied the metric method to the simplest 
cases, where the figures we are dealing with are segments or angles. Our basic 
definitions were as follows. 

(1) AB === CD means, by definition, that AB = CD. 

(2) By definition, LBAC = LPQR means that mLBAC = mLPQR. 

We now proceed to the case where the figures involved are triangles. It is 
obvious, in the figures below, that all three of the triangles are congruent. 
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Figure 6.1 

That is, any one of them can be moved onto any other one in such a way that 
it fits exactly. Thus, to move the first onto the second, we should put A on D, 
B on F, and C on E. These directions describe the motion by means of a one-
to-one correspondence between the vertices of the first triangle and those of 
the second: 

AH D,  

B <---> F, 

C <---> E . 

Similarly, the second triangle can be matched with the third by the correspondence 

Notice that there is no particular point in giving names to these functions, or in 
using functional notation to describe them; there are only three elements in 
each of the two sets, and we can therefore describe the function quite conve-
niently, simply by writing down all three of the matching pairs. There is a 
shorthand which is even briefer. We can describe our first correspondence in 
one line, like this: 

ABC <---> DFE . 

Here it should be understood that the first letter on the left is matched with 
the first on the right, the second with the second, and the third with the third, 
like this: 

A 

t  
B C D 

t  
F 

I  

E 

I  

   

       

       

        

        

Figure 6.2 

Given a correspondence between the vertices of two triangles, there is a 
naturally induced correspondence between the sides and the angles. Thus, 
given the correspondence 
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ABC <---> DFE , 

the induced correspondence between the sides is 

AB <--> DF , 

BC <--> FE , 

AC <---> DE , 

and the induced correspondence between the angles is 

LA <-* LD , 

LB <---> LF , 

LC <---> LE . 

(Here, as usual, we are using the shorthand LA for LBAC, LB for LAB C, and 
so on.) When a correspondence between the vertices is given, then whenever 
we speak of corresponding sides or corresponding angles, we shall always be refer-
ring to the correspondence induced in the way shown above. 

Of course, not every one-to-one correspondence between the vertices of 
two triangles describes a workable scheme for moving the first triangle onto 
the second, even if the triangles happen to be congruent. For example, the 
correspondence 

ABC <-* FED 

is unworkable; the triangles can't be made to fit in this way. To test whether a 
correspondence between the vertices is "workable," we need to check whether 
the matching sides and angles are congruent. In fact, this is our official defini-
tion of a congruence. 

DEFINITION. Given AABC, ADEF, and a one-to-one correspondence 

ABC <---> DEF 

between their vertices. If every pair of corresponding sides are congruent, and 
every pair of corresponding angles are congruent, then the correspondence is a 
congruence. 

That is, the correspondence 

ABC <--> DEF 

is a congruence if all six of the following conditions hold: 

AB = DE, LA = LD , 

AC = DF, LB = LE , 

BC = EF, LC = LF 



C D 

Figure 6.3 
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If ABC <--> DEF is a congruence, then we write 

AABC = ADEF 

Two triangles are called congruent if there is some correspondence between their 
vertices which satisfies the six conditions for a congruence. Note that the ex-
pression AABC = ADEF says not merely that AABC and ADEF are congruent, 
but also that they are congruent in a particular way, that is, under the corre-
spondence ABC <-* DEF. 

Therefore, if we want to say merely that two triangles are congruent, we 
have to say this in words; we can't use the shorthand. It turns out, however, 
that this is no handicap, because in the geometry of triangles, the idea of con-
gruence in the abstract hardly ever occurs. Nearly always, when we talk about 
congruent triangles, we go on to draw conclusions about "corresponding sides" 
or "corresponding angles"; and this means that what we really had in mind was 
a correspondence. The basic idea here is not the idea of congruence, but the idea 
of a congruence. 

If you want to check that a given correspondence is a congruence, you don't 
have to check all six pairs of corresponding parts. For example, suppose that 
two sides and the included angle of the first triangle are congruent to the corre-
sponding parts of the second, as the markings in the following figure indicate. 

Figure 6.4 

It ought to follow that ABC <---> DEF is a congruence. In fact, this is our 
basic congruence postulate. 

SAS. Given a correspondence between two triangles (or between a triangle and 
itself). If two sides and the included angle of the first triangle are congruent 
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to the corresponding parts of the second triangle, then the correspondence is 
a congruence. 

Here SAS stands for Side Angle Side. We shall refer to this postulate, here-
after, as the SAS postulate, or simply as SAS. 

	  Problem Set 6.1 

These problems are not stated, and are not supposed to be solved, in terms of deductive 
geometry. You may take for granted that correspondences that look like congruences 
really are congruences. 

1. Write down all of the congruences between an equilateral triangle and itself. 

2. The figure below is a five-pointed star. Write down all of the congruences between 
the star and itself. Let us agree that a congruence is simply a matching scheme that 
"works," and that such a congruence is sufficiently described if we explain, in the 
one-line short notation, where the points A, B, C, D, and E of the star are supposed 
to go. Thus one of the congruences that we are looking for is ABCDE H  CDEAB. 

Figure 6.5 

3. Given a triangle AABC which is isosceles but not equilateral. That is, AB = AC, but 
AB BC. How many congruences are there, between AABC and itself? 

6.2 The Basic 
	 Congruence Theorems  	

An isosceles triangle is a triangle at least two of whose sides are congruent. A 
triangle which is not isosceles is called scalene. If all three sides are congruent, 
then the triangle is equilateral. The first and easiest consequence of the SAS 
postulate follows. 

THEOREM 1. The Isosceles Triangle Theorem. If two sides of a triangle 
are congruent, then the angles opposite them are congruent. 
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Figure 6.6 

That is, the base angles of an isosceles triangle are congruent. Here by the base 
angles we mean the angles opposite the two congruent sides. 

The marking of the figure gives a complete picture of the theorem. The 
marks on the sides AB and AC indicate that these sides are congruent by hy-
pothesis. The marks for LB and LC, with exclamation points, indicate the con-
clusion that these angles are congruent. Throughout this book, exclamation 
points will be used in figures in this way, to indicate conclusions. 

Restatement. Given LABC. If AB ---- AC, then LB = LC. 

PROOF. Consider the correspondence ABC <---> ACB. 

Under this correspondence, AB <---> AC, AC <---> AB, and LA H LA. Thus 
two sides and the included angle are congruent to the parts that correspond to 
them. Therefore, by SAS, the correspondence is a congruence: AABC --=--- 
AACB. By definition of a congruence, this means that LB === LC, which was to 
be proved. ❑ 

This is the famous pons asinorum theorem. The phrase pons asinorum 
means asses' bridge, and was suggested by the figure which accompanied 
Euclid's proof. 

Figure 6.7 

Euclid's proof was long; it takes over a page in print. The proof given above is 
due, essentially, to Pappus, although Pappus did not use the formulation of 
SAS that we have been using here. Not many years ago—or so the story 
goes—an electronic computing machine was programmed to look for proofs 
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of elementary geometric theorems. When the pons asinorum theorem was fed 
into the machine, it promptly printed Pappus's proof on the tape. This is said 
to have been a surprise to the people who had coded the problem; Pappus' 
proof was new to them. What had happened, of course, was that the SAS pos-
tulate had been coded in some such form as the following: 

"If (1) A, B, and C are noncollinear, (2) D, E, and F are noncollinear; 
(3) AB = DE; (4) BC = EF; and (5) LABC = LDEF, then (6) AC -= DF; 
(7) LACB = LDFE ; and (8) LBAC = LEDF." 

This is the sort of language in which people talk to machines; you can't indoc-
trinate them with preconceptions and prejudices; and so, if you want a machine 
to get the idea that the triangles (Fig. 6.8) in the SAS postulate are supposed to 
be different, you have to say so explicitly. It didn't occur to anybody to do this, 
and so the machine proceeded, in its simple-minded way, to produce the most 
elegant proof. 

COROLLARY 1-1. Every equilateral triangle is equiangular. That is, in an 
equilateral triangle, all three angles are congruent. Proof? 

THEOREM 2. The ASA Theorem. Given a correspondence between two 
triangles (or between a triangle and itself). If two angles and the included side 
of the first triangle are congruent to the corresponding parts of the second, 
then the correspondence is a congruence. 

Restatement. Given AABC, ADEF, and a correspondence ABC <--> DEF. If 
LA ='=-: LD, LC = LF, and AC = DF, then AABC = ADEF. 
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PROOF. 

(1) By Theorem C-2 of Section 3.6 there is a point B' on the ray DE, such that 
DB' = AB. 

(2) By SAS, we have AABC = LDB'F. 

(3) By definition of a congruence, we have LDFB' = LACB. 

(4) By Theorem 2, Section 5.1, it follows that FI3' = FE. 

(5) Therefore B' = E, because the lines DE and FE intersect in only one point. 

(6) Therefore, by (2), we have AABC = LDEF, which was to be proved. ❑ 

From this we get a corollary which is a converse of Theorem 1. 

COROLLARY 2-1. If two angles of a triangle are congruent, then the sides 
opposite them are congruent. 

The following corollary is a converse of Corollary 1-1. 

COROLLARY 2-2. Every equiangular triangle is equilateral. 

Proof? 

The third of the basic congruence theorems is harder to prove. 

• THEOREM 3. The SSS Theorem. Given a correspondence between two 
triangles (or between a triangle and itself). If all three pairs of corresponding 
sides are congruent, then the correspondence is a congruence. 

Restatement. Given AABC, ADEF, and a correspondence ABC <---> DEF. If 
AB = DE, BC = EF, and AC = DF, then the correspondence is a congruence. 

Q O.\  

Figure 6.10 
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PROOF. Before proceeding with details, let us explain what the idea of the 
proof is going to be. First we are going to copy ADEF on the under side of 
AABC; that is, we are going to set up AAB'C, with B' on the opposite side of 
AC from B, so that DAB 'C = ADEF. Second, we shall show that AABC 
AAB'C. It will follow that AABC = ADEF, which was to be proved. In full, the 
proof is as follows. 

(1) By the angle-construction theorem (Theorem 2, Section 5.1) there is a ray 
AQ, with Q on the opposite side of AC from B, such that 

L CA Q = LEDF 

(2) By the segment-construction theorem (Theorem C-2 of Section 3.6), there 
is a point B' of AQ such that 

AB' = DE . 

(3) Since we already know that AC -== DF, it follows by SAS that 

AAB'C = ADEF 

(Thus we have completed the first part of our program.) 

(4) B'B intersects AC in a point G. (Because B and B' are on opposite sides of 
AC.) 

The proof now splits up into a number of cases. (i) A-G-C, as in the fig-
ure (Fig. 6.10). (ii) A = G. (iii) G-A-C. Strictly speaking, there are two more 
cases G = C and A-C-G, but these are essentially the same as (ii) and (iii). 

We proceed with the proof for Case (i). 

(5) LABG = LAB' G (by the isosceles triangle theorem). 

(6) LCBG = LCB' G (for the same reason). 

(7) G is in the interior of LAB C. (Since A-G-C in Case (i), this follows from 
Theorem 4, Section 4.2.) 

(8) G is in the interior of LAB'C. (For the same reason.) 

(9) By (5), (6), (7), and (8), together with Theorem 3, Section 5.1, it follows that 

LABC = LAB'C 

(10) By SAS, it follows that 

AABC = AAB'C 

(11) Therefore, by (10) and (3), 

AABC = ADEF . ❑ 

(Proof?) 
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For Cases (ii) and (iii), the figures look like this: 

B" 

Figure 6.11 

We leave these cases as problems. 
Roughly speaking, a bisector of an angle is a ray in the interior which splits 

the angle into two congruent parts, like this. 

Figure 6.12 

That is, AD bisects LBAC if (1) D is in the interior of LBAC, and (2) — BAD 2_--  
LDAC. 

• THEOREM 4. Every angle has exactly one bisector. 

PROOF. Given LBAC. We lose no generality by supposing that AB = AC. (We 
can always pick two points on different sides of the angle, equidistant from 
the vertex.) 

Figure 6.13 

Let D be the midpoint of BC. Then D is in the interior of LBAC. (Why?) 
And by the SSS theorem, LADC = LADB. Therefore LBAD = LCAD; and so 
AD bisects LBAC. 
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Thus we have shown that every angle has at least one bisector. This is half 
of our theorem. We need next to show that LBAC has at most one bisector. To 
do this, it will be sufficient to show that every bisector of LBAC passes through 
the midpoint D of BC. 

Suppose that AE bisects LBAC. Then automatically E is in the interior of 
LBAC. By the crossbar theorem (Theorem 3 of Section 4.3), it follows that AE 
intersects BC in some point D', between B and C. By the SAS postulate we have 
AAD'B === AAD'C. Therefore D'B = D'C, and D' is the midpoint of BC. Since 
BC has only one midpoint, it follows that LBAC has only one bisector, which 
was to be proved. ❑ 

Figure 6.14 

	  Problem Set 6.2 	  

1. Complete the proof of the SSS theorem. 

*2. Let the "special SAS postulate" be the statement that you get if you add to the SAS 
postulate the condition that the triangles must be different. Show that the general 
form of the SAS postulate can be proved as a theorem, on the basis of the special 
SAS postulate. 

   6.3 Some Remarks on Terminology  	

The language in which we have been discussing congruence in this book is dif-
ferent from the language used in much of the literature; it may be worthwhile 
to discuss the reasons for the differences. 

We have already explained the reason for speaking about congruences be-
tween triangles, in the sense of correspondences having certain properties, 
rather than speaking of the relation of congruence in the abstract. The reason, 
briefly, is that the former is what we mean and what we need. 

Our use of the word congruent in connection with segments and angles is a 
slightly different matter. Suppose that we have a pair of segments, a pair of 
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angles, and a pair of circles which "match up" in the sense suggested by the fol-
lowing figures: 

. 1 	. 

• I  • Z—■ 

Figure 6.15 

The situation can then be described in two ways. 

(1) We can say (following widespread usage) that the segments are equal; and 
similarly for the angles and the circles. 

(2) We can say (following the usage of the present book) that in each of the 
three cases, the figures are congruent. 

The same people who call two segments equal if they have the same length 
also say that two triangles are equal if they have the same area. 

There are two difficulties with the loose use of the word equals to describe 
equality of length, angular measure, and area. The first difficulty is that if the 
word equals is used in this way, there is no word left in the language with which 
we can say that A is— without ifs, buts, qualification, or fudging—the same 
as B. This latter relation is called the logical identity. It may seem a peculiar idea, 
at first, because if two things are exactly the same, there can't be two of them. 
But as soon as mathematics had begun to make heavy use of symbolism, the 
logical identity became important. For example, each of the expressions 

1 	2"\/ + 1  

2'\/ — 1' 	11 

describes a number. The descriptions are obviously different, but it is easy 
to check that they describe the same number; and this is what we mean when 
we write 

1 	_ 2'\/ + 1  

2'\/ — 1 	11 	' 

The relation denoted by the symbol =, in the above equation, is the logical 
identity. 

The concept of the logical identity A = B is so important, and comes up so 
often, that it is entitled to have a word to itself. For this reason, in nearly all 
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modern mathematics, the word equals and the symbol = are used in only one 
sense: they mean is exactly the same as. 

The second difficulty with the loose use of the word equals is that it puts us 
in the position of using two words to describe the same idea, when one word 
would do. Congruence is the basic equivalence relation in geometry. We may 
use different technical definitions for it, in connection with different types of 
figures, but the underlying idea is always the same: two figures are congruent 
if one can be placed on the other by a rigid motion. The basic equivalence rela-
tion of geometry is entitled to have a word all to itself; and the word congruence 
appears to be elected. 

It was, no doubt, for these reasons that Hilbert adopted, in his Foundations 
of Geometry, the terminology that we are using in the present book. The prob-
lem is not logical but expository. A good terminology matches up the words 
with the ideas in the simplest possible way, so that the basic words are in one-to-
one correspondence with the basic ideas. 

It should be borne in mind that the strict mathematical interpretation of 
the word equals, in the sense of "is exactly the same as," is a technical usage. In 
ordinary literary English, the word is used even more loosely than in Euclid. 
For example, when Thomas Jefferson wrote, in the Declaration of Indepen-
dence, that all men are created equal, he did not mean that there is only one 
man in the world, or that all men are congruent replicas of one another. He 
meant merely that all men have a certain property in common, namely, the 
property of being endowed by their Creator with certain unalienable rights. 

In fact, only mathematics and logic need a word and a symbol for the idea 
of "is the same as," and the need did not appear even in mathematics and logic 
until the heavy use of symbolism developed. This development came long after 
Euclid; and sheer force of habit preserved Euclid's terminology long past the 
time when it had become awkward. 

6.4 The Independence of the 

	

   SAS Postulate  	

We have seen that the ASA theorem and the SSS theorem can be proved on the 
basis of the SAS postulate. The question may arise whether the SAS postulate 
itself can be turned into a theorem; that is, proved on the basis of the postulates 
that precede it. 

Certain general considerations suggest the contrary. If you reconsider the 
ruler postulate, you will see that it deals with lines one at a time. It does not 
seem to claim that there is any connection between distances measured along 
one line and distances measured along another. The first postulate that de-
scribes such a connection is SAS; SAS tells us, among other things, that if 
AB = DE, LA = LD and AC = DF, then BC = EF. 



6.4 The Independence of the SAS Postulate 	 113 

Here, except in very special cases, the distances BC and EF are measured along 
different lines. 

We observe, moreover, that the postulates for the angular-measure func-
tion m do not mention distance at all. 

These considerations suggest that SAS gives genuinely new information. 
Given a set of postulates, say, Pi, P2, ... ,P„, for a mathematical structure. 

We say that 	is independent of the other postulates 131,132,—,13,1  if there is 
a mathematical system which satisfies 131 , P2 , . , 	but does not satisfy Pn. 

For example, the postulate which says that every a 0 has a reciprocal a-1  is 
independent of the other field postulates. The easiest way to see this is to ob-
serve that the integers satisfy all of the field postulates, with the sole exception 
of this one. 

We shall give an example of the same sort to show that SAS is independent 
of the preceding postulates of metric geometry. 

Consider a structure [S, P, 2, d, m] satisfying all of the postulates of metric 
geometry. We may think of this system as coordinate three-dimensional space, 
with the usual definitions of distance and angular measure. We shall define a 
new distance function d', by making a slight change in the "normal" distance 
function d. We do this in the following way. We choose a particular line L at 
random. We agree that d' (P, Q) is to be the old d(P, Q), except when P and Q 
both lie on L, in which case d' (P, Q) = 2d(P, Q). It is plain that d' satisfies the 
ruler postulate on all lines except perhaps for L. And on L, the ruler postulate 
also holds. Given a coordinate system f which works for the old d, we merely set 
f' (P) = 2f (P), and the new coordinate system now works for d'. 

Q 

Figure 6.17 

The SAS postulate now fails for the old m and the new d' (Fig. 6.17). We 
ought to have APQR = AP'Q'R', because d' (R , P) = d' (R' , P'), LR = LR' and 
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d' (R , Q) = d' (R' , Q'). But the congruence between the triangles does not hold, 
because d' (P, Q) = 2d' (P' , Q'). 

It is possible also to show the independence of SAS by leaving d unchanged 
and defining a peculiar angular measure m' for angles with a certain point P as 
vertex. But examples of the latter sort are harder to describe and to check. 

	 6.5 Existence of Perpendiculars 	 

You may have noted that in the proof of the SSS theorem in Case (i), we had 
GB I. AC. The reason is as follows. By SAS, we have AAGB = AAGB'. There-
fore LAGB = LAGB'. Since these two angles form a linear pair, they are sup-
plementary. Thus LAGB is congruent to a supplement of itself, and hence is a 
right angle. Therefore our proof of the SSS theorem included, implicitly, a 
proof that "a perpendicular can always be drawn, to a given line, through a 
given external point." We make this explicit in the following theorem. 

THEOREM I. Given a line and a point not on the line, then there is a line 
which passes through the given point and is perpendicular to the given line. 

PROOF. Let L be the line, and let B be a point not on L. Let A and C be any 
two points of L. By the angle-construction theorem, there is a point Q such that 
(1) B and Q are on opposite sides of L, and (2) LBAC = LQAC. 

Figure 6.18 

By the segment-construction theorem, there is a point B' of A Q such that 
AB = AB'. Since B and B' are on opposite sides of L = AC, BB' intersects L in 
a point G. Now there are two possibilities: 

(1) G A. In this case it follows by SAS that AAGB = AAGB'. Therefore 
LAGB = LAGB'. Since these two angles form a linear pair, they are sup-
plementary. Therefore each of them is a right angle. Therefore BG I AC, 
as desired. 
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(2) G = A. In this case LBGC --== LBAC and LB'GC --=" LQAC. Therefore 
LBGC :---= LB'GC; and it follows, as in Case (1), that BG I AC. ❑ 

Note that Case (2) is "unlikely," because A and C were chosen at random on 
the line. But it is possible that we happened to pick the foot of the perpendicular. 

Note also that if you use the full force of the angle-construction postulate 
(M-3), then you can prove easily that given a line L in a plane E, and a point A 
which is on the line, there is always a line in E which contains A and is perpen-
dicular to L. So far, however, we have been making it a point not to use the 
"protractor postulates," but to use instead the first few theorems based on 
them; and so we do not yet state the above theorem officially. (See Theorem 4 
of Section 8.3.) 



CHAPTER 

Geometric Inequalities 

Up to now, in our study of the geometry of the triangle, we have been dealing 
only with congruence; our theorems have stated that under certain conditions 
we can infer that two segments (or two angles) are congruent. We shall now in-
vestigate conditions under which we can say that one segment is larger than an-
other, or that one angle is larger than another. 

Initially, we defined inequalities between angles by means of measure. That 
is, LABC < LDEF if mLABC < mLDEF. It is clear, of course, that the same 
idea can be described simply in terms of congruence, without any regard to the 
source of our concept of congruence. We can say that LABC < LDEF if there 
is a point G, in the interior of LDEF such that LABC === LGEF. 

C 	E 

Figure 7.1 

Similarly, for segments, we may say that AB is shorter than CD (AB < CD) 
if the distance AB is less than the distance CD. Or we may forget where the idea 
of congruence came from, and say that if there is a point E, between C and D, 
such that AB 7---= CE, then AB < CD. 

i71 73 

Figure 7.2 

We now proceed to investigate the geometric inequalities associated with a 
fixed triangle. 
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In the figure below, the angle LBCD is called an exterior angle of AABC. 
More precisely, if A-C-D, then LBCD is an exterior angle of AABC. 

B 

Figure 7.3 

Every triangle has six exterior angles, as indicated in the following figure, 
and these six angles form three vertical pairs. 

Figure 7.4 

It follows, of course, that the two exterior angles at a given vertex are always 
congruent. The angles LA and LB of AABC are called the remote interior angles 
of the exterior angles with vertex at C; similarly, LA and LC are the remote 
interior angles of the exterior angles with vertex at B ; and so also for the 
third case. 

■ THEOREM 1. Any exterior angle of a triangle is greater than each of its 
remote interior angles. 

Restatement. Given AABC. If A-C-D, then LBCD > LB. 

First we observe that the restatement really does convey the entire content 
of the theorem. 

Figure 7.5 
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If we prove that the restatement holds true, then we will also know that the 
other exterior angle at C is greater than LB, because the two exterior angles at 
C are congruent. It will also follow, merely by a change of notation, that 
LACD' > LA; and this means that the exterior angles at C are greater than 
each of their remote interior angles. 

We now proceed to the proof of the restatement. 
Let E be the midpoint of BC. 

Figure 7.6 

By Theorem C-2, there is a point F such that A-E-F and EA = EF. 
Consider LAEB and LFEC. Now EB ==.- EC, by hypothesis for E; EA =- EF, 

by hypothesis for F; and LAEB = LFEC, because vertical angles are congru-
ent. By SAS it follows that the correspondence AEB H FEC is a congruence; 
that is, AAEB = LFEC. Therefore, LB = LB CF. 

By Theorem 7, Section 4.2, we know that F is in the interior of LBCD. 
Therefore LBCF < LBCD ; and therefore LB < LBCD, which was to be 
proved. 

COROLLARY 1-1. The perpendicular to a given line, through a given exter-
nal point, is unique. 

Restatement. Let L be a line, and let P be a point not on L. Then there is 
only one line through P, perpendicular to L. 

PROOF. Suppose that there are two perpendiculars to L through P, intersect-
ing L in points Q and R. We shall show that this is impossible. 

P 

Let S be a point of L such that Q-R-S. Then LPRS is an exterior angle of 
APQR; and LPQR is one of its remote interior angles. This is impossible, be-
cause both LPQR and LPRS are right angles. (See Theorem 6 of Section 5.1.) 
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• THEOREM 2. If two sides of a triangle are not congruent, then the 
angles opposite them are not congruent, and the greater angle is opposite the 
longer side. 

Restatement. Given LABC. If AB > AC, then LC > LB. 

PROOF. Let D be a point of AC, such that AD = AB. Then A-C-D, as the fig-
ure indicates, because AD = AB > AC. Since the base angles of an isosceles tri-
angle are congruent, we have 

LABD = LD (1) 

 

Figure 7.8 

Since A-C-D, it follows by Theorem 5, Section 4.2, that C is in the interior of 
LABD. Therefore 

LABC < LABD ; 
	

(2) 

therefore 

LABC < LD 
	

(3) 

Since LACB is an exterior angle of ABCD, we have 

LD < LACB 
	

(4) 

By (3) and (4), LABC < LACB. Thus, in AABC we have LB < LC, which was 
to be proved. ❑ 

■ THEOREM 3. If two angles of a triangle are not congruent, then the 
sides opposite them are not congruent, and the larger side is opposite the 
larger angle. 

Restatement. Given AABC. If LB < LC, then AC < AB. 

PROOF. 

(1) If AC = AB, then by the isosceles triangle theorem it would follow that 
LB = LC; and this is false. 

(2) If AC > AB, then by Theorem 2 it would follow that LB > LC; and this 
is false. 
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The only remaining possibility is AC < AB, which was to be proved. ❑ 

■ THEOREM 4. The shortest segment joining a point to a line is the per-
pendicular segment. 

Restatement. Let L be a line, let P be a point not on L, let Q be the foot of 
the perpendicular to L through P, and let R be any other point of L. Then 
PQ< PR. 

S Q 	R 	
L 

Figure 7.9 

PROOF. Let S be a point of L such that S-Q-R. Then LPQS is an exterior 
angle of APQR. Therefore LPQS > LPRQ. Since PQ 1 L, we know that 
LPQS = LPQR; therefore LPQR > LPRQ. By the preceding theorem, it fol-
lows that PR > PQ, which was to be proved. ❑ 

■ THEOREM 5. The Triangular Inequality. In any triangle, the sum of the 
lengths of any two sides is greater than the length of the third side. 

Restatement. If A, B, and C are noncollinear, then AB + BC > AC. 

PROOF. Let D be a point of CB such that C-B-D and BD = BA. Then 

CD = AB + BC. 	 (1) 

Figure 7.10 

Now B is in the interior of LDAC, by Theorem 5 of Section 4.2; therefore 

LDAB < LDAC 
	

(2) 

Since LBAD is isosceles, with BA = BD, it follows that LD = LBAD; therefore 

LD < LDAC 
	

(3) 
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By applying Theorem 3 to AADC, we get CD > AC; and this may be expressed 
in terms of distance, as follows: 

By (1) and (4), we have 

which was to be proved. ❑ 

Note that this theorem was stated and proved in terms of distance, rather 
than in terms of the relation of congruence between segments. Here we have 
departed from the style of the preceding few chapters. The reasons for this de-
parture will be explained in the following section. (The questions involved here 
are more complicated than you might think.) 

■ THEOREM 6. The Hinge Theorem. If two sides of one triangle are con-
gruent, respectively, to two sides of a second triangle, and the included angle of 
the first triangle is larger than the included angle of the second triangle, then 
the opposite side of the first triangle is larger than the opposite side of the sec-
ond triangle. 

Restatement. Given /ABC and ADEF. If AB ==--' DE, AC = DF, and LA > 
LD, then BC > EF. 

PROOF. 

(1) We assert that there is a point K, in the interior of LBAC, such that 
A AKC = ADEF. 

Figure 7.12 

CD > AC . 	 (4) 

AB + BC > AC , 

To show this, we first take a point Q, on the same side of AC as B, such 
that LQAC = LEDF. (This is by the angle-construction theorem.) Since 
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LA > LD, Q is in the interior of LBAC; in fact, every point of AQ — A is 
in the interior of LBAC. Let K be the point of AQ such that AK =------ DE. By 
SAS, we have AAKC ==--. ADEF, which is what we wanted. 

(2) Next, let AR be the bisector of LBAK. 

Figure 7.13 

(See Theorem 4 of Section 6.2, which asserts that every angle has exactly 
one bisector.) By the crossbar theorem, AK intersects BC in a point L; and 
by another application of the crossbar theorem, AR intersects BL in a 
point M. 

(3) By SAS, we have 

A ABM -=" AAKM . 

Therefore MB = MK. By Theorem 5, we know that 

CK < CM + MK . 

Therefore 

CK < CM + MB , 

because MB = MK. Now CM + MB = CB, because C-M-B. And CK = EF, 
because AAKC --=' ADEF. Therefore, we finally get 

EF < CB , 

which was what we wanted. ❑ 

The above proof is correct and complete as it stands, but it works for rea-
sons that are a little trickier than one might suspect. The last of the figures 
given does not indicate all of the possibilities. The figures might look like either 
of those below. The proof that we have given applies word for word, to the fig-
ure on the left below, and for the figure on the right below we merely need to 
give a different reason for the inequality CK < CM + MK. 
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C 	A 

Figure 7.14 

Finally, we observe that the SAA theorem can be proved merely on the ba-
sis of the exterior angle theorem, without the use of the parallel postulate or 
theorems based on it. 

■ THEOREM 7. The SAA Theorem. Given a correspondence between two 
triangles. If two angles and a side of the first triangle are congruent to the cor-
responding parts of the second, then the correspondence is a congruence. 

Restatement. Given AABC, ADEF, and ABC <--> DEF. If AB = DE, LA 
LD, and LC = LF, then AABC = ADEF. 

B 

Figure 7.15 

(Note that the case where the given side is included between the two angles 
has already been taken care of by the ASA theorem.) 

PROOF. Let F' be a point of DF, such that DF' = AC. By SAS we have 

AABC = ADEF'. 

Therefore LF' -=" LC = LF. But we must have (1) D-F-F', (2) D-F' -F or 
(3) F = F'. If D-F-F', then LF is an exterior angle of AEFF', so that LF > 
LF', which is false. If D-F' -F, then LF' is an exterior angle of AEFF', and 
LF' > LF, which is also false. Therefore F' = F, and AABC = ADEF, which 
was to be proved. ❑ 

A triangle is called a right triangle if one of its angles is a right angle. By 
Corollary 1-1 we know that every triangle has at most one right angle. In a 
right triangle, the side opposite the right angle is called the hypotenuse, and the 
other two sides are called the legs. The following does not depend on the paral-
lel postulate. 
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■ THEOREM 8. The Hypotenuse-Leg Theorem. Given a correspondence be-
tween two right triangles. If the hypotenuse and one leg of one of the triangles 
are congruent to the corresponding parts of the other triangle, then the corre-
spondence is a congruence. 

Restatement. Given LABC and ADEF, such that mLA = mLD = 90, AB =- 
DE, and BC = EF. Then AABC = ADEF. 

Figure 7.16 

PROOF. Let G be the point such that F-D-G and DG === AC. By the Supple- 
ment Postulate, LEDG is a right angle, and LEDG = LBAC. By SAS we have 
/ABC = ADEG. It follows that EG = BC. Therefore EG = EF. By the Isosceles 
Triangle Theorem (Theorem 1 of Section 6.2) we have LF = LG. By the SAA 
Theorem, ADEG = LDEF. Therefore AABC = ADEF, which was to be proved. 

0 



CHAPTER 

The Euclidean Program: 
Congruence Without 

Distance 

	 8.1 The Synthetic Postulates  	

So far in this book, the real numbers have played a central role. We recall that 
the structure is 

where d and m are real-valued functions, defined for point pairs and angles, re-
spectively. The ideas of congruence for segments, betweenness for points on a 
line, and congruence for angles were defined in terms of distance and angular 
measure, in the following way. 

(1) A-B-C means (by definition) that A, B, and C are different points of the 
same line, and 

AB + BC = AC 

(where PQ is the distance d(P, Q) between P and Q). 

(2) AB is defined as the union of A, B, and all points between A and B. 

(3) AB ==--' CD means (by definition) that AB = CD. 

(4) LA = LB means (by definition) that mLA = mLB. 

Under this scheme, nearly all the basic properties of betweenness and con-
gruence for segments and angles could be proved as theorems; the only excep-
tion was the SAS postulate. 
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This scheme of presentation for geometry is not the classical one. It was 
proposed in the early 1930's by G. D. Birkhoff, and has only recently become 
popular. The classical scheme, as one finds it in Euclid or in David Hilbert's 
Foundations of Geometry, is different; the basic difference is that in Euclid the real 
numbers do not appear at all at the beginning, and appear only in a disguised 
form even at the end (see Chapter 20). Euclid's treatment of geometry is called 
the synthetic treatment. The Birkhoff scheme is called metric, because it uses 
measurement. 

We now give a sketch of how the Euclid-Hilbert treatment works. At the 
beginning we have the system 

[S, 2,9]. 

The treatment of incidence theorems is exactly like the one given in Chapter 2. 
Immediately thereafter, however, a difference appears. Instead of adding to 
our structure the real-valued functions d and m, we add the following things. 

(1) An undefined relation of betweenness, for triplets of points. This is regarded 
as given, in the same way that d and m were regarded as given, subject to 
certain postulates to be stated soon. 

Segments are defined, as before, in terms of betweenness. Similarly for 
rays and angles. We then add to our structure the following: 

(2) An undefined relation of congruence for segments, and 

(3) An undefined relation, also called congruence, for angles. 

It does no harm to denote the two undefined congruence relations by the 
same symbol, If we represent the betweenness relation as 91, then the struc-
ture becomes 

It is now out of the question to prove theorems about betweenness and 
congruence until we have postulates which describe their properties. These are 
in three groups, as follows. 

Betweenness Postulates 

B-1. If A-B-C, then C-B-A. 

B-2. Of any three points of a line, exactly one is between the other two. 

B-3. Any four points of a line can be named in an order A, B, C, D, in such a 
way that A-B -C -D. 

B-4. If A and B are any two points, then (1) there is a point C such that A-B-C, 
and (2) there is a point D such that A-D -B. 
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B-5. If A-B-C, then A, B, and C are three different points of the same line. 

These statements are the same as the theorems that were proved on the 
basis of the ruler postulate in Section 3.4, where betweenness was defined in 
terms of distance. 

Congruence Postulates for Segments 
c-i. For segments, congruence is an equivalence relation. 

C-2. The Segment-Construction Postulate. Given a segment AB and a ray CD. 
There is exactly one point E of CD such that AB = CE. 

C-3. The Segment-Addition Postulate. If (1) A-B-C, (2) A'-B'-C', (3) AB = A'B', 
and (4) BC = B'C', then (5) AC = A'C'. 

C-4. The Segment-Subtraction Postulate. If (1) A-B-C, (2) A'-B'-C', (3) AB 
A'B', and (4) AC -=" A'C', then (5) BC = B'C'. 

C-5. Every segment has exactly one midpoint; that is, for every AB there is ex-
actly one point C such that A-C-B and AC = CB. 

These statements are the theorems that were proved in Section 3.6, where 
congruence for segments was defined in terms of distance. 

The separation postulates and the treatment of sides of a line, interiors of 
angles, and so on, are exactly as in Chapter 4. 

Congruence Postulates for Angles 
C-6. For angles, congruence is an equivalence relation. 

C-7. The Angle-Construction Postulate. Let LABC be an angle, let B'C' be a 
ray, and let H be a half plane whose edge contains B'C' . Then there is exactly 
one ray B'A' , with A' in H, such that LABC = LA'B'C'. 

C-8. The Angle-Addition Postulate. If (1) D is in the interior of LBAC, (2) D' is 
in the interior of LB'A'C', (3) LBAD = LB'A'D', and (4) LDAC = LD'A'C', 
then (5) LBAC === LB'A'C'. 

C-9. The Angle-Subtraction Postulate. If (1) D is in the interior of LBAC, (2) D' 
is in the interior of LB'A'C', (3) LBAD = LB' A'D' , and (4) LBAC = LB'A'C', 
then (5) LDAC = LD'A'C'. 

These statements are the ones that were proved in Section 5.1, where con-
gruence for angles was defined in terms of the angular-measure function m. 

Finally, we state the SAS postulate exactly as before. 
Let us now consider the question of how much of our work in the preced-

ing sections needs to be done over again if we decide, for some reason, that it 
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would be good to get along without using the real-valued functions d and m. 
The answer is that hardly any of it needs to be done over again, because until we got 
to the preceding chapter, on geometric inequalities, we almost never cited the defi-
nitions of betweenness and congruence except at the very beginning in each case, when we 
were proving the basic theorems that we now propose to take as postulates. The next 
time you look at these early chapters, you might try checking this statement, a 
line at a time. The first place where you will get into trouble is at the end of 
Chapter 5, where we used angular measure in the proof of the vertical angle 
theorem. Theorem 1 of Section 8.3 can be used to replace angular measure in 
this proof. The second difficulty is at the end of Chapter 6, where we pointed 
out that we were postponing half of the theorem that one would naturally ex-
pect on the existence of perpendiculars to a line L, through a point P, in a 
given plane. We showed (Theorem 1, Section 6.5) that when P is not on L, such 
a perpendicular always exists. We still need to prove, on the basis of the postu-
lates in this chapter, that when P lies on L, the same conclusion follows; and 
we still need to prove, on the same postulational basis, that all right angles 
are congruent. 

The synthetic treatment of congruence begins with a synthetic treatment of 
inequalities. See the following sections. 

8.2 The Laws of Inequality 
   for Segments 	  

At the start we have to explain, without mentioning distances, what it means to 
say that one segment is shorter than another or that one angle is smaller than 
another. The appropriate definitions have already been suggested in Chapter 7. 

DEFINITION. AB < CD if there is a point B', between C and D, such that 
AB = CB' . 

    

	• 	• 	 
B C 

   

. 	. B' D B A 

      

Figure 8.1 

The basic properties of the relation < are 

(I) For every pair of segments AB, CD, exactly one of the following condi-
tions holds: 

AB < CD, AB = CD, CD < AB . 

(II) If AB < CD and CD < EF, then AB < EF. 

(III) If AB = A'B', CD = C'D' and AB < CD, then A'B' < C'D' . 



8.2 The Laws of Inequality for Segments 	 129 

Note that (I) and (II) are very much like Conditions 0-1 and 0-2 for an 
order relation, with = replaced by throughout. We shall now verify (I), (II), 
and (III). 

■ THEOREM 1. If A-B-C and A-C-D, then A-B-C-D. 

PROOF. We know that A, B, C, and D can be arranged in an order W, X, Y, Z, 
so that W-X-Y-Z. Here W cannot be B or C, because W is not between any two 
of the other three points. For the same reason, Z cannot be B or C. Therefore 
W and Z must be A and D in some order. Since W-X-Y-Z and Z-Y-X-W say the 
same thing, we can assume W = A, and Z = D. This gives 

A-X-Y-D , 

where X and Y are B and C. We cannot have A-C-B-D, because A-B-C. There-
fore we have A-B-C-D, which was to be proved. ❑ 

■ THEOREM 2. If A-B-C and AC = A'C', then there is a point B' such that 
A' = B'-C' and AB = A'B'. 

B'? 	B'? 
• • 	• 	

• 	

• 	• 	►  
A 	B 	C 	A' 	B'! 	C' 

Figure 8.2 

PROOF. By the segment-construction postulate, C-2, we know that there is ex-
actly one point B' on the ray A'C' such that A'B' = AB. There are now three 
possibilities: 

(1) B' = C', 	(2) A' -C'-B', 	(3) A' -B' -C' . 

We shall show that both (1) and (2) are impossible. It will follow that (3) holds true. 

(1) Suppose that B' = C'. Then the ray AC contains two points X (namely, 
X = B and X = C) such that AX = A'C'. This contradicts the segment-
construction postulate, C-2. 

(2) Suppose that A' -C'-B' . By the segment-construction postulate there is a 
point D on the ray opposite to CA such that CD = C'B'. 

A' 
	

C' 	B' 

• • 	• 	± 	• 
A 

Figure 8.3 

Thus A-C-D, A' -C' -B', AC = A'C', and CD = C'B'. Therefore, by the 
segment-addition postulate, we have AD = A'B'. Since A'B' = AB, this 
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gives AD = AB, which contradicts the uniqueness condition in the segment-
construction postulate. ❑ 

■ THEOREM 3. If AB < CD, and CD = C'D', then AB < C'D'. 

PROOF. We have a point B' such that C-B'-D and CB' = AB. By Theorem 2, 
there is a point B" such that C'-B"-D' and C'B" = CB'. But AB = CB'. Therefore 

AB = C'B", and AB < C'D', 

which was to be proved. ❑ 

• THEOREM 4. If AB < CD, and A'B' = AB, then A'B' < CD. 

This is easy even without the preceding theorems. Proof? Fitting these to-
gether, we get: 

• THEOREM 5. If AB = A'B', CD = C D ', and AB < CD, then A'B' < 
C'D'. 

This, of course, is Condition (III). ❑ 

■ THEOREM 6. The relation AB < AB never holds, for any segment AB. 

PROOF. If AB = AB', for some point B' between A and B, then this contra-
dicts the segment-construction postulate C-2. ❑ 

■ THEOREM 7. If AB < CD and CD < EF, then AB < EF. 

A 	  B 

'  
C • 	

I B 	
D 

E • 	  
B" 	D' 

Figure 8.4 

PROOF. Take D' so that E-D'-F and ED' = CD (Fig. 8.4). By Theorem 3, 
there is a point B" such that E-B"-D' and AB = EB". Since E-B"-D' and E-D' -F, it 
follows by Theorem 1 that E-B"-D' -F, so that E-B"-F. Therefore AB < EF, which 
was to be proved. This is Condition (II). ❑ 

■ THEOREM 8. For every pair of segments AB and CD, exactly one of the 
following conditions holds: 
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AB < CD, AB = CD, CD < AB . 

PROOF. There is a point B', on CD, such that CB' = AB. 

B'? 	B'? 	B'? 

C 
	

D 

Figure 8.5 

If C-B'-D, then (1) AB < CD. If B' = D, then (2) AB = CD. If C-D-B', then by 
Theorem 2 it follows that there is a point D', between A and B, such that AD' --== 
CD. Therefore (3) CD < AB. Thus at least one of the stated conditions holds. 

And no two of these conditions can hold. If AB < CD and AB = CD, then it 
follows by Theorem 4 that CD < CD, which contradicts Theorem 6. Similarly if 
AB = CD and CD < AB. Finally, if AB < CD and CD < AB, then it follows by 
Theorem 7 that AB < AB, which contradicts Theorem 6. ❑ 

We have now verified (I), (II), and (III). 
The synthetic treatment of inequalities for angles is very similar, and we 

shall not go through it in detail. It begins as follows. 

DEFINITION. Given LABC and LDEF. If there is a point G in the interior of 
LDEF, such that LABC = LGEF, then LABC < LDEF. 

B 	C 

Figure 8.6 

The basic properties of this relation are precisely analogous to (I), (II), and 
(III) above. 

(IV) For every pair of angles LA, LB, exactly one of the following conditions 
holds: 

LA < LB, LA LB, LB < LA . 

(V) If LA < LB and LB < LC, then LA < LC. 

(VI) If LA = LA', LB = LB' and LA < LB, then LA' < LB'. 

The proofs are not trivial. 
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8.3 Right Angles, 
   Synthetically Considered  	

The first step in handling right angles is to prove the following theorem, which 
is closely related to C-8. 

■ THEOREM 1. If (1) LBAC and LCAD form a linear pair, (2) LB'A'C' 
and LC'A'D' form a linear pair, and (3) LCAD = LC'A'D', then (4) LBAC 

PROOF. Evidently there is no harm in assuming that 

AB = A'B', 	AC = A'C', 	AD 2-- A'D', 

since all six of our rays are equally well described if the points B', C', D' are 
chosen in this way. By SAS, we have AADC = AA'D'C'. Therefore LADC 
LA'D'C'; and so LBDC = LB'D'C'. By SAS, this means that ABDC = AB'D'C'. 
Therefore BC = B'C'. By the SSS theorem, ABAC = AB'A'C'. Therefore 
LBAC = LB'A'C', which was to be proved. ❑ 

■ THEOREM 2. Any angle congruent to a right angle is also a right angle. 

Restatement. Suppose that (1) LBAC and LCAD form a linear pair, and 
(2) LBAC = LCAD. Suppose that (3) LB'A'C' and LC'A'D' form a linear pair, 
and (4) LB'A'C' = LBAC. Then (5) LB'A'C' = LC' A'D'.  

Figure 8.8 

You should analyze this restatement carefully to see that it really is a re-
statement of Theorem 2. Once we have formulated the theorem in this way, 



8.3 Right Angles, Synthetically Considered 	 133 

the proof is trivial. By the preceding theorem, LC'A'D' = LCAD. By (2), 
LCAD = LBAC. Therefore 

LC'A'D' = LBAC = LB'A'C' and LC'A'D' = LB'A'C', 

which was to be proved. 

THEOREM 3. All right angles are congruent. 

Restatement. Suppose that LBAC and LCAD form a linear pair and are 
congruent. Suppose that LB'A'C' and LC'A'D' form a linear pair and are con-
gruent. Then LBAC = LB'A'C'. 

Figure 8.9 

PROOF. First we observe that the points B', and D' can be chosen so that 

A'B' = A'D', 

as indicated in the figure. It follows, by SAS, that AA'B'C' = AA'D'C', so that 
we have also 

LB' = LD' 

Let A'E be a ray, with E on the same side of A'D' as C', such that 

LB'A'E = LBAC 

We need to prove that A'E = A'C' ; it will then follow that LBAC = LB'A'C' .  
If A'E 0 A'C' , then E lies in the interior of one of the angles LB'A'C' 

and LD'A'C' — say L, B'A'C' . Then A'E intersects B'C' in a point F, such that 
B'-F-C'. By definition of < (for segments), B'F' < B'C'. Since B'C' = D'C', it 
follows by (III) of Section 8.2 that B'F < D'C', which means that there is a 
point G such that D' -G-C' and D'G = B'F. By SAS we have 

AB'A'F === AD'A'G 

Therefore 

LB'A'F = LD'A'G 

But by Theorem 1, we know that LD'A'E = LCAD. Therefore LD'A'E 
LCAD = LBAC = LB'A'E = LD'A'G. 
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We now have the following situation: 

(1) G and E are both on that side of A'D' which contains C'. 

(2) LD'A'E = LD'A'G. 

(3) A T and A 1 G are different, because E and G are on opposite sides of A'C' 
(the sides that contain B' and D', respectively). 

This is impossible, by C-7, because that postulate says that conditions (1) 
and (2) determine a unique ray. ❑ 

This proof is taken from Hilbert's Foundations, with many details added. 
The complications that arise in the proof are typical of what happens when one 
undertakes to reduce postulates to a minimum, in a subject as complicated as 
geometry. (Euclid postulated that all right angles are congruent, and Hilbert 
showed that the postulate was unnecessary.) Hilbert's postulates, in Foundations, 
were considerably weaker than those given in Section 8.1. In this book, our 
purpose is not to give the weakest postulates that can be made to work, but 
merely to give a valid and workable scheme. 

• THEOREM 4. Given a plane E, a line L lying in E, and a point P of E. 
There is exactly one line in E which contains P and is perpendicular to L. 

PROOF. We already know that this is true for the case in which P is not on L. 
(See Theorem 1, Section 6.5; the proof of this theorem was essentially syn-
thetic, based merely on C-7 and not on distance or angular measure.) We also 
know, by Theorem 1, Section 6.5, that some angles are right angles. Let Q be 
any point of L other than P. By C-7, there is a point R on one side of L in E, 
such that LQPR is congruent to a right angle. By Theorem 2, this means that 
LQPR is a right angle, and so PR I. L. If there were two such rays PR, PR', 
then we would have LQPR = LQPR', because all right angles are congruent. 
This is impossible, by C-7. ❑ 

R 

L 	 • • 
Q P 

Figure 8.10 

Note that in a metric treatment we see immediately that LA is a right angle 
if and only if mLA = 90. Thus, in a metric treatment all the theorems in this 
section are almost too trivial to be worthy of explicit statement. 
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8.4 The Synthetic Form of the 
Triangular Inequality. Addition of 
	  Congruence Classes  	
If we adopt the synthetic definitions of inequalities, for angles and segments, 
and reexamine Chapter 7 from this viewpoint, we find that the theory works in 
essentially the same way as before, until we get to the Triangular Inequality 
(Theorem 5 of Section 7.1). Our problems do not begin with the proof; in fact, 
our first problem is to state the theorem without mentioning distances. The fol-
lowing is logically correct, but not very natural. 

■ THEOREM 1. Given LABC, there is a point A' such that A'B ---- AB, A'-B-C, 
and A'C > AC. 

Figure 8.11 

This really does convey the idea, because it says, intuitively speaking, that if 
AB and BC are laid end to end, they form a segment which is longer than AC 
(Fig. 8.11). 

Note that the difficulty in handling this theorem synthetically is that it deals 
with the idea of addition. In metric geometry, the situation is simple, because 
the addition is performed with numbers. In synthetic geometry, we need to do 
a lot more talking, if we want to make sense, because the "sum" of two seg-
ments can be regarded as a segment only when the segments are end to end, 
like this: 

. 	 . 

A 	B 	C 

Figure 8.12 

Here it is reasonable to call AC the "sum" of AB and BC. But if the segments 
look like this: 

C B 

/ '. .. 
A 	 D 

Figure 8.13 

it is not plain what segment their sum ought to be. 
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The easiest way around this is as follows. Given AB, let [AB] be the set of all 
segments that are congruent to AB. Obviously, if AB -=." CD, then [AB] = [CD]. The 
sets [AB] are called congruence classes. What we have just pointed out is that a 
congruence class is equally well described by any of its members. 

Suppose now that two segments AB and CD are given. Then there are al-
ways points X, Y, Z such that 

X-Y-Z, 	XY = AB, 	YZ 2--  CD . 

The following observations are easy to check, on the basis of the congruence 
postulates. 

(1) If X', Y', Z' are any other three points satisfying  the  same conditions, then 
it follows by the segment-addition postulate that X'Z' === XZ. That is, the con-
gruence class [XZ] zs independent of the choice of X, Y, and Z. 

(2) Suppose that AB = A'B' and CD = C'D'. Let X, Y, Z be chosen for AB and 
CD, as above; and let X', Y', Z' be chosen for A'B' and C'D'. Then XZ 
X'Z'. That is, the congruence class [XZ] depends only on the congruence classes 
[AB] and [CD]; it is independent of the choice of representative segments 
AB and CD. 

Addition can now be defined, not between segments, of course, but be-
tween congruence classes. Given [AB] and [CD], we take X, Y, and Z such that 

X- Y-Z, 	XY AB, 	YZ CD . 

Then, by definition, 

[AB] + [CD] = [XZ].  

Our remarks (1) and (2) show that this definition makes sense. The congru-
ence class [XZ] is independent of the choice of AB, CD, X, Y, and Z; it depends 
only on the congruence classes [AB] and [CD]. 

Finally, we recall that (III) of Section 8.2 tells us that if AB < CD, then any 
segment in [AB] is less than every segment in [CD]. We can therefore define 

[AB] < [CD] 

to mean that every segment congruent to AB is less than every segment congru-
ent to CD. 

We can now give a more natural statement of the triangular inequality. 

■ THEOREM 2. For any triangle AABC, we have 

[AB] + [BC] > [AC]. 

The purely synthetic treatment is in a way more elegant. But if we write 
exact definitions, and really prove our theorems, then synthetic elegance must 
be bought at the price of technical complication. Under the metric scheme, a 
logically complete treatment is much easier. 
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8.5 A Summary of the Differences 
Between the Metric and 

   Synthetic Approaches  	

We have now described two fundamentally different approaches to geometry. 
It may be helpful, by way of outline and review, to give a table indicating how 
these two approaches differ (Table 8.1). The basic ideas and statements appear 
in the left-most column, and in the next two columns we indicate how they are 
treated. 

Table 8.1 

Metric Approach Synthetic Approach 

1. The given [S,2,g),d,m] [S,2,,g3, - ] 
structure 

2. Distance Given, in the 
structure 

Never mentioned 

3. Measure for Given, in the Never mentioned 
angles structure 

4. Congruence Defined in terms Given, in the 
for segments of distance structure 

5. Congruence Defined in terms of Given, in the 
for angles degree measure structure 

6. Properties of Stated in theorems Stated in postulates 
congruence 

7. Addition Performed with Performed with 
numbers AB congruence classes [AB ] 

8. Inequalities Defined between Defined between 
numbers, AB < CD congruence classes, 

[AB] < [CD] 

Henceforth, except in Chapter 20, we shall use the metric structure 

[S,2,9',d,m]. 
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CHAPTER v 
Three Geometries 

	 9.1 Introduction  	
This chapter is purely informal; it does not form a part of the deductive se-
quence of the rest of the book. In fact, in this chapter we shall not prove any-
thing at all; but everything that we discuss will be taken up more fully later. It 
may be of some help, however, to sketch in advance the kinds of geometry to 
which our theorems are going to apply. 

For the sake of simplicity, we shall limit ourselves to geometry in a plane. 
The ideas that we shall discuss can be generalized to three dimensions, but only 
at the cost of considerable labor. 

Two lines are called parallel if they lie in the same plane but do not inter-
sect. In a Euclidean plane, the familiar parallel postulate holds. 

The Euclidean Parallel Postulate. Given a line L and a point P not on L, 
there is one and only one line L' which contains P and is parallel to L. 

This says that parallels always exist and are always unique. 
For quite a while—for a couple of millennia, in fact—this proposition was 

regarded as a law of nature. In the nineteenth century, however, it was discov-
ered by Lobachevski, Bolyai, and Gauss that you could get a consistent mathe-
matical theory by starting with a postulate which states that parallels always 
exist, but denies that they are unique. 

The Lobachevskian Parallel Postulate. Given a line L and a point P not on L, 
there are at least two lines L', L" which contain P and are parallel to L. 

L' 

L" 

-. 	 1.-- L 

Figure 9.1 
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The picture looks implausible, because we are accustomed to thinking of 
the plane of the paper as Euclidean. But it is a fact, as we shall see, that a mathe-
matical theory can be based on Lobachevski's postulate. And such a theory has 
applications in physics. 

There is yet a third alternative. We can deny not the uniqueness of paral-
lels but their existence. 

The Riemannian Parallel Postulate. No two lines in the same plane are ever 
parallel. 

These postulates give us three kinds of "plane geometry," the Euclidean, 
the Lobachevskian, and the Riemannian. In each of the three theories, of 
course, many other postulates are needed; we have merely been singling out 
their crucial difference. In this book, we shall be concerned mainly with the 
first of these geometries, incidentally with the second, and hardly at all with the 
third. In the following sections, we give concrete examples, or models, of these 
kinds of geometry, and indicate the most striking differences between them. In 
going through the rest of this book, you should have one of these models 
in mind most of the time; and at some points you should be thinking about two 
of them. 

9.2 The Poincare Model 

	

   for Lobachevskian Geometry  	

In this section we shall assume that there is a mathematical system satisfying the 
postulates of Euclidean plane geometry, and we shall use Euclidean geometry 
to describe a mathematical system in which the Euclidean parallel postulate 
fails, but in which the other postulates of Euclidean geometry hold. 

Consider a fixed circle C in a Euclidean plane. We assume, merely for the 
sake of convenience, that the radius of C is 1. Let E be the interior of C. 

C" 

Figure 9.2 
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By an L-circle (L for Lobachevski) we mean a circle C' which is orthogonal to C. 
When we say that two circles are orthogonal, we mean that their tangents at 
each intersection point are perpendicular. If this happens at one intersection 
point R, then it happens at the other intersection point S. But we shall not stop 
to prove this; this chapter is purely descriptive and proofs will come later. 

The points of our L-plane will be the points of the interior E of C. By an 
L-line we mean (1) the intersection of E and an L-circle, or (2) the intersection 
of E and a diameter of C. 

It is a fact that 

I-1. Every two points of E lie on exactly one L-line. 

We are going to define a kind of "plane geometry," in which the "plane" is 
the set E and the lines are the L-lines. In our new geometry we already know 
what is meant by point and line. We need next to define distance and angular 
measure. 

For each pair of points X, Y, either on C or in the interior of C, let XY be the 
usual Euclidean distance. Notice that if R, S, T, and U are as in the figure, then 
R and S are not points of our L-plane, but they are points of the Euclidean 
plane that we started with. Therefore, all of the distances TS, TR, US, UR are 
defined, and I-1 tells us that R and S are determined when T and U are named. 
There is one and only one L-line through T and U, and this L-line cuts the 
circle C in the points R and S. We shall use these four distances TS, TR, US, UR 
to define a new distance d(T, U) in our "plane" E, by the following formula: 

TR/TS  

loge UR/US 

Evidently we have the following postulate. 

D-0. d is a function 
El . 

UR/US 

That is, f(T) is what we get by omitting the absolute value signs in the formula 
for d(T, U). We now have a function, 

f: L 	R . 

We shall show that f is a coordinate system for L. 
If V is any other point of L, then 

VR/VS  
f(V) = loge  

UR/US 

d(T,U) = 

Let us now look at the ruler postulate D-4. On any L-line L, take a point U 
and regard this point as fixed. For every point T of L, let 

TR/TS 
f(T) = loge  
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Let x = f (T) and y = f(V). Then 

TR/TS 	VRIVS  
Ix — YI = loge 	 e log UR/US 	UR/US 

   

= loge 
'oge  VR/VS 

, 

    

because the difference of the logarithms is the logarithm of the quotient. 
Therefore 

Ix — YI = d(T,V), 

which means that our new distance function satisfies the ruler postulate. 
Since D-4 holds, the other distance postulates automatically hold. (See 

Problem 1, Section 3.3.) 
We define betweenness, segments, rays, and so on, exactly as in Chapter 3. 

All of the theorems of Chapter 3 hold in our new geometry, because the new 
geometry satisfies the postulates on which the proofs of the theorems were 
based. The same is true of Chapter 4; it is rather easy to convince yourself that 
the plane-separation postulate holds in E. 

To discuss congruence of angles, we need to define an angular-measure 
function. Given an "L-angle" in our new geometry, we form an angle in the old 
geometry by using the two tangent rays: 

Figure 9.3 

We then define the measure mLBAC of LBAC to be the measure (in the old sense) 
of the Euclidean angle LB'AC' . 

It is a fact that the resulting structure 

[E, L, d, in] 

satisfies all the postulates of Chapters 2 through 6, including the SAS postulate. 
The proof of this takes time, however, and it requires the use of more Euclidean 
geometry than we know so far. Granted that the postulates hold, it follows that 
the theorems also hold. Therefore, the whole theory of congruence, and of geo-
metric inequalities, applies to the Poincare model of Lobachevskian geometry. 



9.2 The Poincare Model for Lobachevskian Geometry 	 143 

Figure 9.4 

On the other hand, the Euclidean parallel postulate obviously does not 
hold for the Poincare model. Consider, for example, an L-line L which does not 
pass through the center P of C (Fig. 9.4). Through P there are infinitely many 
L-lines which are parallel to L. 

Lobachevskian geometry (also called hyperbolic geometry) is the kind represented 
by the Poincare model. In such a geometry, when the familiar parallel postulate 
fails, it pulls down a great many familiar theorems with it. A few samples of 
theorems in hyberbolic geometry which are quite different from the analogous 
theorems of Euclidean geometry follow. 

(1) No quadrilateral is a rectangle. In fact, if a quadrilateral has three right an-
gles, the fourth angle is always acute. 

(2) For any triangle, the sum of the measures of the angles is always strictly less 
than 180. 

(3) No two triangles are ever similar, except in the case where they are also 
congruent. 

The third of these theorems means that two figures cannot have exactly the 
same shape, unless they also have exactly the same size. Thus, in hyperbolic ge-
ometry, exact scale models are impossible. 

In fact, each of the above three theorems characterizes hyperbolic geome-
try. If the angle-sum inequality, 

mLA + mLB + mLC < 180 , 

holds, even for one triangle, then the geometry is hyperbolic; if the angle-sum 
equality holds, even for one triangle, then the geometry is Euclidean; and simi-
larly for (1) and (3). 

This has a curious consequence in connection with our knowledge of physi-
cal space. If physical space is hyperbolic, which it may be, it is theoretically pos-
sible for the fact to be demonstrated by measurement. For example, suppose 
that you measure the angles of a triangle, with an error less than 0.0001" for 
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each angle. Suppose that the sum of the measures turns out to be 179°59'59.999". 
The difference between this and 180° is 0.001". This discrepancy could not be 
u to 	w  • 	 wt, 	 • 	4 ■ 	 bp • 
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The resulting system has some of the properties that we expect in plane geo-
metry. For example, every "line" separates our "plane" into two "half planes," 

1 
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If L is a great circle on V, then L is the set of all points A for which A is on 
L. The sets L will be the lines in E. 

The distance d(71, B ) between two points A-  and B is the length of the shortest 
arc from A (or A') to B (or B'). Notice that this may be less than the length of 
the shortest arc from A to B. 

In our new geometry, two points -A, N always determine a unique "line." 
The reason is that if A and B were antipodal on the sphere, A and B would be 
the same. 

The Euclidean parallel postulate still fails, of course; two of our new lines 
always intersect in exactly one point. Lines are still of finite extent; the maxi-
mum possible distance between two points is now 7r/2. Betweenness still does 
not work. Perpendiculars still are not unique; we still have triangles with two 
right angles, and the exterior angle theorem still fails. 

In fact, in arranging for two points to determine a line, we have introduced 
a new peculiarity: no line separates our Riemannian plane. In fact, if L is a line, 
and A and B are any two points not on L, then there is always an arc, lying in a 
"line" L', which goes from A to B without intersecting L. 

In this book, we shall be concerned mainly with Euclidean geometry, but 
we shall devote considerable attention to hyperbolic geometry, mainly because 
it throws light on Euclidean geometry. The point is that these two kinds of geom-
etry have so much in common that at the points where they differ, the differ-
ences are instructive. On the other hand, the differences between Riemannian 
and Euclidean geometry are so fundamental that the former is a technical spe-
cialty, remote from our main purpose. We shall not be concerned with it here-
after in this book. 

9.4 Some Questions for 
	  Later Investigation  	

In this chapter, we have raised more questions than we have answered. 

(1) We have said that the Poincare model for hyperbolic geometry satisfies all 
the postulates of Euclidean geometry, with the sole exception of the Eu-
clidean parallel postulate. This needs to be proved, and we haven't proved 
it with our conversational discussion in Section 9.2. 

To check these postulates is a lengthy job. The reader is warned that 
this sort of verification is dismissed almost casually in much of the litera-
ture. If the models for hyperbolic geometry had in common with Euclidean 
geometry merely the trivial properties that are discussed in semipopular 
books, they would not have the significance which is commonly and rightly 
attributed to them. 

(2) When the postulates are checked, for the Poincare model, we will know 
that hyperbolic geometry is just as good, logically, as Euclidean geometry. 
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We constructed the model on the basis of Euclidean geometry. Therefore, 
if there is a mathematical system satisfying the Euclidean postulates, it fol-
lows that there is a system satisfying the Lobachevskian postulates. 

(3) There remains the if in (2). Is there a system satisfying the Euclidean postu-
lates? To prove this, we need to set up a model. We shall see that this can 
be done, assuming that the real number system is given. 



CHAPTER 

Absolute Plane 
Geometry 

10.1 Sufficient Conditions 
	  for Parallelism  	

Two lines are parallel if they lie in the same plane but do not intersect. We shall 
use the abbreviation L 1  ll L2  to mean that the lines L 1  and L 2  are parallel. Later, 
as a matter of convenience, we shall say that two segments are parallel if the 
lines that contain them are parallel. We shall apply the same term to a line and 
a segment, a segment and a ray, and so on, just as we did somewhat earlier in 
our discussion of perpendicularity. 

The Euclidean parallel postulate will be introduced in the next chapter, 
and used thereafter, except in the chapter on non-Euclidean geometry. The 
postulate, in the form in which it is usually stated, says that given a line and a 
point not on the line, there is exactly one line which passes through the given 
point and is parallel to the given line. 

P -..- - — — — —• — — — — — — -0- L' 

L 

Figure 10.1 

We shall see, however, from Theorems 1 and 2, that half of this statement 
can be proved on the basis of the postulates that we already have. 

■ THEOREM 1. If two lines lie in the same plane, and are perpendicular to 
the same line, then they are parallel. 
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Restatement. Let L 1, L2, and T be three lines, lying in a plane E, such that 
L 1  1 T and L 2  1 T. Then L 1  II L2. 

T 
A 

P 

Q Y • 

•x 

Figure 10.2 

-I.-  L2 

• L1  

PROOF. Suppose that L 1  and L2 intersect T at points Q and P, respectively. 
Suppose that L1  and L 2  are not parallel, and let R be the point at which they 
intersect. Then there are two perpendiculars to T through R; and this contra-
dicts Corollary 1-1 of Chapter 7. ❑ 

■ THEOREM 2. Given a line and a point not on the line, there is always 
at least one line which passes through the given point and is parallel to the 
given line. 

PROOF. Let L be the line, let P be the point, and let E be the plane which con-
tains them. By Theorem 1 of Section 6.5, there is a line T in E which passes 
through P and is perpendicular to L. By Theorem 4 of Section 8.3, there is a 
line L' in E which passes through P and is perpendicular to T. By the preceding 
theorem it follows that L 11 L', which was to be proved. ❑ 

There is an easy generalization of Theorem 1, which we shall get to presently. 
In the figure below, T is a transversal to the lines L 1  and L2. 

T 

Figure 10.3 

More precisely, if L 1, L2, and T are three lines in the same plane, and T inter-
sects L 1  and L2 in two (different) points P and Q, respectively, then T is a trans-
versal to L 1  and L 2. 

In the figure below L1 and L2 are alternate interior angles; and L3 and 
L4 are alternate interior angles. 
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Figure 10.4 

More precisely, (1) if T is a transversal to L, and L 2, intersecting L, and L 2  in P 
and Q, respectively, and (2) A and D are points of L, and L 2, respectively, lying 
on opposite sides of T, then LAPQ and LPQD are alternate interior angles. (Un-
der a change of notation, this definition says also that LCQP and LQPB are al-
ternate interior angles.) 

■ THEOREM 3. Given two lines and a transversal. If a pair of alternate in-
terior angles are congruent, then the lines are parallel. 

The proof uses the exterior angle theorem. 
In the figure below, L 1 and L l' are corresponding angles, L2 and L2' are 

corresponding angles, and so on. 

Figure 10.5 

DEFINITION. If Lx and Ly are alternate interior angles, and Ly and Lz are 
vertical angles, then Lx and Lz are corresponding angles. 

■ THEOREM 4. Given two lines and a transversal. If a pair of correspond-
ing angles are congruent, then a pair of alternate interior angles are congruent. 

■ THEOREM 5. Given two lines and a transversal. If a pair of correspond-
ing angles are congruent, then the lines are parallel. 
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	 10.2 The Polygonal Inequality  	

The triangular inequality states that for any triangle ABC we have 

AB + BC > AC . 

If A, B, and C are not required to be noncollinear or even different, we get a 
weaker result. 

■ THEOREM 1. For any points A, B, C, 

AB + BC AC . 

PROOF. If A, B, and C are noncollinear, this follows from the triangular in-
equality. If A, B, and C are collinear, we take a coordinate system on the line 
that contains them, and let their coordinates be x, y, and z. Let 

a = x — y, 	b = y — z . 

By Theorem 13, Section 1.4, we know that 

+ 	la + bl ; 

therefore 

Ix - yl + 	- 	- zl 

Hence 

AB + BC AC , 

which was to be proved. From this we get the following theorem. 

THEOREM 2. The Polygonal Inequality. If A A2, , A, are any points 
(n > 1), then 

A A2  + A2  A3  + • + A„ A„ A1 A,,. 

The proof is by induction. 
We shall need this result in the following section. For the first time, we are 

also about to use the Archimedean postulate for the real number system, given 
in Section 1.8. This says that if e > 0 and M > 0, then ne > M for some posi-
tive integer n. 
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	  10.3 Saccheri Quadrilaterals  	

We recall, from Section 4.4, the definition of a quadrilateral. Given four points 
A, B, C and D, such that they all lie in the same plane, but no three of them are 
collinear. If the segments AB, BC, CD, DA intersect only at their end points, 
then their union is called a quadrilateral, and is denoted by ❑ABCD. The seg-
ments AB, BC, CD, DA are the sides of ❑ABCD, and the segments AC, BD are 
the diagonals. The angles of ❑ABCD are LABC, LBCD, LCDA, and LDAB; they 
are often denoted briefly as LB, LC, LD, LA. If all four of the angles are right 
angles, then the quadrilateral is a rectangle. 

On the basis of the postulates that we have so far, without the use of the 
parallel postulate, it is impossible to prove that any rectangles exist. If we try, 
in a plausible fashion, to construct a rectangle, we get what is called a Saccheri 
quadrilateral. 

The definition is suggested by the markings on the figure above. To be precise, 
❑ABCD is a Saccheri quadrilateral if LA and LD are right angles, B and C 
are on the same side of AD, and AB = CD. The segment AD is called the lower 
base; and BC is called the upper base. The lower base angles are LA and LD; and 
LB and LC are the upper base angles. 

■ THEOREM 1. The diagonals of a Saccheri quadrilateral are congruent. 

PROOF. By SAS, we have ABAD = ACDA. Therefore BD = AC. 

Figure 10.7 

Roughly speaking, the following theorem states that a Saccheri quadrilat-
eral is completely described, geometrically, by the distances AD and AB. 
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• THEOREM 2. Let ❑ABCD and DA' B' C' D' be Saccheri quadrilaterals, 
with lower bases AD and A'D'. If A'D' ==:: AD and A'B' = AB, then BC = B'C', 
LB' = LB, and LC' = LC. 

Figure 10.8 

PROOF. The main steps in the proof are as follows. 

(1) AACD = AA'C'D' (by SAS). 

(2) LA = LA' (all right angles are congruent). 

(3) C is in the interior of LBAD, and C' is in the interior of LB'A'D'. 

(4) LBAC = LB'A'C'. 

(5) AC = A'C'. 

(6) AABC 

(7) LB = LB'. 

(8) BC L=-= B'C'. 

(9) LC = LC'. ❑ 

Applying this theorem to the Saccheri quadrilaterals OABCD,ODCBA, we 
get LB = LC. Thus we have the following theorem. 

• THEOREM 3. In any Saccheri quadrilateral, the upper base angles are 
congruent. 

• THEOREM 4. In any Saccheri quadrilateral, the upper base is congruent 
to or longer than the lower base. 

Restatement. Given a Saccheri quadrilateral 0,41 B1 B2 A2, with lower base 
A I  A2. Then B, B2 Ai A2. 
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PROOF. Let us set up a sequence of n Saccheri quadrilaterals, end to end 
starting with the given one, like this: 

Figure 10.9 

That is, A3, A 4,...,A„, are points of the line A l  A2, appearing in the stated 
order on A l  A2; the angles LB2  A2 A3, LB3 A3 A4, ... and so on are right angles; 

A l  A2 = A2 A3 = A3 A4  = • • • = An-1 An  = A„A„i  , 

and 

A2 B 2  = A3 B3  = • • • = A„B„ = Ann B„-Fi • 

By Theorem 2, we have 

B, B2 = B2B3 = • • • = B,,--iBn = BnBn+i • 

We don't know whether the points B 1,B2, ... ,B„+1  are collinear. But we know by 
the polygonal inequality that 

B,B,+ , -_•5= B 1 B2  + B2 B3  + •• • + B,_,B,, + B,Bn+1 . 

Since all of the distances on the right are = B1  B2, we have 

B I B„+, 	n • R I B2 . 

By the same principle, we get 

A,A„+, < A,B, + B1 B,+1  + B„+ ,An+, 	A,B, + nB1 B2  + A,B,. 

Since A l  A„+ , = nA1 A2, we have 

nA1 A2   nB 1 B2  + 2A1 B1 , 

and this conclusion holds for every n. 
Now suppose that our theorem is false. Then A, A2 > B i B2, so that A, A2 — 

B i  B2 is a positive number. Obviously, 2A, B, is a positive number. Let 

6 = A1A2 - B,B2  and M = 2A,B,. 

Then s > 0 and M > 0, but ne M for every positive integer n. This contra-
dicts the Archimedean postulate, and so completes the proof. ❑ 
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	  Problem Set 10.3 	  

1. Show that every Saccheri quadrilateral is convex. 

2. Let ❑ABCD be quadrilateral, and let E be a point such that A-D-E. Suppose that B 
and C are on the same side of AD, AB = DC, and LBAD -=-: CDE. Show that the 
quadrilateral is convex. 

10.4 The Basic Inequality for 
   Angle-Sums in a Triangle  	

A well-known theorem of Euclidean geometry asserts that, in any triangle, the 
sum of the degree measures of the angles is 180. Without the parallel postulate, 
we shall show that this sum is always less than or equal to 180. We shall need some 
preliminaries. 

■ THEOREM 1. In any Saccheri quadrilateral ❑ABCD (with lower base 
AD), we have LBDC -. LABD. 

C 

Figure 10.10 

PROOF. We know that BA = DC and BD = BD. If it were true that LABD > 
LBDC, then it would follow by Theorem 6, Section 7.1, that AD > BC; and this 
would contradict Theorem 4, Section 10.3. Therefore LABD ' - LBDC, which 
was to be proved. ❑ 

From this we get an immediate consequence for right triangles. 

■ THEOREM 2. If LABD has a right angle at A, then 

mLB + mLD 90. 
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PROOF. Let C be a point such that EABCD is a Saccheri quadrilateral: 

Then 

mL3 + mL2 = 90 , 

because LADC is a right angle. By the preceding theorem, mL2 --- inL 1. 
Therefore 

90 — mL3 ..... mL1 and mLl + mL3 -_.. 90 , 

which was to be proved. Thus we have: 

• THEOREM 3. Every right triangle has only one right angle; and its other 
two angles are acute. 

Of course we observed this long ago, at the end of Chapter 7, using the ex-
terior angle theorem. But we shall need Theorem 2 for other purposes anyway. 

As in Chapter 7, we define the hypotenuse of a right triangle as the side op-
posite the (unique) right angle. The other two sides are called the legs. 

• THEOREM 4. The hypotenuse of a right triangle is longer than either of 
the legs. 

Because the angle opposite the hypotenuse is larger. (See Theorem 3 of 
Chapter 7.) 

In a triangle, two sides can easily be congruent. Therefore we cannot al-
ways speak of the longest side. We can, however, always speak of a longest side; 
this means a side at least as long as any other side. 

• THEOREM 5. In AABC, let D be the foot of the perpendicular from B to 
AC. If AC is a longest side of AABC, then A-D-C. 

Figure 10.12 
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(This theorem, if available, would have simplified the proof of the SSS theorem.) 

PROOF. Suppose that the theorem is false. Then we have D = A, D-A-C, 
D = C or A-C-D. We need to show that all of these cases are impossible. Since 
the latter two cases are essentially the same as the former two, it will suffice to 
show that D = A and D-A-C are impossible. 

Figure 10.13 

If A = D, then AABC is a right triangle with right angle at A ; therefore 
BC > AC, and AC is not a longest side. 

If D-A-C, then AC < DC. Also DC < BC, because BC is the hypotenuse of 
ABDC, and DC is one of the legs. Therefore AC < BC, and AC is not a longest 
side of AABC. ❑ 

Finally, we can prove the theorem that we were working toward. 

• THEOREM 6. In any triangle ABC, we have 

mLA + mLB + mLC 180. 

PROOF. Suppose, without loss of generality, that AC is a longest side of AABC; 
and let BD be the perpendicular segment from B to the line AC. By the preced- 
ing theorem we have A-D-C; this means that D is in the interior of LABC. 

Figure 10.14 

We now apply Theorem 2 to each of the right triangles AADB and ABDC. Thus 

mLA + mLABD 90 

and 

mLDBC + mLC __ 90. 
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Therefore 

mLA + mLABD + mLDBC + mLC 180. 

Since D is in the interior of LABC, we have 

mLABD + mLDBC = mLB 

Therefore 

mLA + mLB + mLC 180 , 

which was to be proved. ❑ 

	  10.5 A Historical Comedy 	 

Saccheri quadrilaterals are named after the Italian geometer Gerolamo Saccheri 
(1667-1733). Like most geometers of his time, Saccheri was dissatisfied with 
the situation of the parallel postulate; he believed that this statement ought to 
be proved as a theorem. He wrote a book, entitled Euclides ab omne naevo vindi-
cates, in which he undertook to "vindicate Euclid of every blemish" by showing 
that the parallel postulate was a consequence of the other postulates of syn-
thetic geometry. On certain occasions, the development of mathematics in-
volves high comedy. This was one of them. 

In the first place, Saccheri's "proof" of the postulate was fallacious. How-
ever, the early stages of the proof were correct, and the preliminary theorems 
were new and important. If you omit the erroneous part of his book, what you 
get is the first treatise on what is now called absolute geometry. That is, Saccheri 
developed an extensive geometric theory which was independent of the whole 
question of the parallel postulate. (The preceding portions of this chapter are a 
sample of this sort of theory.) For this achievement, Saccheri is highly honored 
and justly so. 

The final irony is that if Saccheri's enterprise had succeeded in the way he 
thought it had, no modern mathematician would have regarded his book as a 
vindication of Euclid. From a modern viewpoint, a proof of the parallel postu-
late would merely show that the postulate was redundant; and redundancy is 
not thought of as a virtue in a set of postulates. There are three main things that 
a modern mathematician wants to know about a postulate set. 

(1) The postulates ought, by all means, to be consistent, in the sense that none 
of them contradicts the others. If this condition does not hold, then any 
mathematical theory based on the postulates is, quite literally, much ado 
about nothing, because, in this case, there isn't any mathematical system 
that satisfies the postulates. The only way to show that a set of postulates is 
consistent is to show that there is a system in which all of the postulates are 
satisfied. Such a system is called a model for the postulate set. 
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(2) The existence of a model is not enough. We use postulates as descriptions 
of the mathematical systems that satisfy them; and this means that a set of 
postulates is worth stating only if there is a mathematical system which sat-
isfies them and is important enough to be worthy of study. 

(3) The postulates ought, if possible, to be independent, in the sense that no one 
of them is deducible from the others as a theorem. Any postulate which is 
so deducible is called redundant. To show that a particular postulate is re-
dundant, you have to prove it on the basis of the others; and this is what 
Saccheri tried to do for the parallel postulate. To show that a particular pos-
tulate is independent of the others, you have to show that there is a mathe-
matical system in which all of the other postulates are satisfied, but in which 
this particular one is not. (See, for example, Section 6.4, in which we showed 
that the SAS postulate is independent of the postulates that precede it.) 

In the nineteenth century, two fundamental questions were settled. First, it 
was shown that the postulates of synthetic geometry, including the parallel 
postulate, were consistent—granted, of course, that the real number system is 
consistent. It was shown further that the parallel postulate is independent of the 
others. This was done, in the only way that it could be done, by the discovery of 
"geometries" in which all the synthetic postulates except the parallel postulate 
were satisfied. 

These two developments were the real vindication of Euclid from a mod-
ern viewpoint. The vindication of his vindicators lay in the fact that hyperbolic 
geometry turned out to be an important subject in its own right. 



CHAPTER 

The Parallel Postulate 
and Parallel Projection 

	 11.1 The Uniqueness of Parallels  	

The Euclidean parallel postulate is as follows. 

P-1. Given a line and an external point, there is only one line which passes 
through the given point and is parallel to the given line. 

This gives us immediately a converse of Theorem 3, Section 10.1. 

• THEOREM 1. Given two lines and a transversal. If the lines are parallel, 
then each pair of alternate interior angles is congruent. 

Figure 11.1 

PROOF. There is exactly one line LI, through P, for which the alternate inte-
rior angles are congruent, and by Theorem 3, Section 10.1, we have L; 11L2. 
Since there is only one such parallel, we have LI = L,. Therefore L 1 ---=-- L2, 
which was to be proved. ❑ 

The proof of the following theorem is entirely analogous. 
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■ THEOREM 2. Given two lines and a transversal. If the lines are parallel, 
then each pair of corresponding angles is congruent. 

The inequality mLA + mLB + mLC 180 now becomes an equation. 

• THEOREM 3. In any triangle L.ABC we have 

mLA + mLB + mLC = 180. 

D B 

Figure 11.2 

PROOF. Let L be the parallel to AC through B. Let D and E be points of L, 

such that D-B-E, and such that D and A are on the same side of BC. Then 

and 

Therefore 

By Theorem 1, 

therefore 

mL2 + mLB = mLDBC, 

mLDBC + mL1 = 180 . 

mL1 + mLB + mL2 = 180 . 

mL 1 = mLC and mL2 = mLA ; 

mLA + mLB + mLC = 180 , 

which was to be proved. The following theorems are an immediate consequence. 

■ THEOREM 4. The acute angles of a right triangle are complementary. 

■ THEOREM 5. Every Saccheri quadrilateral is a rectangle. 

B 	 C 

A 

Figure 11.3 
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PROOF. By Theorem 1, L2 = L4. Since AB = DC and AC = AC, it follows 
that ABAC = ADCA. Therefore LB = LD, and LB is a right angle. The proof 
that LC is a right angle is obtained merely by permuting the notation. Thus we 
have finally shown that rectangles exist. ❑ 

Note that in this proof we are using a figure to explain the notation. If the 
reader (or the writer) sees no other way to explain, say, the idea of alternate in-
terior angles, then it is worthwhile to fight our way through the problem as we 
did in the previous chapter. But once we have done this, we have earned the 
right to speak in the abbreviated language of pictures. 

A quadrilateral is a trapezoid if at least one pair of opposite sides are parallel. 
(It is sometimes required that the other pair of opposite sides be nonparallel, but 
this is artificial, just as it would be artificial to require that an isosceles triangle 
be nonequilateral.) If both pairs of opposite sides of a quadrilateral are parallel, 
then the quadrilateral is a parallelogram. If two adjacent sides of a parallelogram 
are congruent, then the quadrilateral is a rhombus. The proofs of the following 
theorems are omitted. (They are not much harder to write than to read.) 

■ THEOREM 6. For any triangle, the measure of an exterior angle is the 
sum of the measures of its two remote interior angles. 

■ THEOREM 7. In a plane, any two lines parallel to a third line are parallel 
to each other. 

■ THEOREM 8. If a transversal is perpendicular to one of two parallel 
lines, it is perpendicular to the other. 

• THEOREM 9. Either diagonal divides a parallelogram into two congru-
ent triangles. 

More precisely: If ❑ABCD is a parallelogram, then AABC = ACDA. 

■ THEOREM 10. In a parallelogram, each pair of opposite sides are 
congruent. 

• THEOREM 11. The diagonals of a parallelogram bisect each other. 

That is, they intersect at a point which is the bisector of each of them. Thus 
the proof must begin with a proof that the diagonals intersect each other (see 
Theorem 1, Section 4.4). 

• THEOREM 12. Every trapezoid is a convex quadrilateral. 
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	  11.2 Parallel Projections  	

We know, by Theorem 4, Section 8.2, that the perpendicular from a point to a 
line always exists and is unique. 

• 	• 
13' =f(13 ) Q' =f(Q) 	=f(R) 

Figure 11.4 

Thus, given two lines L, L' in the same plane, we can define the vertical projec-
tion of L into L'. This is the function 

f: L 	L' 

under which to each point P of L there corresponds the foot P' = f(P) of the 
perpendicular from P to L'. In fact, the vertical projection can be defined 
equally well for the case where the lines are not necessarily coplanar; and the 
definition is exactly the same. This degree of generality, however, will not con-
cern us. Note also that the existence and uniqueness of the vertical projection 
do not depend on the parallel postulate. We do, however, need this postulate to 
define and investigate the more general notion of parallel projection. Under 
this more general scheme, instead of following the perpendicular, to get from 
P to P' = f(P), we proceed in any direction we want, providing, however, that 
we always go in the same direction for every point P of L. More precisely, the 
definition of parallel projections is as follows. 

Given two lines L, L' and a transversal T. (By definition of a transversal, 
this means that all three of our lines are coplanar.) Let T intersect L and L' in 
points Q and Q', respectively. 

	• L' 

Q' 

 

Let f(Q) be Q'. For every other point P of L, let Ty be the line through P, paral-
lel to T 
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(1) If Tp were parallel to L', then it would follow that T IIL' , which is false, be-
cause T is a transversal to L and L'. Therefore Tp intersects L' in at least one 
point P'. 

(2) If Tp = L', it follows that L' II T, which is false. Therefore Tp intersects L' in 
at most one point P'. 

For each point P of L, let f(P) be the unique point P' in which Tp intersects 
L'. This defines a function 

f: L —> L' . 

The function f is called the projection of L onto L' in the direction 7'. 

• THEOREM 1. Every parallel projection is a one-to-one correspondence. 

PROOF. Given 

f: L —> L' , 

the projection of L onto L' in the direction T. (See Fig. 11.5). Let g be the pro-
jection of L'onto L in the direction T Obviously g reverses the action of f; that 
is, if P = g(P'), then P' = f(P). Therefore f has an inverse 

f = g: L' --> L 

Therefore f is a one-to-one correspondence L <-> L', which was to be proved. 

(Another way of putting it is to say that every point P' of L' is = f(P) for 
one and only one point P of L. It may be worthwhile, at this stage, to review the 
discussion of functions in Section 3.1.) 

■ THEOREM 2. Parallel projections preserve betweenness. 

Restatement. Let f: L H L' be a parallel projection. If P-Q-R on L, then 
P'-Q'-R' on L'. 
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Figure 11.6 

Here, of course, P' = f(P), Q' = f (Q), and R' = f(R). 

• L' 
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lI 
 

L' 
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PROOF. Let Tp, TQ, TB be as in the definition of a parallel projection, so that 

TplITQ IIT, 

Then R and R' are on the same side of TQ , because RR' does not intersect TQ. 
Similarly, P and P' are on the same side of TQ. But P and R are on opposite 
sides of TQ, because P-Q-R. By two applications of Theorem 2, Section 4.2, P' 
and R' are on opposite sides of TQ. Therefore P'R' intersects TQ in a point X. 
Since TQ  L', there is only one such point of intersection. Therefore X = Q'. 
Therefore Q' lies on P'R', and P'-Q'-R', which was to be proved. ❑ 

■ THEOREM 3. Parallel projections preserve congruence. 

Restatement. Let f: L H L' be a parallel projection. If AB ==-' CD on L, then 
A'B' = C'D' on L'. 

PROOF. 

(1) If 	, then AB and AT are opposite sides of a parallelogram. By Theo- 
rem 10, Section 11.1, it follows that AB = A'B'. Similarly, CD = C'D'. 
Therefore A'B' = C'D', as desired. 

(2) Suppose that L and L' are not parallel, as in Fig. 11.7. Let V be the line 
through A, parallel to L', intersecting TB at E. Let W be the line through C, 
parallel to L', intersecting TD  at F. 

Now VII W, and L is a transversal. For appropriate choice of the notation for 
C and D, Ll = LBAE and L 1' = LDCF are corresponding angles. (This is 
true for the case shown in the figure; if it isn't true, we interchange the letters 
C and D.) By Theorem 2, Section 11.1, we have 

Ll = Li'. 

Figure 11.7 
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For the same reasons, 

L2 = L2'. 

Since AB = CD by hypothesis, it follows by ASA that 

AABE = ACDF 

Therefore AE = CF. But AE = A'B' and CF = C'D',  because these segments 
are opposite sides of parallelograms. Therefore A'B' = C'D', which was to be 
proved. ❑ 

Consider now three parallel lines with two common transversals, like this: 

Figure 11.8 

It ought to be true that 

A'B'AB 
= 

B'C' BC • 

In the style of our previous theorems, we could convey this by saying that paral-
lel projections preserve ratios. In fact, this is true, but the proof is hard, and will be 
given in the following two sections. The theorem is worth working for; it is the 
foundation of the whole theory of similarity for triangles. The proof will de-
pend on the Euclidean parallel postulate, as one might expect: if parallels are 
not unique, then parallel projections are not even well defined. 

	  11.3 The Comparison Theorem  	

The algebraic method that we shall use, to prove that parallel projections pre-
serve ratios, will be based on the following theorem. 

■ THEOREM 1. The Comparison Theorem. Let x and y be real numbers. 
Suppose (1) that every rational number less than x is also less than y, and (2) every 
rational number less than y is also less than x. Then x = y. 



11.4 The Basic Similarity Theorem 	 167 

The proof is easy on the basis of Theorem 2, Section 1.8. Suppose that 
x < y. Then there is a rational number p/q, between x and y. Thus 

x<P < y , 
q 

and p/q is less than y, but not less than x. This contradicts (2). Similarly, if y < x, 
we have 

y<P <x 
q 

for some rational number p/q ; this contradicts (1). Therefore x = y, which was 
to be proved. ❑ 

This seemingly trivial observation turns out to be powerful, as we shall see. 

	 11.4 The Basic Similarity Theorem  	

The purpose of this section is to show that parallel projections preserve ratios. 
Let us first consider the special case indicated by the following figure, and 
treated in the following theorem. 

T 
	

T' 

Figure 11.9 

Here L 1, L 2, and L 3  are three parallel lines, with common transversals T and T'. 
We want to prove that 

BC = B'C' 
AB A'B' • 

• THEOREM 1. The Basic Similarity Theorem. Let L,, L2, and L3 be three 
parallel lines, with common transversals T and T' intersecting them in points A, 
B, C and A', B', C'. If A-B-C (and A' -B '-C '), then 

BC B'C' - 
AB A'B' • 
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PROOF. Let 

BC B'C' 
x  AB' 	Y _  A'B' • 

Let p and q be any two positive integers. 

(1) First we divide AB into q congruent segments, end to end, as in the figure: 

T 	T' 

Ao= A 	 A= A' 

4B1
C 	 

Figure 11.10 

That is, we take a sequence of points 

A = 	 = B 

in the stated order on the ray AB, so that the length of each of the result-
ing segments is AB /q. 

(2) Next we lay off, on the ray BC, a sequence of p segments, of the same 
length AB /q. The end points of these segments are 

B = B0,B1 ,...,B p . 

(3) Now we project each of the points A„ B.)  onto T', in the direction L,, thus 
getting the points A,, B; on T'. 

Since all of the little segments on T are congruent, we have 

BBp _ p 
AB q 

Since parallel projections preserve congruences, all the little segments on 
T' are congruent. Therefore 
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B'B ; = p 
A'B' 	q • 

We can now complete the proof easily, in two steps. 

(4) Suppose that 

Then 

Therefore 

BB P  < BC . 

Hence 

B -Bp-C , 

as indicated in Fig. 11.10, and 

B' -B; -C' , 

because parallel projections preserve betweenness. Therefore 

and 

B'B; < B'C', 
A'B' 

p 	< B'C' 
9 

p < B'C' 

g 	A'B' 

(Here we have merely reversed the steps that led from 

p < BC 
g AB 

to B-Bp-C.) Thus we have proved that if p/q < x, then p/q < y. 

(5) By exactly the same sort of reasoning, we conclude that if p/q < y, then 
p/q < x. 

p < x  = BC 

9 	AB
. 

AB 
p • — < BC . 

9 

It follows by the comparison theorem that x = y, which was to be proved. 
EJ 
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We extend Theorem 1, by various devices, to get the general case. Consider 
any four points on T, and the corresponding points on T ' , under a parallel 
projection: 

Figure 11.11 

Here a, b, c and so on are the lengths of the indicated segments. By two applica-
tions of Theorem 1, we have 

aa' 	b 	b' - = 	= 
b 	b' 	c 	c' 

Therefore we have 

a - = 	= 
a' 	b' 	b' 	c' 

so that 

a = 
a' 	c, and 

aa' = 
c 	c' 

Stated in words, our result is as follows. 

■ THEOREM 2. If two segments on the same line have no point in common, 
then the ratio of their lengths is preserved under every parallel projection. 

From this it is easy to prove our main theorem. 

■ THEOREM 3. Parallel projection preserves ratios. 

Restatement. Let T and T' be lines. Let A, B, C and D be any points of T, 
and let A', B', C' and D' be the corresponding points of T ' , under a parallel 
projection. Then 

AB A'B' 	AB _ 
 

CD C'D' 
and 

A'B' C'D' 
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PROOF. Let XY be a segment on T which has no point in common with AB or 
CD, and let X'Y' be the corresponding segment on T', under the parallel pro-
jection. Then 

AB= 	= XY CD  
A'B' 	X'Y' 	C'D' ' 

by Theorem 2. Therefore 

and 

which was to be proved. ❑ 

AB CD 
A'B' 	C'D' ' 

AB _ A'B' 
CD C'D' ' 



CHAPTER  

8 2/ 

Similarities Between 
Triangles 

12.1 Proportionalities 

Given two sequences 

	

a, b, c, . . . ; 	a , b' , c' , . . . 

of positive numbers. If it is true that 

a' 	b' 	c' = = = 
a 	b 	c 

then we say that the two sequences are proportional, and we write 

The constant ratio, 

a' 	b' 
k= 71  = b = . . . , 

is called the proportionality constant. Note that proportionality is a symmetric re-
lation. That is, if 

then 
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and conversely. Note, however, that the proportionality constant depends on 
the order in which the sequences are written. If we reverse the order, we get a 
new constant which is the reciprocal of the old one. 

To work with proportionalities, we merely express them in terms of equa-
tions between fractions, and then use the ordinary rules of algebra. A sample 
theorem follows. 

■ THEOREM. If a, b — c, d, then a, c — b, d, and conversely. 

PROOF. The first proportionality means that 

cd =  
a 	b' 

and the second means that 

b 	d 
a 	c 

Trivially, these equations are equivalent. ❑ 

This being the case, the question arises why the notation deserves to be in-
troduced at all. The reason is that the "—" relation is often easy to read off 
from a figure. Moving a little ahead of ourselves, for the sake of illustration, 
consider a pair of similar triangles, like this: 

x 

Figure 12.1 

Writing the lengths of the sides in the proper order, we get the proportionality 

a,b, c — w,y,x . 

We have now made the transition from geometry to algebra, and can proceed 
to work algebraically with fractions, starting with the equations 
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12.2 Similarities 
	  Between Triangles  	

Given AABC, ADEF and a correspondence 

ABC <--> DEF 

We use the familiar convention, under which a is the length of the side oppo-
site LA, and so on. If 

a, b, c 	d, e,f , 

then we say that corresponding sides are proportional. If corresponding sides are 
proportional, and every pair of corresponding angles are congruent, then we 
say that the correspondence is a similarity, and we write 

/ABC ADEF 

If there is a similarity between two triangles, then we say that the triangles 
are similar. (As in the case of congruences and congruence, the occasions when 
this is what we really mean are very rare.) 

We remember that from the expression 

AABC = ADEF , 

we could read off—without further reference to a figure—three angle-
congruences 

LA = LD, LB = LE, LC = LF 

and three segment-congruences 

AB = DE, 	AC = DF, BC ==-- EF. 

In the same way, from the expression 

AABC ADEF, 

we can read off the same three angle-congruences, and the proportionality 

AB, AC, BC — DE, DF, EF 
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To get the right-hand half of this expression, we simply replace each letter A, 
B, or C on the left by the corresponding letter D, E, or F. 

Intuitively speaking, two triangles are similar if they have the same shape, 
although not necessarily the same size. It looks as if the shape ought to be de-
termined by the angles alone, and this is true. 

■ THEOREM 1. The AAA Similarity Theorem. Given a correspondence be-
tween two triangles. If corresponding angles are congruent, then the corre-
spondence is a similarity. 

Restatement. Given AABC, ADEF and a correspondence 

ABC <---> DEF 

If LA = LD, LB = LE, and LC = LF, then 

AABC ADEF 

PROOF. Let E' and F' be points of AB and AC, such that AE' = f and AF' = 
e, as shown in Fig. 12.3. By SAS, we have 

AAE 'F ADEF 

Therefore, LAE ' F 	LE. Since LE = LB, we have LAE 'F ' = LB ; thus 

E 1F BC, and A, F ' , and C correspond to A, E ' , and B under a parallel projec-
tion. Since parallel projections preserve ratios, we have 

AB AC • 

B 	 C 

Figure 12.3 

In exactly the same way, merely changing the notation, we can show that 

e 	d 

AC — BC' 
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therefore 

d, e,f — BC, AC, AB , 

and 

d, e,f — a, b, c. 

Hence corresponding sides are proportional, and the correspondence ABC <---> 
DEF is a similarity, which was to be proved. ❑ 

Of course it follows from our angle-sum theorem that if two pairs of corre-
sponding angles are congruent, so also is the third pair. Thus we have the fol-
lowing theorem. 

• THEOREM 2. The AA Similarity Theorem. Given a correspondence be-
tween two triangles. If two pairs of corresponding angles are congruent, then 
the correspondence is a similarity. 

We also have a sort of converse of Theorem 1. 

■ THEOREM 3. The SS S Similarity Theorem. Given two triangles and a cor-
respondence between them. If corresponding sides are proportional, then cor-
responding angles are congruent, and the correspondence is a similarity. 

Restatement. Given AABC, ADEF, and a correspondence ABC <---> DEF. If 

a, b, c — d, e, f, 

then 

AABC — ADEF . 

PROOF. Let E' be the point of AB for which AE' = f (Fig. 12.4). Let L be the 
line through E ' , parallel to BC. If LII AC, then BC II AC, which is false. There-
fore L intersects AC at a point F'. (In the figure, b = AC, not AF'.) 
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Now LAE ' F ' = LB, because these are corresponding angles; and LA 
LA. Therefore 

AAE'F' AABC ; 

hence 

f, AF', E'F' 	c,b,a. 

Therefore 

a = 	= 	 and AF' = —
bf 

, E 'F ' = —
af 

f AF ' E 'F ' 

But 

f, e, d 	c, b, a. 

Thus 

c 	b 	a 	 bf, af 
f 
— =  = 

d
— , and e= , a = -. 

e  

By SSS, we have 

Therefore 

which was to be proved. ❑ 

AAE'F' = ADEF 

ADEF AABC, 

Next we have an analogue of SAS. 

IN THEOREM 4. The SAS Similarity Theorem. Given a correspondence be-
tween two triangles. If two pairs of corresponding sides are proportional, and 
the included angles are congruent, then the correspondence is a similarity. 

Restatement. Given AABC, ADEF, and the correspondence ABC <--> DEF. If 
LA= LD, and b, c e, f, then LABC ADEF. 

A 
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PROOF. Let E' be thuoint of AB for which AE' = f. Let L be the line 
through E', parallel to BC. Then L intersects AC in a point F'. The main steps 
in the proof, from here on, are as follows. You should be able to supply the 
reasons in each case. 

(1) AAE'F' — AABC. 

(2) b, c — AF', f. 

(3) AF' = e. 

(4) AAE 'F' =-: ADEF. 

(5) AABC — ADEF. ❑ 

• THEOREM 5. Given a similarity between two triangles. If a pair of corre-
sponding sides are congruent, then the correspondence is a congruence. 

PROOF? This was really a step in the proof of the preceding theorem. 
An altitude of a triangle is a perpendicular segment from a vertex to the 

line containing the opposite side. 

 

.'P\ 

  

7  

  

Figure 12.6 

As the figure indicates, every triangle has three altitudes. We shall use the same 
word altitude for the length of such a perpendicular segment. In a right tri-
angle, the altitude to the hypotenuse is always an "interior altitude," like this: 

Figure 12.7 

That is, if LB is a right angle, and BD I AC, then A-D-C. (This follows from 
Theorem 5, Section 10.4.) ❑ 

	 12.3 The Pythagorean Theorem  	

To prove the Pythagorean Theorem, we need one preliminary result. 

■ THEOREM 1. The altitude to the hypotenuse of a right triangle divides 
it into two triangles each of which is similar to it. 
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Restatement. Let AABC be a right triangle with its right angle at C, and let D 
be the foot of the perpendicular from C to AB Then AACD AABC ACBD. 

Figure 12.8 

(To remember the way these similarities work, all you need to do is to ob-
serve that there is only one way that they might work. In the first correspon-
dence, we must have A <---> A, because LA is common to AACD and AABC. Also 
we must have D 4-> C because these points are where the right angles are. Fi-
nally, we must have C H B, because at this stage C has nowhere else left to go. 
Therefore the correspondence must be ACD <--> ABC; and similarly for the sec-
ond similarity.) 

PROOF. Obviously LA = LA. And LADC = LACB, because both of these are 
right angles. By the AA similarity theorem, we have 

AACD AABC 

The proof of the other half of the theorem is exactly the same. ❑ 

• THEOREM 2. The Pythagorean Theorem. In any right triangle, the square 
of the length of the hypotenuse is the sum of the squares of the lengths of the 
other two sides. 

Restatement. Let AABC be a right triangle, with its right angle at C. Then 

a 2 + b 2 =c2. 

Here we are using the usual notation for lengths of opposite sides. 

C 

Figure 12.9 

PROOF. By the preceding theorem, 

AACD AABC ACBD 
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Therefore 

h,f,b — a,b,c — g, h,a. 

We shall calculate f and g in terms of a, b, and c, and then use the fact 
that f + g = c. (Query: What theorem do we need to know, to conclude that 
f + g = c?) 

Step 1. Since 

f =  b 

b 	c' 

we have 

And since 

we have 

Step 2. Therefore 

f = 
b2 
— . c 

g = a 

a 	c 

a2 
cr = 	. 

6 	C 

a 2 
	b a + 2  

f  + g  = 	c 	— c * 

Therefore 

a2 + b2 = c2 

which was to be proved. ❑ 

Legend has it that when Pythagoras discovered this theorem, he sacrificed 
a hundred oxen as a thank offering. (The legend is doubtful; and it is not even 
known whether the theorem was proved by Pythagoras personally.) The Ger-
man poet, Heinrich Heine, remarked that ever since this sacrifice, the oxen have 
trembled whenever a great truth was discovered. 

The proof given here is not the one given in Euclid. Euclid's proof (to be 
discussed later) made heavy use of the theory of area. During the last two thou-
sand years or so, the literature of the Pythagorean theorem has become im-
mense. Literally hundreds of proofs have been given. The converse of the 
Pythagorean theorem is also true, and its proof is easy. 
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• THEOREM 3. Given a triangle whose sides have lengths a, b, and c. If 
a2 + b2 = c2 then the triangle is a right triangle, with its right angle opposite 
the side of length c. 

PROOF. Given AABC, with a 2  + b2  = c2. Let LF be a right angle, and let 
D and E be the points on the sides of LF such that FE = a and FD = b 
(Fig. 12.10). By the Pythagorean theorem, 

DE 2  = a2  + b2. 

Therefore 

DE = V a 2  + b2  = c . 

Figure 12.10 

By SSS, AABC ---== ADEF. Therefore AABC is a right triangle, with its right 
angle at C. ❑ 

• THEOREM 4. The Hypotenuse-Leg Theorem. If the hypotenuse and a leg 
of one right triangle are congruent to the hypotenuse and a leg of another, 
then the triangles are congruent. 

Restatement. Given AABC, with a right angle at C, and AA'B'C', with a 
right angle at C'. If a = a' and c = c', then AABC =-' AA'B'C'. 

This was proved in Section 7.1. The proof belonged in Chapter 7, because 
it made no use of the parallel postulate, but the theorem itself belongs in the 
present context. Note that the Hypotenuse-Leg Theorem is an easy corollary of 
the Pythagorean Theorem. 

We have already observed that every triangle has three altitudes, that is, 
one for each side considered as a base. A well-known formula asserts that the 
area of any triangle is equal to half the product of "the base" and "the alti-
tude"; this means, of course, that the area is = 2bh, where b is the length of any 
one of the three sides, and h is the corresponding altitude. Granted that this is 
right, which it is, it follows that the product bh must be independent of the 
choice of the base. That is, in the figure below, we must have 

b,h, = b2h2  = 63113. 
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Figure 12.11 

If the theory of plane area is set up by using postulates, then we can use 
area to prove that these equations hold. Later, however, we shall want to prove 
that simple figures such as triangles have areas, and that areas have the proper-
ties that we expect. For this purpose we want to prove the following theorem 
without using areas. 

• THEOREM 5. In any triangle, the product of a base and the correspond-
ing altitude is independent of the choice of the base. 

Restatement. Given AABC. Let AD be the altitude from A to BC, and let BE 
be the altitude from B to AC. Then 

AD • BC = BE s AC . 

Figure 12.12 

PROOF. Suppose that E C and D C, as shown in the figure. Then LC = 
LC, and LBEC -=-• LADC, because both are right angles. Therefore ABEC —
LADC. Hence 

BE, BC — AD, AC . 

AD _AC 
BE — BC' 

AD • BC = BE s AC , 

Thus 

and 

which was to be proved. 
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If E = C, then AABC is a right triangle with. its right angle at C and we also 
have D = C. 

E=C 	a 	B 

Figure 12.13 

In this case, the theorem says trivially that ab = ba. 

• THEOREM 6. For similar triangles, the ratio of any two corresponding 
altitudes is equal to the ratio of any two corresponding sides. 

Restatement. Suppose that AABC — AA'B'C. Let h be the altitude from A 
to BC, and let h' be the altitude from A' to B'C' . Then 

h_  AB  
17 — A'B' .  

A' 

Figure 12.14 

PROOF. Let AD and A'D' be the altitudes whose lengths are h and h'. If 
D = B, then D' = B', and there is nothing to prove. If not, LABD — AA'B'D', 
and the theorem follows. ❑ 
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Polygonal Regions and 

Their Areas 

	 13.1 The Area Postulates  	

A triangular region is a figure which is the union of a triangle and its interior 
like this: 

Figure 13.1 

The sides of the triangle are called edges of the region, and the vertices of the 
triangle are called vertices of the region. 

A polygonal region is a figure like one of these: 

Figure 13.2 

To be exact, a polygonal region is a plane figure which can be expressed as the 
union of a finite number of triangular regions, in such a way that if two of the 
triangular regions intersect, their intersection is an edge or a vertex of each of 
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them. In each of the illustrations in Fig. 13.2, the dotted lines indicate how the 
regions can be cut up into triangular regions in such a way that the conditions 
of the definition are satisfied. Of course, there is nothing unique about the way 
in which a polygonal region can be cut up into triangular regions. In fact, if 
such a process can be carried out at all for a particular figure, it can be done in 
infinitely many ways. For example, a parallelogram plus its interior can be cut 
up in at least this many ways: 

\ /\ \\ i /V-'7 .  

, 
,- 

\ 	 •., 	/7.-  
1  

Figure 13.3 

The theory of area is easiest to handle for the case where the figures are 
polygonal regions. And the easiest way to set up the theory is to suppose that 
an area function is given, under which to each polygonal region there corre-
sponds a positive number called its area. Thus we let a be the set of all polygo-
nal regions, and we add to our structure the function a: a —> R. 

Thus the total structure in our geometry is now 

[S, 2,9 P, d, m, a] , 

and we need to state the postulates governing the area function a. (Here we are 
using the Greek letter alpha because the natural English letters have by now 
been used up for other purposes. We have used m for measure, and we want to 
go on using A and a to say, for example, that a is the length of the side opposite 
A in AABC.) 

Our postulates are as follows. 

A-1. a is a function a —> R, where a is the set of all polygonal regions and R 
is the set of all real numbers. 

A-2. For every polygonal region R, aR > 0. 

A-3. The Congruence Postulate. If two triangular regions are congruent, then 
they have the same area. 

A-4. The Additivity Postulate. If two polygonal regions intersect only in edges 
and vertices (or do not intersect at all), then the area of their union is the sum 
of their areas. 

Figure 13.4 
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For example, in the figure above a(R1  U R2) = aR1  + aR2. Of course, 
areas cannot be added in this way if the intersection of the two regions contains 
a triangular region. Here a(T1  U T2) is obviously less than aT1  + aT2. 

Figure 13.5 

Note that if we have an area function that satisfies Postulates A-1 through 
A-4, and we then agree to multiply all areas by 2, then we get another area 
function that also satisfies A-1 through A-4. Intuitively speaking, area measured 
in square inches satisfies all our postulates so far, and so also does area mea-
sured in square cubits. We therefore need a postulate which, in effect, chooses 
a unit of measure for us by describing a connection between area and distance. 

By a square region we mean the union of a square and its interior. Rectangu-
lar regions are defined in the same way. Either of the following statements, if 
taken as a postulate, is sufficient to determine the unit of area. 
(1) If a square region has edges of length 1, then its area is 1. 

(2) The area of a rectangular region is the product of its base and its altitude. 

Statement (2) is an unreasonably strong postulate; we ought to be able to 
derive the formula for the area of a rectangular region from the formula for 
the area of a square region, and in fact the derivation is easy. (See below.) On 
the other hand, (1) is unreasonably weak: it leads to a difficult proof of the for-
mula for the area of a square region of edge a, at the very beginning of the the-
ory. (See Section 13.5.) We therefore split the difference, and use the following: 

A-5. If a square region has edges of length a, then its area is a 2. 

On this basis, we can prove (2) as a theorem. 

■ THEOREM 1. The Rectangle Formula. The area of a rectangular region 
is the product of its base and its altitude. 

b 
	

h 

A 	h Al  

h 

A2 A 

h 

b b 

b 	h 

Figure 13.6 
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PROOF. Given a rectangle of base b and altitude h, we construct a square of 
edge b + h, and decompose it into squares and rectangles as shown in the fig-
ure above. Then 

(b + h)2  = 2A + A, + A2, 

b 2  ± 2bh + h 2  = 2A + h2  + b 2, 

2bh = 2A, 

and A = bh, which was to be proved. ❑ 

Later we shall see that the theory of area, for polygonal regions, can be 
built up without using any new postulates at all. On the basis of the postulates 
stated earlier, it is possible to prove that there is an area function satisfying A-1 
through A-5. Meanwhile, in the present chapter, we shall regard the area func-
tion as given, subject to A-1 through A-5, and show how it can be put to work 
on various geometric problems. The first step is to get formulas for the areas of 
the simplest figures. 

Hereafter, for the sake of convenience, we shall speak of the areas of tri-
angles, areas of rectangles, and so on; this is an abbreviation. Triangles and 
quadrilaterals are not polygonal regions, and obviously they are too thin to 
have areas greater than zero. Also we shall abbreviate aAABC as ABC, a❑ABCD 
as ABCD, and so on. This is consistent with our notation AB for the length of 
the segment AB. In each case, when the letters appear without decoration, the 
resulting expression denotes a number, and this number measures, in some way, 
the corresponding geometric figure. To repeat: 

ABC = aAABC , 
and 

ABCD = a❑ABCD , 
by definition. 

13.2 Area Theorems for 
	 Triangles and Quadrilaterals  	

■ THEOREM 1. The area of a right triangle is half the product of the 
lengths of its legs. 

1 

Figure 13.7 
	ABC = —

2
ab 
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PROOF. Given LABC, with a right angle at C. Let D be the point such that 
❑ADBC is a rectangle. By the additivity postulate, 

ADBC = ABC + ABD . 

By the congruence postulate, 

Therefore 

By the rectangle formula, 

Therefore 2ABC = ab, and 

ABD = ABC. 

ADBC = 2ABC . 

ADBC = ab . 

ABC = —
1

ab 
2 	' 

which was to be proved. ❑ 

• THEOREM 2. The area of a triangle is half the product of any base and the 
corresponding altitude. 

Figure 13.8 

PROOF. Given /ABC. Let D be the foot of the perpendicular from B to AC; 
let AC = b, and let BD = h (as in each of the figures). There are, essentially, 
three cases to consider. 

(1) If A = D, then AABC is a right triangle and 

1 
ABC = —

2
bh , 

by Theorem 1. 

(2) A-D-C . Let AD = bl  and DC = b2. By Theorem 1, 

1 	 1 
BDA = —

2
bih and BDC = —

2
b2h . 
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By the additivity postulate, 

ABC = BDA + BDC . 

Therefore 

1 	1 	1 
ABC = —

2
bih + —

2
2h = —

2

(, + b2 )h 

1 
= —

2
bh 

' 

which was to be proved. 

(3) D-A-C. Let b' = AD. By Theorem 1, 

1 
BDC = 

2 
—(b' + b)h . 

Also by Theorem 1, 

1 
BDA = —

2
b'h . 

By the additivity postulate, 

BDC = BDA + ABC . 

Therefore 

ABC = BDC — BDA 

1 	 1 
= 

2 
—(b' + b)h — 

2
—b'h 

= —1  bh 
' 

which was to be proved. ❑ 

IN THEOREM 3. The area of a parallelogram is the product of any base 
and the corresponding altitude. 

ABCD = bh . 
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PROOF. Given a parallelogram ❑ABCD, with base b = AD and corresponding 
altitude h = BE. By the additivity postulate, 

ABCD = ABD + BDC . 

By two applications of Theorem 2, 

1 
ABD = —

1 
bh and BDC = —

2 
bh . 

2 

(Details? We need to know that BC = b and DF = h.) Therefore 

1 
ABCD = —

2
bh + —

2
bh = bh , 

which was to be proved. ❑ 

This is not the order of derivations that we most often see; usually we get 
the area formula for parallelograms first, and derive Theorem 2 from it. The 
"proof" of Theorem 3 then looks like this: 

h 

Figure 13.10 

(1) ABCD = ABE + BCDE. 

(2) ABE = DCF, because AABE = ADCF. 

(3) ABCD = BCDE + DCF. 

(4) BCDE + DCF = BCFE, by the additivity postulate. 

(5) BCFE = bh, by the unit postulate, because BCFE is a rectangle. 

This "proof" works only in the cases described by the figures that are drawn 
to illustrate it. Consider the following case. If the parallelogram looks like the 
figure below, then the above discussion becomes nonsense in the very first step, 
because there is no such thing as "the quadrilateral ❑BCDE," and even if we 
allowed quadrilaterals to cross themselves, the equation ABCD = ABE + BCDE 
would not hold for the areas of the corresponding polygonal regions. 
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Figure 13.11 

■ THEOREM 4. The area of a trapezoid is half the product of the altitude 
and the sum of the bases. 

PROOF. The main steps are as follows: 

(1) ABCD = ABD + BDC, 

(2) ABD = 1b2h, 

(3) BDC = ibih, 

(4) ABCD = (1), + b2)h. ❑ 

Note that Theorem 4 includes Theorem 3 as a special case, because every 
parallelogram is a trapezoid. Note also that the proof of Theorem 4 is exactly 
the same as that of Theorem 3. The point is that although the invalid proof of 
Theorem 3 uses and needs the fact that AB II CD, the valid proof does not. 

■ THEOREM 5. If two triangles have the same altitude, then the ratio of 
their areas is equal to the ratio of their bases. 

This theorem follows immediately from the area formula. If the triangles 
AABC and ,LDEF have bases bl , b2, and the corresponding altitude for each of 
them is h, then 

ABC Ibih b1  

DEF 2b2h b2' 

which was to be proved. In much the same way, we get the following theorem. 
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■ THEOREM 6. If two triangles have the same base, then the ratio of their 
areas is the ratio of their corresponding altitudes. 

The following theorem is a corollary of each of the preceding theorems. 

• THEOREM 7. If two triangles have the same base and the same altitude, 
then they have the same area. 

h 

 

b 

Figure 13.13 

• THEOREM 8. If two triangles are similar, then the ratio of their areas is 
the square of the ratio of any two corresponding sides. That is, if 

AABC — ADEF , 

then, 

ABC  

DEF 71 — 

(12 — (b
e 
 )2 — (

f
c )2  

• 

PROOF. If the altitudes to AC and DF are h and h', as in the figure above, 
then we know by Theorem 6, Section 12.3, that 

h 	a 	b 	c 
117  — d e = f • 

ABC  bh _ Lb) ( 11 

DEF eh' e ) Ve ) 

— 

ey _ (12 (y 

	

_ (b 	d 	f  , 

which was to be proved. ❑ 

Now 
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13.3 Applications of Area Theory: 
A Simple Proof of the 

	 Basic Similarity Theorem  	

The theory of plane area is not merely an adjunct to the geometry on which it is 
based. If we use the area postulates A-1 through A-5 as part of our basic appa-
ratus, then we can simplify some of our proofs considerably. Probably the most 
striking simplification of this kind is in the proof of the basic similarity theorem 
(Theorem 1, Section 11.4). 

Consider first the case where the two transversals T and T' intersect in a 
point of L1. (It is quite easy, as we shall see, to pass from this to the general 
case.) The picture then looks like this: 

A 

Figure 13.15 

We have given BB' II CC', and we want to prove that 

AB = AB' 
BC B'C' 

The steps in the area proof are as follows. 

(1) ACBB' and AC'BB' have the same base b = BB', and the same correspond-
ing altitude h. Therefore 

CBB' = C'BB'. 

(2) Let us look at AABB'and ACBB' sidewise, taking AB and BC as their bases. 
Then the corresponding altitudes are the same. In each case, the altitude is 
the length h' of the perpendicular from B' to AC. Therefore 

ABB' AB 

CBB' BC' 

by Theorem 5, Section 13.2. 
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(3) For exactly the same sort of reason, 

ABB'_ AB' 

C'BB' B'C' 

(To get this, merely replace B by B', and C by C', in step (2).) 

(4) Therefore 

ABABB' ABB' AB' 
= 

BC CBB' C'BB' B'C' ' 

which was to be proved. 
Consider now the general case. Let T" be the line through A, parallel to T', 

intersecting L2 and L3 in B" and C". Then 

AB _ AB" 

BC B"C"' 

by the preceding proof. But we have 

AB" = A'B', 

B"C" = B'C', 

because opposite sides of a parallelogram are congruent. Therefore 

AB _ NB' 

BC B'C' ' 

which was to be proved. 

Figure 13.16 

This proof of the basic similarity theorem is, in a way, inelegant because it 
creates the impression that the theorem depends on the theory of area. As we 
have seen, this impression is false. The area proof has, however, an important 
virtue; that is, it makes the theorem a part of elementary geometry. 

The area proof resembles Euclid's proof of this theorem, but the two 
proofs are fundamentally different. See Section 13.6. 
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13.4 Further Applications 
of Area Theory: 

	 The Pythagorean Theorem  	

The Pythagorean theorem can be proved without using the concept of a simi-
larity. Such a proof goes like this. Given a right triangle AABC, with legs of 
length a, b, and hypotenuse, c. 

Take a square ❑DEFG, of edge a + b. In the square, construct four con-
gruent copies of AABC, as shown in the figure. (We construct them in the cor-
ners of the big square, using SAS.) Then LKHI is a right angle, because LDHK 
and LEHI are complementary. For the same reason, all the angles of ❑HIJK 
are right angles, and ❑HIJK is a square. 

a 

K 

b 

G 

D b H a E 

q'■ 	1 
• 

\\ 
\ 
\\c  

\ 

c 

' 

! 	\ 

c 

\ 
\ 

c \ 

! 

x 
\ 

b 

I 

a 

• 
a J b F 

Figure 13.17 

By the additivity postulate for area, the area is equal to the area of the inner 
square, plus the areas of the four right triangles. Since the right triangles are 
all congruent, we have 

DEFG = HIJK + 4 • KDH 

or 

(a + b)2  = c2  + 4 • t ab 

a22 

 

or 

Therefore 

which was to be proved. 

a 2 
+ 2ab + b 2  = c2  + 2ab. 

a 2 	b2 = c2 



196 	 Polygonal Regions and Their Areas 

Euclid's proof also used areas, but it was different from the one above and 
considerably more complicated. Given a right triangle, he constructed squares 
on each of the sides, like this: 

Figure 13.18 

Here AABC is a right triangle, with its right angle at C. The outer figures are 
squares, and CK is perpendicular to AB and FG, intersecting then at D and K. 
The main steps in Euclid's proof were as follows. 

(1) ADKF = 2CAF. (The rectangle and the triangle have the same base AF, and 
the same altitude AD.) 

(2) EHCA = 2EAB. (The square and the triangle have the same base EA, and 
the same altitude AC.) 

(3) LEAC = LFAD, because both are right angles, and LCAD = LCAD. 
Therefore LEAB = LCAF. But EA = AC, because OEHCA is a square; and 
AB = AF, because LIABGF is a square. By SAS, we have 

AEAB = ACAF 

Therefore 

EAB = CAF . 

(4) From (1), (2), and (3), we get 

ADKF = EHCA . 

That is, the square at the upper left has the same area as the rectangle at the lower 
left. By exactly the same reasoning, we get the same conclusion for the 
square and rectangle on the right: 

KDBG = BCIJ 
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That is, the square at the upper right has the same area as the rectangle at the 
lower right. 

(5) Since the area of the lower square ❑ABGF is the sum of the areas of the two 
rectangles ❑ADKF and ❑KDBG, it follows that the area of the square on 
the hypotenuse is equal to the sum of the areas of the squares on the legs. 

This proof is quite different in spirit, and in an important way, more ele-
gant than the two that we have seen already. One way of putting it is that while 
our first two proofs depended on calculations, Euclid's reasoning is more geo-
metric and more conceptual. The figure that goes with it is more than a 
reminder of the hypothesis and the notation; it is, in a sense, a picture of the 
Pythagorean phenomenon, so that if you understand the figure, you under-
stand why the theorem is true. 

In a way, the above presentation of Euclid's proof is misleading. It suggests 
that the Pythagorean theorem meant the same thing to Euclid, in the Elements, 
that it meant to us in Chapter 12 of this book; and this is far from true. Theo-
rem 2, Section 12.3, stated that under certain conditions, the numbers a, b, c 
must satisfy the equation a 2  + b2  = c2; and the theorem appeared in a presen-
tation of geometry in which the real numbers are given, independently of geo-
metric concepts, and are used in the geometry to measure things. Thus we use 
the number AB as the measure of the length of the segment AB; we use the num-
ber ABC as the measure of the area of the triangle AABC; and so on. 

4 

Figure 13.19 
	

Figure 13.20 

In Euclid, there are no numbers independent of geometric concepts, ex-
cept, of course, for the positive integers, which are used to count things. To re-
cast his theory, in a form meeting modern standards of explicitness and 
exactitude, is a formidable task. We have given a sample of this in Chapter 8. 
There we showed that instead of using the concept of length for segments (this 
length being a real number) you can use the concept of same-length: two seg-
ments have the same length if they are congruent, and congruence between 
segments is an undefined term, subject to certain postulates. Much the same 
thing can be done for the theory of area, but it is technically difficult. It is 
therefore customary, especially in elementary courses, to use the simpler appa-
ratus of metric geometry. Often this is done unobtrusively, and it is not easy to 
see what is going on. A moment's reflection, however, will convince us that any 
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time we label a figure as shown in the illustrations above, we are doing metric 
geometry, whether or not we say so. 

Section 13.6 provides a brief introduction to the Euclidean theory of 
plane area. 

13.5 A Weaker Form of the 
	  Unit Postulate A-5  	

Our fifth postulate for area asserted that the area of a square is the square of 
the length of its edges. We remarked that the following postulate would have 
been sufficient. 

A-5'. If a square has edges of length 1, then its area is 1. 

This postulate gives us, in a minimal sense, a "unit of measure." We shall 
show that it implies A-5. 

■ THEOREM 1. If a square has edges of length 1/q (q a positive integer), 
then its area is 11q 2. 

PROOF. A unit square region can be decomposed into q2  square regions, all 
with the same edge 1/q and with the same area A (Fig. 13.21). Therefore 1 = q 2A, 
and A = 1/q 2. ❑ 

1 
q 

Figure 13.21 

■ THEOREM 2. If a square has edges of rational length p/q, then its area 
is  p 2/q  2.  

PROOF. Such a square can be decomposed into p2  squares, each of edge 1/q. 
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Figure 13.22 

If A is its area, then 

A = 192 	
= Q2

• ❑ 

• THEOREM 3. If a square has edges of length a, then its area is a 2. 

PROOF. Given a square Sa  with edges of length a. Given any rational number 
p/q, let Spiq  be a square of edge p/q, with an angle in common with Sa, like this: 

Fig

q  

ure 13.23 13.23 

Each of the following statements is easily seen to be equivalent to the next. 

a< 

(1) p/q < a 

(2) Spiq lies in Sa  (with 

(3) aSp,q  < aSa. 

(4) p2/q 2  < aSa. 

(5) p/q < \/aSa. 

two rectangular regions and a square region left over.) 



200 	 Polygonal Regions and Their Areas 

Since (1) and (5) are equivalent, we have 

a= V.Z, 
so that a 2  = «Sa, which was to be proved. ❑ 

The above treatment of A-5 is due to Peter Lawes, who was a student of 
the author at the time. 

13.6 The Euclidean 
Program Continued: 

	 Equal-area Without Area  	

In purely synthetic geometry, we have no area-function gt -+ R. Instead, we 
have a relation =, between pairs of regions in a Euclidean plane, subject to cer-
tain postulates. R = S means that R and S have the same area. In the following 
postulates, it should be understood that 

R = R, U R2 

means that R, and R2 are non-overlapping polygonal regions whose union is R. 

E-1. = is an equivalence relation. 

E-2. R, = R, U R2 never holds. 

E-3. If R, and R2 are congruent triangular regions, then R, =- R2. 

E-4. If R, = R; and R2~ TG then R, U R2 = R; U R;. 

E-5. If R, U R2 = RC U R;, and R, --= R;, then R2 = R. 

These propositions are a part of what Euclid was driving at when he wrote 
statements like the following. 

E-1'. Everything is equal to itself; things that are equal to the same thing are 
equal to each other. 

E-2'. The whole is greater than any of its parts. 

E-3'. Congruent triangles are equal. 

E-4'. When equals are added to equals, the sums are equal. 

E-5'. When equals are subtracted from equals, the differences are equal. 
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Of course, Euclid considered that these statements applied also to segments 
and angles. 

As before in this chapter, when we speak of triangles, we mean triangular 
regions; and similarly for parallelograms. 

• THEOREM I. Let S and T be parallelograms with the same base and 
with congruent altitudes to that base. Then S --,--- T. 

PROOF. Consider first the case where S is a rectangle, as below: 

C 	 D 

Figure 13.24 

We shall use the notation of the figure. Thus, 

S = RI  U R2, 	T = R2 U R4 . 

By E-3, 

By E-5, 

By E-4, 

and 

R1 U R3 =-- R3 U R4 . 

R1  --- R4 . 

R1 U R2 = R2 U R4 , 

S -=-- T . ❑ 

Following Euclid's example, we have shown the "interesting case," in which 
T rises at a steep angle. The other case is simpler: 

Figure 13.25 

Here, R 1  = R3; RI U R2 ="' R2 U R3; and S --- T. 
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■ THEOREM 2. Let U and V be triangles, with the same base, and congru-
ent altitudes to that base. Then U =- V. 

Figure 13.26 

PROOF. Given U = AABC, with BC taken as base, let DE be the "midline"; let 
h CF be the line through C, parallel to taken  ; and let G be the point where CF in- 

tersects DE. Then 

W = ❑DBCG 

is the parallelogram associated with the triangle AABC and the base BC. 
Under the hypothesis of Theorem 2, let X be the parallelogram associated 

with V and the base BC. 

Figure 13.27 

Here U ----- W ---- X ---- V, and so U = V. ❑ 

Given Theorem 2, we can proceed, as in Euclid, to develop the theory of 
area—or, rather, the theory of equal-area. 

The "Area-subtraction" postulate E-5 is curious. Euclid did not use the geo-
metric form of the Archimedean postulate. In effect he used area-subtraction 
as a substitute for it. 



  

CHAPTER 

   

The Construction of an 
Area Function 

	 14.1 The Problem  	

In the preceding chapter we assumed that an area function was given, satisfying 
Postulates A-1 through A-5. This was reasonable; in fact, in elementary geome-
try, it is the only approach that is simple enough to be manageable. 

It is natural, however, to ask whether this complicated set of assumptions 
was merely a matter of convenience or actually a logical necessity. The question 
is whether on the basis of our other postulates, we can define an area function for 
polygonal regions and prove that our function satisfies Postulates A-1 through 
A-5. The answer is yes. 

In setting up such a function, we have to begin by assigning an area to some 
sort of figure. It seems hopeless to try to do everything at once, by assigning an 
area to every polygonal region at the very start. We ought to begin by defining 
areas for certain simple figures, and try to handle the more complicated figures 
in terms of the simple ones. For this purpose, rectangles are not promising, be-
cause they cannot be used as building blocks, except for very special figures. 
For example, a triangular region cannot be expressed as the union of a finite 
number of rectangular regions. It is true that we got the formula gbh, for the 
area of a right triangle, from the formula bh for the area of a rectangle. But to 
do this, we had to suppose that there was such a thing as the area of a right tri-
angle; and in our present program, the latter question is the whole point 
at issue. 

This suggests that our "point of entry" should be not rectangles, but trian-
gles. We begin building our area function by stating, as a definition, that for any 
AABC, the area is 

1 
ABC = —

2
bh 
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where b is any base and h is the corresponding altitude. This makes sense, be-
cause we have shown (Theorem 5, Section 12.3) that the product bh depends 
only on the triangle, and does not depend on the choice of the base. 

We now want to use triangles as building blocks. Given a polygonal region, 
we cut it up into a finite number of triangular regions intersecting only in edges 
and vertices (Fig. 14.1). For each of the triangles, the area is already defined, by 
the formula -bh. If the theory works, then the area of the region is the sum of 
the areas of the triangles. This suggests a tempting procedure: We might solve 
our problem at once by defining the area of the region as the sum of the areas 
of the triangles. 

Figure 14.1 

There is, however, a difficulty. Any polygonal region can be cut up into tri-
angular regions in infinitely many ways: 

Figure 14.2 

Therefore, before we can define the area of a polygonal region as the sum of 
the areas of the triangular regions, we need to prove that this sum depends only 
on the region that we started with, and is independent of the way in which we cut it up. 

At first glance, this problem may seem trivial, and after a little reflection it 
may seem almost impossible. The truth is somewhere in between, as we shall see. 

14.2 Complexes and Their 
	  Formula Areas 	  

Given a polygonal region R, expressed as the union of a finite number of trian-
gular regions, intersecting only in edges and vertices. The set K whose elements 
are the triangular regions is called a complex, and is called a triangulation of R. 
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Figure 14.3 

In the figure, the complex K is the set 

IT, T2, T3, T4, T51. 

Thus R and K are objects of quite different kinds. R is an infinite set of points, 
and K is a finite set of triangular regions. The vertices and edges of the Ti 's are 
also called vertices and edges of K. 

We are going to define the area of a triangle by the formula gbh. To avoid 
confusion between the area function that we shall finally set up and the appara-
tus that we are using in the process, we shall call this the formula area, and state 
our first official definitions as follows. 

DEFINITION 1. The formula area of a triangle is half the product of any base 
and the corresponding altitude. 

DEFINITION 2. The formula area of a complex is the sum of the formula 
areas of its elements. 

A strip complex is a complex that looks like either of the figures below: 

Figure 14.4 	 Figure 14.5 

More precisely, a complex K is a strip complex (1) if K is a triangulation of a 
trapezoid or a triangle, (2) for the trapezoidal case, all vertices of K are on the 
upper or lower base, and (3) for the triangular case, all vertices of K are on the 
base or the opposite vertex. 

Note that these cases are being handled together, as if the triangle were a 
"trapezoid with upper base = 0." The following theorem should also be inter-
preted in this way. 

■ THEOREM 1. The formula area of a strip complex is 2(b1  + b2)h, where 
b, and b2  are the bases and h is the altitude. 



206 	 The Construction of an Area Function 

el 	 e2 	 e3  

fl 	f2 f3 	f4 	f5 	J6 

Figure 14.6 

PROOF. The sum of the formula areas of the triangles with two vertices on 
the upper base is 

1 	1 	 1 
—
2

el f/ + —
2

e2h + • • • + —
2

eh , 

where el , e2, . . . , en  are the lengths of the segments into which the upper base is 
divided by the vertices. The sum of the formula areas of the other triangles is 

1 	1 	 1 
—2  fih + —

2 
f2h + • - • + —

2 
f nh . 

Therefore the formula area of the complex is 

	

1 	 1 	1 
—
2

h(e 1  + e2  + • - • + en) + —
2

h(fi  + f2  + - • - + f„) = —
2

bi  + —
2

h 2  

	

= 	 (bi  + b2)h , 
2 

which was to be proved. ❑ 

It will be convenient to generalize this result slightly. By a strzp decomposition 
of a triangle or trapezoid, we mean a decomposition into triangles and trape-
zoids, like this: 

z/L 

   

Figure 14.7 

The formula area of a trapezoid is defined to be (b1  + b2)h, where h is the alti-
tude and b1  and b2  are the bases. The triangles and trapezoids in a strip decom-
position are called its parts. 

■ THEOREM 2. For any strip decomposition of a triangle or trapezoid, the 
formula area of the original figure is the sum of the formula areas of the parts. 
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PROOF. If none of the parts are trapezoids, this follows immediately from 
Theorem 1. If some trapezoids appear, we split each of them into two triangles 
by putting in a diagonal: 

Figure 14.8 

This does not change the sum of the formula areas of the parts. Therefore 
Theorem 2 follows from Theorem 1. ❑ 

■ THEOREM 3. If A-D-C, A-E-B, and DE II BC, then the formula area of 
L\ABC is the sum of the formula areas of LADE and ❑DEBC. 

A 

PROOF. Let b, = BC and b2  = DE; let h1  and h2  be the altitudes of ❑DEBC 
and LADE. Our theorem then says that 

1 	 1 
—
2

b2h2  + —(bi  + b2)h, = —
2 Mk + h2) 

b2h2  + b1h1  + b2h1  = b,h1  + b1h2  

b2(h, + h2) = b1h2  

or 

h, + h2  
h2 	b2  

This is true, by Theorem 6, Section 12.3, because LADE AACB. ❑ 

or 

or 
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By a parallel decomposition of a triangular region, we mean a decomposition 
into one or two triangles and a finite number of trapezoids, like either of the 
following figures. (Let us spare ourselves the formal definition.) 

A 

Figure 14.10 

■ THEOREM 4. For any parallel decomposition of a triangle, the formula 
area of the original triangle is the sum of the formula areas of the trapezoids 
and the triangles in the decomposition. 

PROOF. For Case 1 (on the right) this follows by repeated applications of the 
preceding theorem, working from the top downward. For Case 2 (on the left) 
we observe, first, that by Theorem 1, the formula area of tXABC is the sum of 
the formula areas of ABDC and AABD. (To apply Theorem 1, we must look at 
the figure sidewise.) Now apply the result of Case 1 to each of these. We are 
now ready to prove our main theorem. 

■ THEOREM 5. All triangulations of the same polygonal region have the 
same formula area. 

PROOF. Given two triangulations K, and K2 of a polygonal region R. 

Figure 14.11 
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In the figure, the edges of K1  are solid, and those of K2  are dashed. 
We take a family of parallel lines L 1 ,L2,... ,Ln  passing through all vertices 

of K1, all vertices of K2, and all points where edges of K1  intersect edges of K2. 
(These are the horizontal lines, formed with long dashes, in the figure.) Now 
the lines L, give parallel decompositions of each triangle of K 1 : 

Figure 14.12 

Let us call these triangles and trapezoids the primary parts of K1. By defini-
tion, the formula area of K1  is the sum of the formula areas of these triangles. 
We apply Theorem 4 to each triangle, and add the results. This gives: 

(1) The formula area of K 1  is the sum of the formula areas of the primary 
parts of K1 . 

The edges of K2 give a strip decomposition of each primary part of K1: 

Figure 14.13 

Let us call these smaller triangles and trapezoids the secondary parts of 
(In Fig. 14.13, there are a total of eight secondary parts, in the triangle 
shown. In Fig. 14.11 at the beginning of the proof of Theorem 5, there are 
a grand total of 31 secondary parts of K1.) 

We know, by Theorem 2, that: 

(2) The formula area of each primary part of K 1  is the sum of the formula 
areas of the secondary parts that lie in it. 
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Combining (1) and (2), we get: 

(3) The formula area of K, is the sum of the formula areas of the secondary 
parts of K 1. 

Applying the same reasoning to K2, we get: 

(4) The formula area of K2 is the sum of the formula areas of the secondary 
parts of K2. 

This tells us all that we need to know, because the secondary parts of K2 are 
exactly the same as the secondary parts of K1. Therefore, by (3) and (4), K1  and 
K2 have the same formula area, which was to be proved. ❑ 

Thus, we can state the following definition. 

DEFINITION. The area aR of a polygonal region R is the number which is the 
formula area of every triangulation of R. 

14.3 Verification of the Area 
	 Postulates for the Function a  	

Trivially, we know that 

A-1. a is a function R —> R. 

A-2. aR > 0 for every R. 

A-3. Any two congruent triangles have the same area. 

These follow immediately from the definition of a. 

A-4. If two polygonal regions intersect only in edges and vertices (or do not 
intersect at all), then the area of their union is the sum of their areas. 

A-5. If a square region has edges of length a, then its area is a 2. 

The reason is that either diagonal divides the square region into two right 
triangular regions, each of which has formula area a 2/ 2. (This is very much like 
the proof of Theorem 1, Section 13.2, only now it works in reverse.) 

We proceed to verify A-4. Given regions R, and R2, with triangulations K 1  
and K2. Suppose that R, and R2 intersect only in edges and vertices. It may hap-
pen, as indicated in the figure, that some edges of K 1  (or K2) contain more than 
one edge of K2 (or KO. If so, we split some triangles in K1  (or K2) into smaller 
triangles. 
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Figure 14.14 

Figure 14.15 

In this way we get new triangulations n K2 whose union K is a triangulation 
of R1  U R2. Now a(R, U R2) = aR, + aR2, because the formula area of K is the 
sum of the formula areas of K, and K2. Thus A-4 is satisfied by a. 



CHAPTER 

Perpendicular Lines 
and Planes in Space 

	 15.1 The Basic Theorems  	

Given a line L and a plane E, intersecting in a point P. 
If every line in E, passing through P, is perpendicular to L, then we say that 

L and E are perpendicular, and we write L 1 E, or E 1 L. In the figure, L is 
supposed to be perpendicular to E. We have indicated two lines in E, passing 
through P. These are both perpendicular to L, although, in a perspective draw-
ing, they don't look as if they were. Note that when we say that L 1 E, we are 
making a statement about an infinite collection of lines; that is, all of the lines 
that lie in E and contain P must be perpendicular to E. If we required merely 
that E contain one line perpendicular to L, this wouldn't mean anything. You 
can easily convince yourself that every plane that intersects L contains such a 
line. Soon we shall prove that if E contains two lines perpendicular to L, then 
E 1 L. The following two theorems are preliminaries. 

L 7  
Figure 15.1 

A point A is equidistant from two points P and Q if AP = AQ (Fig. 15.2). 
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• THEOREM 1. If A and B are equidistant from P and Q, then every point 
between A and B has the same property. 

The main steps in the proof are as follows. 

(1) APAB = A QAB. 

(2) LPAB = LQAB. 

(3) APAX AQAX. 

(4) PX = QX. 

Q 

Figure 15.2 

■ THEOREM 2. If a line L contains the midpoint of PQ, and contains an-
other point which is equidistant from P and Q, then L 1 PQ. 

Q 

Figure 15.3 

For LPAD = AQAD by SSS. Therefore LPAD = LQAD, and each is a 
right angle. 

■ THEOREM 3. If a line is perpendicular to each of two intersecting lines at 
their point of intersection, then it is perpendicular to the plane that contains them. 

Restatement. Let L 1  and L2 be two lines intersecting at A, and let E be the 
plane that contains them. Let L be a line which is perpendicular to L 1  and L2 

at A. Then every line in E through A is perpendicular to L. 

PROOF. Let P and Q be points of L such that P-A-Q and AP = AQ. Let L3 be 
any third line in E through A. Now each of the lines L 1  and L2 contains points 
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on each side of L 3  in E. Let B and C be points of L, and L 2, lying on opposite 
sides of L 3  in E. Then BC intersects L3 in a point D A. Now 

(1) APAB ------- AQAB, by SAS. 

(2) PB = QB. 

(3) Similarly, PC = QC. 

(4) PD = QD, by Theorem 1. 

(5) PQ 1 L3, by Theorem 2. ❑ 

Q1 
Figure 15.4 

The perpendicular bisector of a segment in a plane is the line which is per-
pendicular to the segment at its midpoint. The following theorems are easy to 
prove, and serve as an introduction to the analogous theorems in space. 

■ THEOREM 4. If L is the perpendicular bisector of the segment AB (in a 
plane E), then all points of L are equidistant from A and B. 

The converse is also true. 

• THEOREM 5. Let A, B, and P be points of a plane E. If P is equidistant 
from A and B, then P lies on the perpendicular bisector of AB. 

Combining these two theorems, we get the following. 

■ THEOREM 6. The perpendicular bisector of a segment in a plane is 
the set of all points of the plane that are equidistant from the end points of the 
segment. 

A theorem is this sort is called a characterization theorem. You have charac-
terized a figure—that is, a set of points—if you state a condition that is satis-
fied by the points belonging to the given set, and by no other points. Usually 
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the proof of a characterization theorem is in two parts. For example, let L be 
the perpendicular bisector of AB in the plane E and let 
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PROOF. Let A be the midpoint of PQ, let E be perpendicular to PQ at A, and 
let X be any point of E. If X = A, then X is equidistant from P and Q. If X A, 

. v M 	= A. 	 = 	1■61:61r-lar-- tr,  is- 
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In the same way it follows that every point of L2 is equidistant from P and 
Q. Therefore L1  and L2 lie in the same plane, namely, the perpendicular bisect-
ing plane of the segment PQ. (See Theorem 11.) ❑ 

The rest of the theorems in this section are stated without proof; you 
should be able to furnish the proofs in each case. (But for Theorem 15 you will 
probably need the hints at the end of the section.) 

■ THEOREM 13. Through a given point in a given plane there is at least 
one line perpendicular to the given plane. 

■ THEOREM 14. Through a given point in a given plane there is at most 
one line perpendicular to the given plane. 

■ THEOREM 15. Through a given point not in a given plane there is at 
least one line perpendicular to the given plane. 

■ THEOREM 16. Through a given point not in a given plane there is at 
most one line perpendicular to the given plane. 

The preceding four theorems fit together to give the following theorems. 

■ THEOREM 17. Given a point and a plane, there is exactly one line which 
passes through the given point and is perpendicular to the given plane. 

■ THEOREM 18. If a plane E and line L are perpendicular at a point P, 
then E contains every line that passes through P and is perpendicular to L. 

The main stages in the proof of Theorem 15 are the following. We have 
given a plane E and an external point P. 

(1) Let Li  be any line in E. 

(2) Let E1  be the plane containing P and L1. 

(3) Let L2 be the perpendicular from P to L1 , intersecting L 1  at Q. 

(4) Let L3 be the perpendicular to L1  at Q, in E. 

(5) Let E2 be the plane containing P and L3. 

(6) Let L be the perpendicular from P to L3, in E2. 

We then show that L 1 E. 

	  Problem Set 15.1 

1. Prove Theorems 7, 8, 13, 14, 15, 16, and 18, above. 

2. Show that if a line L contains two points equidistant from P and Q, then every point 
of L is equidistant from P and Q. 

3. Show that if a plane E contains three noncollinear points which are equidistant 
from P and Q, then all points of E are equidistant from P and Q. 



218 	 Perpendicular Lines and Planes in Space 

15.2 Parallel Lines and 
	  Planes in Space  	



PROOF. Given L1  and L2, perpendicular to a plane E at points P and Q. By 
Theorem 12, Section 15.1, L 1  and L2 are coplanar. And each of them is perpen-
dic • / rd. 

15.2 Parallel Lines and Planes in Space 219 
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PROOF OF (2). We now have given that L intersects E2 at P2. Let L2 be any 
line in E2, passing through P2. We need to prove that L2 I L. 

Let E be the plane that contains L and L2. Then E intersects E1  in a line L 1. 
By Theorem 1, L 1 11 L2, and L, 1 L, because every line in E, through P1  is per-
pendicular to L. Therefore L2 I L, which was to be proved. ❑ 

• THEOREM 4. Any two planes perpendicular to the same line are parallel. 

PROOF. Suppose that L is perpendicular to E 1  at P and perpendicular to E2 at 
Q. If E I  intersects E2 at a point R, then APQR has right angles at both P and Q, 
which is impossible. ❑ 

	  Problem Set 15.2 	  

Prove the following theorems. They have fairly short proofs. 

• THEOREM 5. A plane perpendicular to one of two parallel lines is perpendicular 
to the other. 

Remember that you must begin by showing that the given plane intersects the sec-
ond of the given lines. 

• THEOREM 6. If two lines are each parallel to a third line, they are parallel to 
each other. 

• THEOREM 7. Two parallel planes are everywhere equidistant. That is, all per-
pendicular segments from one of the two planes to the other are congruent. 

• THEOREM 8. Let H be a half space with face E. Let e be a positive number. Let F 
be the set of all points Q of H whose perpendicular distance from E is = e. Then F is 
a plane. 

/ • Q 

A y 

   

  

le 
P 

 

/ 7 
Figure 15.11 

[Hint: For the proof, let P be a point of E, and let AP be a segment perpendicular to 
E, such that AP = e. Let E' be the plane through A, perpendicular to AP. Show that 
(1) F C E', and (2) E' C F. It will follow that F is a plane, namely, the plane E'.] 
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15.3 The Measure of 
a Dihedral Angle; 
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■ THEOREM 1. Any two plane angles of the same dihedral angle are 
congruent. 
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Problem Set 15.3 	  

Prove the following theorems. 

• THEOREM 2. If a line is perpendicular to a plane, then every plane that contains 
the given line is perpendicular to the given plane. 

• THEOREM 3. If two planes are perpendicular, then any line in one of them, per-
pendicular to their line of intersection, is perpendicular to the other. 



CHAPTER \6/ 
Circles and Spheres 

   16.1 Basic Definitions 	 

Let P be a point of a plane E, and let r be a positive number. The circle with cen-
ter P and radius r is the set of all points Q of E whose distance from P is equal to 
r. Two or more circles with the same center are called concentric. 

Figure 16.1 

If Q is any point of the circle, then the segment PQ is a radius of the circle, 
and Q is called its outer end. If Q and R are any two points of the circle, then the 
segment QR is a chord of the circle. A chord that contains the center is called a 
diameter of the circle. Evidently the length of every diameter is the number 2r. 
This number 2r is called the diameter of the circle. (Note that the word radius is 
used in two senses. It may mean either a number r or a segment PQ. But it will 
always be easy to tell which is meant. When we speak of the radius, we mean the 
number r, and when we speak of a radius, we mean a segment. Similarly for the 
two uses of the word diameter.) 

The interior of a circle is the set of all points of the plane whose distance 
from the center is less than the radius. The exterior of a circle is the set of all 
points of the plane whose distance from the center is greater than the radius. 
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Figure 16.2 

The corresponding definitions for spheres in space are precisely analo-
gous. They are as follows. 

Given a point P and a positive number r. The sphere with center P and radius r 
is the set of all points Q whose distance from P is equal to r. Two or more spheres 
with the same center are called concentric. 

Figure 16.3 

If Q is any point of the sphere, then the segment PQ is a radius of the 
sphere, and Q is called its outer end. If Q and R are any two points of the sphere, 
then the segment QR is called a chord of the sphere. A chord which contains the 
center is called a diameter of the sphere. Evidently the length of every diameter 
is the number 2r. The number 2r is called the diameter of the sphere. 

The interior of a sphere is the set of all points whose distance from the cen-
ter is less than the radius. The exterior of a sphere is the set of all points whose 
distance from the center is greater than the radius. 

	  Problem Set 16.1 

1. Show that every circle has only one center and only one radius. That is, if the circle 
with center P' and radius r' is the same as the circle with center P and radius r, then 
P' = P and r' = r. [Hint: Suppose that P 0 P', and consider the line PP'.] 

16.2 Secant and Tangent Lines. 
	 The Line-Circle Theorem  	
Given a circle C and a line L in the same plane. If the line and the circle have 
one and only one point in common, then the line is called a tangent line, and 
the common point is called the point of tangency, or point of contact. If the line 
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intersects the circle at more than one point, it is called a secant line. The follow-
ing theorem is familiar, and is easy to prove. 

■ THEOREM 1. If a line is perpendicular to a radius of a circle at its outer 
end, then the line is a tangent. 

PROOF. Let C be a circle with center at P ; let PQ be a radius, and let L be per-
pendicular to PQ at Q (Fig. 16.4). If R is any other point of L, then PR > PQ, 
because the shortest segment joining a point to a line is the perpendicular seg-
ment. Therefore R is in the exterior of C. Therefore L intersects C only at Q 
and hence is a tangent line. ❑ 

Figure 16.4 

The converse is also true. 

■ THEOREM 2. Every tangent to. a circle is perpendicular to the radius 
drawn to the point of contact. 

Figure 16.5 

PROOF. Let C be a circle with center at P, and let L be tangent to C at Q. Sup-
pose that Q is not the foot of the perpendicular from P to L, and let R be the 
point which is the foot of the perpendicular. By the segment-construction pos-
tulate (or the segment-construction theorem, according to the chapter in which 
you refer to it), there is a point S of L such that Q-R-S and RQ = RS. By the 
Pythagorean theorem, applied twice, we have 
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PR 2  + RS 2  = PS 2, 	PR 2  + RQ2  = PQ2. 

Therefore PS = PQ, S lies on the circle, and L is not a tangent line. ❑ 

The proofs of the following theorems are fairly straightforward. 

■ THEOREM 3. Any perpendicular from the center of C to a chord bisects 
the chord. 

• THEOREM 4. The segment joining the center to the midpoint of a chord 
is perpendicular to the chord. 

• THEOREM 5. In E, the perpendicular bisector of a chord passes through 
the center. 

Circles with the same radius r are called congruent. By the distance between 
the center of a circle and a chord, we mean, of course, the perpendicular dis-
tance; that is, the length of the perpendicular segment from the center to the 
chord. Two chords are equidistant from the center if their distances from the 
center are the same. 

■ THEOREM 6. In the same circle or in congruent circles, chords equidis-
tant from the center are congruent. 

■ THEOREM 7. In the same circle or in congruent circles, any two congru-
ent chords are equidistant from the center. 

The following innocent looking theorem is of special interest. 

■ THEOREM 8. The Line-Circle Theorem. If a line intersects the interior of 
a circle, then it intersects the circle in exactly two points. 

Figure 16.6 
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PROOF. Let C be the circle with center at P and radius r, and let L be the line. 
Let Q be the foot of the perpendicular from P to L. Since PZ < r for some 
point Z of L, it follows that PQ < r; that is, Q lies in the interior. 

Let 

PQ = s < r , 

as indicated in the figure. We want to prove that C intersects L in exactly two 
points, R and S. 

If X is a point where the line intersects the circle, then APQX has a right 
angle at Q. Therefore 

s2 + Qx2 = 2,2,  

by the Pythagorean theorem. Hence 

QX = Vr2 — s2 . 

And conversely, if X lies on L, and QX = Vr2 — s2, it follows that 

	

px2 = s2 + (vr2 _ 	s2)2 

= s2 + r2 _ s 2 

= r2. 

Now r2  — s2  > 0, because s > r. By the Euclidean completeness postulate, 
Y

2 
— s 2  has a positive square root Vr2  — s2. By the ruler postulate, there are 

exactly two points X of L such that QX = \/r 2  — s 2 . Therefore exactly two points 
lie both on the line and on the circle. ❑ 

Note that in the proof of this theorem, we have used the Euclidean com-
pleteness postulate, for the first time. This is not surprising, because the theo-
rem itself describes a completeness property of the plane; it asserts the existence 
of points satisfying certain conditions. If we delete a few points, at random, 
from a plane, then we may get a "plane" in which the line-circle theorem fails. 

1? 

1 ? 

Figure 16.7 

In the present treatment, this sort of thing is ruled out by the Euclidean 
completeness of the real number system. In a purely synthetic treatment, 
Theorem 8 should be taken as a postulate. 
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	 16.3 Secant and Tangent Planes 	 
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T is any point of C, then RT 1 PR. Therefore, by the Pythagorean theorem, 
we have 
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	  16.4 Arcs of Circles 	  

A central angle of a given circle is an angle whose vertex is the center of the circle. 

Major 
arc 

Figure 16.11 

Let A and B be the points in which the sides of the central angle intersect the 
circle, so that the central angle is LAPB. The minor arc AB is the set consisting 
of A and B together with all points of the circle that are in the interior of 
LAPB. The major arc AB is the set consisting of A and B together with all points 
of the circle that lie in the exterior of LAPB. In either case, the points A and B 
are called the end points of the arc. 

If A and B are the end points of a diameter, then there are two arcs with A 
and B as end points. Each of these arcs AB consists of A and B together with all 
points of the circle that lie on a given side of the line. These are called semicircles. 

Of course the notation AB for arcs is always ambiguous, because there are 
always two different arcs with A and B as end points. In cases where misunder- 
standing might occur, we remove the ambiguity by taking some third point X of 
the arc, and then denoting the arc by AXB. In the figure, AXB is a minor arc, 

AYB is the corresponding major arc, and CAB and CYB are semicircles. 

Figure 16.12 

The degree measure mAXB of an arc AXB is defined in the following way. 

(1) If AXB is a minor arc, then mAXB is the measure mLAPB of the correspond-
ing central angle. 

(2) If AXB is a semicircle, then mAXB = 180. 

(3) If AXB is a major arc, then mAXB = 360 — mLAPB. 
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Figure 16.13 

The following theorem says that degree measure for arcs is additive in the 
way that we might expect. 

• THEOREM I. If Alf and BC are arcs of the same circle, having only the 
point B in common, and their union is an arc AC, then mAB + mBC = mAC. 

That is, we always have 

mABC = mAB + mBC. 
The proof is tedious, because we need to discuss five cases, but each of the 

five cases is easy. We describe them, give the figures, and leave the verifications 
to the reader. 

Case 1. ABC is a minor arc. 

Case 2. ABC is a semicircle. 

Figure 16.14 

In these first two cases, mAB and mBC are simply mLAPB and mLBPC. 

Case 3. ABC is a major arc, and A and C are on opposite sides of the di-
ameter that contains B. (What are the equations relating r, u, s, and t?) 

Figure 16.15 
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Case 4. ABC is a major arc, and A and C are on the same side of the di-
ameter that contains B. 

Figure 16.16 

Case 5. ABC is a major arc, and one of the arcs AB, BC is a semicircle. 
(Here mABC = 360 — t = 180 + 180 — t = 180 + s = mAB + 

Figure 16.17 

In the figures below, the angle LABC is inscribed in the dotted arc ABC. To 
be exact, an angle is inscribed in an arc of a circle if (1) the two end points of the 
arc lie on the two sides of the angle, and (2) the vertex of the angle is a point, 
but not an end point, of the arc. (We can put this more briefly: LABC is in-
scribed in ABC, by definition.) 

Figure 16.19 
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In the figures above, the indicated angle intercepts the dotted arc. In the 
third of these cases, the angle intercepts not only the dotted arc but also the 
arc AXB. 

We shall now give a mathematical definition of the idea conveyed by the 
figures above. An angle intercepts an arc if (1) the end points of the arc lie on 
the angle, (2) each side of the angle contains at least one end point of the arc, 
and (3) except for its end points, the arc lies in the interior of the angle. 

• THEOREM 2. The measure of an inscribed angle is half the measure of 
its intercepted arc. 

Restatement. Let LA be inscribed in an arc BAC of a circle, intercepting the 
arc BC. Then mLA = iniBC. 

PROOF. 

Case 1. Consider first the case where LA contains a diameter of the circle. 
Let Lx = LABP, Ly = LBPC, and Lz = LAPB, as in the figure. 

Figure 16.20 

Then we have 

mLA + mLx + mLz = 180 and mLz + mLy = 180. 

Since A and B are on the circle, we have PA = PB. Therefore, by the isosceles 
triangle theorem, we have mLA = mLx, so that 

2mLA = 180 — mLz 

= mLy 

= mBC. 

Therefore 

1 — 
mLA = TnBC, 

which was to be proved. 
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Case 2. Suppose that B and C are on opposite sides of the diameter 
through A. Then 

 

mLA = mLv + mLw . 

 

Also, by Case 1, 

and 

By Theorem 1, 

Therefore 

Figure 16.21 

1 — 
mLv = mBD 

 

1 
mLw = —

2
mDC. 

mBD + mDC = mBC. 

mLA = —
1

mBC 
2 	' 

which was to be proved. 

Case 3. Suppose that B and C are on the same side of the diameter 
through A. 

Figure 16.22 
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Here 

and 

Therefore 

by Case 1. Therefore 

Circles and Spheres 

mLx + mLy = mLz , 

mBC + mCD = mBD. 

mLA = mLy = mLz - mLx 

1 — 
= —

1
ffi - 

2 
—mCD 

2 	 ' 

1 — 
mLA = -2-mBC

' 

which was to be proved. ❑ 

This theorem has two immediate consequences. 

• THEOREM 3. An angle inscribed in a semicircle is a right angle. 

■ THEOREM 4. All angles inscribed in the same arc are congruent. 

	  Problem Set 16.4 	  

1. Given two circles with a common tangent at a point A, such that the second circle 
passes through the center of the first. Show that every chord of the first circle that 
passes through A is bisected by the second circle. 

2. Three or more points are called concyclic if there is a circle that contains all of them. 
Show that every three noncollinear points (in a plane) are concyclic. 

3. Show that three collinear points are never concyclic. 

4. An inscribed quadrilateral is one whose vertices are concyclic. Prove that in an in-
scribed quadrilateral each pair of opposite angles are supplementary. 

Figure 16.23 

5. Show, conversely, that if a pair of opposite angles of a convex quadrilateral are sup-
plementary, then the quadrilateral is inscribed. 

6. A pair of parallel lines intercept the arc AB of a circle if (1) the lines intersect the 
circle at A and B, and (2) every other point of AB lies between the two lines. 
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Prove the following. 

• THEOREM 5. If two parallel lines intersect a circle, then they intercept congru-
ent arcs. 

(There are three cases to be considered: two secants, two tangents, one secant, and 
one tangent.) 

• THEOREM 6. In the same circle or in congruent circles, if two chords are con-
gruent, then so also are the corresponding minor arcs. 

• THEOREM 7. In the same circle or in congruent circles, if two arcs are congru-
ent, then so are the corresponding chords. 

• THEOREM 8. Given a circle, and an angle formed by a secant ray and a tangent 
ray with its vertex on the circle. Then the measure of the angle is half the measure of its 
intercepted arc. 

• THEOREM 9. No two different circles intersect in more than two points. 

	  16.5 The Two-Circle Theorem  	

We shall now discuss tangent lines to a circle through an external point. The 
fact is that given a circle C and a point Q of its exterior, there are always exactly 
two lines which pass through Q and are tangent to C: 

Figure 16.24 

The natural way to try to prove this is as follows. Let M be the midpoint of the 
segment PQ, where P is the center of C. Let C' be the circle with center M and 
radius MP = MQ. 
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Figure 16.25 

If C' intersects C in two points A and B, as the figure suggests, then QA and 
QB are tangent to C at A and B, respectively. The reason is that each of the 
angles LPAQ and LPBQ is inscribed in a semicircle and hence each is a right 
angle. We can now apply Theorem 1, Section 16.2, which says that a line per-
pendicular to a radius at its outer end is tangent to the circle. In this reasoning 
there is a dangling if. To complete the above proof that there are two tangents 
through Q, we need to show that C and C' intersect in two points. For this pur-
pose we need the following theorem. 

THEOREM 1. The Two-Circle Theorem. Let C and C' be circles of radius a 
and b, and let c be the distance between their centers. If each of the numbers a, 
b, c is less than the sum of the other two, then C and C' intersect in two points. 
And the two points of intersection lie on opposite sides of the line of centers. 

Before proceeding to prove the theorem, let us see how it applies to our 
problem in connection with the external tangents through Q. In Fig. 16.25, let 
the radius of C be a, and let the radius of C' be b = PM. The distance between 
the centers is c = MP = b. Since Q is an external point, we have 

PQ > a, 

so that 

a < 2b . 

Then (1) a < b + c, because b + c = 2b, and a < 2b. Also (2) b < a + c, because 
b = c and a > 0. Finally, (3) c < a + b, because c = b. Therefore the two-circle 
theorem applies, and so it follows that C and C' intersect in two points A and B. 
Therefore there are at least two tangents to C through Q. Later (in the next 
section) we shall show that there are exactly two tangents through Q. The rest 
of this section will be devoted to the proof of the two-circle theorem. 

If a, b, and c are the lengths of the sides of a triangle, then each of the 
numbers a, b, c is less than the sum of the other two. (We know this by three 
applications of the triangular inequality.) We shall prove the converse. 
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ii THEOREM 2. The Triangle Theorem. Given three positive numbers a, b, c. 
If each of these numbers is less than the sum of the other two, then there is a 
triangle whose sides have length a, b, c. 

PROOF. Without loss of generality, let us suppose that 

a 	b 	c. 

Take a segment BC, of length a. We want to find a point A such that AB = c 
and AC = b. We shall start by assuming that there is a triangle AABC, of the sort 
that we are looking for, and then find out where the point A must be. This pro-
cedure will not prove anything, because we start by assuming the very thing 
that we are supposed to prove. But once we have found the exact location of 
the points that might work, it will be easy to check that they do work. 

A? 

Figure 16.26 

Suppose, then, that AABC is given, with sides of the desired lengthas indi-
cated in Fig. 16.26. Let D be the foot of the perpendicular from A to BC. Then 
B-D-C, because BC is a longest side of LABC. Therefore, if BD = x, then DC = 
a — x. Let AD = y. Then by two applications of the Pythagorean theorem, we 
have 

2 _ 2 y — c — x 2 
y2 = b2 — (a — x)2. 

Therefore 

so that 

and 

Therefore 

c2 — x2 = b2 — (a — x)2, 

c 2 ____ x2 = b2 _ a2 4_ 2ax  _ x 2,  

2ax  ,_. a2 + c2 _ b2.  

a2 + c2 _ b2 
x= 	 , 

2a (3) 
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and from (1), we get 

	

y  = Vc2 x2 . 	 (4) 

What we have proved so far is that if x and y satisfy (1) and (2), then x and y 
satisfy (3) and (4). We shall check, conversely, that if x and y satisfy (3) and (4), then 
x and y satisfy (1) and (2). Half of this is trivial. If (4) holds, then so also does (1). 
Suppose then, that (3) is satisfied. Reversing the steps in the derivation, we get 

+ 2 
C

2 
— X 2  — 0 — (a — x)2

. 

Since (1) is known to hold, it follows that y 2  = b2  — (a — x)2, which is Eq. (2). 
We can summarize this by writing 

(1) and (2) < 	> (3) and (4) . 

Now that we know what triangle to look for, let us start all over again. We 
have three positive numbers a, b, c, with 

	

a 	b 	c . 

Let 

a 2  +  c2  —  b2 

	

x= 	  
2a 

Then x > 0, because a 2  b2  and c2  0. We want to set 

y = \/c2 x2, 

but first we have to prove that c > x, to make sure that the radicand is positive. 
Obviously it will be sufficient to show that c — x > 0. Now 

a 2 	c 2 	b2 

	

C X = C 	
2a 

2ac — a 2  — c2 b2 

2a 

b2 — 
(a 2 _ 2ac + c 2) = 

2a 

b 2  — (a — c)2 

2a 

We know that a < b + c. Therefore a — c < b. Since both a — c and b are 0, 
it follows that (a — c)2  < b2; and this means that c — x > 0, or c > x. 
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E 

A 
. /.. 
■ 

	

/ 	■ 

	

/ 	■ 
/ 	■■ 

■ 
■ 

/
/ 	Y 	■ 

/ 
/ 	 ■ 

/ 	 ■ 
/ 	x 	 a—x 	,.. 

B 	 D 
	

C 

Figure 16.27 

We are now ready to construct our triangle. Let BC be a segment of length a. 
Let D be a point of BC such that 

BD = x = 
7 2 a 2 + c 2  — to 

(3') 2a 

Let DE be a ray starting at D, perpendicular to BC, and let A be a point of DE 
such that 

	

AD = y = Vc2  — x2 . 	 (4') 

Since x and y satisfy (3) and (4), it follows that x and y satisfy (1) and (2). Thus 

x2 + y2 = c 2 	 (1') 

	

(a  _ x)2 + y2 = b2. 	 (2') 

But x2  + y2  = AB2, and (a — x)2  + y 2  = AC2. Therefore AB2  = c2  and AC2  = 
b 2. Since b and c are positive, this means that AB = c and AC = b. Therefore 
AABC is a triangle of the sort that we were looking for. 

On the basis of the triangle theorem, it is easy to prove the two-circle theo-
rem. We have given a circle C, with center P and radius a, and a circle C', with 
center M and radius b: 

Figure 16.28 
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The distance PM between the centers is c, and each of the numbers a, b, c is less 
than the sum of the other two. Therefore there is a triangle ARST, with RS = a, 
ST = b and RT = c: 

S 

a 	 b 

R 	c 	T 

Figure 16.29 

Let A be a point in the plane of our two circles such that LAPM =----• LR and 
AP = a = RS. By SAS, ARST =-= APAM, so that AM = ST = b. Thus A is on 
both C and C' Let B be a point on the opposite side of PM from A, such that 
LBPM _-÷-- LR and BP = a = RS. By SAS, ARST z-----  APBM, so that B is on both 
C and C'. It is not hard to check that these points A and B are the only points 
where the two circles intersect. (This was Theorem 9 in Problem Set 16.4.) ❑ 

In a purely synthetic treatment, something equivalent to the two-circle 
theorem needs to be stated as a postulate. In effect, Euclid used such a postu-
late, without stating it. In modern terms, the required postulate takes the fol-
lowing form. 

Figure 16.30 

The Two-Circle Postulate. Let C1  and C2 be circles, with centers P and M. 
Let A and B be points of C, and C2. If each of the congruence classes [PA], 
[PM], and [MB] is less than the sum of the other two, then C, and C2 intersect 
in two points. 

Here addition and inequalities, for congruence classes, are defined as in 
Section 8.4. The postulate does not say that the two intersection points lie on 
opposite sides of PM, because this can easily be proved. 



CHAPTER N7/ 
Cartesian Coordinate 

Systems 

Obviously, all readers of this book know about coordinate systems, from ele-
mentary analytic geometry. For the sake of completeness, however, we explain 
them here from the beginning. To achieve speed and simplicity, and reduce 
the amount of outright repetition, we have introduced various novelties in the 
derivations. 

In a plane E we set up a Cartesian coordinate system in the following way. 
First we choose a line X, with a coordinate system as given by the ruler postu-
late. The zero point of X will be called the origin. We now take a line Y, perpen-
dicular to X at the origin, with a coordinate system in which the origin has 
coordinate = 0. 

Y 

N 
Y •----• P 
2- 

1— 

M  

I 	I 	I 	 I • 	I 	I 	- X 

	

-3 -2 -1 	0 	1 x 2 	3 

—1 - 

- 2- 

Figure 17.1 

Given a point P of E, we drop a perpendicular to a point M of X. The co-
ordinate x of M on X is called the x-coordinate, or the abscissa, of P. We drop a 
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perpendicular from P to a point N of Y. The coordinate of N on Y is called the 
y-coordinate, or the ordinate, of P. Thus to every point P of E there corresponds 
an ordered pair (x,y) of real numbers, that is, an element of the product set 
D x R. Clearly this is a one-to-one correspondence 

E <---> R x IR . 

For short, we shall speak of "the point (x,y)," meaning, of course, the point cor-
responding to (x,y) in the coordinate system under discussion. 

Y 

Y2 

Yi 

0 

  

Figure 17.2 

■ THEOREM 1. The distance between the points P1  = (x1 , y1 ) and P2 = 
(x2,y2) is given by the formula 

P1 P2 = V(X2 — x1)2  + (Y2 — Y1)2  . 

PROOF. Let M1, N1, M2, N2 be the projections of P1  and P2 onto the axes, as in 
the definition of coordinates. If x1  = x2, then 

P1 P2 ll N1 N2, 	10C2 — XII = 0 , 

and 

Pi P2 = I Y2 — Y 1 I 
= V(y2 - y1)2  
= -\/(x2  - x1)2  + (y2  - y1 )2 . 

(Here we are ignoring the trivial case where P1  = N1  and P2 = N2.) If y1  = y2, 
the same conclusion follows in a similar way. Suppose, then, that x1  x2  and 
yi  y2, as in the figure. Then the horizontal line through P1  intersects the ver-
tical line through P2, in a point Q, and AP, P2 Q has a right angle at Q. (Here, 
and hereafter, a horizontal line is X or a line parallel to X; and a vertical line is 
Y or a line parallel to Y.) Thus 

Pi Q = mi m2, 

and 

P2 Q = N2 N1 , 



Cartesian Coordinate Systems 	 245 

either because the point pairs are the same or because opposite sides of a rect-
angle are congruent. By the Pythagorean theorem, 

P, JD = pi  Q2 + p2  Q2.  

Therefore 

Pill = M I M + NA 

= 1x2 - x112  + 1Y2 - Y112  

= (x2 - x1)2  + (y2 - y1)2, 

and from this the distance formula follows. ❑ 

By a linear equation in x and y we mean an equation of the form 

Ax + By + C = 0 , 

where A, B, and C are real numbers, and A and B are not both = 0. By the graph 
of an equation, we mean the set of all points that satisfy the equation. More 
generally, by the graph of a condition we mean the set of all points that satisfy 
the given condition. Thus the interior of a circle with center Q and radius r is 
the graph of the condition PQ < r; and one of our theorems tells us that the 
perpendicular bisector of a segment AB is the graph of the condition PA = PB. 

• THEOREM 2. Every line in E is the graph of a linear equation in x and y. 

PROOF.  Let  L be a line in E. Then L is the perpendicular bisector of some 
segment PI  P2, where P1  = (xi ,y1) and P2 = (X201 2). Thus L is the graph of the 
condition 

PP, = PP2 . 

Y 

X 

Figure 17.3 

With P = (x,y) this can be written algebraically in the form 

V(x - x,)2  + (y - yi)2  = V(x - x2)2  + (y - y2)2, 
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or 

2 
X 2  - 2x1 x + x' + y 2  - 2yl y + y 2 = x2  — 2x2x + x22  + y2 - 2y2 y + y 2  

or 

2(x2  — xi)x + 2(y2 — yi)y + (4 + A + x2, +y20 = o. 

This has the form 

Ax + By + C = 0 . 

And A and B cannot both be = 0, because then we would have x2  = x1  and 

Y2 = y1 ; this is impossible, because P1  0 P2. ❑ 

• THEOREM 3. If L is not vertical, then L is the graph of an equation of 
the form 

y = mx + k . 

PROOF. L is the graph of an equation 

Ax + By + C = 0 . 

Here B 0 0, because for B = 0 the equation takes the form x = —C/A ; and the 
graph is then vertical. Therefore we can divide by B, getting the equivalent 
equation 

Ax C 
y=  —B B • 

This has the desired form, with 

A 	
C ❑ k _B 

m  = — 1-15-,   

■ THEOREM 4. If L is the graph of y = mx + b, and (x1,y1), (x2,y2) are any 
two points of L, then 

y2 - y1  = m . 
X2 - x1  

 

PROOF. Since both points are on the line, we have 

Y2 = MX2 + k, 	y i  = mxi  + k . 

Therefore 

Y2 - Y1 = m(x2 - X1) 3 
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and x2  0 x1, because L is not vertical. Therefore 

Y2 - yi  
x2  - x1 

0 

Thus the number m is uniquely determined by the line. It is called the slope of 
the line. 

• THEOREM 5. Let L and L' be two nonvertical lines, with slopes m and 
m'. If L and L' are perpendicular, then 

1 
m = -- ri  

PROOF. Let 

P1 = (x1,y1) and P2 = (x2,y2) 

be points of L', such that L is the perpendicular bisector of P1  P2. (See Fig. 17.3.) 
As in the proof of Theorem 2, L is the graph of the equation 

2(x2  — x i)x + 2(y2  — y i)y + (4 + A + x; + A) = 0 . 

This has the form 

Ax + By + C = 0 , 

where 

A = 2(x2  — x 1), 	13 = 	2(y2 - y1). 

Therefore 

A 	2(x2  —  x1) 	x2  - x1 m = - - = 	- 
B 	2(y2 — y1) 	Y2 - yi 

But, by Theorem 4, we have 

m = i 	y2 - yi  
- 

x2  - x1  

Therefore m' = —(1/m), which was to be proved. ❑ 

■ THEOREM 6. Every circle is the graph of an equation of the form 

x2  + y2  + Ax + By + C = 0. 

PROOF. By the distance formula, the circle with center (a, b) and radius r is 
the graph of the equation 

V (x — a)2  + ( y — b)2  = r , 
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or 

x 2  — 2ax + a 2  + y2  — 2by + b2  — r2  = 0 . 

This has the required form, with 

A = —2a, 

B = —2b, 
C = a2 	b2 	r2.  

The converse of Theorem 6 is false, of course. The graph of 

x 2 + y 2  = 0 

is a point, and the graph of 

x 2  + y2  + 1 =0 

is the empty set. 

	  Problem Set 	  

In proving the following theorems, try to use as little geometry as possible, putting the 
main burden on the algebra and on the theorems of this section. 

1. Show that the graph of an equation of the form 

x 2  + y2  + Ax + By + C = 0 

is always a circle, a point, or the empty set. 

2. Show that if the graphs of the equations 

y=m i x+k 
	

y m2x + k2  

are two (different) intersecting lines, then m 1  0 m2. 

3. Show that if m l  = m9, then the graphs are either parallel or identical. 

4. In the chapter on similarity, we defined 

A1, B1 , C1  — A2, B2, C2 

to mean that all the numbers in question were positive and that 

A, B2 C2 = = 
• 

A l 	/31  

Let us generalize this in the following way. Given A1 , B1 , CI , not all = 0. If there is a 
k 0 such that 

A2 = kAl, 	B2 = kB1, 	C2 = kCi 
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then we say that the sequences AI, B1, CI  and A2, B2, C2 are proportional, and we write 

A1, B1, C1 -- A2, B2, C2 
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that the perpendicular to a line, through 
a given point, exists and is unique, we 
cannot explain what we mean by the 
x-coordinate of a point. By the time 
we can do this, the whole issue of the 
foundations is over, for better or worse, 
usually worse. 

Second, Descartes invented coordi-
nate systems to solve problems that he 
could not solve in any other way. In his 
time, nobody was worried about the 
foundations of geometry. Euclid was 
still regarded as a model of deductive 
rigor. What everybody was worried 
about was the real number system. 
Then, mathematicians (writing in Latin) 
called the negative numbers the numeri 
ficti, that is, the fictitious numbers, the 
numbers that are not really there. The 
situation was awkward: mathematicians 
were getting right answers to difficult 
algebraic problems by methods that 
they felt sheepish about. The scheme 
worked like this: 

1. Pretend that negative real numbers 
exist (though you know very well 
that they do not). This gives a sys-
tem in which half the numbers are 
"numeri ficti." In the new system, to 

every x there corresponds a number 
—x such that x + (—x) = 0. 

2. Hopefully assume that the laws that 
govern the positive numbers also 
hold in the new system. Then ab = 
ba, a(b + c) = ab + ac, and so on. 

3. Assume that (—a)b = — (ab) and 
(—a) (—b) = ab, always. 

4. Postpone, to some later century, 
the problem of justifying these 
procedures. 

The real number system seems 
simple to us, because to us, the preced-
ing laws are habits; but the laws were 
not habits to the people who invented 
the system, and so, to them, the system 
was mysterious. For example, if we are 
asked, what is (-2) (-3), we "know" 
that the answer is 6, but what on earth 
was the meaning of the question? 

The foundations of analysis were 
straightened out in the nineteenth cen-
tury, when Descartes had long been 
dead. But in his time, the real number 
system was so shaky that nobody 
dreamed of using it as a foundation for 
anything else. 



CHAPTER \8/  
Rigid Motion 

18.1 The Most General 
	 Concept of Congruence 	 
By now we have given five different definitions of the word congruent, for five 
different kinds of figures. Two segments are congruent if they have the same 
length. Two angles are congruent if they have the same measure. Two triangles 
are congruent if there is a one-to-one correspondence between their vertices, 
such that every pair of corresponding sides are congruent (that is, have the 
same length) and every pair of corresponding angles are congruent (that is, 
have the same measure). Two circles are congruent if they have the same ra-
dius. Finally, two circular arcs are congruent if (1) the circles in which the arcs 
lie are congruent, and (2) the arcs have the same degree measure. All this is 
logically correct, but in a number of ways it leaves things to be desired. 

In the first place, it was promised at the outset that the intuitive meaning of 
the word congruent was always going to be the same: two figures would be called 
congruent if they had exactly the same size and shape, that is, if one could be 
moved so as to coincide with the other. This promise has, in a sense, been kept. 
It is not hard to convince yourself that all five of the technical definitions that 
we have just reviewed have this intuitive meaning. On the other hand, it is arti-
ficial to have five different definitions to convey the same idea in five different 
cases. It would be better to have one definition which applies in the same way 
to segments, angles, triangles, and so on. 

In the second place, as a matter of common sense, most of us would agree 
that two squares with edges of the same length ought to be congruent: 

a a 	a a 

a 
J 	 L 

r  
a 

a 
J 	 L 

7 	 r 
a 

Figure 18.1 
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If the language of geometry doesn't allow us to say so, then the language of ge-
ometry must be inadequate. 

Finally, it would be good to make some sort of contact with the old Euclidean 
idea of congruence. Euclid based all of his congruence proofs on a postulate 
that said that "things which coincide with one another are equal to one an-
other." (See the Common Notions, in Book I of the Elements.) This was not ade-
quate to account for the things that Euclid actually did. Strictly speaking, 
figures coincide only with themselves. And it is plain that the idea of motion, or 
superposition, is implicit in Euclid's congruence proofs. Some authors have at-
tempted to make this idea explicit by stating a postulate to the effect that "geo-
metric figures can be moved without changing their size or shape." But this still 
is not enough; it clarifies the difficulty without removing it. The difficulty is 
that while the term figure is plain enough (a figure is a set of points) the terms 
moved, size, and shape have an insecure status. They must be regarded as unde-
fined terms, since no definitions have been given for them. But if they are un-
defined, then postulates must be given, conveying their essential properties; 
and this has not been done either. The general drift of the postulate is plain, 
but you cannot base a mathematical proof on a general drift. 

A 	P 	Q B 

f(P)=P' f(Q)=Q' 

Figure 18.2 

It is possible, however, to formulate Euclid's idea in an exact mathematical 
way. We shall do this, by defining the general idea of rigid motion, or isometry. 
The simplest example of this is as follows. Consider a rectangle EABB'A' . (The 
vertical sides of the rectangle are dotted in the figure because we are really in-
terested in the two bases only.) Let f be the vertical projection, 

f: AB 4---> A'B', 

of the upper base onto the lower base. Thus, for each point P of AB, f(P) is the 
foot of the perpendicular from P to A'B'. We know, of course, that f is a one-to-
one correspondence between AB and A'B'. That is, to every point P of AB 
there corresponds exactly one point P' = f(P) of A'B', and to each point P' of 
A'B' there corresponds exactly one point P = f -1(P') of AB. And this corre-
spondence f has a special property: if P and Q are any two points of AB, and P' 
and Q' are the corresponding points of A'B', as in the figure, then 

P'Q' = PQ, 
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because the segments PQ and P'Q' are opposite sides of a rectangle. Thus, for 
any two points P, Q of AB, the distance between f(P) and f(Q) is the same as the dis-
tance between P and Q. More briefly, the correspondence f preserves distances. 

The correspondence f: AB <--> A'B' is our first and simplest example of what 
is called a rigid motion, or an isometry. The general definition of this concept is 
as follows. 

DEFINITION. Let M and N be sets of points, and let 

f: M H N 

be a one-to-one correspondence between them. Suppose that for every two 
points P, Q of M we have 

f(P)f(Q) = PQ. 

Then f is called a rigid motion, or an isometry, between M and N. [Here 
f(P)f(Q) denotes the distance between the points f(P) and f(Q).] If there is an 
isometry between M and N, then we say that M and N are isometric, and we write 

M N . 

In this language, we can sum up our discussion of the vertical projection 
f : AB <—> A'B' in the form of the following theorem. 

■ THEOREM 1. Opposite sides of a rectangle are isometric. 

	  Problem Set 18.1 

1. Consider two triangles LABC and LA'B'C', and suppose that 

AABC 

Let 

V = {A,B,C} 

V' = 

(Thus V and V' are finite sets of three elements each.) Does it follow that V V'? 
That is, is there a rigid motion 

f: V V'? 

2. Let V be the set of vertices of a square of edge 1, and let V' be the set of vertices of 
another square of edge 1. Show that V V'. (First you have to set up a one-to-one 
correspondence f: V H V', and then you have to show that f is an isometry.) 
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3. Do the same for the sets of vertices of the two parallelograms in the figure below. 

4. Show that if V is a set of three collinear points, and V' is a set of three noncollinear 
points, then V and V' are not isometric. 

5. Show that two segments of different lengths are never isometric. 

6. Show that a line and an angle are never isometric. 

7. Show that every two rays are isometric. 

8. Show that two circles of different radius are never isometric. 

9. Let L and L' be two lines in the same plane, and let f: L H  L' be the vertical projec- 

	

tion of L onto L'. Show that (1) if 	then f is an isometry, and conversely (2) if f 
is an isometry, then 

10. Show that isometry is an equivalence relation. That is, 

M M for every set M (Reflexivity). 

If M N, then N = M (Symmetry). 

If M1  = M2 and M2 = M3, then M1  ----- M3 (Transitivity) . 

	 18.2 Isometries Between Triangles 	 

Theorem 1 of the preceding section was, of course, more special than it needed 
to be. More generally, we have the following Theorem. 

■ THEOREM 1. If AB ==--- CD, then there is an isometry f: AB H  CD, such 
that f(A) = C and f(B) = D. 

PROOF. First we need to define a correspondence f between the two seg-
ments, and then we need to show that f preserves distances. 

On AB let us set up a coordinate system, in such a way that the coordinate 
of A is 0 and the coordinate of B is positive. (It follows, of course, that the coor-
dinate of B is the number AB.) 

A 	P Q B P' 	Q' 	D . 	 . 	 • 	• 
0 	 x 	y AB 	 0 	x 	y 	AB 

Figure 18.4 	 Figure 18.5 
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Similarly, we set up a coordinate system on CD in such a way that the coor-
dinate of C is 0 and the coordinate of D is positive (and hence = CD = AB). 
The figures suggest how the correspondence f ought to be defined. Given a 
point P of AB, the corresponding point f(P) of CD is the point P' which has the 
same coordinate as P. Obviously this is a one-to-one correspondence between 
the two segments. And distances are preserved. Proof: Suppose that P and Q 
are points of AB, with coordinates x and y. Then P' = f(P) and Q' = f(Q) have 
the same coordinates x and y, respectively. Since 

PQ=Ix — yl ,  

and 

it follows that 

P'Q' = Ix — , 

PQ = P'Q' 

which was to be proved. ❑ 

We can restate Theorem 1 in the following way. 

■ THEOREM. Given a correspondence 

A <--> C, 	B H D 

between the end points of two segments. If AB = CD, then there is an isometry 
f: AB H CD which agrees with the given correspondence at the end points. 

Here f is called the isometry induced by the given correspondence. If we 
think of the theorem in these terms, then the extension to triangles is immediate. 

■ THEOREM 2. Given a correspondence 

ABC <---> DEF 

between the vertices of two triangles. If 

AABC H ADEF , 

then there is an isometry 

f: AABC H ADEF , 

such that f(A) = D, f(B) = E, and f(C) = F. 

PROOF. Let 

AB <--> DE 



Q C 	D 
	

f(c) F 

Figure 18.6 
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be the isometry induced by the correspondence A <---> D, B 4---> E. Similarly, let 

f2: BC H EF 

be the isometry induced by the correspondence B H E, C H F; and let 

f3: A C -> DF 

be the isometry induced by the correspondence A 4--> D, C <--> F. Let f be the 
correspondence obtained by combining fi, f2, and f3. That is, if P is on AB, then 
f(P) = f l(P); if P is on BC, then f(P) = f2(P), and so on. 

B 	 E 

Since each f is an isometry, f preserves the distance between any two points 
that lie on the same side of AABC. Thus it remains only to show that f preserves 
the distance between any two points P, Q on different sides of AABC. Sup-
pose, without loss of generality, that P is on AB and Q is on AC, as in the figure 
(Fig. 18.6). Let P' = f(P) and let Q' = f(Q). Then 

AP = DP', 

because f, is an isometry; 

AQ DQ' , 

because f3  is an isometry; and 

LPAQ = LP'DQ', 

because AABC = ADEF. By SAS, we have 

APAQ = AP'DQ1, 

so that 

PQ = P'Q' , 

which was to be proved. ❑ 

The isometry f that was defined in the proof of Theorem 2 is called the 
isometry induced by the congruence AABC = ADEF. 

You may wonder, at this point, why we didn't define congruence by means 
of isometry in the first place. The reason is that in the sort of geometry that we 
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have been discussing so far in this book, the elementary definitions based on 
distance, angular measure, and correspondences between the vertices of triangles 
are the definitions that are convenient to work with. Thus, if we had defined 
LA = LB to mean that LA ~ LB, the next thing that we should have done is 
to prove that LA LB if and only if mLA = mLB , so that we could work with 
the latter statement instead of the former. Similarly, we would have shown that 
LABC = ADEF if and only if the triangles are congruent in the elementary 
sense, and this would enable us to talk about correspondences between triplets 
of points, instead of talking about correspondences between infinite sets of 
points. In general, basic definitions in mathematics should be stated in such a 
way that they can be put to work quickly and easily. 

	  Problem Set 18.2 	  

1. Suppose that the correspondence 

ABC 4-* A'B'C' 

is an isometry. Show that if A-B-C, then A'-B'-C' .  

2. Given an isometry 

f: M 4-* N . 

Let A and B be points of M. Show that if M contains the segment between A and B, 
then N contains the segment between f(A) and f(B). 

3. Show that if M is convex, and M = N, then N is convex. 

4. Given M N. Show that if M is a segment, then so is N. 

5. Given M = N. Show that if M is a ray, then so is N. 

6. Suppose that M is a segment and N is a circular arc. Then M and N are not isometric. 

18.3 General Properties of 
	 Isometries. Reflections 	 

■ THEOREM 1. A-B-C if and only if (1) A, B, and C are all different and 
(2) AB + BC = AC. 

PROOF. A-B-C was originally defined to mean that (1) and (2) hold, and also 
(3) A, B, and C are collinear. By the Triangular Inequality (Theorem 5 of Sec-
tion 7.1), (2) 	(3). The theorem follows. ❑ 

Hereafter, if f is an isometry, and A, B, C, . are points, then f (A), f (B), 
f (C ), . will be denoted by A',B',C',... . 
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■ THEOREM 2. Isometries preserve betweenness. 

That is, A-B-C 	A'-B'-C'. 

PROOF. Isometries preserve conditions (1) and (2) of Theorem 1. ❑ 

■ THEOREM 3. Isometries preserve collinearity. 

That is, if f: M <---> N is an isometry, and M lies on a line L, then N also lies 
on a line. 

PROOF. Suppose not. Then N contains three noncollinear points A', B', C'. 
The inverse-image points A, B, and C can be arranged in order X, Y, Z, such 
that X-Y-Z. By Theorem 2, one of the points A', B', and C' is between the other 
two. This contradicts the hypothesis that A', B', and C' are noncollinear. ❑ 

■ THEOREM 4. If f: M 4-> N is an isometry, then so also is f -1: N <-> M. 

PROOF. Obviously f -' is a one-to-one correspondence N 4-> M. It remains to 
show that f -1  preserves distances. Let C and D be points of N. Then f(A) = C, 
f (B) = D, for some points A and B of M. Since f is an isometry, CD = AB. 
Therefore f -1(C)f -1(D) = CD, which was to be proved. ❑ 

Hereafter, for the sake of simplicity, we shall discuss isometries E <--> E, 
where E is a plane. 

• THEOREM 5. Let f be an isometry E 4-> E. Then f preserves lines. That 
is, if L is a line, then so also is f(L). 

PROOF. Let L = AB. Since f preserves collinearity, we have 

f(L) C A'B' . 

Since f -1  is an isometry, it follows in the same way that 

f -1(A'B') C AB , 

Therefore 

f(f -'(AB) C f(V), 

and 

A'B' C f(AB). 

Therefore A'B' = f(AB), which was to be proved. ❑ 
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• THEOREM 6. Let f: E 4-> E be an isometry. Then f preserves segments. 
That is, f(AB) = A'B'. 

PROOF. Since f preserves betweenness, we have f(AB) C A'B'. (Details?) Since 
f -1  is an isometry, we have f -1(A'B') C AB. Applying f on both sides, in the 
preceding formula, we get A'B' C f(AB). Therefore f(AB) = A'B'. ❑ 

■ THEOREM 7. Let f: E 4-> E be an isometry. Then f preserves triangles. 
That is, f(AABC) = AA'B'C'. 

PROOF If A', B', and C' were collinear, then A, B, and C would be collinear, 
by Theorems 3 and 4. Therefore A', B', and C' are not collinear. Theorem 7 
now follows by three applications of Theorem 6. ❑ 

■ THEOREM 8. Let f and g be isometries E <---> E. Then the composition 
f(g) is also an isometry E <--> E. 

Obviously. 
We now consider a special type of isometry. Let L be a line in a plane E. 

The reflection of E across L is a function r, defined as follows. (1) If P lies on L, 
then r(P) = P. (2) If P is not on L, then r(P) is the point P' such that L is the 
perpendicular bisector of PP'. Such a transformation r is called a line-reflection. 

■ THEOREM 9. Every line-reflection is an isometry. 

PROOF. Here it is convenient to introduce a coordinate system in which the 
x-axis is L. Then r has the form (x,y) 1-> (x, -y), and Theorem 9 now follows by 
the distance formula. (If we don't use a coordinate system, then we need to dis-
cuss various special cases.) ❑ 

■ THEOREM 10. Let P and P' be points. Then there is a line-reflection 
p 1--> 13', 

(Reflect across the perpendicular bisector of PP'.) 

• THEOREM 11. Let P, Q, and Q' be three points, such that PQ = PQ'. 
Then there is a line-reflection r: P 1-> P, Qi-> Q'. 
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PROOF. If the points are collinear, then P is the midpoint of QQ'; we reflect 
across the perpendicular bisector of QQ'. If not, we reflect across the line which 
contains the bisector of LQPQ' 

■ THEOREM 12. Suppose that LABC = APQR, where the two triangles 
lie in the same plane E. Then there is an isometry 

f: E 4-> E , 

: A 1—> P,B 1-4 	C 1-> R , 

LABC (— APQR , 

such that f is the composition of either two or three line-reflections. 

PROOF. By Theorem 10 there is a line-reflection r,: E 4-> E, A H P. Then 
r,(AABC) = APB'C', and PB' = PQ. (Why?) By Theorem 11 there is a line-
reflection r2: E H E, P 1—> P, B' 1—> Q. There are now two possibilities. 

(1) If C" (= r2(C')) and R are on the same side of PQ, then C" = R, because 
LC"PQ -=--  LRPQ and PC" = PR. Therefore we are done: let f = r2(r1 ). 

(2) If C" and R are on opposite sides of PQ, then we still have LC"PQ -=--  LRPQ 
and PC" = PR. Let r3  be the reflection of E across PQ. Then r3(P) = P, 
r3(Q) = Q, and r3(C") = R. Let f = r3(r2(r,))• 

Note that this theorem is stronger than Theorem 2 of Section 18.2. Now we 
know that every congruence between two triangles can be represented by an 
isometry of the entire plane onto itself. ❑ 

	  Problem Set 18.3 	  

1. Show that isometries preserve circles. 

2. Let A, B, and C be three noncollinear points, and let f be an isometry E <-> E, 
A 	A, B 1—* B, C 1--> C. Show that P 	P for every P. 

3. Let LABC and LPQR be triangles, with LABC = APQR. Show that there is only 
one isometry f : E H E, A 1—* P, B H Q, C H R. Is it true that there is only one isom-
etry f such that f(AABC) = LPQR? 

4. Given AB, show that there are four and only four isometriesf : E <-* E, AB <-> AB. 

5. Given AB = CD, show that there are four and only four isometries g,: E 4-> E, 
AB 4-> CD. 

6. Given a square ❑ABCD, show that there are eight and only eight isometries 
f: E 4-> E,DABCD 4-* ❑ABCD. 

7. We showed (Theorem 6) that segments are preserved by isometries E 4-> E. Show 
that this holds for all isometries. That is, if f is an isometry AB H N, then N is a seg-
ment (namely, the segment A'B'.) 
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8. Similarly, show that if L is a line, and f is an isometry L <—> N, then N is a line. 

9. Show that every isometry preserves triangles. 

10. Find a way to deduce the results of the preceding three problems from the theo-
rems of Section 18.3 (if you have not already done this). 

	  18.4 Dilations and Similarities  	

Let Po  be a point of a plane E, let k be a positive number, and let 

d: E • E 

be a transformation defined as follows. (1) d(P0) = P,. (2) If P P0, let P' = 
d(P) be the point of P0  P such that Po  P' = kPo P. Then d is called a dilation; Po  is 
called its center, and k is called its proportionality constant. (Note that for 0 < 
k < 1, it might seem more natural to call d a contraction.) 

■ THEOREM I. Every dilation is a one-to-one correspondence E <---> E. 

Proof? 

■ THEOREM 2. Let d: E H E be a dilation, with proportionality constant k. 
Then for every pair of points A, B we have 

A'B' = MB . 

PROOF. Choose a coordinate system for E, with the center Po  of d as the ori-
gin. Then 

d(x, y) = (kx, ky) 

Theorem 2 now follows by the distance formula. ❑ 

■ THEOREM 3. Dilations preserve betweenness. 

The proof is like that of Theorem 2 of Section 18.3; the point is that 

AB + BC = AC 

FMB + kBC = kAC 

A'B' + B'C' = A'C' . 

■ THEOREM 4. Dilations preserve collinearity. 

The proof is like that of Theorem 3 of Section 18.3. 
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■ THEOREM 5. The inverse of a dilation is a dilation. 

(Use k' = 1/k.) 

• THEOREM 6. Dilations preserve segments. 

■ THEOREM 7. Dilations preserve triangles. 

The proofs are like those of Theorems 6 and 7 of Section 18.3. 

• THEOREM 8. If AABC APQR (in a plane E), then there is an isometry 
f: E H E and a dilation d: E H E such that 

	

d(f(A)) = P, 	d(f(B)) = Q, 	d(f(C)) = R, 

and 

d(f(AABC)) = APQR 

PROOF. Let B' and C' be points of PQ and PR, such that 

	

PB' = AB, 	PC' = AC . 

Then 

AABC  APB'C', 

and 

APQR 

By Theorem 12 of Section 18.3, there is an isometry 

f: E E 

	

: A 1--> P,B 	B' , C 1—> C' 

: AABC H APB'C'. 

Now let d be the dilation using Po  = P and 

k = PQ/PA' = PR/PB'. 

Then 

	

d(P) = P, 	d(A') = Q, 	d(B') = R . 

By Theorem 7, d(APA'B') = APQR. It follows that d(f(A)) = P, d(f(B)) = Q, 
d(f(C)) = R, and 

d(f(AABC)) = APQR, 

which was to be proved. ❑ 
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We have an easy converse. 

■ THEOREM 9. Let AABC be a triangle, let f be an isometry, and let d be a 
dilation. Let A' = d(f(A)), B' = d(f(B)), C' = d(f(C)). Then 

AABC — AA'B'C'. 

Note that we can now generalize the idea of a similarity in much the same 
way that we generalized the idea of a congruence. A similarity (between two 
plane figures of any kind) is a transformation which is equal to an isometry fol-
lowed by a dilation; and two figures are similar if there is a similarity between 
them. In the case in which the figures are triangles, these definitions agree with 
the elementary definitions. 

	  Problem Set 18.4 	  

1. Write an explicit proof of Theorem 4. 

2. Same, for Theorem 6. 

3. Same, for Theorem 7. 

4. Show that dilations preserve lines. 

5. Show that dilations preserve circles. 

6. Show that dilations preserve parabolas. 

7. Prove Theorem 2 without using a coordinate system. (You will need to discuss vari-
ous cases.) 

8. Prove that dilations preserve half-planes. 

9. Let PI  and P2 be parabolas. Show that there is an isometry f, and a dilation d, such 
that d(f(P1 )) = P2. 

10. Show that every two squares in the same plane are similar. 



CHAPTER 

Constructions with 
Ruler and Compass 

19.1 Unmarked Rulers and 
	 Collapsible Compasses  	

In the introduction to the foundations of geometry, given in the first few chap-
ters of this book, we used postulates which fall into six groups: (1) the incidence 
postulates, (2) the separation postulates, (3) the ruler postulate, (4) the "protrac-
tor postulates," (5) the SAS postulate, and finally (6) the parallel postulate. 
(Here, of course, by the "protractor postulates" we mean the ones dealing with 
the measures of angles.) Our treatment of incidence and separation was stan-
dard; and so also was our treatment of parallelism. In fact, where these topics 
are concerned, the differences between one book and another are mainly in the 
style of exposition and the degree of explicitness. 

The ruler and protractor postulates, however, are another matter. These 
were invented rather recently (by G. D. Birkhoff) and the mathematical spirit 
reflected by them is quite different from the mathematical spirit of the Greeks. 
The basic difference, roughly speaking, is that rulers and protractors are used 
for measuring things; we place them on geometric figures and we read off real 
numbers from the scales that are marked on them. Birkhoff's metric postulates 
tell us, in effect, that we have an "ideal ruler" and an "ideal protractor," with 
which we can measure segments and angles exactly. The Greeks, on the other 
hand, considered that measurement was merely one of the practical arts. It was 
considered unworthy of the attention of mathematicians and philosophers. Just 
as we have described the metric treatment in terms of two drawing instru-
ments, the marked ruler and protractor, so we can describe Greek geometry in 
terms of two different drawing instruments—the unmarked ruler and the com-
pass. The Greeks thought about geometry in terms of these two instruments; 
and they investigated at length the question of what figures could be con-
structed by means of them. 
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Before we consider problems of construction with ruler and compass, sev-
eral warnings are in order. 
(1) When we speak of a ruler and a compass, we mean an "ideal ruler" and an 

"ideal compass," which draw straight lines and circles exactly. The thickness 
of pencil marks and the approximations involved in draftsmanship will not 
concern us. 

(2) The Euclidean ruler has no marks on it. We can use it to draw the line 
through two given points, but that is all we can use it for. We cannot use it 
to measure distances between points, or even to tell whether two segments 
are congruent. 

(3) The Euclidean compass can be used in the following way. Given a point P 
and a point Q (in the plane), we can draw the circle that has center at P and 
contains Q. This is all that we can use the Euclidean compass for. That is, 
given a third point P', we are not allowed to move the spike of the compass 
to P' and then draw the circle with center at P' and radius PQ. For this rea-
son, the Euclidean compass is called collapsible; you can't move the spike 
because "when you lift the spike off the paper the compass collapses." Another 
way of putting it is that you can't use the compass as a pair of dividers. 
Oddly enough, modern draftsmen feel the same way that Euclid did on this 
delicate question. 

(4) In studying ruler and compass constructions, we shall not attempt to build 
the foundations of geometry all over again. In proving that our construc-
tions work, we shall make free use of the theorems of metric plane geome-
try. In particular, we shall make continual use of the line-circle theorem 
and the two-circle theorem. 

(5) In a construction problem, when we say that a line is "given," we mean that 
at least two points of the line are given. 

Let us now try a few constructions. 

ii CONSTRUCTION I. To construct the perpendicular bisector of a given 
segment. 

Given two points P, Q. First draw the circle C1  with center at P, containing 
Q; and then draw the circle with center at Q, containing P: 

Figure 19.1 
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Let PQ = a. Since a < 2a, it follows that each of the numbers a, a, a is less than 
the sum of the other two. Therefore the hypothesis of the two-circle theorem is 
satisfied. (Most of the time, our verifications of the hypothesis of the two-circle 
theorem will be as trivial as this one.) Therefore C1  and C2 intersect in two 
points R and S, lying on opposite sides of PQ. Therefore RS intersects PQ in a 
point T. 

Since T lies on RS, and RS is a chord of both circles, it follows that T is in 
the interior of both circles, and both TP and TQ are less than PQ. Therefore 
T-P-Q and P-Q-T are impossible. Therefore P-T-Q. 

Now ASPR = ASQR, by SSS. Hence L I -== L2. By SAS we have APRT 
AQRT. Therefore L5 = L6, so that RS 1 PQ, and PT = TQ. Thus RS is the 
perpendicular bisector of PQ. This gives us a sort of "corollary construction": 

■ CONSTRUCTION 2. To bisect a given segment. 
First construct the perpendicular bisector, as above. The point T is the 

bisector. 

■ CONSTRUCTION 3. To construct the perpendicular to a given line, 
through a given point on the line. 

Given a line L, and a point X of L. Since L was given, at least one other 
point P of L must be given. Draw the circle C which has center at X and con-
tains P. Then C will intersect L in exactly one other point Q. Now construct the 
perpendicular bisector of PQ; this will be perpendicular to L at X. 

• Pi 	PL, 
X 

• 

Figure 19.2 

CONSTRUCTION 4. Given three points P, Q, R. To construct a rectangle 
❑PQST, such that PT = PR. 

T 

Figure 19.3 
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First construct the perpendicular L1  to PQ at P. Then draw the circle C that 
has center at P and contains R. The circle C will intersect L 1  in points T and T'. 

Now construct L2 perpendicular to PQalQ; and construct L 3  perpendicular 
to L 1  at T. If L2 and L3 were parallel, then PT and PQ would be parallel, which 
is false. Therefore L2 intersects L3 in a point S. We know that each pair of oppo-
site sides of ❑PQST are parallel; and three of its angles are right angles. There-
fore ❑PQST is a rectangle. 

■ CONSTRUCTION 5. Given a segment PQ and a ray AB. To construct a 
point C of AB such that AC = PQ. 

Figure 19.5 

First we construct a rectangle ❑PATU, with PU = PQ. Then AT "=- PQ. 
Draw the circle with center at A, containing T This will intersect AB in a point C; 
and we will have AC = PQ, as desired. 

Note that once we have Construction 5, we are free to forget about the col-
lapsibility property of our Euclidean compass. The point is that the ruler and 
compass, in combination, furnish us in effect with a pair of dividers. 
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	  Problem Set 19.1 

1. Find a simpler method of doing Construction 5, which works whenever PQ < PA. 
[Hint: First construct an equilateral triangle LPAU.] 

2. Show that if Construction 5 can be done in the case where PQ < PA, then it can be 
done in the general case. 

3. v CONSTRUCTION 6. Given LABC, and A'B' = AB. To construct a point C' on 
a given side of AB , such that AABC = AA'B'C'. 

4. • CONSTRUCTION 7. Given LABC, PQ, and a side H of PQ. To construct a ray 
PR, with R in H, such that LABC = LRPQ. 

5. • CONSTRUCTION 8. Given a line L and point P. To construct the line through 
P parallel to L. 

6. v CONSTRUCTION 9. Given AB and a positive integer n. To divide AB into n 
congruent segments. 

7. Suppose that your Euclidean ruler is not a "theoretical ruler," of infinite extent both 
ways, but a ruler of finite length, say, one inch. Suppose also that the points of your 
compass cannot be spread apart more than an inch. Show that given any two points—
no matter how far apart they may be—you can draw the segment between them. 

8. In carrying out Construction 9, you probably found it convenient to draw, at random, 
a ray AP which was not collinear with AB. Show that this process of random choice 
can be avoided. 

Strictly speaking, random choices of points are not allowed in doing construction 
problems. The reason is curious: if they were allowed, then the so-called "impossible 
construction problems" to be discussed later in this chapter would be not quite impos-
sible. For example, an infinitely lucky person might manage to pick, at random, a point 
on a trisector of any given angle. 

19.2 How to Do Algebra with 

	

   Ruler and Compass  	

Suppose that we have given a segment of length 1, and two segments of length 
a and b: 

Figure 19.6 

We shall show that all the elementary operations of algebra for the numbers a 
and b can be carried out with ruler and compass. That is, with ruler and com-
pass we can construct segments whose lengths are 



19.2 How to Do Algebra with Ruler and Compass 	 269 

a + b, 	
1 	

ab, 	— 	. 
a 	 a  

(1) The first of these constructions is trivial. On any line L, we lay off a seg-
ment PQ of length a, and then lay off a segment QR of length b, in such a 
way that P-Q-R. The others require tricks. 

(2) In Fig. 19.7, we have L1 = L2, so that AABC AADE. Therefore 

AC _ AE 
AB AD •  

If AB = a, AC = 1, and AD = 1, this says that 

1 AE = 
a 	1 •  

Figure 19.7 

This indicates a way to construct a segment of length 1/a. We start with any 
angle LQAR. On AQ we lay off AB with AB = a, and AD with AD = 1. On 
AR we lay off AC, with AC = 1: 

Figure 19.8 

We now construct a ray DS so that LADS = L 1. (Any angle can be copied with 
ruler and compass.) You ought to be able to prove, with no trouble, that DS 
intersects AR in a point E. The segment AE is the segment that we wanted. 

(3) In the figure below, we have L 1 = L2, so that APXY APZW. 
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Therefore 

Figure 19.9 

PZ y 

x 

so that PZ = xy. The construction of the figure is exactly as in the preced-
ing case. 

(4) To construct a segment of length b/a, we first find 1/a, and then multiply 
the result by b. 

(5) Finally, we want a segment of length "\/a. First we construct segments PQ, 

P 1 Q 	M a 

Figure 19.10 

QR, so that P-Q-R, PQ = 1 and QR = a. We bisect the segment. Let M be 
its bisector. With center M and radius 

MP = MR — 
1 +a  

2 

we draw a circle. Next we construct a perpendicular to PR at Q. This line 
intersects the circle in two points, one of which is the S shown in the figure. 
Let x = QS. Since APQS ASQR, we have 

QS = QR 
PQ SQ 

or 

x 	a 
1 
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or 

x2 = a . 

Therefore x = "\f- , and QS is the segment that we were looking for. 

19.3 Solving Equations with 
	  Ruler and Compass  	

We have found that with ruler and compass we can add, multiply, divide and 
extract square roots, starting with positive numbers. Let us now suppose that 
we have a coordinate system in the plane: 

Y 

3— 

2— 

1 — 
a b 

• 1.-- X 
—3 —2 —1 0 	1 2 3 

—1—  

—2—  

Figure 19.11 

We want to know which points we can plot with ruler and compass, given the 
points with coordinates 1, a, and b on the x-axis. Of course, negative numbers 
have now entered the picture: a and b may easily be negative. But this causes no 
trouble; if we can plot the point with coordinate x, then surely we can plot the 
point with coordinate —x; given x and y, we can plot x — y, y — x, (—x)y, x(—y), 
and so on. 

This means that with ruler and compass we can perform all the operations de-
scribed in the postulates for a Euclidean ordered field. That is, we can add, subtract, 
multiply, divide, and extract square roots, in all cases where these operations 
are algebraically possible. Hereafter, when we speak of "plotting a number," we 
shall mean, of course, plotting the corresponding point on the x-axis. Obvi-
ously, if we can plot both h and k, then we can plot the point (h, k) in the coordi-
nate plane. We merely construct perpendiculars, as in the figure, thus getting 
their intersection. And conversely, if P = (h, k) is given, we can plot h and k by 
dropping perpendiculars to the axes. 
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Figure 19.12 

For this reason, in many cases we can solve algebraic problems by going 
through ruler-and-compass constructions. This process is not merely a stunt. 
We shall use it to solve some construction problems which would otherwise be 
very hard. 

• PROBLEM 1. Given the points with coordinates a, b, c on the x-axis, with 
b 2  — 4ac > 0. We wish to plot, with ruler and compass, the roots of the equation 

ax 2 + bx + c = . 

These roots are the numbers 

x = 	 and x, = 
—b + Vb 2  — 4ac 	 —b — Vb 2  — 4ac 

, 

2a 	 2a 

Each of them can be computed, starting from a, b, and c, by a finite number of 
additions, subtractions, multiplications, divisions and root-extractions. Each of 
these operations can be performed geometrically. Therefore the roots can be 
plotted. 

■ PROBLEM 2. Given the points on the x-axis with coordinates A, B, C, A', 
B', C'. We wish to plot the numbers x1 , y i  which are the solution of the system 

	

Ax + By + C = 0 , 	 (1) 

	

A'x + B'y + C' = 0 . 	 (2) 

We are interested in the case where the graphs of the equations are nonparallel 
lines intersecting in a single point (x i ,y1). This occurs when 

AB' — BA' 0 0. 

Y 

Figure 19.13 
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In this case, by the usual elementary methods, we get the solution in the form 

BC'  — B'C  
= 

	

	 
AB' — BA" 

A'C — AC'  
= 

	

	 
AB' — BA' • 

All the operations required here can be done with ruler and compass. There-
fore x, and y, can be plotted. In fact, if you are actually going to plot x, and y,, 
there is a much shorter method. We claim that if A, B, and C are plotted, then 
at least two points of the line 

Ax + By + C = 0 

can be plotted. If B 	0, we can set x = 0 and x = 1, getting the points 
(0, —C/B), (1, (—C — A)/B). If B = 0, then the corresponding line is vertical, 
and we can plot the points ((—C/A), 0), ((—C/A), 1). Once we have plotted these 
points, we can draw the line that contains them: 

Figure 19.14 

Thus, if the coefficients in the equation of a line can be plotted, the line itself 
can be drawn by a rule-and-compass construction. The short way to construct 
the solution of a pair of linear equations, therefore, is to draw the correspond-
ing lines and see where they intersect. The same idea leads to an even greater 
economy in more difficult cases, as we shall see. 

ii PROBLEM 3. Suppose that a, b, r, A, B, and C are plotted, with r > 0. We 
want to plot the common solutions (x,,y,), (x2,y2) of the equations 

	

(x — a)2  + (y — b)2  = r2, 	 (1) 

	

Ax + By + C = 0 , 	 (2) 

x, 

Y1 

in the case in which such common solutions exist. We assume, as usual, that A 
and B are not both 0, so that the graph of (2) is a line. 
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This one is easy. First we draw the graph of (2) by the method used in the 
preceding problem. The graph of (1) is a circle with center at (a, b) and radius r. 
Since a, b, and r are given as plotted, we can draw this circle. We have now plot-
ted whatever intersection points may happen to exist. 

Figure 19.15 

■ PROBLEM 4. Suppose that A, B, C, D, E, and F are given as plotted. Sup-
pose that the graphs of 

x 2  + y2  + Ax + By + C = 0 , 	 (1) 

Dx + Ey + F = 0 , 	 (2) 

are a line and a circle, respectively. We want to plot the common solutions 
(x1 , y1), (x2,y2), in the cases where such solutions exist. 

The first step is to draw the graph of (2). The remaining problem is to 
show that the graph of (1) can also be drawn. 

Completing the square in the usual way, we convert (1) to the form 

A 2 	 B2 	A 2 B 2 
x 2  + Ax +  + y2  + By +  = –C + — + — 

4 	 4 	4 4, 

or 

(

x  + A\2  + / + By _ A 2  + B2  – 4C  
2 	Y  2 – 	4 

Thus the center of our circle is the point 

(a, b) = (- 1±
2' 2 

–1 , 

and its radius is 

1 	  
r -= 

2
—VA2  + B2  – 4C. 
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All three of the numbers a b, and r can be plotted, since A, B, and C can be 
plotted. Therefore the circle can be drawn, exactly as in the preceding problem. 

■ PROBLEM 5. Given a system of equations 

x 2  + y2  + Ax + By + C = 0, 

x 2  + y2  + Dx + Ey + F = 0 , 

where the coefficients are given as plotted. Again, we want to plot the common 
solutions in the cases where there are any. To do this, we draw the two circles 
by the method used in the preceding problems. 

We have now gotten involved in a lengthy investigation of relations between 
geometry and algebra. This may seem foreign to the spirit of geometry, but in 
fact it is foreign merely to the spirit of Greek geometry. We shall see that once 
algebra has been introduced, we can get easy solutions of problems that the 
Greeks found difficult, and we can get difficult solutions of problems that the 
Greeks found impossible. 

	 19.4 The Problem of Apollonius  	

Given three circles C1, C2, and C3 in the plane. The problem of Apollonius is to 
construct, with ruler and compass, all possible circles C which are tangent to all 
three of the circles C1, C2, and C3. One such C is shown in the figure. 

N 

ONN-- 
Figure 19.16 

Using the methods of the preceding section, we shall show that all possible 
circles C are constructible with ruler and compass. 
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(1) 

(2) 

(3) 

Figure 19.17 

Given C1, with center P, and radius r1, and C, with center P and radius r, 
it is easy to find the conditions under which the two circles are tangent. If the 
circles are tangent and mutually exterior, then 

PP, = r + r, . 	 (1) 

If they are tangent, and C1  lies inside C, then 

PP, = r — r, . 	 (2) 

Finally, if they are tangent, and C lies inside C1, then 

PPI = ri — r. 	 (3) 

Conversely, each of these equations implies that the corresponding geomet-
ric condition holds. We can sum all this up by saying that C and C1  are tangent if 
and only if 

PI3 L  = (r ± 7-02. 

To connect this up with our algebra, we let the centers be the points (a, b), 
(a1, b1). Our equations then take the form 

(a — a1)2  + (b — b1)2  = (r ± r1)2. 	 (4) 
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We can now restate the problem of Apollonius. C is tangent to all three of 
the circles C,, C2, C3 if all three of the equations 

(a — a1)2  + (b — b1)2  = (r ± r1 )2  (4)  

(a — a2)2  + (b — b2)2  = (r ± r2)2 
(5)  

(a — a3)2  + (b — b3)2  = (r -± r3)2 (6)  

hold for some choice of + or — in each equation. 
Here, for each of the eight possible choices of signs, we have a system of 

three equations in the three unknowns a, b, and r. Our problem is to solve these 
equations with ruler and compass, in the cases where solutions exist. 

First we multiply out and collect terms, getting 

a
2 + b 2 

Th
. r2 — 2ala — 2bib T 2ri r = r; — a — bl . 

This has the form 

a 2  + b2  — r2  + Ala + B i b + Co- + D, = 0, 	 (7) 

where the coefficients are numbers that can be plotted. Similarly we get 

a 2  + b2  — r2  + A2a + B2b + C2r + D2 = 0 , 	 (8) 

a 2  + b2  — r2  + A3a + B 3b + C3r + D3  = 0 , 	 (9) 

where all of the coefficients can be plotted. Subtracting (7), term by term, from 
(8) and (9), we get two equations of the form 

Eta + F

• 

2b + G2r + H

• 

2 = 0 , 	 (8') 

E3a + F

• 

3b + G3r + H

• 

3 = 0 , 	 (9') 

where all of the coefficients can be plotted, being differences of plottable numbers. 
We now propose to solve for a and b in terms of r. That is, we are going to 

regard G2r + H2 and G3r + H3  as constant terms. By the methods referred to in 
Problem 2 of the preceding section, we get 

F2(G3r + H3) F3(G2r + H2)  
E2 F3 F2 E3 

F3(G2r + H2) — F2(G3r + H3)  
E2 F3  — F2 E3  

Here a and b have the forms 

a = J i r + K i , 	b — J2r + K2 , 

where all the coefficients can be plotted, because the previous coefficients were. 
We now substitute in (7) these expressions for a and b. Equation (7) now be- 

comes a quadratic equation in r alone, with coefficients all of which can be plotted: 

(J1r + K1 )2  + (J2r + K2)2  — r2  + IWO' + K1) + B1(J2r + K2) + C1 r + D1  = 0. 

a= 

b= 
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We can solve such an equation with ruler and compass to plot the point r. We 
then plot a and b. This solves our problem. 

Note that if any of these steps are algebraically impossible, this means that 
the geometric problem was impossible in the first place. This can easily happen. 
For example, if the three given circles are concentric, then no circle is tangent 
to all of them. 

Various modifications of Apollonius' problem can be solved by the same 
method. Suppose, for example, that we want to construct all circles C which 
pass through a given point P1  and are tangent to two given circles C2  and C3. To 
solve the problem, we would simply set r, = 0, and then proceed exactly as 
before; similarly, if two points and a circle are given. You can even use the 
method to pass a circle through three given points, if you want to, but you 
surely don't want to. (Why?) 

Figure 19.18 

It should be understood that the sort of analysis that we have been going 
through does not lead to valid methods in mechanical drawing. In complicated 
construction procedures, there are so many steps that the cumulative error is 
likely to make the final result unrecognizable as a "right answer." To keep this 
cumulative error small, we need to do the algebra algebraically. 

19.5 The Impossible Construction 
	  Problems of Antiquity  	

The methods that we have been using were unknown to the Greeks. Some of 
the Greek mathematicians (notably Archimedes) were as good as any mathe-
maticians who have ever lived. But some easily stated problems defeated them 
completely; and many centuries later the reasons for this became clear. It 
turned out that geometry, in the sense in which the Greeks understood it, is not 
a self-contained subject, and that some of its elementary problems require, for 
their solution, branches of mathematics that the Greeks did not discover. 
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Probably the most famous of these problems are the trisection of the angle 
and the duplication of the cube. Given an angle, we are asked to construct its 
trisectors with ruler and compass. 

Figure 19.19 

Given a segment of length a, it is required to construct a segment of length b, 
such that 

b 3  = 2a3. 

	

If a = 1, then b = - (2-.. Thus our problem is to plot 	on the x-axis. The 
Greeks, of course, did not put it this way. In purely synthetic terms, given a seg-
ment AB, we are to construct a segment CD, such that a cube with CD as an edge 
has twice the volume of a cube with AB as an edge. 

It turned out that both these problems are impossible: no such construc-
tions exist. The rest of this chapter will be devoted to the proofs of these state-
ments. In the following sections, it will seem that we are going far afield; we 
shall, because we have to. It was the need for going far afield that made the im-
possibility proofs so hard to discover. 

	  19.6 The Surd Field  	

A number x is called a surd if we can calculate x by a finite number of additions, 
subtractions, multiplications, divisions, and extractions of square roots, starting 
with 0 and 1. 

For example, 2 is a surd, because 2 = 1 + 1, and 1 is a surd ex officio. Given 
that n is a surd, it follows by addition that n + 1 is a surd, because the sum of 
two surds is a surd. By induction we conclude that every positive integer is a 
surd. By subtraction, every negative integer is also a surd. By division, we have 
the following: 

■ THEOREM 1. Every rational number is a surd. 

And it is easy to show that: 

■ THEOREM 2. The surds form a Euclidean ordered field. 

To check this, we note first that the associative, commutative, and distribu-
tive laws automatically hold for surds, since they hold for all real numbers. The 
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same observation applies to the postulates for order. Since we are allowed to 
form surds from other surds by addition, subtraction, multiplication, and divi-
sion, it follows that the set of surds contains sums, products, negatives, and 
reciprocals of all its elements. (Except, of course, that 0 has no reciprocal.) 
Therefore, the surds form an ordered field. Finally, since we are allowed to form 
surds by extracting square roots of positive surds, it follows that the surd field 
satisfies the Euclidean completeness postulate. 

We denote the surd field by S. 
Later we shall see that some numbers are not surds. Granted that there is 

one nonsurd, it follows that there are lots of others. For example, if x is not a 
surd, and p and q are nonzero integers, then y = (p/q)x is not a surd. The rea-
son is that if y were a surd, then x would be the product of the surds y and q/p. 
Therefore x would be a surd after all. In general, if a is a surd and x is not, and 
a 0 0, then ax is not a surd. 

We return now to the coordinate plane. By an S-point (S for surd), we 
mean a point both of whose coordinates are in S. By an S-line, we mean a line 
which contains at least two S-points. By an S-circle, we mean a circle whose cen-
ter is an S-point and whose radius is in S. By an S-equation we mean an equation 
of the form Ax + By + C = 0 or x2  + y2  + Dx + Ey + F = 0, in which all of the 
coefficients are in S. These ideas are connected up by the following theorems. 

THEOREM 3. Every S-line is the graph of an S-equation. 

PROOF. Let L be a line containing the S-points (x,,y,), (x 2,y2). If L is vertical, 
then L is the graph of the S-equation x — x, = 0. If L is not vertical, the slope 
of L is 

Y2 - yi  
x2  - x, 

Here m is a surd, because the surds form a field; and L is the graph of the 
equation 

y — y, = m(x — x,) , 

or 

mx - y - (-y, + mxi) = 0 , 

which is an S-equation. The converse is also true. 

■ THEOREM 4. If a line L is the graph of an S-equation, then L is an S-line. 

PROOF. Suppose that L is the graph of the S-equation 

Ax + By + C = . 
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If B 	0, then we can set x = 0 and x = 1, getting the S-points (0, — (C/B)), 
(1, —(C + A) /B). If B = 0, then L contains the S-points (—(C/A), 0) and 
(—(C/A), 1). ❑ 

■ THEOREM 5. Every S-circle is the graph of an S-equation. 

PROOF. Let C be an S-circle with center (a, b) and radius r. Then C is the 
graph of 

(x — a)2  + (y — b)2  = r2, 

or 

x 2  + y 2  — 2ax — 2by + a2 + b2 _ r2 = 0 ,  

which is an S-equation. ❑ 

• THEOREM 6. If a circle C is the graph of an S-equation, then C is an 
S-circle. 

PROOF. Given that 

x2  + y2  + Dx + Ey + F = 0 

is an S-equation, and that its graph is a circle. We can then convert the equation 
to the form 

(x  + /12  + ( + E)2  _ D2  + E2  — 4F 

2 	Y 	2 	4 

Therefore the center is the S-point (—(D/2), — (E / 2)) and the radius is the surd 

r= 2
1

VD2  + E2  — 4F . ❑ 

This sort of elementary algebra is easier to write than to read. We therefore 
leave to you the verification of the following theorem. 

■ THEOREM 7. Let P be a point in the intersection of (1) two S-circles, (2) 
two S-lines, or (3) an S-circle and an S-line. Then P is an S-point. 

The reason is roughly as follows. The coordinates x,, y, of P are common 
solutions of two S-equations, each of which has the form 

Ax + By + C = 0 or x2  + y2  + Dx + Ey + F = 0 . 

When we solve such a system by the usual algebraic methods, we find ourselves 
calculating x, and y, by starting with the coefficients and then performing the 
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operations +, •, 	=, V. These operations keep us within the surd field at 
every stage. Therefore the final results x1  and yi  must be surds. 

	  Problem Set 19.6 	  

1. Let L be a nonvertical line. Show that if L contains an S-point, and the slope of L is 
a surd, then L is an S-line. 

2. Let L be a nonvertical line. Show that if L is an S-line, then the slope of L is a surd. 

3. Let C be a circle. Show that if the center of C is an S-point, and C contains an 
S-point, then C is an S-circle. 

4. Let C be a circle. Show that if C contains three S-points, then C is an S-circle. 

5. Show, conversely, that every S-circle contains three S-points. 

6. Show that if x is a real number which is not a surd, and s is a surd different from 0, 
then xs is not a surd. 

7. Assuming that S is not all of R, show that every circle contains two non-S-points. 

8. Assuming as before that S R, show that there is a circle which contains no S-
points at all. 

	  19.7 The Surd Plane  	

Let E be a coordinate plane. Let E be the set of all surd points in E. The set E 
will be called the surd plane. For each S-line L, let L = E fl L. 

The sets L are called surd lines. Similarly, if C is an S-circle, let 

C = r n c. 

The sets C are called surd circles. 
As we have remarked before, it will turn out that not all real numbers are 

surds. Therefore E is full of holes. In fact, E does not contain all of any line or 
any circle. 

Figure 19.20 
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In fact, if x, and y, are nonsurds, then the lines x = x1  and y = y, contain no 
points of E at all. The lines of this type cut the plane (in a manner of speaking) 
into pieces only one point wide. 

On the other hand, if you were to investigate the surd plane by experiment-
ing with ruler and compass, you could never tell that any points were missing. 
The only lines and circles you could draw would be S-lines and S-circles. If two 
S-lines, L1  and L2, intersect in a point, this point is in E. (See Theorem 7, Sec-
tion 19.6.) Therefore L, intersects L2. If an S-line L intersects an S-circle C the 
intersection points are in E (same theorem). Therefore 

EnK'=Lnc. 

If two S-circles C1, C2  intersect, then so also do the surd circles C1, C2, in the 
same points. 

Thus, although surd lines and surd circles are "full of holes," they "never 
pass through each other where the holes are"; they intersect each other every-
where we expect them to. We sum this up in the following theorem. 

• THEOREM 7-1. Every ruler-and-compass construction which is possible 
in the plane is also possible in the surd plane. 

In the light of this theorem, the questions of trisecting angles and duplicat-
ing cubes become questions of fact, as follows. 

(1) Is it true that, in the surd plane, every angle has a trisector? 

(2) Is 	a surd? 

If the answer to (1) is "No," then there is no general method of trisecting 
angles with ruler and compass; the only points that we can construct are the 
surd points, and therefore we cannot construct a line that contains fewer than 
two surd points. 

Similarly, if 	is not a surd, we cannot construct a segment whose length 
is "V. 

To answer questions (1) and (2), we need to do some algebra. 

19.8 Quadratic Extensions of Fields. 
Conjugates in a Quadratic 

	  Extension Field  	

Let F be a subfield of the real number system. Let k be a positive number be-
longing to F, and suppose that V does not belong to F. Let 

F(k) = {x + yViti x,y E F}. 

The set F(k) is called a quadratic extension of F. 
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For example, if F is the field 	of rational numbers, then 2 E F and 
F. Therefore we can form the quadratic extension 

F(k) = 0(2) = + y\/ I x,y E 01. 

We found, in Problem 6 of Problem Set 1.3, that these numbers form a field; 
and in fact this is what always happens, as we shall soon see. 

• THEOREM 1. Let F(k) be a quadratic extension of F. If a, b E F, and 

a + b\/11 = 0 , 

then a = b = 0. 

PROOF. Suppose that b 0 0. Then Vit = —a/b, and Vie E F, which is false. 
Therefore b = 0, and a + 	= a = 0. ❑ 

■ THEOREM 2. Let a, b,c,d E F. If a + b1/71 = c + dVit, then a = c and 
b = d. 

PROOF. 

a + bVit = c + dVic (a — c) + (b — 	= 0 

a = c and b = d . ❑ 

Thus every element of F(k) can be expressed in only one way as a linear 
combination a + bVie. 

■ THEOREM 3. Every quadratic extension of a field forms a field. 

PROOF. Let F be a subfield of the real numbers, and let F(k) be a quadratic 
extension of F. The associative, commutative, and distributive laws hold auto-
matically in F(k), because they hold for all real numbers. It is also easy to see 
that the numbers of the form x + yVit (x,y E F) are closed under addition and 
multiplication, that 0 is among them (= 0 + OVit), and that —(x + yVit) is al-
ways a number of the same form. It remains only to verify that if 

x + yVie 0 0 

then 

x + yVit 

Of course we know that the reciprocal exists, because the real numbers form a 
field; the question is whether the reciprocal belongs to F(k). 

LEMMA. If x + yVie 0 0, then x — yVit O. 

1 
E F(k). 
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PROOF. If x — yV k = 0, then x = y = 0, by Theorem 1. It follows that 
x + yVie 0 0, which is false. ❑ 

By the lemma, we can write 

1 	1 	x — yVic 

x + yVic x + yVit x — yVic 

x — 
ky  2 

—Y  
x 2  — ky 2  X2  - ky 2  

which belongs to F(k). 
If z = x + yV E F(k), then the conjugate Z of z is defined by the equation 

Z = x — 

(Note that is is determined if z is known: by Theorem 2, z determines x and y, 
and therefore z determines -z = x — yam.) The operation of conjugation in a 
quadratic extension field is closely analogous to the corresponding operation 
for the complex numbers. It may be worthwhile to review this, to bring out the 
analogy. 

Given a complex number 

z = x + yi , 

we define 

= x — yi . 

The basic properties of the operation z H z are given in the following theorems. 

■ THEOREM A. The conjugate of the sum is the sum of the conjugates. 
That is, if 

then 

This is trivial to check. 

• THEOREM B. The conjugate of the product is the product of the conju-
gates. That is, 

zl = xi  + yii, 	z2  = x2  + y2i , 

zi  + z2  = zi  + z2  . 

Z 1Z2 = zlz2. 
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VERIFICATION. 

z1z2  = (xl  + y1i) (x2 + y2i) = x 1 x2 	.

- 	

Y2 + (x1.)1 2 	x2y1)i,  

= (x — y1i) (x2  — y2i) = x1 x2  

- 

Yi Y2 — (x1y2 + x2.)1 1)i • 

Obviously, z,z2  = 
By induction we get the following theorem. 

■ THEOREM C. Tri = 

■ THEOREM D. If a is a real number, then 7/ = a. 

By a polynomial of degree n > 0, we mean (as usual) a function f defined by 
an equation 

f(z) = anzn + an _ izn 1  + • • + aiz + ao , 

where an  0 0. We allow also the "zero polynomial" which is 0 for every z. 

■ THEOREM E. If f is a polynomial with all coefficients real, then f(i) = 
f(z) for every z. 

PROOF. Let f(z) be as in the definition of a polynomial. Then 

f(i) = 	an-uin 	-+ • • + a nz + a, 

+ • • • + 	+ = anz 

by Theorem D. This is 

= anZn 	 • • + anz + ap , 

by Theorem C. This is 

= a„zn + an_ izn-1  + • • • + alz + Tto , 

by Theorem B. And this is = f(z), by repeated applications of Theorem A. ❑ 

• THEOREM F. Let f be a polynomial with all coefficients real. If f(zo) = 0, 
then 

.f (zo)= 0 . 

That is, if the coefficients are real, then the roots of the equation occur in 
conjugate pairs zo, zo. 

The proof is trivial, because if f (zo) = 0 we have 

f(zo) = f(zo) = 0 = 0. 
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For quadratic extension fields F(k), we have a similar sequence of theorems 
in which F acts like the field of real numbers, F(k) acts like the field of complex 
numbers, and Vit acts like i. We shall merely restate the theorems and leave 
to the reader the easy task of verifying that the same proofs work in the same 
way. (The equations in the proof that z(z2  = EI-z2  take a slightly different form.) 
Throughout these theorems it should be understood that F(k) is a quadratic 
extension of F, and that conjugates are defined by 

x + y\/1/ = x - yVit. 

• THEOREM 4. In F(k), the conjugate of the sum is the sum of the conjugates. 

■ THEOREM 5. The conjugate of the product is the product of the 
conjugates. 

• THEOREM 6. 7 = z for every z E F(k). 

■ THEOREM 7. If a E F, then -a = a. 

■ THEOREM 8. If f is a polynomial with all coefficients in F, then f(i) 
f(z) for every z in F(k). 

■ THEOREM 9. Let f be a polynomial with all coefficients in F. If zo  E F(k), 
and 

f(zo) = 0 , 

then 

f(zo) = 0. 

Thus, for polynomial equations with coefficients in F, the roots in F(k) occur in 
conjugate pairs. 

Theorems F and 9 describe a phenomenon which is familiar from elemen-
tary work with quadratic equations. The roots of the equation 

ax2 + bx + c = 0 

are given by the formula 

-b 	b 2  - 4ac 
x= 	  

2a 

If b 2  - 4ac = -d < 0, then the roots are the complex numbers 

-b V . 

2a 	2a l  

which are conjugate, as predicted by Theorem F. 
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Suppose now that a, b, and c are rational, and b2  — 4ac = e > 0. The roots 
are then the real numbers 

— b 	1 
2a 4-  2a V;  

These are conjugate elements of the quadratic extension field F(k) = Q(e), as 
predicted by Theorem 9. 

19.9 Surd Fields of Order n; 

	

   Surds of Order n  	

Suppose that we have an ascending finite sequence of fields, starting with the 
rationals and proceeding by a quadratic extension at every step. Thus our 
fields are 

.. • , 

where 

Fo  = 

and 

F,+1 — Fi(ki+  ,) • 

Here, for each i, kin  is in 	but 	is not. In this case we say that Fn  is a surd 
field of order n. 

■ THEOREM 1. All elements of F„ are surds. 

Because they are obtainable from rational numbers by a finite number of 
operations +, +, V—. (For a formal proof, we would use induction: all ele-
ments of Fo  are surds; and if F, has this property, so does F,+1.) The converse is 
also true: 

■ THEOREM 2. Every surd belongs to a surd field of some order. 

PROOF. Every surd x can be built from rational numbers by a finite number 
of operations +, •, 	+, V—. If n root-extractions are needed in this process, 
we say that x is a surd of order n. Thus every rational number is a surd of order 0; 

is a surd of order 1, and so on. 

Given that x is a surd of order n, let 

k,, k2, 
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be the numbers whose roots we extracted in forming x, in the order in which 
these roots were extracted. Let 

Fo  = 0, 	Fl  = Fo(ki) 

and in general 

Fin = Fi(kin) • 

Between the ith root-extraction and the (i + 1)st, we may have used +, •, 
and +, but these operations can all be performed in F1. Therefore all the num- 

	

bers formed in the intermediate stages are in the fields Fo, 	,Fn  ; and in par- 
ticular, x E F„, which was to be proved. ❑ 

Note that all of the indicated quadratic extensions are genuine; we have 
Vk,+ , F„ because if V-17,7,1  E F,, we could reduce the number of root extrac-
tions used in forming x, and x would not be a surd of order n after all. 

Note also what Theorem 2 does not say: it does not say that there is one par-
ticular Fn  which contains all surds of order n. In fact, the latter statement is not 
true; in general, Fn  depends not merely on the order n of x, but also on x. For 
example, "\/ and V are surds of order 1, but no one field F, contains both of 
them, because "N/ + "\/ is a surd of order 2. 

	  Problem Set 19.9 	  

1. Show that if nm is even and n is odd, then m is even. 

2. Show that '0 is irrational. 

3. Now prove the statement made in the last sentence of this section. That is, prove 
that no quadratic extension Q(k) of the rational numbers contains both "\r .  and VI 

19.10 Applications to 
Cubic Equations 

	 with Rational Coefficients  	

Given a cubic equation 

f(z) = z3  + a2z 2  + a,z + ao  = 0, 

where the coefficients are real numbers. We recall from the theory of equations 
that the polynomial on the left always has a factorization of the form 

g(z) = (z — z1) (z — z2) (z — z3) = 0 , 
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where z,, z2, and z3  are the roots. They may not all be different, and two of them 
may be complex. Why is it impossible for exactly one of them to be complex? 

(For a full review of the algebraic background of this section, including 
proofs of all theorems cited here without proof, see Chapter 30 at the end of 
the book.) 

This gives 

g(z) = z3  - (z, + z2  + z3)z 2  + (z,z2  + z,z3  + z2z3)z - z1 z2z3  = 0 . 

Now f(z) = g(z) for every z. The only way this can happen, for polynomials, is 
for the corresponding coefficients to be equal. Therefore, in particular, we have 

(z, + z2  + z3) = a2 . 

Suppose that a, b, and c are in a subfield F of the real numbers and that the 
equation 

Z 3 + az2 + bz + c = 0 

has a root z,, in a quadratic extension F(k) of F. Then il  is also a root, by Theo-
rem 9 of the preceding section. If the third root is z3, then we have 

-(z, + -z, + z3) = a , 

or 

z3  = -(z, + I-, + a) . 

Now z, + -z, E F. (Why?) Therefore z3  is in F. Thus we have the following 
theorem. 

■ THEOREM 1. Given an equation, 

Z 3 ± az2 + bz + c = 0 , 

with coefficients in a field F. If the equation has a root lying in a quadratic ex-
tension of F, then the equation has a root lying in F. 

If the coefficients are rational, we can draw a stronger conclusion. 

■ THEOREM 2. Given a cubic equation, 

Z 3 ± az2 + bz + c = 0 , 

where the coefficients are rational. If the equation has a root in the surd field, 
then it also has a rational root. 

PROOF. Suppose that a surd zl , of order n, is a root. Then we have a sequence, 

F0, F1, F2, . . . , F„ , 
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of quadratic extensions, as in the preceding section, with 

Fo  = , 

= Fi(k+i) 

for every i, and z, E 
Now a, b, c E 0, so that our coefficients are in F„_,. By Theorem 1, our 

equation has a root in F„_,. Repeating the same reasoning another n – 1 times, 
we conclude that our equation has a root in Fo. Since Fo  = 0, this proves the 
theorem. ❑ 

	 19.11 The Trisection of the Angle 	 

Some angles can be trisected with ruler and compass. For example, a right 
angle can be trisected: 

Figure 19.21 

Given a right angle LA. Draw a circle with center at A, with any radius a, inter-
secting the sides of LA in points B and C. Draw the circle with center at B, con-
taining A. The two circles will intersect in two points, one of which will be a 
point Din the interior of LA. (Both points of intersection will lie on the same 
side of AC as B ; and exactly one of them will lie on the same side of AB as C.) 
Now AABD is equilateral, and hence equiangular. Therefore mLBAD = 60. 
Therefore mLDAC = 90 – 60 = 30 = s • 90, and LDAC is a trisector of LBAC. 
To get the other trisector, we draw the circle with center at C, containing A, 
and join A to the point where this circle intersects our first circle in the interior 
of LBAC. 

For some angles—in particular, for angles of 60°—no such construction is 
possible. The proof is as follows. 

The surd plane contains an angle of 60°, because the surd plane contains 
an equilateral triangle. Now any angle can be "copied" with ruler and compass. 
(See Construction 7 of Section 19.1.) It follows that there is a 60° angle LBAC, 
with AC as the positive x-axis and B in the upper half plane, as in the figure below. 
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Y 

C 
	►  x 

Figure 19.22 

We have proved that the surd plane is a ruler-and-compass geometry. Surd 
lines and surd circles always intersect each other in the same way as the corre-
sponding lines and circles in the complete plane. If there is a method of trisect-
ing every angle with ruler and compass, then this general method must apply 
to LBAC ; and the construction can be carried out in the surd plane. Thus we 
arrive at the following conclusions. 

(1) (?) The surd plane contains an angle LDAC, with degree measure = 20. (?) 

Y 

600 

As 
F C 

Figure 19.23 

We shall show that this is impossible. It will follow that there is no gen-
eral method for trisecting angles with ruler and compass. We have given 
that D is a point of the surd plane. Let F be the foot of the perpendicular 
from D to the x-axis. Then F is a surd point; the y-coordinate of F is 0, and 
the x-coordinate is the same as that of D. The distance between any two 
surd points is a surd. Therefore the number 

AF 

Y  — AD 

is a surd. But y = cos 20°. Thus we conclude that 

(2) (?) cos 20° is a surd. (?) 
We now need to do a little trigonometry, as follows: 

cos 30 = cos(20 + 0) 

= cos 20 • cos 0 — sin 20 • sin 0 

= (cos20 — sin20) cos 0 — 2 sin 0 cos 0 sin 0 

D 



19.11 The Trisection of the Angle 	 293 

= (2 cos20 – 1) cos 0 – 2(1 – cos20) cos 0 

= 4 cos30 – 3 cos 0. 

Setting 0 = 20, and recalling that cos 60° = 2, we get 

—

1  
2 = 4 cos320° – 3 cos 20° or 8 cos320° – 6 cos 20° – 1 = 0 . 

Thus we have 

cos 20° is a root of the equation 

8y 3  – 6y – 1 = 0 . 

Here we omit the question marks, because (3), unlike (1) and (2), is actually 
correct; it is not merely a statement whose consequences we propose to 
investigate. 

Setting x = 2y, we conclude that 

(4) the number 2 cos 20° is a root of the equation 

x3  – 3x – 1 = 0 . 
We shall prove that no surd is a root of this cubic equation. This will mean that 
2 cos 20° is not a surd, so that cos 20° is not a surd. This will mean that (2) is 
impossible, so that a ruler-and-compass trisection of a 60° angle is impossible. 

It is easy to see that our cubic has no rational root. If p/q is a rational root, 
expressed in lowest terms, then each of the integers p and q is a divisor of 1 and 
hence is = 1 or = –1. Therefore 1 and –1 are the only possible rational roots, 
and neither of them works. Therefore our cubic has no rational roots. By Theo-
rem 2, Section 19.10, it follows that no root of the equation is a surd. 

The impossibility of this classical problem is surprising to most people. In 
fact, many people refuse to believe it and go on trying to devise a method. It is 
easy to see why this happens. 

In the first place, the proof is much too hard to be capable of populariza-
tion. For this reason, amateurs are in no position to understand why their enter-
prise is impossible. In the second place, an informal statement of the problem 
is misleading. It sounds as if we are saying that something or other "cannot be 
done"; and many times in the past, defeatist answers to questions like this have 
turned out to be false. For example, people said that flying machines could not 
be built and that matter could not be created or destroyed. People went on say-
ing these things until the supposedly impossible projects were carried out. If 
you think of the trisection problem in these terms, then you may believe that 
you can do it, if you are more ingenious and persistent than the people who 
have tried and failed. 

But once the problem is given an exact formulation, the negative answer 
seems natural. In the surd plane, all ruler-and-compass constructions are pos-
sible. Therefore, if a figure can be constructed with ruler and compass, this 
means that in the surd plane, the figure exists. Thus, if angle trisection were al-
ways possible, we would have the following theorem. 

(3) 
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means that in the surd plane, the figure exists. Thus, if angle trisection were al-
ways possible, we would have the following theorem. 

■ (?) THEOREM. In the surd plane, every angle has a trisector. 

If you think of the problem in these terms, then the negative answer is not 
surprising. The proposed theorem describes a completeness property of the 
surd plane; it says that when you look for rays in certain places, you will find 
them. But since the surd plane is "all full of holes," no kind of completeness 
condition has any plausibility until it is proved. Only the most incorrigible opti-
mist would be surprised if he looked for a ray, in such a "geometry" as this, and 
failed to find one. 

	 19.12 The Duplication of the Cube  	

Another of the impossible construction problems of antiquity is the duplication 
of the cube. Given a segment AB, we want to construct a segment CD such that 
a cube with CD as an edge has exactly twice the volume of a cube with AB as 
an edge. 

As before, if this construction is possible, it is possible in the surd plane. 
Suppose then that A and B are surd points. Granted that CD can be con-
structed, C and D must be surd points. Thus the distances AB and CD are 
surds; and under the conditions of the problem we must have 

CD' = 2AB 3, 

or 

(CD )3   

AB 

_ 9  
I 	- . 

It follows that 

(1) (?) the equation x 3  — 2 = 0 has at least one surd as a root. (?) 

But this is impossible. The only possible rational roots of this cubic are 1, 
—1, 2, and —2. None of these work. Therefore no rational number is a root. 
Therefore no surd is a root. 



CHAPTER 

From Eudoxus 
to Dedekind 

20.1 Proportionalities 
   Without Numbers  	

In the early chapters of this book we have distinguished between two different 
approaches to the concept of congruence for segments. In the metric approach, 
a distance function 

d:S ><S—>R 

is given. Congruence for segments is defined in terms of distance; the defini-
tion states that AB = CD if AB = CD. The properties of congruence now be-
come theorems, proved on the basis of the metric definition. 

The synthetic approach takes congruence for segments as a basic idea, left 
undefined, and governed by certain postulates. In this treatment, the idea of 
distance does not appear at all; in fact, the only numbers that appear are the 
natural numbers 1, 2, .... We may think of congruence for segments as the idea 
of "same distance." 

The treatment of similarity, in this book, has been strictly metric. We recall 
that a correspondence 

ABC <--> DEF 

is called a similarity if corresponding angles are congruent and the lengths of 
corresponding sides are proportional. 



b 	C 	D 	e 
zAe= zD, z13=--- z E, zC= z F, 

a, b,e—d, e, f. 

Figure 20.1 
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It is easy to treat angle congruence in a purely synthetic way; we have dis-
cussed this in Chapter 8. But proportionality seems to be another matter. We 
defined the expression a, b, c — d,e,f to mean that 

d=  = e f   — . 
a 	b 	c 

Here the indicated divisions make sense, because a, b, c, d, e, and f are positive 
real numbers. We say that the sides of LABC and ADEF are proportional if the 
lengths of these sides are proportional in the sense that we have just defined. 

This treatment of similarity is by now very nearly universal, even in books 
which use a synthetic approach insofar as practicality permits. In nearly every 
elementary book on "synthetic" geometry there is a page on which the idea of 
distance is introduced, in order to permit a metric treatment of proportionality. 

Indeed, if you are not allowed to measure distances and perform divisions, 
it is not easy to see how you could even explain what is meant by proportionality 
for segments, let alone prove anything about how proportionalities work. Never-
theless, this can be done, using no numbers at all except the positive integers. 
The method is used in Euclid's Elements; and the mathematical ideas that make 
it work are attributed to Eudoxus. This suggests two questions. 

(1) What were the purely synthetic ideas that Eudoxus used as a substitute for 
algebra? 

(2) Given a synthetic geometry, how can we define a distance function satisfy-
ing the ruler postulate? 

The first of these questions may seem to be of purely historical interest. But 
this is hardly true of the second: we need to answer it, to introduce coordinate 
systems. Morever, it turns out that the two questions are so closely related that 
if you answer one of them, the other becomes easy. 

And the ideas of Eudoxus took on a new importance in the nineteenth cen-
tury, when Richard Dedekind found that they were what was needed in setting 
up the foundations of the real number system. For these reasons, the purposes 
of the present chapter are only incidentally historical. 
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20.2 Eudoxus' Synthetic Definition 
	  of Proportionality  	

We shall work our way gradually toward Eudoxus' idea, starting with the metric 
concept which we know, and gradually stripping it of its algebraic apparatus. 
To start, we define the expression 

AB:CD::EF:GH 
	

(1) 

to mean that 

AB, CD — EF, GH; 
	

(2) 

that is, 

EF _ GH 

AB  CD • (3) 

The first of these expressions is pronounced "AB is to CD as EF is to GH." We 
shall find a way to define this expression without mentioning any numbers except 
positive integers. Of course, it can easily happen that the segments AB and EF 
are incommensurable. In this case, the proportionality constant 

EF GH 

x= 
	= 

AB CD 

will be irrational. Our first step toward Euclid will be to express Condition (3) 
in the form of a statement about rational numbers. In the light of the compari-
son theorem, this can be done as follows. 

(4) If p/q is rational and 

p < EF 

q AB' 

then 

p < GH 

q CD • 

Conversely, if the second of these inequalities holds, then so does the first. This 
in turn can be expressed without mentioning division. 

(5) If p and q are positive integers, and 

p• AB < q • EF , 

then 

p • CD < q - GH . 

And conversely, if the second of these inequalities holds, then so does the first. 
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We are now almost done, because (5) is very close to being a statement 
about segments. We recall that addition can be defined for congruence classes of 
segments. For each segment XY, we let [XY] be the set of all segments that are 
congruent to XY. Given any two segments AB and CD, we take points X, Y, Z 
such that 

X-Y-Z, 	AB --== XY, 	CD = YZ ; 

and we then define the sum [AB] + [CD] by the formula 

[AB] + [CD] = [XZ]. 

We showed, in Chapter 8, that the sum of the two congruence classes depends 
only on the congruence classes [AB] and [CD], and is independent of the choice 
of A, B, C, D, X, Y, and Z. When AB = CD, we write 

[AB] + [AB] = 2 • [AB]. 

And for any positive integer n, we use the shorthand 

n[AB] = [AB] + [AB] + • • • + [AB] 	(to n terms) . 

Thus, if we write 

n[AB] = [XZ], 

this means that if you take n congruent copies of AB and lay them end to end, 
you get a segment congruent to XZ. 

In Chapter 7, we defined the expression 

AB < CD 

to mean that there is a point B', between C and D, such that AB ------' CB'. This, of 
course, is a synthetic way of conveying the idea that AB < CD. 

We are now ready to give Eudoxus' formulation of (5). It reads as follows. 
(6) Let p and q be any positive integers. If 

p[AB] < q[EF], 

then 

p[CD] < q[G1-1], 

And conversely, if the second of these inequalities holds, then so does the first. 
This was Eudoxus' working definition of the statement 

AB :CD : :EF :GH . 

Euclid used it, throughout the Elements, whenever he dealt with proportionality 
(except in the commensurable case). This was an extraordinary tour de force, be- 
cause even the simplest theorems under this scheme become formidable even 
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to state. Every proportionality that we write down becomes a complicated state-
ment about what happens when congruent segments are laid end to end. 

For example, Proposition 4 of Book V of the Elements reads as follows. 

■ PROPOSITION 4. "If a first magnitude has to a second the same ratio as 
a third to a fourth, any equimultiples whatever of the first and third will also 
have the same ratio to any equimultiple whatever of the second and fourth re-
spectively, taken in corresponding order." 

We can rewrite this in the following form. 

■ PROPOSITION 4'. If AB :CD::EF:GH, and m and n are any positive 
integers, then 

mAB :mEF::nCD:nGH . 

Here mAB denotes any segment in the class m [AB ], and so on. 

The corresponding algebraic theorem is simple. It says that if 

AB, CD — EF,GH , 

and m and n are any positive integers, then 

mAB,mEF — nCD, nGH . 

Writing these proportionalities as equations between fractions, we get the fol-
lowing proposition. 

■ PROPOSITION 4". If 

EF _ GH 

AB — CD ' 

and m and n are positive integers, then 

nCDnGH = 
mAB mEF ' 

The first of the equations means that 

EF • CD = AB • GH ; 

and the second means that 

mnEF • CD = mnAB • GH . 

Thus the "proof" doesn't amount to much. All the theorems in Book V of the 
Elements evaporate in the same way, as soon as they are interpreted algebraically. 
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This, however, does not mean that Euclid was being silly. The point is that in 
Euclid's time the algebra of the real numbers had not yet been discovered. Get-
ting along without it in the study of geometry was a formidable achievement. 

We observed, when we were regarding congruence synthetically, that we 
could not talk about distance; congruence involves only the idea of same dis-
tance. Much the same thing happens if we use a purely synthetic treatment of 
proportionality. We cannot speak of the ratio AB:CD. All we can say is that 
AB:CD and EF :GH are the same ratio. The easiest way to see this is to observe 
that the ratio AB :CD would have to be a real number; and in synthetic geome-
try the only numbers are the positive integers. 

Finally, we should confess that in giving what are supposed to be Euclid's 
formulations of certain ideas, we have made no attempt to copy his literary 
style. In the Heath translation, his definition of proportionality is as follows. 

"Magnitudes are said to be in the same ratio, the first to the second and the 
third to the fourth, when, if any equimultiples whatever be taken of the first 
and third, and any equimultiples whatever of the second and fourth, the former 
equimultiples alike exceed, are alike equal to, or alike fall short of, the latter 
equimultiples respectively taken in corresponding order." 

This is the statement which we gave above, in a rewritten form, as Condi-
tion (6). 

Our account of Book V has also been simplified in other ways. For one 
thing, Euclid also gave a synthetic formulation of the statement that the ratio 
AB : CD is less than the ratio EF : GH. For another thing, he did not use, even 
tacitly, the Archimedean postulate. He merely provided that segments had to 
behave in an Archimedean fashion for one to be able to talk about proportion-
alities between them. That is, to write 

AB :CD ::EF :GH , 
you must first know that 

(1) NAB] > [CD] for some p, 
(2) q[CD] > [AB] for some q, 

(3) r[EF] > [GH] for some r, and 

(4) s[GH] > [EF] for some s. 
At no point did Euclid commit himself on the question whether these con-

ditions held for any two given segments; he merely announced that he was not 
going to talk about ratios except in the cases where they did hold. The resulting 
treatment was delicate in the extreme. The fact that such a program was carried 
out, with only occasional slips in matters of detail, reminds us that the Greeks 
were no more primitive in mathematics than they were in the arts. 

	  Problem Set 20.2 	  

The following is a selection of propositions from Book V of the Elements. Interpret each 
of these propositions algebraically, and prove the resulting theorem. This problem set 
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is designed to convince you that the language of mathematics has progressed in impor-
tant ways. 

■ PROPOSITION 5. "If a magnitude be the same multiple of a magnitude that a 
part subtracted is of a part subtracted, the remainder will also be the same multiple of 
the remainder that the whole is of the whole." 

• PROPOSITION 6. "If two magnitudes be equimultiples of two magnitudes, and 
any magnitudes subtracted from them be equimultiples of the same, the remainders also 
are either equal to the same or equimultiples of them." 

■ PROPOSITION 9. "Magnitudes which have the same ratio to the same are equal 
to one another; and magnitudes to which the same has the same ratio are equal." 

• PROPOSITION 15. "Parts have the same ratio as the same multiples of them 
taken in corresponding order." 

■ PROPOSITION 19. "If, as a whole is to a whole, so is a part subtracted to a part sub-
tracted, the remainder will also be to the remainder as whole to whole." 

■ PROPOSITION 24. "If a first magnitude has to a second the same ratio as a third 
has to a fourth, and also a fifth has to the second the same ratio as a sixth to the fourth, 
the first and fifth added together will have to the second the same ratio as the third and 
sixth have to the fourth." 

■ PROPOSITION 25. "If four magnitudes be proportional, the greatest and the 
least are greater than the remaining two." 

(This last one is very ambiguous. You should try to find an interpretation that makes 
it true.) 

20.3 The Algebra of 
   Segment Addition  	

We shall not give a full development of the Euclidean theory of proportion, but 
we shall need to know some of the simplest facts about what happens when we 
lay segments end to end. 

■ THEOREM 1. The Commutative Law. 

[iV3] + [C.5] = [M + [TI]. 
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This follows from the definition of segment addition. The order in which 
the segments were named never even seemed to matter; the same is true of the 
next theorem. 

■ THEOREM 2. The Associative Law. 

([AB] + [CD]) + [EF] = [AB] + ([CD] + [EF]) . 

If follows, as in Section 1.10, that there is an n-fold addition for congru-
ence classes [AB], and that the n-fold operation satisfies the general associative 
law. (The results of Section 1.10 were stated for addition and multiplication of 
real numbers, but special properties of real numbers were not used. For any as-
sociative operation, defined on any set, the same results hold, and the proofs 
are exactly the same.) 

• THEOREM 3. The Distributive Law. For every positive integer n, 

n([AB] + [CD]) = n[AB] + n[CD]. 

PROOF. For each n, let Pn  be the proposition given by the formula. Then P1  is 
true. To prove the theorem by induction, we need to show that if Pn  is true, 
then so also is Pn+1. Now 

(n + 1) ([AB] + [CD]) = n([AB] + [CD]) + ([AB] + [CD]) 

= (n[AB] + n[CD]) + ([AB] + [CD]) 

= (n[AB] + n[CD]) + ([CD] + [AB]) 

= n[AB] + ((n[CD] + [CD]) + [AB]) 

= n[AB] + ((n + 1)[CD] + [AB]) 

= n[AB] + ([AB] + (n + 1)[CD]) 

= (n[AB] + [AB]) + (n + 1)[CD] 

= (n + 1)[AB] + (n + 1)[CD]. 

What is the reason for each step? ❑ 

■ THEOREM 4. Preservation of Order. If 

[AB] > [CD] , 

then 

n[AB] > n[CD] 

for every positive integer n. 
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PROOF. If [AB] > [CD], then 

[Al] = [CD] + [EF] 

for segment EF. (Recall the definition of > for congruence classes.) By the pre-
ceding theorem, 

n[AB] = n[CD] + n[EF], 

which is > n[CD], as desired. ❑ 

■ THEOREM 5. If 

n[AB] > n[CD], 

for some n, then 

[AB] > [CD]. 

(If not, we would have a contradiction of the preceding theorem.) It is also 
easy to see the following. 

■ THEOREM 6. If A-B-C, then 

n[AC] > n[AB] 

for every n. 

The reason is that if A-B-C, it follows that [AC] > [AB]. 

■ THEOREM 7. If [AB] < [CD], then [AB] + [EF] < [CD] + [EF] for every 
[EF]. 

PROOF. Let W, X, and Z be collinear points such that W-X-Z, WX = EF, and 
XZ = CD. Since [AB] < [CD], there is a point Y such that X-Y-Z and XY = AB. 
Then 

[AB] + [EF] = [WY] and [CD] + [EF] = [WZ]. 

Since W-X-Z and X-Y-Z, we have W-Y-Z. Therefore [WY] < [WZ], and the theo-
rem follows. ❑ 

20.4 How to Define Ratios: 
   The Supremum  	

We have observed that in the Euclidean theory of proportionality, we cannot 
talk about ratios; we can only talk about the relation of same ratio. The relation 

AB:CD::EF:GH 
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says that AB and CD are in the same ratio as EF and GH; but the "ratios" 
AB :CD and EF : GH have no meaning at all when they stand alone. If the real 
number system is available, however, we can assign a meaning to AB : CD with-
out using metric geometry. As a guide in framing the definition, let us recall 
that the ratio should turn out to be the number AB/CD. Thus, by the compari-
son theorem, we can say 

11  < AB:CD 	 (1) 
q 

p  
q 

<AB
CD .  

(2) 

pCD < qAB , 	 (3) 

p[CD] < q[AB]. 	 (4) 

Thus p/q < AB :CD if and only if p copies of [CD], laid end to end, form a 
segment shorter than a segment formed by q copies of [AB], laid end to end. Let 

K = {11  
q 

p[CD1< q[A13]} . 

  

Officially, this set of rational numbers has been defined synthetically, without 
reference to distance. Unofficially, we observe that in the metric scheme it must 
be true that 

K = {11  
q 

p < AB} 
q CD • 

  

The relation between the set K and the number AB/CD is simple; it can be con-
veyed by the two conditions that follow. 

(1) AB /CD is an upper bound of K. That is, every element of K is AB/CD. (In 
fact, every element of K is strictly less than AB /CD. But this stronger condi-
tion is not required in the general definition of an upper bound of a set of 
numbers.) 

(2) AB/CD is the least of all the upper bounds of K. That is, every other upper 
bound of K is greater than AB/CD. 

If a set K of numbers and a number s are related in this way, we write 

s = sup K , 

and we say that s is the supremum, or the least upper bound of K. To repeat: 
s = sup K if (1) s is an upper bound of K, and (2) no number less than s has this 
property. 

if and only if 

This is equivalent to 

which in turn is equivalent to 
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More examples of this follow. Let 

 

n a positive integer 1 . 

Here 

  

sup K, = 1; 

and sup K 1  belongs to K,. On the other hand, if 

 

1 
K2 = {2

n 
n a positive integer 1 , 

then 

  

sup K2 = 2 ; 

and sup K2 does not belong to K2. If K3  is the set N of all positive integers, then 
there is no such thing as sup K,, because K3 has no upper bounds at all. 

To define ratios of segments, in terms of Euclid's scheme, we need the fol-
lowing two basic postulates, one dealing with geometry and the other dealing 
with the real number system. 

THE ARCHIMEDEAN POSTULATE. Given any two segments AB and CD, 
there is a positive integer n such that n[AB] > [CD]. 

(We recall that Euclid's theory of proportionality was restricted to pairs of 
segments that behaved in this way.) 

THE DEDEKIND POSTULATE. Given a nonempty set K of real numbers. If K 
has an upper bound, then K has a supremum sup K. 

This is our final and crucial postulate for the real number system. To indi-
cate what it means, as a completeness condition, we shall explain why it fails to 
hold in the rational number system. Consider, for example, the set 

K = {11  
q 

p,q > 0 and -P < -\/}
JJJ . 

  

This can be described purely in terms of rational numbers: 

K = {11  
4,2 

p,q > 0 and 	< . 

  

In the real number system, K has a least upper bound sup K = V. But K has 
no sup in the rational number system. The reason is that if r/s is an upper bound 
of K and 

t 	r 
< — < —, 

u s 
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then t/u is also an upper bound of K. Thus no rational upper bound of K is 
smaller than all other rational upper bounds of K. 

In the same way, if we delete from the real number system any one num-
ber x, the resulting set OV of numbers does not satisfy the Dedekind postulate. 
The reason is that in the'reduced system ER', the set 

K = {Y 1Y < x} 

has many upper bounds, but none of them is a least upper bound. (If z is an 
upper bound, then any number between x and z is an upper bound.) 

Given two segments AB, CD. Let 

_ K= {
p 

p[cD] < q[AB]} 

  

On the basis of the Archimedean postulate, we shall prove the following theorems. 

■ THEOREM I. K contains at least one positive number p/q. 

■ THEOREM 2. K has an upper bound. 

From these two theorems it will follow, by the Dedekind postulate, that: 

■ THEOREM 3. K has a least upper bound sup K, and sup K > 0. 

These theorems will justify the following definition: 

DEFINITION. 

AB:CD = sup K. 

And we shall then know by Theorem 3 that: 

■ THEOREM 4. For every two segments AB, CD, 

AB :CD > 0 . 

Let us now prove Theorems 1 and 2. 

PROOF OF THEOREM 1. Given AB and CD. By the Archimedean postulate, 
there is an n, such that 

n[AB] > [CD]. 

Let p = 1 and let q = n. Then p/q is positive, and belongs to K. ❑ 

PROOF OF THEOREM 2. Given AB and CD. By the Archimedean postulate, 
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there is a nunber n, such that 

n[CD] > [AB] . 	 (1) 

We assert that n is an upper bound of K. We shall prove this by showing that if 
p/q > n, then p/q does not belong to K. 

If p/q > n, then p > nq. Therefore 

p[CD] > nq[CD] . 

It follows from (1), by Theorem 4, Section 20.3, that 

nq[CD] > q[AB]. 

Therefore 

p[CD] > q[AB] , 

so that p/q does not belong to K. ❑ 

To see where the following theorem comes from, let us first state its metric 
form, which is trivial. 

■ THEOREM. If A 0 B, and C-D-E, then 

CE_ CD DE 
AB AB + AB 

The reason is that CD + DE = CE. 

The corresponding synthetic theorem is not trivial. 

■ THEOREM 5. The Addition Theorem. If A 0 B, and C-D-E, then 

CE :AB = CD :AB + DE :AB . 

The proof is long and tricky. It will be given in the next section. 

20.5 Proof of the 
   Addition Theorem  	

Under our definition of ratios, the addition theorem is a statement about su-
prema. To prove the theorem, we must first interpret it in terms of the definition. 

Given A 0 B and C-D-E. Let 

p[AB] < q[CD]f, 



r 
K2 = F 

s 

so that 

Let 

so that 

Finally, let 

CD :AB = sup K, = k,. 

r[AB] < s[DE]l , 

DE :AB = sup K2 = k2 • 
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K= {—
t  
m 

t[AB] < m[EC]} , 

so that 

  

CE :AB = sup K = k. 

The addition theorem states that k, + k2  = k. 
The proof is long. We have tried to make it as easy as possible by splitting it 

up into a series of subsidiary theorems, each of which has a fairly short proof. 
Unless you have encountered this sort of proof before, it may be confusing. On 
the other hand, the proof will repay study, because the ideas that come up in it 
are fundamental in analysis. 

• THEOREM 1. If p/q belongs to K, and r/s < p/q, then r/s belongs to K. 

PROOF. Given 

p[AB] < q[CE] 

and 

qr < ps , 

we need to show that 

r[AB] < s[CE]. 

By Theorem 4, Section 20.3, we have 

pr[AB] < qr[CE], 

and 

qr[CE] < ps[CE] , 

because qr < ps. Therefore 

pr[AB] < ps[CE]. 
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Now if it were true that r [AB] = s [CE], then we would have pr[AB] = ps[CE]; 
and if r[AB] > s[CE], then pr[AB] > ps[CE]. In each case, the consequence is 
false. Therefore r [AB] < s [CE], which was to be proved. ❑ 

The following theorem is not logically necessary for the proof of the Addi-
tion Theorem, but it helps clear the air, and establishes a connection between 
the present discussion and the standard apparatus of analysis. 

■ THEOREM 2. K has no greatest element. 

(Obviously this applies to the K defined by any pair of segments.) 

PROOF. Suppose that p/q E K. Then p [AB] < q [CE]. Therefore there is a seg-
ment FG such that q[CE] = p [AB] + [FG]. Therefore nq[CE] = np[AB] + n[FG] 
for each n. By the Archimedean Postulate there is an n such that 

n[FG] < [AB]. 

It follows by Theorem 7 of Section 20.3 that 

np [AB ] + n [FG ] > np [AB ] + [AB ] . 

Therefore 

(np + 1)[AB] < np[AB] + n[FG] = nq[CE], 

E K. 
nq 

Since 

p < np + 1  
q 	nq 

if follows that p/q is not largest in K. Therefore K has no greatest element. 
Thus the set K is of a special type, called a cut in the rational numbers. To be 

exact, a set Z is called a cut in the rational numbers if 

(1) Z is a set of positive rational numbers, 

(2) Z is not empty, 

(3) Z has an upper bound, 

(4) if 

p  
0 < —

q 
< r 7; 

and r/s belongs to Z, then p/q belongs to Z, and 

(5) K has no greatest element. 

and 

np + 1 
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In this language, we can sum up: 

• THEOREM 3. If AB and CE are any two segments, and 

p[All] < q[CE]} 

  

then K is a cut in the rational numbers. 
Theorem 1 tells us that K satisfies (4), Theorem 2 gives (5), and we knew 

already that K satisfies the other three conditions of the definition. 
The following theorem is logically trivial, but very useful. 

■ THEOREM 4. If z = sup Z, and e is any positive number, then some ele-
ment x of Z is greater than z — e. 

PROOF. If there were no such x, then every element x of Z would be z — e. 
Therefore z — s would be an upper bound of Z. This is impossible, because 
sup Z is the smallest of all of the upper bounds of Z. ❑ 

Combining Theorems 3 and 4, we get a simple description of the set K. 

• THEOREM 5. Let AB and DE be segments. Let 

 

K = {1)- 
q 

p[AB] < q[DE]} . 

Let 

  

k = sup K. 

Then 

K= {—
r  
s 

0< 
r 
 <4. 

s 

  

PROOF. Let r/s be a rational number between 0 and k. Let 

r 
e = k — 7.  

Then s > 0. By Theorem 4 there is an element p/q of K such that 

/2- > k — E . 
q 

This means that 

r p 
—

s 

< —q • 
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By Theorem 1, r/s E K. Thus 

0 < —
r 

< k} C K . 
s 	JJJ  

If k E K, then k is the largest element of K, which is impossible. Therefore ev-
ery element of K is strictly between 0 and k, and 

 

1 r K C 17 0 < —
r 

< ki.  . 
s 

The theorem follows. ❑ 

Thus we can write 

  

r 
{-5 

K,= {11  

q 

K2 = {1.  
S 

t 
K= {—

u 

We now return to our geometry. 

0 < 12- < kJ , 
q 
r 

0 < —
s 

<k2  , 

0< 
t

— < kl,  . 
u 

 

■ THEOREM 6. If p/q belongs to K, and r/s belongs to K2, then p/q + r/s 
belongs to K. 

PROOF. We have given that p[AB] < q[CD] and r[AB] < s[DE]. Obviously 

p + r = qr + ps  
q 	s 	qs 

Thus we need to prove that 

(qr + ps)[AB] < qs[CE]. 

Now 

qr[AB] < qs[DE] 

and 

ps[AB] < qs[CD], 

by Theorem 4, Section 20.3. Therefore 

(qr + ps)[AB] < qs([CD] + [DE]) = qs[CE], 

which was to be proved. ❑ 
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• THEOREM 7. If p/q does not belong to K 1, and r/s does not belong to K2, 
then p/q + r/s does not belong to K. 

PROOF. Given p [AB] q[CD] and r[AB] s[DE], we need to show that 

(qr + ps)[AB] qs[CE]. 

The proof is very much like that of the preceding theorem. First, 

qr[AB] qs[DE] 

and 

ps[AB] > qs[CD], 

by Theorem 4, Section 20.3. Therefore 

(qr + ps)[AB 	qs([CD] + [DE]) 

= qs[CE], 

which was to be proved. ❑ 

We are now ready to finish the proof of the addition theorem. In the nota-
tion of this section, the theorem says that 

k, + k2  = k . 

If this is false, then either 

k, + k 2  > k 
	

( 1) 

or 

k, + k2  < k . 	 (2) 

We shall show that both of these are impossible. 
If (1) holds, then k, + k2  — k > 0. Let 

E = k, + k 2  — k , 

so that 

k = k 1  + k2  — E . 

By Theorem 4, there is a p/q in K, such that 

P 
q 
 > k, — —

2 

and there is an r/s in K2 such that 

> k2  — 
2 
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It follows that 

12- + 1-> kl  + k2  — e. 
q 	s 

Therefore p/q + r/s does not lie in K. But by Theorem 6, p/q + r/s must lie in 
K. This gives a contradiction, showing that (1) is impossible. 

If (2) holds, then k — k i  — k2  > 0. Let 

E = k — k 1  — k2 , 

so that 

k = k 1 + k2  + e. 

Let p/q and r/s be rational numbers such that 

k1  < L' < k i  + 2 -8  
q  

and 
r 	s 

k2  < — < k9 + — 
s 	a 	2 • 

Then p/q does not belong to K 1, and r/s does not belong to K2. By Theorem 7, 
p/q + r/s does not belong to K. Since 

0<±<k}c K, 
u 	JJJ  

it follows that 

_p + r , k.  
q 	s 

But this is impossible. Adding our previous inequalities for p/q and r/s, we get 

+ —r  <k + 8  2  +k +=k +k +s=k. 1 	2 	2 	1 	2 q 	s 

This gives a contradiction, showing that (2) is impossible. Therefore the addi-
tion theorem is true. 

20.6 The Metrization Theorem 	 

In this book, we have considered Euclidean geometry from two viewpoints, the 
metric and the purely synthetic. In the metric approach, the postulates tell us a 
great deal about the relation between our geometry and the real number sys-
tem: the structure is 

t 
{—u 

[S, 2,9", d, m] 
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where d is the distance function 

d:S x S--->R. 

The distance function obeys the ruler postulate; and congruence and between-
ness are defined in terms of distance. 

In the purely synthetic approach, which Euclid used, the real number sys-
tem is nowhere mentioned. The structure is 

[S, 2, 9",  

Here = and M are undefined relations of congruence and betweenness, subject 
to the postulates stated in Chapter 8; and the only numbers that get used are 
the positive integers, which are used to count things. 

The first really big step in geometry after the Greeks was the invention of 
coordinate systems, by Rene Descartes. Obviously, to set up a coordinate system 
in the plane (or in space), you must have a distance function. In fact, to label the 
points of the x-axis with numbers, you must have gotten, from somewhere, a 
coordinate system for the x-axis, satisfying the conditions of the ruler postulate. 

We shall now show that in a purely synthetic geometric system we can define 
a distance function satisfying the metric postulates. To be exact, we shall prove 
the following theorem. 

■ THEOREM 1. Given a geometric structure 

satisfying the postulates of Chapter 8, and satisfying the Archimedean postu-
late. Let A and B be any two points. Then there is a function 

d: S x S--->R, 

such that 

(1) d satisfies the ruler postulate, 

(2) CD -=--• EF if and only if the distances CD and EF are the same; 

(3) C-D-E if and only if CD + DE = CE, and 

(4) AB = 1. 

That is, we can always define a distance function which gives us back the 
same congruence relation for segments and the same betweenness relation for 
points that we had before; and we can always set up our distance function in 
such a way that any given segment AB is the "unit of length." 

When we say that d "satisfies the ruler postulate," we mean that for any 
line L there is a coordinate function 

f: L ---> R 
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of L into the real numbers, such that some point has coordinate 0, and such that 
if x = f(P) and y = f(Q), then 

PQ = lx — YI • 
It is not claimed that every real number x is the coordinate f(P) of some point P. 
In fact the latter statement cannot be proved on the basis of the synthetic postu-
lates that we have stated. (The easiest way to see this is to observe that the surd 
plane satisfies the synthetic postulates; and in the surd plane, only surds are 
used as coordinates.) If the coordinate functions are one-to-one correspon-
dences f: L <---> [R, then the geometric structure [S, 2,9 ',=-,91] is called complete in 
the sense of Dedekind. 

We now proceed to the proof. Fortunately, the hard part of the proof, 
which is to set up our distance function in such a way that any given segment 
AB is the "unit of length," is already over with. For any two points P, Q, let 

PQ = d(P,Q) = PQ:AB , 

where PQ:AB is the ratio defined and studied earlier in this chapter. Since the 
ratio was defined, in the first place, in terms of congruence classes [PQ], we 
know immediately that (2) is satisfied. 

To prove (3), we first observe that if C-D-E, it follows by the addition theo-
rem that 

CE :AB = CD:AB + DE :AB . 

Therefore 

CE = CD + DE , 

by our definition of distance. (This is the first of the two things that the addi-
tion theorem is good for.) Suppose, conversely, that 

CE = CD + DE , 	 (1) 

where C, D, and E are all different. If it were true that D-E-C, then it would fol-
low that 

DC = DE + EC, 

so that 

CE = CD — DE ; 	 (2) 

and from (1) and (2), we get 

CD + DE = CD — DE, 

or 2DE = 0, or DE = 0. Therefore D = E, which is a contradiction. If we sup-
pose that D-C-E, this leads to a contradiction in the same way. But one of the 
three points must be between the other two. Since D-E-C and D-C-E are both 
false, it follows that C-D-E must be true. 
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Also, (4) is satisfied. Obviously NAB] < q[AB] precisely if p < q, which 
means that p/q < 1. Therefore 

AB :AB = sup{-- 
q 

o < —P < 11 = 1 , 
q 

  

and d(A,B) = 1. 
It remains only to check the ruler postulate. Given a line L, and three 

points C, D, E of L such that C-D-E (Fig. 20.2). 

C P? 	D P? E 

Figure 20.2 

We shall set up a function 

f: L —> ER , 

and show that f is a coordinate system satisfying the ruler postulate. 
If P belongs to the ray DE, let f(P) = DP. 
We shall check that if P and Q are points of DE, with coordinates x, y, then 

PQ = Ix — yl , 

as required in the ruler postulate. If either P or Q is = D, this is easy to see. For 
example if Q = D, then 

PQ = DP = f(P) = x = lx1 = ix — 01. 

If P = Q, it is also trivial, because then PQ = 0 = Ix — xl. Suppose then, finally, 
that P, Q, and D are all different. Then either D-P-Q or D-Q-P. If D-P-Q, then 

DQ:AB = DP :AB -1- PQ:AB , 

by the addition theorem. (This is the second of the two things for which the ad-
dition theorem is useful.) In terms of distance, this tells us that 

DQ = DP + PQ, 

or 

PQ = DQ — DP = y — x . 

Here y — x > 0, because y — x = PQ. Therefore 

PQ = ix — Y1 ,  

which was to be proved. 
We now define the coordinate function f, for points P of the opposite ray 

DC, by the condition 

f(P) = —DP . 
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We now have 

PQ = ex — ye ,  

if P and Q both belong to DC. (The proof is almost exactly the same as for the 
ray DE: the point is that Ix — yI is unchanged when the signs of x and y are re-
versed.) If P belongs to DC and Q belongs to DE, then 

PQ = PD + DQ, x = 13D, y = DQ. 

Therefore 

PQ= y — x 

= 	YI ,  

which was to be proved. 
The reader will observe that the proof of the metrization theorem requires 

all of the apparatus set up in the present chapter. It is plain that such proofs as 
this do not form a part of elementary mathematics. Nevertheless it is usual, in 
elementary geometry courses, to give some sort of "indication of proof" for 
what amounts to a metrization theorem. Usually this is done just before the 
treatment of similarity, so as to permit an algebraic treatment of proportional-
ity. Usually the same discussion is repeated, when coordinate systems are intro-
duced. The reader should now be able to judge the adequacy of such "proofs." 

In Theorem 1, the coordinate systems f: L —> R did not necessarily use all 
the real numbers. That is, f(L) = FL  C R, but FL  was not necessarily all of R. 

■ THEOREM 2. In Theorem 1, the sets FL  are the same for all lines, = F 
for every L. If the geometric structure satisfies the Two-Circle Postulate of Sec-
tion 16.5, and satisfies the conditions of the Line-Circle Theorem of Section 16.2, 
then F forms a Euclidean ordered field. 

PROOF. 

(1) Let L and L' be two lines, and let f and f' be coordinate systems for them, 
so that f(P) = 0 for some P and f'(P') = 0 for some P'. If f(Q) = x for 
some Q in L, then it follows by the segment construction postulate that 
f'(Q') = x for some Q' in L'. (There are two cases: x > 0 or x < 0.) 

(2) If the Two-Circle Postulate and the Line-Circle Theorem hold, then all 
ruler-and-compass constructions can be carried out. We found in Sec-
tion 19.2 that for positive numbers, addition, subtraction, multiplication, di-
vision, and square root extraction can be carried out with ruler and compass. 
The segment construction postulate implies that F contains the negative of 
each of its elements. It follows that F forms a Euclidean ordered field. ❑ 

If our "plane" is the surd plane, then F is precisely the surd field. 
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	  20.7 The Dedekind Cut  	

If the ring Z of integers is given, it is not hard to set up the field of rational 
numbers. To pass from the rational numbers to the real numbers is another 
matter. This, however, is what we need to do, to show that there is a number 
system which satisfies the field postulates of Chapter 1 and also the Dedekind 
postulate. 

One of the most elegant approaches to this problem was devised by Dedekind, 
leaning heavily on the ideas of Eudoxus. For the sake of convenience, we shall 
restrict ourselves to positive numbers. (Once we have them, it is not hard to set 
up their negatives.) 

We recall that in Section 20.4, we defined 

AB:CD = sup K, 

where 

p[CD] < q[AB]l . 

It appeared in Section 20.5 that K was always a cut in the rational numbers. 
That is: 

(1) K is a set of positive rational numbers. 

(2) K is not empty. 

(3) K has an upper bound. 

(4) If 0 < p/q < rls, and r/s E K, then p/q E K. 

(5) K has no greatest element. 

If the real number system IR is regarded as given, then to every cut K there 
corresponds a unique positive real number sup K. On the other hand, cuts are 
defined purely in terms of the rational number system Q. We can use this fact 
to define a set of objects which can be regarded as the positive reals. 

Let R+  be the set of all cuts. In R+  we need to define addition, multiplica-
tion, and order. 

(1) If K and L arecuts,then K + L ={x+ylxE K,y EL}.  

(2) K•L={xyx E K,y E L}.  

We need to show, of course, that the sum and product of any two cuts are 
also cuts. It is then easy to check that R+  satisfies the usual algebraic identities 
given in the field postulates. For example, 

K+L=L+K, 

K = 
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because 

{x +ylx E K,y EL}= {y + xly E L,x EK}. 

(3) We define K < L to mean that K is a proper subset of L, that is, K C L and 
K 0 L. 

Under this definition, when we say that K is an upper bound of Z, this 
means simply that every cut belonging to Z is a subset of K. It is now easy to see 
that every bounded set of cuts has a supremum: sup Z is simply the union of all 
of the sets belonging to Z. This forms a cut; it is an upper bound of Z; and no 
smaller cut is an upper bound of Z. 

The above discussion is, of course, merely a sketch. For details, see the lat-
ter portion of E. Landau's Foundations of Analysis. 

A good case can be made out for speaking not of the Dedekind cut but of 
the Eudoxian cut. The crux of Dedekind's procedure was to use cuts as a work-
ing definition of real numbers; and this is what Eudoxus had done, over two 
thousand years before. 



CHAPTER 

Length and Plane Area 

21.1 The Definition of 
   Arc Length 	  

Given an arc AB of a circle C: 

A=Ao 

We take a sequence of points 

A= 	 = B , 

in the order from A to B on the arc; and for each pair of successive points A,_,, 
A, we draw the segment as indicated in the figure. The union of these 
segments is called an inscribed broken line; and the sum of their lengths is de-
noted by pn. Thus 

pn  = AO, + A, A2 + • • + An_, An  

= EA,_,A,• 
,-1 

There are now various ways that we might define the length of the arc AB. 
If we merely want to state a definition, as a matter of form, without intending 
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to use it, then our problem is simple. We agree to use equally spaced points 
210,14,, ,An. Then length pn  of our broken line is now determined by n, and 
we can define the length to be 

P = lim pn  

To justify this, we would need to explain what is meant by limn_,., and we 
would have to show that the indicated limit exists, for every circular arc. 

The following definition, however, is more manageable. Let P be the set of 
all numbers pn  which are lengths of broken lines inscribed in AB. Thus 

P = fpn  

Let 

p = sup P . 

To justify this, we need to prove the following theorem. 

■ THEOREM 1. P has an upper bound. 

It will then follow that P has a least upper bound sup P. The proof is easy, 
on the basis of the following preliminary result. Let zPQR be an isosceles tri-
angle, with PQ = PR. 

P 

Figure 21.2 

We assert that if P-Q-S and P-R-T, then 

ST > QR . 

Suppose (without loss of generality) that PS < PT, as in the figure, and take U 
between R and T so that SU II QR. Then 

pn = 

SU _ PS > 1  
QR PQ 
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Therefore 

SU > QR 

We shall now show that ST > SU. Evidently L 1 is acute, because L 1 is a 
base angle of an isosceles triangle. Therefore L2 is obtuse. Therefore L3 is 
acute. Therefore mL3 < mL2. Therefore ST > SU. (Why?) 

We now return to our circular arc. Draw any square that contains the whole 
circle in its interior (Fig. 21.3). We project each point A, onto the square, as in-
dicated in the figure. That is, A: is the point where DA, intersects the square. 
Then A, < A :. Therefore p„ is always less than 17_1 A:_ i  A:. Therefore 
p„ is always less than the perimeter of the square. Thus the perimeter of the 
square is the upper bound that we are looking for. 

A' 

Figure 21.3 

This justifies our definition 

p = sup P . 

Of course a circle is not an arc. But we can define the circumference of a 
circle in an analogous way, by setting up an inscribed polygon with vertices 

Ao,Ai, 	,A._, An  = Ao . 

We then let p„ be the perimeter 

EAz 1A=, 
=i 

we let P be the set of all such perimeters p,,, and we define the circumference as 

p = sup P . 

	  21.2 The Existence of IT  	

We now want to prove the existence of the number 7T. To do this, we need to show 
that the ratio of the circumference to the diameter is the same for all circles. 
This is a theorem about suprema, and to prove it, we need a preliminary result. 
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Let P be any bounded set of positive numbers, and let k be a positive num-
ber. Then kP denotes the set of all numbers of the form kp, where p belongs to P. 
For example, if 

P = [0,1] = {x10 	x 	1}, 

and k = 3, then 

kP = 3P = [0, 3]. 

If P = [1, 2] and k = -L then kP = [3, 3]; and so on. 
This "multiplication" is associative. That is, 

j(kP) = (jk)P , 

because 

ljx1x E kP} = {j(kp)lp E P} {(jk)plp E 

Thus, for example, we always have 

1 
—

k

(kP) = P 

LEMMA 1. If b is an upper bound of P, then kb is an upper bound of kP. 

REASON. If p b, then kp kb. 

LEMMA 2. If c is an upper bound of kP, then c/k is an upper bound of P. 

PROOF. Since P = (1/k)(kP), this follows from Lemma 1. ❑ 

These lemmas give us the following theorem. 

■ THEOREM 1. sup(kP) = k sup P. 

PROOF. Let b = sup P. Then b is an upper bound of P. By Lemma 1, kb is an 
upper bound of kP. 

Suppose that kP has an upper bound 

c < kb . 

Then c/k is an upper bound of P, by Lemma 2. This is impossible, because 
c/k < b, and b was the least upper bound of P. ❑ 

We can now prove the theorem which establishes the existence of -ff. What 
is needed is the following theorem. 
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■ THEOREM 2. Let C and C' be circles with radii r, r' and circumferences 
p, p'. Then 

P = 
2r 	2r' • 

That is, the ratio of the circumference to the diameter is the same for all cir-
cles. This common ratio is denoted by IT. 

PROOF. Suppose that the circles have the same center. (This involves no loss 
of generality.) In the figure, we indicate the ith side A,_1 Az  of a polygon in-
scribed in C. To each such polygon there corresponds a polygon inscribed in 
C', obtained by projection outward (or perhaps inward) from the common cen-
ter D. We then have 

A: . 

Figure 21.4 

Therefore 

_ DA: _ r' 
Ai_ i  Ai  — DA, 	r • 

If the perimeters of our polygons are p„ and p,ii , then we have 

r' 
p.' = - p.. 

Let 

p = sup P and p' = sup P', 

where P = {p„} and P' = {pa, as usual. Then 

P' = 1-'-j- • P . 
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Therefore, by the preceding theorem, using k = r'/r, we have 

r' 	 r' 	P'P sup P' --- —

r 

sup P or p' = — p or 	= . 
r' 	r 

Dividing both sides by 2, we get the equation called for in the theorem. ❑ 

An analogous theorem holds for circular arcs. 

• THEOREM 3. Let AB and A'B' be arcs of the same degree measure, in 
circles of radius r and r', respectively. Let the lengths of AR and A'B' be p and 
p'. Then 

P =  P" 
r 	

. 
r' 

Figure 21.5 

This ratio is called the radian measure of the arc A. If AB is a minor arc, 
then p/r is the radian measure of the angle LBCA. The theorem tells us that the 
radian measure really depends only on the angle, or on the degree measure of 
the arc, and is independent of the radius of the circle. 

The proof is virtually identical with the proof of the preceding theorem. 

21.3 Limits as the Mesh 
   Approaches Zero  	

Given 

p = sup P , 

we know that we can find numbers pn  in the set P, as close to sup P as we please. 
More precisely, if e is any positive number, there is a pn  in P such that 
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This was Theorem 4, Section 20.5; and it is true because otherwise p — e would 
be an upper bound of P. 

We ought, however, to be able to make a stronger statement than this about 
the numbers pn  and their supremum. To get pn  close to p, we should not have to 
choose the inscribed broken line in any special way. It ought to be true that p,, is 
close to p whenever the sides of the inscribed broken line are sufficiently short. 
We shall make this idea precise in the next theorem. 

Let 

A = Ao, A1, , An  = B 

be the vertices of a broken line Bn  inscribed in the arc AR By the mesh of the 
broken line Bn, we mean the largest of the numbers A;_1  A,. Thus the mesh of a 
broken line Bn  is the length of its longest segment. In this language, the state-
ment that we want to prove can be stated roughly as follows. 

pn  is as close to p as we please, if the mesh of Bn  is small enough. 

This suggests the idea, but it is not exact enough to form the basis of a proof, 
because it involves nonmathematical terms, notably the terms please and enough. 
Statements like this are like bowling balls without finger holes: they are easy 
to look at, but awkward to handle. The corresponding mathematical statement 
follows. 

■ THEOREM 1. Let AB be an arc of length 

p = sup P , 

where P is the set of lengths p„ of inscribed broken lines Bn. For every positive 
number s there is a positive number 8 such that if the mesh of Bn  is less than d, 
then pn  > p — 6, 

Since we always have pn  p, the inequality pn  > p — e means that pn  — pi < E, 

that is, pn  is within a distance e from p. The proof of this theorem is not as diffi-
cult as its statement. It is as follows. 

Let B n  be an inscribed broken line, with length pn, such that 

P  

(We know that there is such a broken line, because p = sup P.) 
Now let B„, be any inscribed broken line, of length pm. Let BT be the broken 

line obtained by using all of the vertices of B„, and all of the vertices of B n. Let 
p'; be the length of B',!. Here the points marked with crosses are vertices of B L. 
The points marked with little circles are vertices of B,„. The end points A and B 
are marked both ways because they must be vertices of both. And all the indi-
cated points are vertices of B. 



21.3 Limits as the Mesh Approaches Zero 	 327 

\ A 

Figure 21.6 

By repeated applications of the triangular inequality, we have 

	

"; 

	

1)",•• 

Therefore 

P  
This merely says that when you insert new vertices, the length of a broken line 
increases. 

Of course we cannot claim that pm  pr". It can easily happen that B. is 
shorter than B °, because B. may take "shortcuts" past vertices of BT (see 
Fig. 21.7). Here PR < PQ + QR. Thus the length of PR is less than the sum of 
the lengths of the corresponding sides PQ, QR, of ./37. 

The question is how many times you can gain by these shortcuts, and how 
much you can gain each time. The number of times the shortcuts can appear is 
surely no more than n — 1, because there are no more than n — 1 possibilities 
for Q. The saving at each shortcut is 

PQ + QR — PR. 

This is no bigger than PR, because PR is the longest side of LPQR. If k is the 
mesh of B., then PR k. Thus there are at most n — 1 shortcuts, and the dis-
tance saved at each of them is k. Therefore the total saving is 

	

pi; — pm 	(n — 1)k. 

 

Now we know that 

Figure 21.7 

P — 2 
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Therefore 

E 
p — pm  — 2 + (n — 1)k. 

What we want to get is 

P — An<E• 

This will hold if 

or 

Our problem is now solved: let 

(n — 1)k < 2, 

E  
k < 

2(n — 1) • 

S= 
2(n — 1) • 

If the mesh k of Bn, is less than E, then p — pm  is less than E, as we wanted it to be. 
We state Theorem 1 briefly by saying that pn  approaches p as the mesh of 

B n  approaches zero. This is, of course, the same sort of limiting process that is 
used in the theory of definite integrals. 

21.4 The Addition Theorem 
   for Arc Length 	  

One of our postulates for angular measure was the addition postulate. This 
said that if C lies in the interior of LDAB, then mLDAB = mLDAC + mLCAB. 

Figure 21.8 

The corresponding statement about degree measure of circular arcs was a theo-
rem. The theorem stated that mABC = mAB + mBC. A corresponding theorem 
holds for arc length. 

E 



21.4 The Addition Theorem for Arc Length 	 329 

Figure 21.9 

■ THEOREM I. Let AE and BC be arcs of the same circle, with only the 
point B in common. Let s1  and s2  be the lengths of AR and AC; and let s be the 
length of ABC. Then 

Si  + s2  = s . 

The proof is an easy exercise in the use of least upper bounds and limits as 
the mesh approaches 0. 

(1) Suppose that s1  + s2  > s, so that s1  + s2  — s > 0. Let 

E = Si + S2 - S . 

Let B„ be a broken line inscribed in AR, with length pn, such that 

pn > — 
2 

Let B m  be a broken line inscribed in AC, with length pnz' , such that 

pnz' > s2  — 
2 

Fitting these broken lines end to end, we get a broken line B','„+n , of length 
PL., such that 

PL. = Pn P:n • 

Since B L I  is inscribed in ABC, it follows that p:+„ s. On the other hand, 
by addition, we get 

p:+n  = pn  + p,;,> sl  + s2  — E = S . 

Thus p:, s and p:+„ > s, which is a contradiction. 

(2) Suppose that si  + s2  < s, so that s — si  — s2  > 0. Let 

E = S 	Si - S2, 

so that 

r° 

A 

S = Si + S2 	E . 
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Let 8 be a positive number such that if B„ is inscribed in ABC and has 
length p,, and mesh less than d, then 

p„ > s s . 

(By Theorem 1, Section 21.3, there is such a d. That is, p„ is as close to s as 
we please if only the mesh of B„ is small enough.) 

Now let B„ be a broken line inscribed in ABC, of mesh less than d, such 
that B is a vertex of B„. Let p„ be the length of B. Then B„ can be broken 
up into two broken lines , 137 (m + r = n), one inscribed in AB and the 
other inscribed in BC. If the lengths of these broken lines are pm and p',!, 
then we have 

1);, +P7 =P.,  

Therefore 

p„ 	s, + s2 . 

But s1  + s2  = s — e. Therefore 

p„ s — 6 . 

which gives a contradiction. 

If you review the proof of the addition theorem for ratios AB:CD, in Sec-
tion 20.5, you will find that this proof is very similar to it. The technique in-
volved here is quite important enough to be worth going through twice, or more. 

We remember that when we defined arc length by means of broken lines, 
we allowed broken lines whose sides were not necessarily of the same length. 
This possibility was important in the second part of the proof of the preceding 
theorem. 

21.5 Approaching the Area of 
   a Circular Sector from Below 	 

So far in this chapter, the mathematics has been exact and complete. We have 
given a definition of the length of a circular arc, and we have proved theorems 
on the basis of the definition. We shall approach the problem of plane area, for 
the corresponding circular sectors, in a more backhanded fashion. First we shall 
calculate the areas of such figures numerically, by a method which will no doubt 
be familiar to the reader in one form or another. We shall then reexamine the 
situation, and see just what we needed to assume, to justify our calculation. 
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Then, in the following chapter, we shall develop a theory of plane area, suffi-
ciently general to apply to the familiar elementary figures, and show that in this 
theory, the area formulas of this chapter become genuine theorems. This back-
handed approach will involve very little lost motion. And the theory given in 
the next chapter will be easier to understand if we first survey the situation in a 
particular case, and get a rough notion of how the theory ought to work. 

By a circular sector we mean a figure like the one above. To be exact, if AR 
is an arc of a circle with center at C and radius r, and K is the union of all radii 
CP, where P is in AB, then K is a sector; r is called its radius, and AB is its bound-
ary arc. 

If we use all of the circle (instead of an arc AT3 ) then the union of the radii 
CP is the circle plus its interior. Such a figure is called a disk. We shall begin our 
investigation by proving the following theorem. 

• THEOREM 1. Let K be a circular sector with radius r and boundary arc 
of length s. Then there is a sequence of polygonal regions 

K,, K2, . . . , 

all contained in K, such that 

lim aK = —
1

rs . 
n--*°' 	n  

Here aKn  denotes the area of Kn. 

PROOF. We begin by inscribing in AB a broken line Bn  in which all the sides 
are congruent, of length bn : 

A3 

 

A2 

  

\  
L  \ 	I N 
b 	\ 	an 1 	bn."...... 

I A4= An= 	
■ 	r \\ 

 

	

1 r \ 	7 
. 

■ 	\ 1 	, 
1 I. 	\ 	4  

. \ 1  Z 
4' , 

C 	r 

Figure 21.11 

A l  
\ 
\ 

bn\ 
\ 
\ 

A=A0 
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In the figure, r is the radius of the circle. Obviously all the triangles AA,_, CA, 
are congruent. Therefore they all have the same altitude (measured from C to 
the opposite side A,_, A,). This common altitude is called the apothem, and is de-
noted by an. Thus the area of each of our triangles is lank,. Let Kn  be the po-
lygonal region which is their union. Then 

1 
aK

n 2 
= —na

n  bn 
 . 

Let s be the length of All 
We now want to see what happens to b„, an  and aK., as n —> 00. 

(1) The number nbn  is the length of our inscribed broken line. Therefore 

nb. 	s. 

Therefore 

b   
n n 

Since 

s 
lim — = s lim 1 — = s • 0 = 0 , 

n 	n 

it follows by the squeeze principle (Theorem 6, Chapter 30) that 

lim = 0 . 

(2) Since the mesh of the inscribed broken line is bn, and limn_, b. = 0, it fol-
lows that 

lim nb. = s . 

Here we are using the fact that the length of the inscribed broken line ap-
proaches s as the mesh approaches 0. 

(3) Examining a typical triangle AA CA„ we see that 

b 
r < a + 

n 	2 

Therefore 

bn  
r — 

2 
— < a

n 
 < r. 

Since 	bn  = 0, it follows that 

lim r — 	= r. 
2 
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By the squeeze principle, this means that. 

lim an  = r . 

(4) Fitting together (2) and (3), we get 

lim(aKn) = lim —
1 

• an  • nbn  = —
1

rs 2 	 2 

This proves our theorem. ❑ 

21.6 Approaching the Area of a 
	 Circular Sector from Above  	

It would now seem natural to show that there is a sequence L1 , L2, . . of polygo-
nal regions, each of them containing the sector K, such that 

lim aL = —
1

rs 
n —"° 	n 	2 

The following theorem, however, is easier to prove, and will be sufficient for 
our purposes. 

• THEOREM 1. Let K be a circular sector with radius r and boundary arc of 
length s, and let e be any positive number. Then there is a polygonal region L, 
containing K, such that 

aL < —
1

rs + E . 
2 

To find such a polygonal region, we draw a circular sector K' with the same 
center, and radius r' > r: 

— —1--  

I 4 I ■ 
I 	 I 	N 

, --i— B' N 	
K,N 

	

\ \
∎ 

	 / .7...n ■ h 
\ 	I 	1 

	

 B 	...,,,, 	\ 1  1 an ......., 

`....4....... 

C 
CA= r, CA' = r' 

Figure 21.12 

A' = A 0 
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In the figure, the broken line inscribed in the smaller circle is the same as be-
fore; and we have also indicated the corresponding broken line inscribed in the 
larger circle. For the second broken line, the mesh is bn and the apothem is an. 
Let L be the polygonal region inscribed in the larger sector. Then 

aL = 

Let s' be the length of A'B'. By Theorem 3, Section 21.2, we have 

s' 	s 
= 

Therefore 

, is
s = —

r
. 

Therefore 

Also, by similarity, 

so that 

nb' < ris  

an' 	r' = 
an 	r 

, an  r' 	 1 anr' is 1 r' 2s 
an  = 	and aL -- — — — — . 

2 r 	r 	2 r 

So far, all of this holds true for every r' > r, and for every n. What we need 
is to choose r' so that aL < irs + E, and then to choose n so that K C L. 

(1) We want 

T
12

S 
— < rs + 2s or r /2 < r 2 + 
r 	 s 

and this will be true whenever 

r' < Vr2  + 2Erls. 

We take an r' > r, satisfying this condition. 

(2) Since limn. an = r', it follows that an > r for some n. Such an n gives us an 
L that contains K. 
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21.7 The Area of a Sector 

We can now show that if area theory works in a reasonable fashion, then the 
area of a circular sector must be given by the formula 

aK = 
2
-
1

rs . 

Our conception of reasonableness is conveyed by the following assumptions. 

Assumption I. There is an area function a, defined for a class V of figures. 
The class WI contains, at least, all polygonal regions and all circular sectors 
and disks. 

Assumption 2. If K is a polygonal region, then aK is the area of K in the 
elementary sense. 

Assumption 3. (Monotonicity.) If K and L belong to V and K C L, then 
aK ..._ aL. 

Under these three assumptions, we can prove that our formula holds. Let 
K1 , K2, . . . be as in Theorem 5, Section 21.5. Then aK„ _._ aK for every n. 
Therefore 

—
1

rs = lim aK„  aK . 	(Why?) 
2 	n->. 

It cannot be true that irs < aK. If so, let 

s = aK – 
2 
!rs 

' 

and let L be as in Theorem 1, Section 21.6. Then 

1 
aK ___ aL < —

2
rs + s = aK . 

Thus aK < aK, which is impossible. (You have a good deal of choice, in decid-
ing how to express the contradiction in proofs like this.) 

Thus there is no reasonable area theory in which the formula ak = lrs fails 
to hold. In the following chapter we shall replace this negative statement by a 
positive one: we shall show that there is an area function a for which our three 
assumptions are valid. 



CHAPTER 

Jordan Measure 
in the Plane 

   22.1 The Basic Definition  	

It is fairly easy to define an area function for which the three assumptions that 
we made in the preceding section are valid. The definition goes like this. First, 
let a be the usual area function for polygonal regions. Now given a set K of 
points of the plane, let P1  be the set of all polygonal regions P that lie in K, and 
let N, be the set of all numbers aP which are areas of elements of P1. Let 

mil( = sup NI . 

The number mi l< is called the inner measure of K. If it happens that K contains 
no polygonal regions at all, then we agree that mil( = 0. Thus the inner mea-
sure of a point or a segment is always = 0. 

Suppose now that K is contained in at least one polygonal region. Let Po  be 
the set of all polygonal regions P that contain K. Let No  be the set of all numbers 
aP which are areas of elements of Po. Let 

mo  K = inf No . 

Here inf No  is the greatest lower bound of No. The number inf No  is called the 
outer measure of K. 

If PE PI  and P' E P0, then 

PCKCP'. 

Therefore 

P C P'  and aP --. aP'. 
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Thus every element of N, is less than or equal to every element of No. The two 
sets of numbers must therefore look like the figures below. The figures suggest 
that we must have 

mil< 5 moK. 

NI 	 No 

 

Ni 	 No  

 

     

0 	mil( 	moK 

 

0 	miK=m0 K 

 

Figure 22.1 

And in fact this always holds. If it were true that 

moK < mrK, 

then there would be a polygonal region P, lying in K, such that 

mo  K < ceP 5- mi K . 

And aP is a lower bound of No, because 

aP 5 aP' 

for every P' in Po. Therefore mo K is not the greatest lower bound of No; and 
this is impossible, because mo K was defined to be inf No. 

Thus 

m/K moK • 

If the equality holds, then we say that K is measurable in the sense of Jordan, and 
we define the measure of K to be 

mK = m,K = mo K . 

Since we shall be talking about only one kind of measure theory in this book, 
we shall say for short that K is measurable if ni,K = mo K. We now have the fol-
lowing theorems. 

■ THEOREM 1. Every polygonal region P is measurable; and mP = aP. 

PROOF. P belongs to P,, because P C P. And if P' C P, then aP' 5 aP. There-
fore m,P = aP. 

Similarly, P belongs to Po, because P J P. And if P' D P, then aP' aP. 
Therefore m0 P = aP. Therefore 

mP = mo P = m,P = aP , 

which was to be proved. ❑ 
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■ THEOREM 2. Outer measure is monotonic. That is, if A C B, then mo  A 
moB. 

■ THEOREM 3. Measure is monotonic. That is, if A and B are measurable, 
and A C B, then mA .,- mB. 

The proofs are left as exercises. 

■ THEOREM 4. Every circular sector K is measurable. If the radius is r, 
and the boundary arc has length s, then 

1 
mK = —

2
rs. 

PROOF. The results of the preceding section tell us that 

1 	 1 
m,K —

2
rs and mo K . —

2
rs . 

Since m1 K -.. mo  K, it follows that 

mi K = mo K = —
1

rs, 
2 

which was to be proved. ❑ 

If you review our investigation of circular arcs in the preceding chapter, 
you will see that the definition of Jordan measure is modeled on it. One way of 
putting it is to say that in the preceding chapter we gave a proof, and that in 
the present section our task has been to find the theorem that our proof proves. 

By a discussion exactly analogous to the discussion in Section 21.7, we can 
show that if K is a disk of radius r and hence of circumference s = 27rr, then 

m,K = 
2
-
1

rs = mo K . 

Thus we have the following theorem. 

• THEOREM 5. Every disk K is measurable, and 

mK = rrr 2, 
where r is the radius. 

	  Problem Set 22.1 

1. Show that every point P forms a measurable set, and that mP = 0. 

2. Show that every segment AB is measurable, and that mAB = 0. 

3. Prove Theorem 2. 
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4. Prove Theorem 3. 

5. Consider a plane with a coordinate system. Let K be the unit square: 

Figure 22.2 

Let L be the set of all rational points of K. That is, (x,y) belongs to L if x and y are 
both rational, 0 x 1 and 0 y 	1. Is L a measurable set? Why or why not? 

Y 

Figure 22.3 

6. In a coordinate plane, consider a right triangle in the figure above. We divide the 
interval [0, a] into n congruent segments, each of length a/n, and construct an in-
scribed polygonal region P„ and a circumscribed polygonal region P . (In the fig-
ure, the boundary of P, is drawn solid, and that of P n is dashed.) Calculate aP, and 
aP „' . Verify algebraically that 

sup{aP„} = 	= 1ab . 
2 

This problem throws some light on the theory. It means that if we know only 
about areas of rectangles, we can calculate the Jordan measures of right triangles in 
the indicated position. 

22.2 The Class of 
	  Measurable Sets 	  

Let E be the class of all measurable sets in the plane. (Here, as usual, we use 
the word class as a synonym for the word set.) We shall show that this class has 
the following simple properties. 
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• THEOREM 1. If M, and M2 belong to 9,71, then so also does M1  U M2. 

It will follow by induction, that: 

■ THEOREM 2. Finite Additivity. If each of the sets MI,  M27 • • • Mn belongs 
to E, then so also does their union 

r'  M = U 
i=1 

■ THEOREM 3. If M, and M2 belong to 93?, then so also does M, — M2. 

■ THEOREM 4. If M, and M2 belong to P?, then so also does M, fl M2. 

■ THEOREM 5. If M, and M2 belong to 9j1, and 

M, fl m2  = o, 

then 

m(m , U M2) = mm , + mM2 . 

■ THEOREM 6. If M I  and M2 belong to 9N, and M1  C M2, then 

m(M2 	= mM2 mMI 

■ THEOREM 7. If M 1  and M2 belong to 9N, and 

m(m, fl M2) = o, 

then 

m(M1  U M2) = mM i  + mM2 .  

The proofs begin with the following lemma. 

LEMMA 1. Let M be a measurable set in the plane. Then for every positive 
number s there are polygonal regions P and P' such that 

PCMCP' 

and 

aP' — aP < e . 

PROOF. Take P so that P C M and 

aP > 	— —
2 
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Take P' so that M C P' and 

Then 

and by addition, we get 

aP' < mo M + —
e 

2 .  

E 
–aP < –m,M + 2; 

aP' – aP < E. 

(We are using, of course, the fact that mo M – m,M = 0.) 

The converse is also true. 

LEMMA 2. Let M be a set of points in the plane. Suppose that for every posi-
tive number e there are polygonal regions P, P' such that 

PCMCP' 	 (1) 

and 

aP' – aP < e. 	 (2) 

Then M is measurable. 

PROOF. Given such regions P, P', we have 

Therefore 

and so 

mo M –. aP', 	aP __ mi M . 

–miM –aP, 

moM – mi M aP' – aP < e. 

Since moM – m,M < E for every positive number E, and mo M – m,M _-- 0, it 
follows that mo M – m,M must be = 0. Therefore M is measurable, which was 
to be proved. ❑ 
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We shall now prove Theorem 1. Consider two measurable sets M1 , M2. Let 
E be any positive number: 

Figure 22.4 

Take P1, P; for M1, as in Lemma 1, so that 

P1 C MI C P; 

and 

E 
aP ; — otP, < 2 . 

Take P2, P 2  for M2 so that 

P2 C M2  C 13  

and 

E 
a. P 2 — aP2  < - . 

Let 

and let 

Then 

P= P1  U P2 , 

P' = 1:1  U .13 . 

aP' — aP -5 (aP ; — aPI ) + (a13  — aP2) • 



1 
I 

	 i 

1 
1 
L 

1-  
1 

--J 
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To see how this works, consider a simpler figure: 

r -- 
P2 

P1 	

I 	
-r 	P 2 	1 
I- 	 J 

1.. 	  

Figure 22.5 

Figure 22.6 

Here aP' — aP is the area of the thin strip in the figure second above. This 
is .. the sum of the differences 

aP ; — aP1, 	aP; — aP2 . 

The same principle applies in the general case. If we form a suitable triangula-
tion of P; U P;, then each of the three differences 

aP' — aP, 	aP; — aP1 , 	aP; — al);  

is the sum of the areas of a collection of triangular regions, and every triangle 
that contributes to aP — aP' must contribute at least once, and perhaps twice, 
to (aPi — aP1) + (aP; — «PO. 

Therefore 

8 	8 
aP' — aP < —

2 
+ —

2 

= E , 

and so M 1  U M2 is measurable, which was to be proved. 
Theorem 2 follows, as we pointed out, from Theorem 1. 
To prove Theorem 3, we use the same figures. To prove that M 1  — M2 is 

measurable, we form a triangulation of P; U P; in which each of the regions 
P1, P;, P2, P; is a union of triangular regions, intersecting only in edges and 
vertices. Let P', this time, be the union of all the triangular regions that lie in 

P; 
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P;, but not in P2. Let P be the union of all of the triangular regions that lie in 
P1 , but not in P. Then P and P' look like this: 

--1  
7 I 

Figure 22.7 

Here the boundaries of P and P' are drawn solid, and the rest of the figure is 
dashed merely to remind us of how P and P' were defined. We recall that s was 
any positive number, and aP ; — aP, < s12; aP; — aP2  < s/2. 

Evidently, 

aP' — aP '. (aP ; — aP,) + (aP; — aP2). 

Therefore 

E 	

2 

E  
aP' — aP < 

2 
— + — = s; 

and so M, — M2 is measurable, which was to be proved. 
To prove that M, (1 M2 is measurable, we merely need to manipulate sets, 

without using either geometry or algebra. A figure will make it easier to keep 
track of what we are doing. 

ATI 

Figure 22.8 

Given M, E 9,11, M2 E 9,11. By Theorem 1, 

M, U M2 E an . 
By Theorem 3, 

M2 — MI E 9)1, 	itil — M2 E M. 



Figure 22.9 

aP = aP, + aP2  miMi 

M2  
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Therefore, by Theorem 1, 

(M1 — M2) U (M2 — M1) E 9n. 
Hence, by Theorem 3, 

(MI U M2) [(M1 — M2) U (M2 — MI)] E Ut • 

This proves Theorem 4, because the set we have described is precisely M, fl M2. 

Now for Theorem 5, which says that if M, and M2 do not intersect, then 

m(M, U M2) = mMi  + mM2 . 

First we observe that if P is a polygonal region lying in M, U M2, then P = 
U P2, where P, C M, and P2 C M2: 

Therefore 

Therefore 

mr(MI U M2) m/Mi nirM2 

because mi(M, U M2) is the least of the upper bounds of the set of numbers aP. 
On the other hand, given any E > 0, we can find P, C M, and P2 C M2 

so that 

aPI  > 	
2 	

aP2  > mi N12  — 2. 

We then have 

Therefore 

for every e > 0. Hence 

aP > 	+ niiM2 E • 

M/(M1 U M2) M/M1 M/M2 - 8  

mi(mi U M2) 	+ mim2 
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Since we already have the reverse inequality, it follows that the equality holds. 
But all three of our sets are measurable. Therefore 

m(M1  U M2) = mM1  + mM2 , 

which was to be proved. 
This is the last algebraic proof in this section; we get the rest of our theo-

rems from the earlier ones. 

PROOF OF THEOREM 6. Given M1  C M2, we have 

M2 = (M2 — M1) U M1, 

and the two sets on the right do not intersect. Therefore 

mM2 = m(M2 — M1) + milli , 

so that 

m(m2 - ml) = mm2 - mmi , 

as desired. ❑ 

PROOF OF THEOREM 7. Given m(M1  fl M2) = 0, we want to show that 

m(M1  U M2) = mM1  + mM2 . 

First we observe (Fig. 22.10) that 

m1 - m2 = m1 - (m1 fl M2) 

and 

M2  - M1  = M2  - (M1  fl m2). 

M, 

Figure 22.10 

Therefore 

m(M1  — M2) = mM1  — 0, and m(M2  — M1) = mM2  — 0. 

Now 

M 1  U M2  = (M1  - M2) U (M1 n M2) U (M2 - m.); 
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therefore 

*MI  U M2) = mM I  + mNI 2  + 0 , 

which was to be proved. ❑ 

	  Problem Set 22.2 	  

All of the following problems are to be solved on the basis of the theorems proved in 
this chapter, plus, of course, our old theorems on areas of polygonal regions. 

1. Let C be a circle of radius r, let L be the interior of C, and let K be the disk C U L. 
What is mi L ? What is mo  L ? Why, in each case? 

2. Show that every circle is measurable, and that its measure is = 0. 

3. Show the same, for arcs of circles. 

4. Show that if moM = 0, then every subset of M is measurable, and has measure = 0. 

5. Show that the interior of a triangle is always measurable. What is the measure of 
such a set? 

6. A segment of a circle is a figure like this: 

, I 
/ 	I 

/ 	I 
/ 	I 

. ---h C •-. 

\ / \ 	 / \ 	, 

Figure 22.11 

Prove that a segment of a circle is always measurable, and find its measure. 
[Warning: If K is the sector with boundary arc AB, and L is the segment, then it is 
not true that L = K — LABC. The first step in solving the problem is to get a cor-
rect expression for L.] 

Figure 22.12 

7. Show that the region indicated in the figure above is measurable, and find its measure. 
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22.3 Areas Under the Graphs 
	 of Continuous Functions  	

Jordan measure is the theory that is needed to fill a certain gap in elementary 
calculus. Suppose that we have a region R, bounded by the graphs of two con-
tinuous functions. 

  

X 

  

   

Figure 22.13 

Here 

f(x) 	g(x), 	a 	x 	b , 

and 

R 	{(x, y) I a 	x 	b and f(x) y 	g(x)}. 

We compute the area of R by the formula 

mR = 	[g(x) — f(x)}dx. 
a 

The usual derivations of this area formula are not proofs in any strict sense, be-
cause they do not appeal to any valid definition of area. These derivations are 
persuasive. And now that we know about Jordan measure, it is easy to see that 
they show that the definite integral gives the Jordan measure of the region. The 
situation here is much the same as for circles. The elementary discussion be-
comes adequate, as soon as we supply the definition to which it tacitly appeals. 

Y 

=fix) 

x2 	 • • • Axn  
	- X 

X2 

M1  

ni l  

a =x0  

Figure 22.14 
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To see this, consider first the case where R is the region under a single 
positive continuous function f(x) as shown in the figure above. Here 

f(x) 	0, 	a 	x 	b, 

and 

	

R = {(x,y) I a x 	b and 0 y f(x)} .  

As in the definition of the definite integral, we take an ascending sequence 
of points, 

	

a = xo  < xi 	< •• < 	= b , 

on the interval [a, b]. Let Ax, be the length of the ith subinterval. Let m, be the 
minimum value off (x) on the ith subinterval, and let M, be the maximum value of 
f(x) on the ith subinterval. (In the figure, we have indicated m 1  and M 1.) Then 

E miAx, 

is the sum of the areas of the inscribed rectangles (with dashed upper bases in 
the figure); and 

E M,Ax, 
,=1 

is the sum of the areas of the circumscribed rectangles (drawn solid in the figure). 
There are various ways of setting up the definite integral; we shall not re-

view the theory here. But in any case it turns out that 

E m,Ax, < f f(x)dx < E M,Ax,. 
a 

And, for continuous functions f(x), we can make the difference, 

EMi Lx, — E miAx, , 

as small as we please, merely by taking all of the numbers Axi  sufficiently small. 
Thus, for any E > 0 there is a sequence, 

a = xo  < xi  < • • < x„ = b , 

for which 

mi Axi  — E miAxi  < e . 

Here the first sum is the area aP of a polygonal region lying in R, and the sec- 
ond is the area of a polygonal region P' containing R. By Lemma 2 of the 
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preceding section, this means that R is measurable: m,R = mo R. Since the inte-
gral is an upper bound of the numbers aP, we have 

b 

MI R --< f f(x)dx. 

Similarly, the integral is a lower bound of the numbers aP', and so 

r b 

-la 
f(x)dx 	mo R. 

Since mi l? = mo R = mR, it follows that 

b 

mR = f f(x)dx , 

which was to be proved. 
The extension to the case where R is bounded by the graphs of two con-

tinuous functions is not hard. We shall not go into it here. 
Many calculus books, including some otherwise excellent ones, try to define 

the area of such a region as the definite integral. This will not work. The area 
of a region ought to depend merely on its size and shape, and not on the way 
it is placed relative to the axes. That is, the area of a region ought to be un-
changed under rigid motions. This is not clear if we use the definite integral to 
define the area. The trouble is that the same region may be described in infinitely 
many ways as the region between the graphs of two continuous functions. Here 
R1  and R2 are isometric. 

a 

Y 	 Y 
Y =g2(x) 

y= g1 (x) 

Figure 22.15 

In this chapter of this book we can infer that 

d 

I [gi(X) — fi(x)]dx = I [g2(x) — f2(x)] dx . 
. 	 , 

The reason is that both of the integrals give the right answer to the same ques-
tion. But if your definition of measure is stated in terms of a coordinate system, 
you are left with the problem of proving by calculus that the integrals have the 
same value; and this is not a practical enterprise. 
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If you review the theorems given in this chapter so far, you will see that 
Jordan measure theory has, at this point, been brought down to earth. Given a 
figure whose measure you would normally expect to calculate, the chances are 
that you can prove that the figure is measurable in the sense of Jordan, by using 
the theorems of this section and the preceding one. (In fact, a certain amount 
of effort is required to think of a figure which is not measurable in the sense of 
Jordan.) Moreover, the theory at this point is adequate to justify the elementary 
methods of calculating plane areas. The theory of measure has been general-
ized, by Henri Lebesgue, in such a way as to assign areas to an even larger class 
of figures. But Jordan measure is adequate for the purposes of elementary 
mathematics. 

	  Problem Set 22.3 	  

1. Given that f(x) is continuous and 0 for a x b. Let 

R' = {(x,y) a x 	b and 0 y <f(x)}. 

(Here y < f(x) is not a misprint; the graph itself is not in R'.) Show that R' is mea-
surable, and that mR' = mR. 

2. Show that if F is the graph of a continuous function, for a x b, then mF = 0. 

3. Show that if R is a region of the sort described at the beginning of this section, then 
mR is the integral of the difference of the two functions. 



CHAPTER 

Solid Mensuration: 
The Elementary Theory 

23.1 Basic Assumptions for 
   the Theory of Volume  	

The theory of volume, carried out in a spirit like that of the preceding chapter, 
is technically difficult. Moreover, the work required is not worthwhile, because 
anyone pursuing the theory at such length should study not the theory of Jordan 
but that of Lebesgue, which has superseded it for the purposes of advanced 
mathematics. For this reason, we shall treat the theory of volume only in a style 
analogous to that of Chapter 21, basing our derivations on postulates, and not 
attempting to describe a volume function which satisfies our postulates. 

Suppose, then, that we have given a class 1" of sets of points in space, called 
measurable sets. Here it stands for volume. We suppose also that we have a function 

v:1 I —> lB 

of if into the nonnegative real numbers. If M E 1r, then vM will be called the 
volume of M. 

Our first two postulates are designed to ensure that the elementary solids 
whose volumes we propose to discuss really do have volumes. 

V-1. Every convex set is in if. 

V-2. If M and N belong to 1r, then M U N, M n N, and M — N also belong 
to lr. 

The rest of our assumptions deal with the volume function v. 
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V-3. v is monotonic. That is, if M, N E ev, and M C N, then vM -.__- vN. 
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23.2 Cross Sections of Cones and Pyramids 

For each point B of D, let B' be the point in which VB intersects E. Let Dk be 
the set of all such points B'. We call Dk the cross section of the cone at altitude IL 

355 



356 	 Solid Mensuration: The Elementary Theory 

and conversely. Therefore Dk is a disk of radius 

h — k „,, _ 
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belongs to T The altitude of the pyramid is the perpendicular distance h from V 
to E. 

Let Er he the nlane parallel to E. on the side of E that contin v 
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by the SSS similarity theorem (Theorem 3, Section 12.2). And the areas of the 
corresponding regions T, T, are related by the formula 
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lelepiped. If P and Q are points of B1, and P'and Q' are the corresponding points 
of B2, then it is not hard to see that DPP' Q' Q is a parallelogram. 



This follows immediately from Theorem 1. To see this, we merely need to 
observe that every horizontal cross section B is the upper base of a cylinder with 
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vK = h • aT . 

Then 



PROOF. B is the union of a finite collection of triangular regions T,. Thus K is 
the union of a finite collection of prisms K, with the T,'s as bases. We know by 
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■ THEOREM 5. Let K be a cylinder whose altitude is h and whose base is a 
disk of radius r. Then 
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i• 

Zi I 
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By Cavalieri's principle, the cone and the pyramid have the same volume. Since 
we know that the volume of the pyramid is 3ah, we have the following. 
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We know how to find vC: 

z~C = Trr 2  • 2T 
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Thus 

vL = vL'. 
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2. By a spherical sector we mean a figure like this: 



CHAPTER 

4/ 

Hyperbolic Geometry 

24.1 Absolute Geometry, Continued: 
	  The Critical Function 	  

In this chapter, we shall make heavy use of the incidence and separation theo-
rems of Chapter 4. For convenience, we briefly restate two of them: 

■ THE POSTULATE OF PASCH. Given LABC and a line L (in the same 
plane). If L intersects AB at a point between A and B, then L also intersects ei-
ther AC or BC. 

L? 	L. 

Figure 24.1 

(This was Theorem 1, Section 4.1.) 

■ THE CROSSBAR THEOREM. If D is in the interior of LBAC, then AD 
intersects BC. 

Figure 24.2 
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(This was Theorem 3, Section 4.3.) 

Given a line L and an external point P. Let A be the foot of the perpendicu-
lar from P to L, and let B be any other point of L (Fig. 24.3). For each number 
r between 0 and 180 there is exactly one ray PD, with D on the same side of AP 
as B, such that 

mLAPD = r. 

Figure 24.3 

Obviously, for some numbers r, PD will intersect AB . (For example, take r 
mLAPB.) For r 90, PD will not intersect AB . Let 

K = {ri PD intersects AB} . 

Then K is nonempty, and has an upper bound. Therefore K has a supremum. Let 

ro  = sup K . 

The number ro  is called the critical number for P and AB . The angle LAPD with 
measure = r0  is called the angle of parallelism of AB and P. 

■ THEOREM 1. If mLAPD = r0, then PD does not intersect AB . 

PROOF. Suppose that PD intersects AB at Q: 

P 

Figure 24.4 

If R is any point such that A-Q-R, then mLAPR > r0, so that r0  is not an upper 
bound of K. ❑ 

■ THEOREM 2. If mLAPD < 7-0, then PD intersects AB . 
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Figure 24.5 

PROOF. Since ro  = sup K, and mLAPD < 1'0, it follows that mLAPD is not an 
upper bound of K. Therefore some r in K is > mLAPD. Let D' be such that 
mLAPD' = r. Then PD' intersects AB in a point F. But PD is in the interior f 
LAPD'. Therefore, by the crossbar theorem, PD intersects AF. Therefore PD 
intersects AB. Thus there is a certain "critical ray" PD, with mLAPD = r0; PD 
does not intersect AB , but if F is in the interior of LAPD, then PF does inter-
sect AB . 

[Hereafter, if F is in the interior of LAPD, we shall say that AF is an interior 
ray of LAPD.] ❑ 

Figure 24.6 

Note that r0  was defined in terms of P, A, and B. It turns out, however, that 
r0  depends only on the distance AP. 

■ THEOREM 3. Let P, A, B and also P', A', B' be as in the definition of the 
critical number. If AP = A' P' , then the critical numbers r0, 7- )  are the same. 

P 
	

P,  

Figure 24.7 

PROOF. Let 

K = {r PD intersects AB} , 
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and let 

K' = frIP'D' intersects A'B'l , 

as before. If r E K, let Q be the point where PD intersects AB, and let Q' be the 
point of AT' for which A'Q' = AQ. Then mLA'P'Q' = r. (Why?) Therefore 
r E K'. Thus K C K'; and similarly K' C K. Therefore 

K' = K and sup K' = sup K. 

We now have a function AP —> r0. We shall denote this function by c, and call 
it the critical function. Thus, for every a > 0, c(a) denotes the critical number 
corresponding to AP = a. Thus PD intersects AB when mLAPD < c(a), but PD 
does not intersect AB when mLAPD c(a). 

Q 

Figure 24.8 

We shall now investigate the function c. 

■ THEOREM 4. c never increases as a increases. That is, if a' > a, then 
c(a') 	c(a). 

A 

Figure 24.9 

PROOF. Given P, P', with a = AP, a' = AP', as in Fig. 24.9. Take PD so that 
mLAPD = c(a), and take P'D' so that mLAP'D' = c(a). Then PD and P'D' are 
parallel. Therefore all points of P'D' are on the side of PD that contains P'. 
And all points of AB are on the side of PD that contains A. Therefore P'D' 
does not intersect AB. 

Now let 

K' = {r1P'D" intersects AB} , 



I c(ar 
P' I 

c(a)° 
2 

4  A 

E 

B 
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as in the definition of the critical angle, so that 

c(a') = sup K'. 

Then c(a) is an upper bound of K', because P'D' does not intersect AB. And 
c(a') is the least upper bound of K'. Therefore c(a') c(a), which was to be 
proved. ❑ 

In the Euclidean case, this theorem cannot be strengthened to give the strict 
inequality c(a') < c(a) for a' > a. (The reason, obviously, is that in Euclidean 
geometry we have c(a) = 90 for every a.) In hyperbolic geometry, however, not 
only do we have the strict inequality but we actually have c(a) —> 0 as a ----> 00. 
(It would be worthwhile to figure out how this works in the Poincare model de-
scribed in Chapter 9.) 

Theorem 4 allows the possibility that c(a) < 90 when a is large, but c(a) = 90 
when a is sufficiently small. But in fact this cannot happen, as the following two 
theorems show. 

■ THEOREM 5. If c(a) < 90, then c(a12) < 90. 

Figure 24.10 

PROOF. Given P, P'as in the figures, with AP = a, AP' = a/2. Take PD so that 
mLAPD = c(a) < 90, and take P'E 1 AP at P'. If PD fails to intersect P E , as 
on the left, then obviously c(a12) < 90. 

Suppose, then, that PD does intersect P'E , at a point F. (It will turn out, 
later in the theory, that this is what always happens.) Let G be any point such 
that P-F-G. Then LAP'G is acute. 

Now (1) AB cannot intersect P'G except perhaps in a point of P'G; the 
reason is that all other points of P'G lie on the "wrong side" of PG. And (2) 
AB does not contain P' or G. Finally (3) AB does not contain a point between 
P' and G; if so, it would follow from the postulate of Pasch that AB intersects 
P'F or FG, which is false. 

Therefore P'G does not intersect AB and c(a12) < 90, which was to be 
proved. ❑ 

• THEOREM 6. If c(ao) < 90 for some a0  then c(a) < 90 for every a. 
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PROOF. For each n, let 

a, 
an  = 	 . 

2n  

By induction based on Theorem 5, we have 

c(a„) < 90 for every n . 

Suppose now that c(b) = 90 for some b. Since 

lim an  = 0 , 

we have 

ah  < b for some k . 

Thus a, < b but c(ah) < c(b), and this contradicts Theorem 4. ❑ 

This theorem clarifies the meaning of the parallel postulate; it tells us that 
the situation described in the postulate holds either always or never. 

• THEOREM 7. The All-or-None Theorem. If parallels are unique for one 
line and one external point, then parallels are unique for all lines and all exter-
nal points. 

PROOF. Given P, L, P', and L', with AP = a and A'P' = a', as in the figure. 

P 	 P' 

T 	 T 
1 	 1 
1 	 i 	, a 1 	 l a 
i 	 I 

a- L 
."--------------■ L' 

A 	 A' 

Figure 24.11 

It is now easy to see that each of the statements below is equivalent to 
the next. 

(1) There is only one parallel to L through P. 

(2) c(a) = 90. 

(3) c(a') = 90. 

(4) There is only one parallel to L' through P'. 

Therefore (1) and (4) are equivalent, which was to be proved. ❑ 

Thus we can state our two possible parallel postulates in seemingly weak 
but actually quite adequate forms. 
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(I) Euclidean. For some line and some external point, parallels are unique. 

(II) Lobachevskian. For some line and some external point, parallels are not 
unique. 

We have already remarked, in Chapter 9, that the same all-or-none prin-
ciple applies in other connections. If the formula mLA + mLB + mLC = 180 
holds for even one triangle, then it holds for all triangles; if even one pair of 
triangles are similar without being congruent, then the geometry is Euclidean; 
and so on. 

24.2 Absolute Geometry: 
Open Triangles and 

	 Critically Parallel Rays 	 

Given rays AB , PD and the segment AP, no two of these figures being col-
linear. Suppose that B and D are on the same side of AP, and that AB II PD. 
Then PD U PA U AB is called an open triangle, and is denoted by ADPAB. 

A 

Figure 24.12 

Here, when we write AB II PD, we mean that the lines are parallel in the usual 
sense of not intersecting one another. 

Suppose now that LXDPAB is an open triangle, and every interior ray of 
LAPD intersects AB : 

Figure 24.13 

We then say that PD is critically parallel to AB , and we write PD I AB . Here the 
single vertical stroke is supposed to suggest that PD is parallel to AB with no 
room to spare. 

Note that PD and AB do not appear symmetrically in this definition. Thus 
if PD AB, it does not immediately follow that AB I PD. Note also that the rela- 
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tion PD I AB (as we have defined it) depends not only on the "directions" of the 
two rays, but also on the initial points: 

Thus, if PD AB, we cannot conclude immediately that P'D I A ' B . We shall 
see, however, in the next few theorems, that the conclusion is true. 

• THEOREM 1. If PD AB , and C-P-D, then CD I AB . 

PROOF. Let CE be an interior ray of LACD, and suppose that CE does not 
intersect AB . By the exterior angle theorem (which was, fortunately, proved 
without the use of the parallel postulate), we know that LAPD > LACD. 
Therefore there is an interior ray PF of LAPD such that LDPF = LDCE. 
Therefore PF CE . Therefore PF does not intersect AB because these rays lie 
on opposite sides of CE . This contradicts the hypothesis PD AB . ❑ 

■ THEOREM 2. If PD I AB , and P-C-D, then CD I AB . 

We give the proof briefly. Suppose that there is an interior ray CE of LACD 
such that CE does not intersect AB . Let F be any point of CE — C, and take G 
so that P-F-G. Then 

(1) F is in the interior of LAPC; 

(2) PF does not intersect AB ; 
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(3) FG does not intersect AB ; 

(4) PF does not intersect AB. 

Statements (1) and (4) contradict the hypothesis PD I AB 
Two rays R and R' are called equivalent if one of them contains the other. 

We then write R R'. Obviously the symbol — represents an equivalence rela-
tion. Fitting together the preceding two theorems, we get: 

■ THEOREM 3. If RI AB , and R and R' are equivalent, then R'I AB . 

Somewhat easier proofs show that the relation PD I AB depends only on 
the equivalence class of AB . We leave these proofs to you. 

■ THEOREM 4. If R I  R2, R; R1  and R — R2, then R ;I R;. 

Given PD I AB let C be the foot of the perpendicular from P to AB and let 
PC = a. 

C 	B 

Figure 24.17 

Then PD CB (providing, of course, that B is chosen so that A-C-B , as in the 
figure). Therefore mLCPD = c(a). Now on the side of PC that contains B there 
is only one ray PD for which mLCPD = c(a). Thus we have: 

■ THEOREM 5. The critical parallel to a given ray, through a given exter-
nal point, is unique. 

Two open triangles are called equivalent if the rays that form their sides are 
equivalent. An open triangle LDPAB is called isosceles if LP L.= LA. 

Figure 24.18 

■ THEOREM 6. If PD AB then ADPAB is equivalent to an isosceles open 
triangle which has P as a vertex. 



24.2 Absolute Geometry: Open Triangles and Critically Parallel Rays 	379 

Figure 24.19 

PROOF. Since PD I AB , the bisecting ray of LAPD intersects AB in a point Q. 
By the crossbar theorem, the bisecting ray of LPAB intersects PQ at a point R. 
Let S, T, and U be the feet of the perpendiculars from R to PD, AB, and AP. 
Then RU = RT and RU = RS. Therefore RS = RT, and LRST = LRTS. Hence 
(by addition or subtraction) LDST = LBTS ; and LDSTB is isosceles. 

To make P a vertex, we take V on the ray opposite to TB, such that TV = SP. 
0 

V 
	

T 

Figure 24.20 

■ THEOREM 7. Critical parallelism is a symmetric relation. That is, if 
PD I AB, then AB I PD. 

PROOF. By Theorems 4 and 6, we may suppose that ADPAB is an isosceles 
open triangle: 

Figure 24.21 

Let AE be any interior ray of LPAB. Let PF be an interior ray of LAPD, such 
that LDPF -= LBAE. Then PF intersects AB at a point Q. It follows that AE 
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intersects PD at the point S where PS = AQ. (Proof? The whole figure is sym-
metric, from top to bottom.) ❑ 

• THEOREM 8. If two nonequivalent rays are critically parallel to a third 
ray, then they are critically parallel to each other. 

Restatement. If AB I CD, CD I EF, and AB and EF are not equivalent, then 
AB I EF . 

PROOF. 

(1) Suppose that AB and EF lie on opposite sides of CD. Then AE intersects 
CD, and by Theorem 4 we can assume that the point of intersection is C. 

Figure 24.22 

Let AG be any interior ray of LEAB. Then AG intersects CD at a point H. 
Take I so that C-H-I and take./ so that A-H-f . Then HI I EF, by Theorem 4; 
and HI is an interior ray of LEHI. Therefore lij intersects EF at a point K. 
Therefore AG intersects EF, which was to be proved. 

(2) If CD and EF are on opposite sides of AB , then the same conclusion follows. 
Here we may suppose that AB fl EC = A, for the same reasons as in 

the first case. Through E there is exactly one ray EF' critically parallel to 
AB. By the result in Case (1), EF' I CD. Since critical parallels are unique, 
EF' = EF and EF I AB , which was to be proved. 

C 

AnB  • • 

F' 

E 	 F 

Figure 24.23 

There remains a sticky point which some authors have overlooked. How do 
we know that some two of our three rays lie on opposite sides of the line con- 
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taining the third? In the Euclidean case, this is easy to see, because any three 
parallel lines have a common transversal; in fact, any line which crosses one of 
them must cross the other two. But this is far from true in hyperbolic geometry, 
as an examination of the Poincare model will easily show. Given three noninter-
secting lines, it can easily happen that every two of them are on the same 
side of the third. Therefore the conditions AB CD, CD EF are not enough 
for our purpose; to get a valid proof, we need to use the full force of the hy-
pothesis AB I CD, CD I EF . We shall show, under these conditions, that (3) some 
line intersects all three of the rays AB, CD, EF . (Surely this will be enough.) 

Figure 24.24 

If A and E are on opposite sides of CD, then AE intersects CD, and (3) fol-
lows. Suppose, then, that (a) A and E are on the same side of CD. If A and D are on 
the same side of EC, then CA is an interior ray of LC, so that CA intersects EF , 
and (3) follows. If A lies on CE, then (3) holds. We may therefore suppose that 
(b) A and D are on opposite sides of CE . Therefore AD intersects CE at a point G. 

Take H so that C-D-H. Then DH I AB . By the exerior angle theorem, LHDA > 

LC. Therefore there is an interior ray DI of LHDA such that LHDI -.-== LC. 
Then DI II CE , but DI intersects AB at a point J. 

Now CE intersects AD at G. Therefore CE intersects another side of AADJ. 
Since CE does not intersect DJ, CE intersects AJ at a point K. Now (3) follows; 
the line that we wanted is CE . 

The oversight leading to the incomplete proof of this theorem is illustrious. 
It is due originally to Gauss, and has been faithfully reproduced by good au-
thors ever since. 

	  Problem Set 24.2 	  

1. By the interior of an open triangle ADPAB, we mean the intersection of the interiors 
of LP and LA. If a line intersects the interior of an open triangle, does it follow 
that the line intersects one of the sides? Why or why not? 

2. Same question, for the case where PD AB . 

3. In a Euclidean plane, if a line intersects the interior of an angle, does it follow that 
the line intersects the angle? 
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4. Same question, in a hyperbolic plane. 

5. Given LABC, we define the crossbar interior of LABC to the set of all points P such 
that B'-P-C', for some B' in AB — A and some C' in AC — A. In a Euclidean plane, 
is the crossbar interior the same as the interior? 

6. Same question, in a hyperbolic plane. 

24.3 Hyperbolic Geometry: 
Closed Triangles and 

	

   Angle Sums  	

So far in this chapter, we have been doing absolute geometry. To mention the 
hyperbolic parallel postulate in our proofs would have been misleading, because 
in the Euclidean case, our theorems, so far, are not false but merely trivial, and 
the difference between falsity and triviality is important. 

In this section we deal specifically with the hyperbolic case. To avoid confu-
sion, throughout this chapter, we shall mention the hyperbolic parallel postulate 
in every theorem whose proof requires it. We shall abbreviate the name of the 
postulate as HPP. 

If PD I AB , then ADPAB is called a closed triangle. 
Note that every closed triangle is an open triangle, but under HPP the con-

verse is false, because through P there is more than one line parallel to AB . 
Closed triangles have important properties in common with genuine triangles. 

■ THEOREM 1. The Exterior Angle Theorem. Under HPP, in every closed 
triangle, each exterior angle is greater than its remote interior angle. 

Restatement. If PD I AB and Q-A-B, then LQAP > LP. 
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PROOF. If ADPAB is isosceles, this is obvious. Here, if HPP holds, then 
LP and LPAB are acute (because c(a) < 90 for every a), and therefore LQAP 
is obtuse. 

Suppose then that ADPAB is not isosceles. By Theorem 6, Section 24.2, 
ADPAB is equivalent to an isosceles open triangle ADPCB, and this open tri-
angle is also closed: 

Q A 

Figure 24.28 

If C = A, there is nothing to prove. For the case A-C-B, let the degree measures 
of the various angles be as in the figure. Then 

p > r, 

because c(a) < 90. And 

p + q + s 180, 

by Theorem 6, Section 10.4. Therefore 

t= 180 —g -.1,+s>r+s, 

and 

t > r + s , 

which proves half of our theorem. 
To prove the other half, we need to show that u > q. This follows from 

t = 180 — q > 180 — u = r + s . 

We found, in Theorem 3, Section 24.1, that the critical function c was non-
increasing. That is, if a' > a, then c(a') c(a). Using the exterior angle theo-
rem, we can sharpen this result. ❑ 
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P 

Figure 24.29 

■ THEOREM 2. Under HPP, the critical function is strictly decreasing. That 
is, if a' > a, then c(a') < c(a). 

PROOF. In the figure, AP = a and AP' = a', PD I AB and P'D' I AB , so that 
PD I P'D' . Therefore AD' P' PD is a closed triangle. Therefore c(a) > c(a'), which 
was to be proved. ❑ 

■ THEOREM 3. Under HPP, the upper base angles of a Saccheri quadrilat-
eral are always acute. 

(We already know, from Chapter 10, that they are congruent, and cannot 
be obtuse.) 

In the figure, BQ and CP are the critical parallels to AD, through B and C. 
Therefore 

mLABQ = c(a) = mL.DCP , 

as indicated. Applying the exterior angle theorem to the closed triangle APCBQ, 
we see that 

t > s . 

Therefore 

t + c(a) > s + c(a) . 
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Therefore 

s + c(a) < 90 , 

which proves our theorem. 

B 
	

D 

A 	 C 

Figure 24.31 

■ THEOREM 4. Under HPP, in every right triangle LABC, we have 

mLA + mLB + mLC < 180. 

PROOF. Suppose not. Then, if LA is the right angle, LB and LC must be 
complementary. Take D on the opposite side of BC from A, so that LBCD =-- 
LABC and CD = AB. Then LABC -=-. LDCB, by SAS; and ❑ABDC is a Saccheri 
quadrilateral. This is impossible, because LD is a right angle. ❑ 

■ THEOREM 5. Under HPP, for every triangle AABC, we have 

mLA + mLB + mLC < 180. 

B 

Figure 24.32 

PROOF. Let AC be a longest side of AABC, and let BD be the altitude from B 
to AC. Then 

r + s + 90 < 180, 

and 

t + u + 90 < 180 . 



386 
	

Hyperbolic Geometry 

Therefore 

r + (s + t) + u < 180 , 

which proves the theorem. ❑ 

Soon we shall see that under HPP this theorem has a true converse: for 
every number x < 180 there is a triangle for which the angle sum is x. Thus 180 
is not merely an upper bound for the angle sums of triangles, but is precisely 
their supremum. 

24.4 Hyperbolic Geometry: 
The Defect of a Triangle 

and the Collapse 
	  of Similarity Theory  	

The defect of AABC is defined to be 

180 — mLA — mLB — mLC 

The defect of LABC is denoted by SAABC. Under HPP we know that the de-
fect of any triangle is positive, and obviously it is less than 180. (Later we shall 
see that the converse holds: every number between 0 and 180 is the defect of 
some triangle.) 

The following theorem is easy to check, regardless of HPP. 

■ THEOREM 1. Given AABC, with B-D-C. Then 

SAABC = SAABD + 5AADC 

Figure 24.33 

It has, however, an important consequence. 

■ THEOREM 2. Under HPP, every similarity is a congruence. That is, if 
AABC ADEF, then AABC = ADEF. 
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E 	 F 

Figure 24.34 

First we take G on AB so that AG = DE; and we take H on AC so that 
AH = DF. We then have AAGH -=- AEDF, by SAS; therefore 

AAGH — AABC . 

If G = B, then H = C, and the theorem follows. We shall show that the contrary 
assumption G 0 B, H 0 C (as shown in the figure) leads to a contradiction. 

Let the defects of AAGH, LGHC, and AGBC be d,, d2, and d3, as indicated 
in the figure; let d be the defect of AABC. By two applications of the preceding 
theorem, we have d = d, + d2  + d3. This is impossible, because the angle con-
gruences given by the similarity AABC — AAGH tell us that d = d,. 

The additivity of the defect, described in Theorem 1, gives us more infor-
mation about the critical function c. What we know so far is that (1) 0 < c(a) < 
90 for every a > 0, and (2) c decreases as a increases. There remains the ques-
tion of how small the numbers c(a) eventually become when a is very large. We 
might have either of the following situations: 

Y 

 

e 

90 

e>0 

  

x 

     

	►  X 

      

         

Figure 24.35 

In each case, e = inf {c(a)}, that is, the greatest lower bound of the numbers 
c(a). In each case, it follows from (2) that lim„_ c(a) = e. To prove the following 
theorem, therefore, we need merely show that e > 0 is impossible. 

■ THEOREM 3. lima _,. c(a) = 0. 

PROOF. Suppose that c(a) > e > 0 for every a. 
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Figure 24.36 

The markings in the figure should be self-explanatory. For each n, P„ Qn  
intersects Po  R,, because e < c(n). The right triangles AP?Pn-1-1 Qn+1 all are con-
gruent, and therefore have the same defect do. Consider now what happens to 
the defect d„ of AP,,P„R„ where n is increased by 1. In the figure below, the let-
ters in the interiors of the triangles denote their defects. We have 

SAP,Pn Rn+, = d„ + y, 

SAP„, P,Rn+ , = do  + x , 

dn+1  = (d„ + y) + (do  + x) , 

Figure 24.37 

by Theorem 1 in each case. Therefore 

4+1 > dn + do • 
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Thus 

d 2  > di  + do, 	61 3 > d2  + do > d i  + 2do ; 

and by induction, we have 

d,, > d, + (n — 1)4 . 

When n is sufficiently large, we have dn > 180, by the Archimedean postulate. 
This is impossible, because the defect of a triangle is 180 minus the angle sum. 
Therefore c(a) > e > 0 is impossible, which was to be proved. ❑ 

Consider now what happens to the measure r(a) of the base angles of an 
isosceles right triangle, as the length a of the legs becomes large. 

Figure 24.38 Figure 24.39 

Here BD AC. Therefore we always have r(a) < c(a). Therefore lim,_„0  r(a) = 0. 
Let us now make the figure symmetrical by copying AABC on the other side of 
AB. For ADBC, the angle sum is 4r(a). Therefore the defect 180 — 4r(a) can be 
made as close to 180 as we please; we merely need to take a sufficiently large. 
Thus 180 is not merely an upper bound of the numbers which are the defects 
of triangles; 180 is precisely their supremum. 

• THEOREM 4. For every number x < 180 there is a triangle whose defect 
is greater than x. 

24.5 Absolute Geometry: 
   Triangulations and Subdivisions  	

Let R be a polygonal region. As in Chapter 14, by a triangulation of R we mean 
a finite collection, 

K = {T,, T2, . , T„} , 
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of triangular regions T„ such that (1) the T,'s intersect only at edges and vertices, 
and (2) their union is R. A collection K which satisfies (1) is called a complex. 
Evidently every complex K forms a triangulation of the union of its elements. 

Given two complexes 

K = {T,, T2, . 

K' = 	T 	. 

If every T: lies in some one of the sets T. then K' is called a subdivision of K. 
Triangulations of certain types will be especially useful. 

Given a polygon with vertices P I , P2, . ,P„. Suppose that for each pair 
of successive vertices P„ all other vertices of the polygon lie on the same 
side of P,P,, I . Then the polygon is convex. From this it follows that if P„ P,+1, 
Pi+2 are successive, then the other vertices (if any) all lie in the interior of 
L13,13,+ 1P,+2. (To get this, we merely apply the definition of the interior of an 
angle.) By the interior of a convex polygon, we mean the intersection of the in-
teriors of its angles. By a convex polygonal region, we mean the union of a convex 
polygon and its interior. By a star triangulation of such a region, we mean a com-
plex like this: 

P5 

Figure 24.41 

(More precise definition?) Obviously every convex polygonal region has a star 
triangulation; and any point P of the interior can be used as the central vertex. 
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• THEOREM 1. Let R be a convex polygonal region, and let L be any line 
which intersects the interior of R. Then L decomposes R into two convex poly-
gonal regions. 

Figure 24.42 

PROOF. Let H 1  and H2 be the half planes with L as edge; let H, = H, U L and 
let H2 = H2  U L. Let 

R, = R n HI, 	R2 = R n H2. 

Then R1  and R2 are convex sets, because each of them is the intersection of two 
convex sets; and it is easy to check that they are convex polygonal regions in 
the sense that we have just defined. ❑ 

We shall use this as a lemma in proving the following theorem. 

■ THEOREM 2. Every two triangulations of the same polygonal region 
have a common subdivision. 

That is, if K, and K 2  are triangulations of R, then there is a triangulation K 
of R which is a subdivision both of K, and K2. 

Figure 24.43 

In the figure, the edges of K1  are drawn solid, and the edges of K2 are 
dashed. (As in Chapter 14, an adequate figure is not easy to draw or to look at.) 

PROOF. Let 

L,,L 2, ... ,Ln  

be the lines which contain either an edge of K1  or an edge of K2. (For Fig. 24.43, 
we would have n = 9.) 
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Now L, decomposes each T, in K, (and each T1 in K2) into two convex 
regions, if L, intersects the interiors of these sets at all: 

Figure 24.44 

(In the figure, we show a possibility for L i .) By induction it now follows that the 
union of all of the L,'s decomposes R into a finite collection, 

C = {CI , C2, . , C„} , 

of convex polygonal regions, like this: 

Figure 24.45 

Evidently every C, lies in some one T1  E K1  and in some one Fk  E K2. For each 
C, we take a star triangulation. These fit together to give our common subdivi-
sion K. 

Let R, and R2 be polygonal regions. Suppose that they have triangulations 

K, = {T I , T2, ... ,T„} , 

such that for each i we have 

T, 	T;. 

Then we say that R, and R2 are equivalent by finite decomposition, and we write 

R,= R2. 

Here by 7', = T: we mean that the corresponding triangles are congruent 
in the elementary sense. In fact, this is equivalent to saying that T, and T; are 
isometric in the sense of Chapter 18. 

Equivalence by finite decomposition is a familiar idea in simple cases; it 
means, intuitively, that you can cut R, into little triangular pieces, with scissors, 
and then put the pieces back together again, usually in a different way, to get R2. 
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Figure 24.46 

For example, in the figure above, we have T1  = T4. Therefore 

T, U T2 U T3 7=--  T4 U T2 U T3. 

In fact, this is the observation that people usually make to infer that the paral-
lelogram and the rectangle have the same area. 

■ THEOREM 3. Equivalence by finite decomposition is an equivalence 
relation. 

PROOF. Trivially, = is reflexive and symmetric. We must now show that if 
R I  = R2 and R2 = R3, then R1  = R3. 

Let K1  and K2 be the triangulations used in exhibiting that R1  = R2. That is, 

K1  = {T1, T2, . 	T„} , 

K2 = {Ti n... 	, 
with 

T, 	T, . 

Let 1g and K3 be the triangulations exhibiting that R2 = R3. Let K be a com-
mon subdivision of K2 and Ig (Fig. 24.47). Given any T, E K1 , we observe that 
the corresponding T,' E K2 has been subdivided in a certain way. We copy this 
subdivision scheme in T„ following the congruence T, = T, backwards. This 
gives a subdivision K i of K,, shown by the dotted lines in the figure. Similarly, 
we get a subdivision IC; of K3. We can now match up the elements of K; and K; 
in such a way as to show that R1  = R3. (We omit the details, on the ground that 
a careful inspection of the figures is likely to convey the idea adequately and 
more easily.) ❑ 

K1  

 

 

K 

Figure 24.47 
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24.6 Euclidean Geometry: 
	  Bolyai's Theorem  	

If two triangular regions are equivalent by finite decomposition, then surely 
they have the same area. Thus if 

= T, U T2 	U T„ , 

R2 = T; U T2 U 	U T:„ 

with 

T, T: 

for each i, then we have aT, = aT:, from which we get aR1  = aR2  by addition. 
It was discovered by Bolyai that the converse is also true; if aR1  = aR2, it fol-

lows that R, = R2. This section will be devoted to the proof of Bolyai's theorem. 
Given AABC, with BC considered to be the base. 

A 

B 
	

C 

Figure 24.48 

Let D and E be the midpoints of AB and AC; let L = DE; and let BF, AG, and 
CH be perpendicular to L. Then ❑BFHC is a rectangle. (Remember the SAA 
Theorem.) We shall call ❑BFHC the rectangle associated with AABC. (Of course, 
❑BFHC depends on the choice of the base, but it will always be clear which 
base is meant.) 

■ THEOREM 1. Every triangular region is equivalent by finite decomposi-
tion to its associated rectangular region. 

PROOF. The preceding fire shows the easiest case. Here G is the foot of the 
perpendicular from A to DE, and D-G-E. In this case the relation AABC 
❑BFHC follows from two triangle congruences. 

The proof in the general case requires a different method, as follows. As 
before, let D and E be the midpoints of AB and AC. Let G be the point such 
that D-E-G and DE = EG. (See the figure below.) 

By SAS, we have AADE = ACGE, so that 

AABC = ❑BDGC 
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As indicated in the figure, DB = GC, and LGDB = LIGC. ❑BDGC will be 
called the parallelogram associated with LABC. 

If D = F, then it follows easily that G = H, so that ❑BDGC = ❑BFHC, and 
the theorem follows. 

D=F 
	

G=H 

Figure 24.50 

Hereafter we assume that D 0 F. We may then suppose that D-F-H, so that 
D "lies to the left of FH." 

Case 1. Suppose that F lies on DG (with D 0 F), as in the figure below. 

Figure 24.51 

Here ABDF = ACGH, so that ❑BDGC = ❑BFHC. We shall show that the gen-
eral case can always be reduced to this special case. 

Case 2. Suppose that D-G-F. (The case of interest is the case in which D 
and G are "far to the left of F.") Consider the geometric operation conveyed by 
the following figure. 
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U T2 T2 U T3 

Figure 24.52 

Here D-G-K and DG = GK. Since T, = T3, it follows that 

❑BDGC = ❑BGKC 

In replacing the first of these quadrilaterals by the second, we have "moved DG 
one step to the right." Since the real number system is Archimedean, we know 
that nDG > GF for some positive integer n. Thus, in a finite number of steps 
we can move DG far enough to the right to get Case 1, in which F lies on DG. 
The theorem follows. 

• THEOREM 2. If two triangular regions have the same base and the same 
area, then they are equivalent under finite decomposition. 

PROOF. Let the triangular regions be T and T', and let the associated rectan-
gular regions be R and R'. Then R and R' have the same base b. Since aR = 
aT = aT' = aR', we have aR = aR', and R and R' have the same altitude. 
Therefore R = R'. (Proof?) Thus 

T 	-=- R ' 	T ' , 

and T = T', which was to be proved. ❑ 

■ THEOREM 3. Bolyai's Theorem. If two triangular regions have the same 
area, they are equivalent under finite decomposition. 

Figure 24.53 

PROOF Given T 1, T2, with aT I  = aT2. Suppose that T1  is the union of AABC 
and its interior. If a side of Ti  is congruent to a side of T2, then T1  = T2 by 
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Theorem 2. Suppose, then, that T2 has a side of length a > AC. If we prove the 
theorem for this case, it will follow in general merely by a change of notation. 
As before, let L be the line through the bisectors D and E of AB and AC. Let J 
be a point of L such that CJ = a/2. [Query: How do we know that there is such 
a point?] Now take K so that C-J-K and JK = a/2. Let T3 be the union of AKBC 
and its interior. By Theorem 2, we have 

T3 = R and T2 = T3 . 

Therefore T2 = R. Since we knew already that R = To  we have T, = T2, which 
was to be proved. ❑ 

Note that the use of the transitivity of the relation = has spared us some al-
most impossibly complicated figures, exhibiting the equivalence of T, and T2. 

We shall see that Bolyai's Theorem can be extended to polygonal regions in 
general. To show this, we use the following theorem. 

■ THEOREM 4. In a Euclidean plane, every polygonal region is equivalent 
by finite decomposition to a triangular region. 

PROOF. Given a polygonal region R, with a triangulation 

K = {T,,T2,... ,T„} . 

For each i, let 

a, = aT1 . 

There is now a complex which looks like this: 

If T: is the ith triangular region in this figure, then 

aT: = 

Therefore 

T: 

for every i, by Theorem 3. Therefore R is equivalent by finite decomposition to 
the union of the regions T:. ❑ 
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This is not a theorem of absolute geometry; it will turn out that under HPP 
the triangular regions are—in a certain sense—of bounded area, and the po-
lygonal regions in general are not. In the following section we shall elucidate 
this idea by showing the form that area theory takes in hyperbolic geometry. 
Meanwhile we generalize Bolyai's theorem. 

THEOREM 5. Let R and R' be polygonal regions in a Euclidean plane. If 
aR = aR', then R' = R. 

PROOF. Let T and T' be triangular regions such that 

T R, 	T' R' 

Then aT = aR and aT' = aR'. Therefore aT = aT' and T = T'. Therefore 
R = R', which was to be proved. ❑ 

24.7 Hyperbolic Area-Theory: 
The Defect of a 

	  Polygonal Region  	

We have already found, in Theorem 1, Section 24.4, that the defect of a tri-
angle is additive in the same way that area is: 

Figure 24.55 

That is, if B-D-C, then the defect of AABC is the sum of the defects of AABD 
and LADC. This simple fact is the key to the development of an area theory in 
hyperbolic geometry. We begin by defining the area of a triangular region T to 
be the defect of the corresponding triangle. We denote the hyperbolic area by 
8T, where 8 stands for defect, just as a stood for area. Under HPP, we know that 
ST > 0 for every T And we know that the additivity postulate holds, insofar as 
it applies at all. 

We would like to define our "area function" 5 more generally so as to make 
it apply to all polygonal regions. We shall do this in several stages. 

First, given a complex 

K = {7'1,T2, 	,T„} , 
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we define 

SK = 5T, + 5T2  + • • • + 5T„ . 

We are now in the same situation as in Chapter 14. Every polygonal region R 
has infinitely many triangulations K; we would like to define 5R as 5K; but to 
do this we must first show that SK depends only on R, and is independent of the 
choice of the triangulation K. This is easy to see for star triangulations of a con-
vex polygonal region. 

■ THEOREM 1. If K 1  and K2 are star triangulations of the same polygonal 
region R, then 5K, = 5K2. 

Figure 24.56 

The reason is that the total defect in each star triangulation is 

(n + 1)180 — (mLP0  + mLP, + • • • + mLI), + 360) 

= (n — 1)180 — (mLP0  + mLP1  + • • • + mLP„). 

This theorem justifies the following definition. 

DEFINITION. The defect 5R of a convex polygonal region R is the number 
which is the defect of every star triangulation of R. 

A border triangulation of a convex polygonal region is one which looks like 
Fig. 24.57. (Exact definition?) 
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■ THEOREM 2. The defect of a border triangulation is the same as the de-
fect of the region. 

The reason is that the defect of the border triangulation is 

n(180) — (mL./), + mLP, + • • + mL197, + 180), 

which gives the same answer as for star triangulations. 

• THEOREM 3. If a convex polygonal region is decomposed by a line into 
two such regions, then the defect of the union is the sum of the defects. 

R2 

Figure 24.58 

PROOF. Given R, U R2  = R, R, fl R2  C L, as in the figure. Let P be any point 
of L in the interior of R; let K 1  and K2 be the border triangulations in which P 
is the extra vertex. Let K = K, U K2. Then, trivially, we have 

SK = 8K, + 

Since SK = 8R, 8K, = 8R, and 8K2  = 8R2, this proves the theorem. ❑ 

■ THEOREM 4. If K 1  and K2  are triangulations of the same polygonal re-
gion R, then 8K, = 5K2. 

The proof is very similar indeed to the proof of Theorem 2, Section 24.5. 
Exactly as in that proof, we let 

L I ,L2,...,Ln  

be the lines that contain either an edge of K 1  or an edge of K2. As before, we 
use the lines L1 , one at a time, to cut up the triangular regions in K1  and K2  into 
smaller convex polygonal regions. At each stage, we know by Theorem 3 that 
the total defect is unchanged. When all the lines have been used, we form a star 
triangulation of each of the resulting convex polygonal regions; this final step 
also leaves the total defect unchanged. (In fact, the defect of a convex polygonal 
region C was defined to be the total defect in any star triangulation.) We now 
have a common subdivision K of K 1  and K2, with 

5K = 8K, 



B 	C 

A 	D 	A' 

Figure 24.59 
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and 

8K = 81(2 . 

Therefore 8K, = 8K2, which was to be proved. 

DEFINITION. The area 8R of a polygonal region R is the number which is the 
defect 8K of every triangulation K of R. 

It is not hard to see that our area function 8 satisfies the postulates A-1 
through A-5 of Section 13.1. (You may wonder, at first, about A-5, which says 
that the area of a square region is the square of the length of its edges. But 
under HPP, even this last postulate holds, for the odd reason that there are no 
square regions to which it can be applied.) 

24.8 Bolyai's Theorem for Triangles 
	 in the Hyperbolic Case  	

We shall see that Bolyai's theorem holds under HPP. That is, if 8R, = 6R2, 
then it follows that R, = R2. Although a part of the proof follows the lines of 
Section 24.6, the technique is more complicated, and so we shall need some 
preliminaries. 

■ THEOREM 1. If two Saccheri quadrilaterals have the same upper base 
and the same defect, then their upper base angles are congruent. 

Restatement. Let ❑ABCD and ❑A'B'C'D' be Saccheri quadrilaterals (with 
right angles at A, D, A', and D'). If BC = B'C' and 8❑ABCD = 8❑A'B'C'D', 
then LB -=" LB' and LC = LC'. 

PROOF. It is not hard to calculate that 

8❑ABCD = 180 — (mLB + mLC) = 180 — 2mLB 

Therefore mLB is determined by the defect; and from this the theorem follows. 
0 
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■ THEOREM 2. Under HPP, if ❑ABCD and ❑A'B'C'D' are as in Theo-
rem 1, then 

❑ABCD = CJA'B'C'D' . 

(Here the indicated congruence means that the correspondence ABCD 
A'B'C'D' preserves lengths of sides and measures of angles.) 

PROOF. Let E and F be points of BA and CD such that 

BE = CF = B'A' = C'D' . 

Figure 24.60 

By SAS, we have ABCF = AB'C'D' . Therefore BF = B'D' . By angle subtrac-
tion, we have LEBF = LA'B'D' . By SAS, we have ABEF = AB'A'D' . There-
fore LE is a right angle. In the same way, we conclude that LCFE is a right 
angle. Thus we have 

❑EBCF 

If E = A and F = D, this proves the theorem. If not, ❑EADF is a rectangle, 
which is absurd; there is no such thing as a rectangle. 

The reader is warned that, hereafter in this section, to draw our triangles 
right side up, we are going to draw our Saccheri quadrilaterals upside down. 

Given AABC, with BC considered to be the base: 

C 

Figure 24.61 

As before, let D and E be the bisectors of AB and AC; let F, G, and H be the feet 



24.8 Bolyai's Theorem for Triangles in the Hyperbolic Case 	 403 

of the perpendiculars from B, A, and C to L. As in the Euclidean case, we have 

LFBD = LGAD , 

L\GAE = LHCE , 

FB = GA = HC . 

(The elementary theory of congruence is a part of absolute geometry.) There-
fore ❑HCBF is a Saccheri quadrilateral. We shall call it the quadrilateral associ-
ated with AABC. It depends on the choice of the base, but it will always be clear 
which base we mean. 

■ THEOREM 3. Every triangular region is equivalent by finite decomposi-
tion to its associated quadrilateral region. 

The proof is exactly like the proof of Theorem 1, Section 24.6; this proof 
depended only on congruences and the SAA theorem. 

■ THEOREM 4. Every triangular region has the same defect as its associ-
ated quadrilateral region. 

Because the two are equivalent by finite decomposition. 

• THEOREM 5. If LABC and ADEF have the same defect and a pair of 
congruent sides, then the two triangular regions are equivalent by finite 
decomposition. 

C 	E 
Figure 24.62 

PROOF. It does no harm to suppose that the congruent sides are the "bases" 
BC and EF . If the associated Saccheri quadrilaterals are as indicated, then by 
Theorem 4 they have the same defect. By Theorem 2, ❑KCBJ = ❑NFEM. Let 
T 1, T2, R1, R2 be the regions determined by our triangles and quadrilaterals. 
Then R1  = R2. (This requires a proof based on our congruence, but the proof 
is immediate.) Since T1  = R, and R2 = T2, by Theorem 3, we have T1  = T2, 

which was to be proved. ❑ 

■ THEOREM 6. Given AABC, D, E, and L = DE, as in the definition of the 
associated quadrilateral. Let A' be a point on the same side of BC as A. If L 
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contains the midpoint E' of A'C, then L also contains the midpoint D' of A 1B, 
and AABC and AA'BC have the same associated quadrilateral. 

A' 
	

A 

Figure 24.63 

PROOF. Let J and K be the midpoints of FH and BC. Then JK 1 BC and 
JK 1 DE, as indicated in the figure. Therefore 

(1) DE is the perpendicular, through E, to the perpendicular bisector of BC. 
Applying precisely the same reasoning to AA'BC, we get 

(2) D'E' is the perpendicular, through E', to the perpendicular bisector of BC. 

Since we know that E' lies on DE, it follows that DE = D'E' , and D' lies on L. 
Therefore AABC and AA'BC have the same associated quadrilateral ❑HCBF, 
which was to be proved. ❑ 

■ THEOREM 7. If T, and T2 are triangular regions, and ST, = ST2, then 
T, 	T2. 

PROOF. Let the associated triangles be AABC and AA'B'C'. If a side of one is 
congruent to a side of the other, then T, = T2, by Theorem 5. If not, we may 
suppose that 

a = A'C' > AC. 

(This proof is going to be very similar to that of Theorem 5, Section 24.6.) 

K a A 

Figure 24.64 

As indicated in the figure, let ❑HCBF be the quadrilateral associated with 
AABC. Let J be a point of L such that CJ = a/2. Then take K so that C-J-K and 
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JK = a/2. By Theorem 6, ❑HCBF is the quadrilateral associated with AKBC. 
Thus 

SAKBC = 8❑HCBF = SAABC = SAA'B'C'. 

Now AKBC and LA'B'C' have a pair of congruent sides and the same defect. 
Therefore the corresponding regions T3, T2 are equivalent by finite decomposi-
tion. Let R be the region corresponding to ❑HCBF. Then we have 

T, 	R 	T3 -='- T2 . 

Therefore T, = T2, which was to be proved. ❑ 

   24.9 Defects of Small Triangles 	 

We shall show, in this section, that the defect of a triangle is as small as we 
please, if the triangle itself is sufficiently small. More precisely: 

■ THEOREM 1. Let e be any positive number. Then there is a positive 
number d such that if all the sides of LABC have length less than d, then 
6AABC < e. 

• • • Q4 Q3 Q2 	Q 

Figure 24.65 

We proceed to the proof. We have given a positive number e. Consider a 
right angle LP, PQ,, with P, P = PQ, = 1 (Fig. 24.65). For each n, take Pr, and 
Q,,, as indicated, so that PPn  = PQn  = 11n. Thus we get a sequence of convex 
quadrilaterals EP, P2 Q2 Q1, ❑P2 P3 Q3 Q2, . . . . Let dn  be the defect of the nth 
quadrilateral ElPnPn+1Qn+1Q,,,  and let do  = 6API  PQ1. Then 

di  + d2  + • • • + do  < do  

for every n. Therefore the infinite series, 

d i  + d2  + • - - + dn  + • - •, 

is convergent. Therefore lim, do  = 0. Therefore do  < e for some n. 
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The sole purpose of the above discussion was to demonstrate the following 
statement. 

There is a convex quadrilateral ❑PQRS, of defect less than e. 

T 
So'PQRS <e 

Figure 24.66 

Let T be any point between P and S. Let h1, h2, h3  be the perpendicular dis-
tances from T to the other three sides of ❑PQRS, and let d be the smallest of 
the numbers h1, h2, h3. 

It is now easy to check that d is a number of the sort that we wanted. Given 
any triangle AABC, with sides of length less than d: 

Figure 24.67 

By SAS, we can construct a congruent copy AA'B'C' of AABC in the quadrilat-
eral region, with T = A'. The copy really will lie inside the quadrilateral, be-
cause its sides are too short to reach the other three sides of the quadrilateral. 
But now we are done, because 

AABC = SAA'B'C' < 8❑PQRS < e . 

This theorem tells us that it may be very hard to tell the difference between 
a hyperbolic plane and a Euclidean plane, if you are allowed to inspect only a 
small portion of it. One of the possibilities for physical space is that planes are 
hyperbolic, but that the portions of them that we can examine from the earth 
are "small," so that the deviation from the Euclidean angle-sum formula 
mLA + mLB + mLC = 180 is too small to be detected, for every triangle small 
enough for us to examine. C. F. Gauss made a test of this sort, using the peaks 
of three neighboring mountains as the vertices of his triangle. He was unable to 
observe a deviation from the Euclidean formula, but obviously it is possible that 
his mountains were too neighboring. 
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   24.10 The Continuity of the Defect  	

Given AABC and ADEF, with 8AABC > SADEF. (Note that in the light of the 
results in the previous section, a plausible figure should make the second tri-
angle look smaller.) 

Figure 24.68 

For 0 < r mLB, let P, be a point of AC such that mLABP, = r. (By the 
cross-bar theorem, for each such r there is a point Pr.) We know that 

8AABP, + 5AP,BC = 8AABC . 

For 0 < r mLB, let 

f(r) = 8AABP,.. 

As a definition of f(0), we provide further that 

f(0) = 0. 

(Of course, the definition is reasonable: in effect, we are defining the defect of 
a segment to be 0.) 

It is easy to see that f is a strictly increasing function: if r < s, then we have 

f(s) = f(r) + 5APrBP„ 

so that 

f (r) < f (s) . 

It is reasonable to suppose that f is continuous. If this is not merely reasonable 
but also true, then we will have the following theorem. 
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■ THEOREM 1. If 8AABC > 8ADEF, then there is a point P between A 
and C such that SAABP = 8ADEF. 

The reason is this. The graph of y = f(r) looks like this: 

Figure 24.70 

Being continuous, f takes on every value between its initial value 0 and its final 
value 8AABC. Therefore f(7) = 5.6.DEF for some r. Let P = 

We shall need this result to generalize Bolyai's theorem to arbitrary polygo-
nal regions in the hyperbolic case. We therefore complete its proof. 

LEMMA. f is continuous. 

Given 0 k mLB, we need to show that 

lim f(r) = f(k) . 

By definition, this means that the following condition holds. 

(1) Given 0 k mLB. For every e > 0 there is a d > 0 such that if 

— < d , 

then 

f < e. 

Let us interpret this geometrically in terms of our definition of f. 

We have 

Ir 	= mLPkBP,. 
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(Note that if r < k, which it may be, we need the absolute value signs to 
make this formula correct.) Also 

ifir) — f(k)I = ISAABPr  — 8AABPki 
= SAPk BP,.. 

(Here again the absolute value signs are needed to take care of the possibil-
ity r < k.) 

In these terms, Condition (1) takes the following form. 

(2) Given 0 _._ k mLB. For every e > 0 there is a d > 0 such that if 

mZ_Pk BPr  < d , 

then 

SAPk BP,. < e . 

We shall prove (2). First let us suppose that BC > BA, as the figures suggest. 

Figure 24.72 

If A-C-E, then BP < BE for every point P of AC. (Proof?) We assert that there 
are points E and F such that A-C-E, A-C-F and 

SAEBF < 6 . 

The reader should be able to produce a proof, following a scheme suggested by 
the proof of an analogous result in the preceding section. Given such an E, F, 
we let d = mLEBF . 

Figure 24.73 
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This is a number d of the sort that we wanted. The point is that if mL13„BP, < 
mLEBF, then LEBF contains a congruent copy ,639;, BP: of APk BP,. Evidently, 

5,6,13k 1319, = 	BP: < 8AEBF 

Thus for niLl3k BP, < d, we have 8APk BP, < E, which was to be proved, 

24.11 Bolyai's Theorem for 
Polygonal Regions in the 

	  Hyperbolic Case  	

■ THEOREM 1. Under HPP, if two polygonal regions have the same area, 
then they are equivalent by finite decomposition. 

That is, if SR, = 5R2, then R1  = R2. 
To prove this, we take any triangulations K1, K2 of R, and R2: 

Figure 24.74 

Some one triangular region in one of these complexes must have minimum de-
fect. That is, some T in either K1  or K2 must have the property that ST ST' 
for every T' in K, or K2. Suppose that this is T1  E K1. Let T; E K2. If it happens 
that ST1  = Sfl, we delete T1  from K, and delete T; from K2. This gives new 
complexes Kc, K2, with fewer elements than K, and K2. Let R;, R 2  be the corre-
sponding regions. If R; then R1  = R2. 

If ST1  < ST;, then we know by Theorem 1, Section 24.10, that T; can be 
subdivided into two triangular regions U, V, such that 

SV = ST1 . 

We now delete Ti  from K1, and we replace T; by U in K2. If the resulting re-
gions are equivalent by finite decomposition, then so also are R, and R2. 

Thus, in either case we can reduce our theorem to a case in which the total 
number of triangular regions is smaller than it was to start with. In a finite 
number of such steps, we can reduce the theorem to the case of two triangular 
regions, for which the theorem is known to be true. 
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24.12 The Impossibility of 
Euclidean Area-Theory in 

	  Hyperbolic Geometry  	

To define the area of a polygonal region as the number which is the total de-
fect of each of its triangulations may seem to be a peculiar proceeding. We shall 
show, however, that this peculiarity is inevitable. Under HPP, it is impossible to 
define an area function which has even a minimal resemblance to the Eu-
clidean area function. In the following theorem, it should be understood as 
usual that 31 is the set of all polygonal regions and that R, R„ and so on, denote 
polygonal regions. 

11 THEOREM I. Under HPP there does not exist a function 

a: —> 

such that 

(1) aR > 0 for every R; 

(2) if R1  and R2 intersect only in edges and vertices, then 

a(R I  U R2) = aR, + aR2 ; 

(3) if T1  and T2 are triangular regions with the same base and altitude, then 
aT1  = aT2. 

(Surely these are minimum requirements for an area function of the 
Euclidean type.) 

Suppose that there is such a function a. Then by (2) and (3), we have: 

(4) if R1  -= R2, then aR1  = aR2, because congruent triangles have the same 
bases and altitudes. 

Figure 24.75 

Consider now a right angle LAPO PI, with AP0  = Po P, = 1. For each n, let 
Pn  be the point of Po P, such that Po P„ = n. This gives a sequence of triangles 

AAP0 P1, DAP,, P2, . , 
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and a corresponding sequence of triangular regions 

T1, T2, .... 

By (3), all the regions T, have the same "area" aT, = A. 
Now consider the corresponding defects 

di  = STi . 

For each n, 

di  + d2  + • • + dn  = 8.6,APJ), < 180 . 

Since the finite sums d i  + d2  + • • + do  are bounded, it follows that the infinite 
series, 

is convergent. Therefore 

Hence 

d i  + d2  + • • • + do  + • • • , 

lim do  = 0 . 
n —>x 

d, < di  for some n . 

Figure 24.76 

By Theorem 1, Section 24.10, there is a point B, between A and P, such that 

(3ABP,P, = SAAPn _ i  /9, = dn . 

Therefore, by Bolyai's theorem (Theorem 7, Section 24.8), the regions T, T„ de-
termined by these triangles are equivalent by finite decomposition. By (4), this 
means that 

But 

Therefore 

aT = aTn . 

aT„ = aT = A . 

aT = aTi  . 
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But this is impossible, because aAABP, > 0 and 

aT, = aT + aAABP,. 

24.13 The Uniqueness of 
	 Hyperbolic Area-Theory 	 

Any reasonable area function a should have the following properties: 

(1) aR > 0 for every R; 

(2) if R, and R2 intersect only in edges and vertices, then 

a(R, U R2) = aR, + aR2 ; 

(3) if R, = R2, then aR, = aR2. 

We know of one such function, namely 8, and it is plain that there are lots 
of others. If k is any positive real number, and 

aR = k8R 

for every polygonal region R, then a satisfies (1), (2), and (3). On the other 
hand, this trivial way of getting an area function different from 8 is in fact the 
only way. 

■ THEOREM 1. Let 

a: R —> 

be an area function satisfying (1), (2), and (3). Then there is a k > 0 such that 

aR = k8R 

for every R. 

In the proof, it will surely be sufficient to find a k > 0 such that aR = k8R 
whenever R is a triangular region; the general formula will then follow by addi-
tion. In fact, it will be sufficient to prove the following lemma: 

LEMMA. For every two triangles AABC and ADEF, we have 

aADEF 8ADEF 

aAABC 8AABC •  

If this holds, then we have 

aLABC aADEF  
8AABC 8ADEF' 
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and the desired k is the fraction on the left; for every ADEF, we have 

aADEF = kSADEF 

PROOF. For the case when 5AABC = 8ADEF, we have AABC = ADEF by 
Bolyai's theorem; by (3) it follows that aAABC = aADEF. Therefore the 
lemma holds. 

We may therefore assume that 

5AABC > 5ADEF 

Pi P P1+1 
	C - Pq  

Figure 24.77 

By Theorem 1, Section 24.10, there is a point P between A and C such that 

5AABP = 5ADEF 

Since the defect is continuous, we can take a sequence 

B = P0,P1, 	,P„.. ,Pq  = C, 

of points, in the stated order on BC (in the figure above) such that 

5AAP,P+, = — 5AABC 
q 

for every i. Thus the segments AP, cut AABC into q triangles with the same de-
fect. If we remember Bolyai's theorem, and Conditions (2) and (3), we can easily 
see that each of the following conditions is equivalent to the next: 

(a)  z < 
aADEF  

q aAABC' 

(b) < 
i aAABP  
q aAABC' 

(c) aLABC < aAABP, 
q 

(d) B-P,-P, 

(e) 8AABC < 8AABP, 

B=1)0  
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i 5AABP  
(f) < q 5AABC 

i SADEF 
(g) q 

< 5AABC • 

By the comparison theorem, the lemma follows. ❑ 

24.14 Alternative Forms of the 
	  Parallel Postulate  	

We observed in Section 24.1, as a consequence of the all-or-none theorem, that 
the following statement could be used as a substitute for the Euclidean parallel 
postulate, EPP. 

(1) For some line and some point, parallels are unique. 

Many of the other theorems of this chapter give us such alternative 
forms of EPP. 

(2) The plane contains at least one rectangle. 

See Theorem 3, Section 24.3, which tells us that under HPP the plane 
contains no rectangles at all. 

(3) The plane contains at least one triangle for which the angle sum is 180. 

See Theorem 5, Section 24.3, which tells us that under HPP the angle-
sum equality never holds. 

(4) The plane contains at least two triangles which are similar without being congruent. 

See Theorem 2, Section 24.4, which tells us that under HPP, similarity 
without congruence cannot occur even once. 

(5) There is an area function 

a: gt —> R , 

such that aR is always positive, a is additive for regions intersecting only in 
edges and vertices, and aAABC depends only on the base and altitude of 
AAB C. 

See Theorem 1, Section 24.12, which says that under HPP there is no such 
function. 

The persuasiveness of these statements may make it easier to understand 
the state of mind of Saccheri and others. 
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CHAPTER 

The Consistency of the 
Hyperbolic Postulates 

	 25.1 Introduction  	

In this chapter, we shall show that the Poincare model, described in Chapter 9, 
satisfies all the postulates of hyperbolic geometry. Our analysis of the model will 
depend, of course, on Euclidean geometry, and so our consistency proof will 
be conditional. At the end of the chapter we shall know not that the hyperbolic 
postulates are consistent, but merely that they are as consistent as the Euclidean 
postulates. In the following chapter, we shall investigate the consistency of the 
Euclidean postulates. (See the discussion at the end of Chapter 9.) 

25.2 Inversions of a 
	  Punctured Plane 	  

Given a point A of a Euclidean plane E and a circle C with center at A and ra-
dius a. The set E — A is called a punctured plane. The inversion of E — A about C 
is a function, 

f:E — A<--->E — A, 

defined in the following way. For each point P of E — A, let P' = f(P) be the 
point of AP for which 

AP' = 
a2 

 
AP 
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Figure 25.1 

(Thus, for a = 1, we have AP' = 1/AP.) Since a 2 /a = a, we have the following 
theorems. 

■ THEOREM 1. If P E C, then f(P) = P. 

■ THEOREM 2. If P is in the interior of C, then f(P) is in the exterior of C, 
and conversely. 

■ THEOREM 3. For every P, f(f(P)) = P. 

That is, when we apply an inversion twice, this gets us back to wherever 
we started. 

PROOF. f(P) is the point of AP for which Af(P) = a 2/AP, and f(f(P)) is the 
point of the same ray for which 

a 2 	a 2  
Af(f(P)) = App) 

 = a2/AP = 
AP. 

Therefore f(f(P)) = P. ❑ 

■ THEOREM 4. If L is a line through A, then f(L — A) = L — A. 

Here by f(L — A) we mean the set of all image points f(P), where P E 
L — A. In general, if 

KCE —A, 

then 

f(K) = {P' = f(P)IP E K}. 

It is also easy to see that "if P is close to A, then P' is far from A," and con-
versely; the reason is that "a 2/AP is large when AP is small." In studying less 
obvious properties of inversions, it will be convenient to use both rectangular 
and polar coordinates, taking the origin of each coordinate system at A. The 
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advantage of polar coordinates is that they allow us to describe the inversion in 
the simple form 

f: E —L14->E — A, 

(r, 0) <- (s, 0) , 

where 

and 

a2 
S = -

r 

a 2 
r = — . 

s 

In rectangular coordinates, we have 

P = (x,y) = (r cos 0,r sin 0), 

f(P) = (u, v) = (s cos 0, s sin 0), 

where r and s are related by the same equations as before. Evidently 

s2  = u2  + v2 

just as 

r2  = x2  + y2. 

These equations will enable us to tell what happens to lines and circles 
under inversions. We allow the cases in which the lines and circles contain the 
origin A, so that they appear in E— A as "punctured lines" and "punctured cir-
cles." Thus we shall be dealing with four types of figures, namely, lines and cir-
cles, punctured and unpunctured. For short, we shall refer to such figures as 
k-sets. The rest of this section will be devoted to the proof that if K is a k-set, 
then so also is f (K). Let us look first, however, at a special case. 

Let K be the line x = a. 

Figure 25.2 



a 
s2 = -

b
s cos 0, 

2 
s 0 0 , 
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Then K is the graph of the polar equation 

r cos 0 = a. 

Since r = a 2  Is, where f (r, 0) = (s, 0), it follows that f(K) is the graph of the 
condition 

a2 

— cos 0 = a, 	s 0 
s 

s= a cos 0, 	s 0 0 

s 2 = as cos 0, 	ss 0 . 

In rectangular form, this is 

U 2 + V2 = au, 	u2 + v2 0 0 .  

Replacing u and v by x and y (to match the labels on the axes), we see that f(K) 
is the graph of 

2 X - ax + y2  = 0, 	x2+ y2 0, 

and is hence the punctured circle with center at (a/2, 0) and radius a/2. Thus f 
has pulled the upper half of the line K onto the upper semicircle, and the lower 
half onto the lower semicircle. It is easy to see that points far from the x-axis 
(either above or below) go onto points near the origin. 

More generally, we have the following theorem. 

■ THEOREM 5. If K is a line in E — A, then f(K) is a punctured circle. 

PROOF. Since we can choose the axes any way we want, we are free to assume 
that K is the graph of a rectangular equation 

x = b > 0 , 

and hence of a polar equation 

r cos 0 = b > 0 . 

As before, setting r = a 2/s, we conclude that f(K) is the graph of 

or 

a2 

— cos 0 = b, 
s 

s 0 0, 

or 

or 
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or 

,2 
2 U - 

b
-U -r V

2  = 0, 	U 2 + V2 0 0, 

or 

a 2 
x2-  -

b
x + y 2 = 0, x 2  + y2  0 0 . 

Therefore f(K) is a punctured circle, with center at (a 2 /2b, 0) and radius a 2/2b. 

It is easy to see that (1) every punctured circle is described by the above 
formula for some choice of b and some choice of the axes. Therefore (2) every 
punctured circle L is = f(K) for some line K. But Theorem 3 tells us that 
f(f(P)) = P for every P. Therefore 

f(L) = f(f(K)) = K. 

Thus we have the following theorem. 

■ THEOREM 6. If L is a punctured circle, then f(L) is a line in E — A. 

We now know, from Theorem 4, that under f, punctured lines go onto punc-
tured lines; and we know, by Theorems 5 and 6, that lines go onto punctured 
circles and vice-versa. Now we must see what happens to circles. 

■ THEOREM 7. If M is a circle in E — A, then f(M) is a circle in E — A. 

PROOF. M is the graph of a rectangular equation 

x2  + y2  + Ax + By + C = 0, 

where C 0 because the circle is not punctured. In polar form, this is 

r2  + Ar cos 0 + Br sin 0 + C = 0. 

Since r = a 2/s, this tells us that f(M) is the graph of the equation 

a 4 	a 2 	 a 2 
+ A • —

s 

cos 0 + B • —
s 

sin 0 + C = 0 , 
s 

or 

a 4  + Aa2s cos 0 + Ba 2s sin 0 + Cs 2  = 0 , 

or 

a4  + Aa2u + Ba 2v + C(u2  + v2) = 0. 
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Replacing u and v by x and y, to match the labels on the axes, we get an equa-
tion for f(M) in the form 

Aa 2 	Bat 	a 2  x 2 + y 2 + 
C  

____ x  + 
C 

- y + - 
C 
- = 0 . 

The graph f(M) is a circle; this circle is not punctured, because a 2/C 0 0. ❑ 

• THEOREM 8. If K is a k-set, then so also is f(K). 

25.3 Preservation of the Cross 
	 Ratio Under Inversions  	

We recall, from Section 9.2, the definition of distance in the Poincare model. 

Figure 25.3 

If T and U are points of the L-line with end points R, S on the boundary circle C, 
then the non-Euclidean distance is defined by the formula 

TR/TS  

loge  UR/US 

The fraction whose logarithm gets taken in this formula is called the cross ratio 
of the quadruplet R, S, T, U, and is commonly denoted by (R, S, T, U). Thus 

TR • US  
(R,S,T,U) = 

UR • TS' 

and changing the notation slightly, we have 

\ 	P1P3 • P2 P4
(131,P2, P3, 4 1 P = 	p p r, 

- I. 4 	. 2' 3 .  

We shall show that inversions preserve the cross ratio. In the following 
theorem, f is an inversion of a punctured plane E — A about a circle with cen- 
ter at A and radius a, as in the preceding section. 

AT, U) = 
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■ THEOREM 1. If P: = f(Pi ) (z = 1, 2, 3, 4), then 

(Pi P2, P3, P4) = (P1, P L, P P:1) • 

PROOF. For each z from 1 to 4, let the polar coordinates of P, be (ri , 0,). By 
the usual polar distance formula, we have 

PPS = 	+ 	- 2rirj  cos(Oi  — 0). 

Now 

a2 

P = (sr, 0,) =
(

— , 0) 

Therefore 

[r2i  + 7,23 	2r1 113 	

• 	

[r22  + 7,42  — 2

• r

2 r4  cos(02  — 0

• 4

)]  
2r1  r4  cos(01  — 0

• 4

)] [r22  + r23  — 2

• r

2 r3  cos(02  — 0

• 3

)] 

and 

(13 1 ,13 ,P;,P.14) 2  

a 9 	a 9 a 9 a 4 a 4 
a  a 4 

2 + 2 2— cos(01  — 03) 	+ 	4 — 	COSA — 04) 
r, 	r3 	r,r3 	 r2 	r4 	r2 r4  

a9 

	

a 4 	a 9 , 	a 4 a 9 a  a4 
2 + 	2— cos(0, — 04) 	+ 	4 — — COSA — 03) 

r, 	4 	ri r4 	 r2 	r3 	r2 r3  

To reduce the second of these fractions to the first, we multiply in both the nu-
merator and denominator by 

2 2 2 2 r i r2 r3r4  
as 

This theorem will tell us, in due course, that inversions applied to the Poincare 
model are zsometrzes, relative to the non-Euclidean distance. 

25.4 Preservation of Angular 
	 Measure Under Inversions  	

A reexamination of Section 25.2 will indicate that the image of an angle, under 
an inversion, is never an angle. The point is that every angle in E — A has at 
least one side lying on a nonpunctured line, and the image of a nonpunctured 
line is always a punctured circle. Therefore the following theorem does not 
mean what it might seem to mean. 

(13I, P2,193, P4)2  = [r2i 	1,24  

El 
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Q' 

Figure 25.4 

■ THEOREM 1. If A, P, and Q are noncollinear, P' = f(P) and Q' = f(Q), 
then 

mLAPQ = mLAQ'P'. 

PROOF. Consider APAQ and AQ'AP'. They have the angle LA in common. 
Since 

a 2 
AP' = —

a2 

AP' 	
AQ' = A---, 

we have 

so that 
AP • AP' = AQ • AQ' = a 2, 

AP = AQ 

AQ' AP' 

By the SAS similarity theorem, 

APAQ — AQ'AP'. 

(Note the reversal of order of vertices here.) Since LAPQ and LAQ'P' are cor-
responding angles, they have the same measure. 

..54111.. 
Q' 

Figure 25.5 

In the figure above, P' = f(P) and Q' = f(Q) as before. Here we have 

u= 180 — a — r 

= (180 — r) — a 

= s — a. 
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Therefore 

s — u = a . 

The order of s and u depends on the order in which P and P' appear on the ray. 
If P and P' are interchanged, we should interchange s and u, getting 

u — s = a . 

Thus in general we have 

Is — ul = a . 

Consider next the situation illustrated in the figure below: 

Figure 25.6 

Here B is the center of a circular arc; PQ is a line intersecting the arc at P; PS 
is a tangent ray at P; and RaP = a. We assert that 

lira mLRa PQ = mLSPQ. 
a---.0 

(Proof? The first step is to show that lima.o  mLRa PS = 0.) 
Consider now a circular arc QS with end point at a point Q. 

Figure 25.7 
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For small positive numbers a, let R„ be the point of the arc for which 

QR„ = a . 

Let Q'S' be the image of QS; that is 

Q'S' = f (QS) ; 

Let Q'R' be the tangent ray at Q'. 
We assert that 

LAQ'R' -=-' LTQR . 

To see this, we observe that mLTQR a  and mLAQ'R are are the s and u that we dis-
cussed just after Theorem 1. Therefore 

ImLTQR 0  — mLAQ'RLI = a . 

Now 

lim mLTQR a  = mLTQR , 
a->0 

and 

lim mLAQ'RL = mLAQ'R'. 
-,, 0 

Therefore 

lirroi[mLTQRa  — mLAQ'R a] = mLTQR — mLAQ'R'. 

But the absolute value of the quantity indicated in square brackets is = a; and 
a —+ 0 as a —+ 0. Therefore 

mLTQR = mLAQ'R'. 

Given two intersecting circles or lines, the tangent rays give us "tangent 
angles," like this: 

Figure 25.8. 
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By the preceding result, we have the following theorem. 

■ THEOREM 2. Under inversions, corresponding tangent angles are 
congruent. 

That is, if AB and AC are arcs with a tangent angle of measure r, then their 
images f(AB) and f(AC) have a tangent angle of measure r. Similarly for an arc 
and a segment or a segment and a segment. 

25.5 Reflections Across L-Lines 
	 in the Poincare Model  	

We recall that the points in the Poincare model are the points of the interior E 
of a circle C with center at P; the L-lines are (1) the intersection of E with lines 
through P and (2) the intersection of E with circles C' orthogonal to C. 

Figure 25.9 

If L is an L-line of the first type, then the reflection of E across L is defined in 
the familiar fashion as a one-to-one correspondence, 

f: E 4-> E , 

such that for each point Q of E, Q and f(Q) are symmetric across L. 
If L is an L-line of the second type, then the reflection of E across L is the in-

version of E about C'. To justify this definition, of course, we have to show that 
if f is an inversion about a circle C' orthogonal to C, then f (E) = E. But this is 
not hard to show. In the next few theorems, it should be understood that f is an 
inversion about C'; C' has center at A, and intersects C orthogonally at R and S; 
and L = E fl C'. 
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Figure 25.10 

■ THEOREM I. f(C) = C. 

PROOF. f(C) is a circle. This circle contains R and S, because f(R) = R and 
f(S) = S. By Theorem 2 of the preceding section, f(C) and C' are orthogonal. 
But there is only one circle C which crosses C' orthogonally at R and S. (Proof? 
Show that P must be the center of any such circle.) Therefore f (C) = C, which 
was to be proved. ❑ 

■ THEOREM 2. f(E) = E. 

PROOF. Let X be any point of E. Then AX intersects C at points T and U. 
Since f(C) = C, we have U = f (T) and T = f(U). But inversions preserve 
betweenness on rays starting at A. Therefore f(TU) = TU, and f(X) E E. Thus 
f(E) C E. 

We need to show, conversely, that E C f(E). This is trivial: given that f(E) C 
E, we have f(f(E))C f(E). Since f(f(E)) = E, this gives E C f(E). ❑ 

■ THEOREM 3. If M is an L-line, then so also is f(M). 

PROOF. M is the intersection E fl D, where D is either a circle orthogonal to C 
or a line orthogonal to C. Now f(D) is orthogonal to C, and is a line or circle 
(punctured or unpunctured). Let D' be the corresponding complete line or 
circle. (Thus D' = f(D) or D' = f(D) U A.) Then 

f(M) = f(D) n E 

=D' n E , 

which is an L-line. ❑ 

We recall that an L-angle is the angle formed by two "rays" in the Poincare 
model. 
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R 

Figure 25.11 

The measure of an L-angle is the measure of the angle formed by the tan-
gent rays. 

We can now sum up nearly all of the preceding discussion in the following 
theorem. 

• THEOREM 4. Let f be a reflection of E across an L-line. Then, 
(1) f is a one-to-one correspondence E <--> E; 
(2) f preserves the non-Euclidean distances between points; 
(3) f preserves L-lines; 
(4) f preserves measures of L-angles. 

For L-lines of the first kind (passing through P) all this is trivial, because in 
this case f is an isometry in the Euclidean sense. It therefore preserves distances 
of both kinds, lines, circles, orthogonality, and angular measure. For L-lines of 
the second kind, Conditions (1) through (4) follow from the theorems of this 
section and the preceding two sections. 

25.6 Uniqueness of the L-Line 
	  Through Two Points  	
Given the center P of C, and some other point Q of E. We know that P and Q 
lie on only one (straight) line in the Euclidean plane. Therefore P and Q lie on 
only one L-line of the first kind. But P does not lie on any L-line of the second 
kind. (The reason is that on the right triangle LARP in the figure, the hypote-
nuse, AP, is the longest side.) It follows that the L-line through two points of E 
is unique, in the case where one of the points is P. 

Figure 25.12 
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To prove that uniqueness always holds, we need the following theorem. 

• THEOREM 1. For each point Q of E there is a reflection f such that 

f(Q) = P. 

A 

Figure 25.13 

PROOF. We start by the method of wishful thinking. If the inversion f about 
C' gives f(Q) = P, then 

AP = — 
a  

. 
AQ 

We recall that the radius PR = 1. Let k = QP, and let x be the unknown dis-
tance AP (Fig. 25.13). Then the equation 

AP • AQ = a 2  

takes the form 

x(x — k) = x 2  — 1 

or 

1 
kac = 1 or x= 

k
—. 

Since Q is in E, we know that k < 1. Therefore x > 1, and A is outside C. If C' 
is the circle with center at A, orthogonal to C, then the reflection across E ("") C' 
is the one that we wanted. ❑ 

We can now prove the following theorem. 

■ THEOREM 2. In the Poincare model, every two points lie on exactly one 
L-line. 

PROOF. Let Q and R be points of E. Let f be a reflection across an L-line such 
that f(Q) = P and f(R) = R'. We know that P and R' lie on an L-line L. There- 
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fore Q and R lie on the L-line f (L). If there were two L-lines L,, L2, containing 
Q and R, then f(L,) and f(L 2) would be different L-lines containing P and R', 
which is impossible. 

By Theorem 1, we can speak of the L-line containing Q and R. We shall de-
note this by QR; and to avoid confusion, we shall agree not to use this notation, 
in the rest of this chapter, to denote Euclidean lines. ❑ 

25.7 The Ruler Postulate, 
Betweenness and 

	  Plane Separation 	  

Our strategy in this chapter is to verify statements about L-lines, first for the 
easy case of L-lines through P, and then to use inversions to show that the 
"carved" L-lines behave in the same way as the "straight" ones. In this spirit, we 
first check the ruler postulate for L-lines through P. 

• THEOREM 1. Every L-line through P has a coordinate system. 

x 

R 	Q P 
	

S 

Figure 25.14 

PROOF. Suppose that L passes through P, and let its end points on C be R and 
S. For every point Q of L, let 

f(Q) = log, 
QR/QS 
PRIPS 

= log, 
QR 
QS . 

(Because PR = PS.) Let QS = x. Then 

QR = 2 — QS = 2 — x , 

and we have 
—  

f(Q) = loge  2  x  x  . 

Obviously f is a function L ---> R into the real numbers. We need to verify that f 
is a one-to-one correspondence L <--> It Thus we need to show that every real 
number k is = f(Q) for exactly one point Q. Thus we want 

2 —  x 

	

k = log, 	 
x 
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or 

, 2 —  x  
e — 	 

x 

Or 

(ek  + 1)x = 2 

or 

2 

	

x = 
e

k 	
+ 
 1. 

For every k there is exactly one such x, and 0 < x < 2, as it should be. There-
fore every k is = f(Q) for exactly one point Q of L. 

We have already checked, in Chapter 9, that when the coordinate system f 
is defined in this way, the distance formula 

d(T,U) = If(T) — f(U)I 

is always satisfied. 
Before proceeding to generalize Theorem 1, we observe that the formulas 

above give us some more information: 

x, 	x2 	X3 	 0 

R Q 1 	Q2 	Q3 
	 S 

Figure 25.15 

In the figure xi  = 	S for i = 1, 2, 3. It 	is easy to check that (2 — x)/x is a de- 
creasing function. (Its derivative is —2/x2  < 0.) And the logarithm is an in-
creasing function. Therefore, if x, < x2  < x3, as in the figure, it follows that Therefore

{

,

, (Q1) < J  (Q2) < f (Q3) , 

and conversely. We recall that betweenness is defined in terms of distance, and 
that one point of a line is between two others if and only if its coordinate is be-
tween their coordinates. Thus we have: 

• THEOREM 2. Let Q, Q2, Q3 be points of an L-line through P. Then 

Q1-Q2-Q3 under the non-Euclidean distance if and only if Q1 -Q2-Q3  in the Eu-
clidean plane. 

■ THEOREM 3. Every L-line has a coordinate system. 

PROOF. Given an L-line L. If L contains P, we use Theorem 1. If not, let Q be 
any point of L; let g be a reflection such that g(Q) = P ; let L' = g(L), and let 

	

f: L' 	R 
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be a coordinate system for L'. For each point T of L, let 

f'(T) = f(g(T)). 

That is, the coordinate of T is the coordinate of the corresponding point g(T) 
of L'. Since f and g are one-to-one correspondences, so also is their composition 
f(g). Given points T, U of L, we know that 

d(T, U) = d( g (T), g(U)) , 

because inversions preserve the non-Euclidean distance. This in turn is 

= If(g(T)) — f(g(u))I, 

because f is a coordinate system for L'. Therefore 

d(T,U) = Ir (1') — l(U)I , 

which was to be proved. ❑ 

■ THEOREM 4. Every L-line through P separates E into two sets H, and 
H2 such that (1) H, and H2 are convex, and (2) if Q E H, and R E H2, then QR 
intersects L. 

Here QR means of course the non-Euclidean segment. 

-OF *- — 

A 

II 

H; 

Figure 25.16 

PROOF. We know that the Euclidean line containing L separates the Euclidean 
plane into two half-planes H;, H2. Let H, and H2 be the intersections H; fl E 
and HL fl E, as indicated in the figure. 

Suppose that Q, R E 111, and suppose that QR intersects L in a point S. 
Let f be an inversion E <---> E, about a circle with center A on the line containing 
L such that f(S) = P. Then f(QR) is an L-line through P, and f(Q) and f(R) 
belong to H,. Since Q-S-R, we have f(Q)-P-f(R), in the non-Euclidean sense, 
because f preserves the non-Euclidean distance. Therefore f(Q)-P-f(R) in the 
Euclidean sense, which is impossible, because f(Q) and f(R) are in the same 
Euclidean half plane. 

It follows, in the same way, that H, is convex. Thus we have verified half of 
the plane separation postulate for the Poincare model. 
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Suppose now that Q E HI  and R E H2. Let C' be the Euclidean circle that 
contains the L-line QR: 

A 

Figure 25.17 

Then L contains a point S of the Euclidean segment from Q to R, and S is in 
the interior of C'. It follows that the Euclidean line containing L intersects C' in 
two points, one of which is a point T of L. Now we must verify that Q-T-R in 
the non-Euclidean sense. [Hint: Use an inversion f: E 4-> E, H, 4-> H 1, H2 <--> H2, 

T <---> P, and then apply Theorem 2.] ❑ 

To extend this result to L-lines in general, we observe that: 

• THEOREM 5. Reflections preserve betweenness. 

Because they preserve lines and distance. 

■ THEOREM 6. Reflections preserve segments. 

Because they preserve betweenness. 

■ THEOREM 7. Reflections preserve convexity. 

Because they preserve segments. 

• THEOREM 8. The plane separation postulate holds in the Poincare model. 

PROOF. Let L be any L-line, and let Q be any point of L. Let f be a reflection 
such that f (Q) = P; let L' = f(L); and let Hi and 1/ 2  be the half-planes in E de-
termined by L'. Let 

H1 = f -1(11i) and H2 = f -1(1-10 . 

Since f -1  is also a reflection, and reflections preserve convexity, it follows that 
H, and H2 are convex. This proves half of the plane separation postulate for L. 
It remains to show that if R E H, and S E H2, then RS intersects L. If 
R' = f (R) and S' = f(S), then R' E H i and S' E K so that R'S' intersects LI 
at a point T'. Therefore RS intersects L at T = f -1(T'). ❑ 



A' 

C 	B' 

Figure 25.18 

Given AABC, AA'B'C', and a correspondence 

ABC <---> A'B'C' 
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• THEOREM 9. Reflections preserve half planes. 

That is, if H1  and H2 are the half planes determined by L, then f (H ,) and 
f (H2) are the half planes determined by f (L). Proof? 

■ THEOREM 10. Reflections preserve interiors of angles. 

PROOF. The interior of LABC is the intersection of (1) the side of AB that 
contains C, and (2) the side of BC that contains A. Since reflections preserve 
half planes, they preserve intersections of half planes. ❑ 

25.8 Angular Measure in the 
	  Poincare Model  	

We have defined the measure of an (non-Euclidean) angle as the measure of 
the (Euclidean) angle formed by the two tangent rays. We need to check 
whether this measure function satisfies the postulates of Section 5.1. For angles 
with vertex at P this is obvious. To verify it for angles with vertex at some other 
point Q, we throw Q onto P by a reflection f. Now f preserves angles, angular 
measure, lines, and interiors of angles. It is therefore trivial to check that if 
Postulates M-1 through M-5 hold at P, then they hold at Q. 

	  25.9 The SAS Postulate 	 

We have now verified, for the Poincare model, all the postulates of absolute 
plane geometry, with the sole exception of SAS. With heavy use of inversions, 
this turns out not to be difficult. 

such that 

   

    

AB --÷"- A'B', 	BC "=" B'C', 	LB .-=-. LB'. 
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(Here the segments and congruences are non-Euclidean.) We want to show that 
AABC '.=--. AA'B'C'. 

Cl  

Figure 25.19 

First let fl  be an inversion such that f,(B) = P, and let AA, PC, be fi(AABC). 
(Note that PA, and PC, look "straight," as they should.) Since f, preserves both 
distances and angular measure, we have 

AA, PC, ''.-. AABC . 

Next let f2  be an inversion such that f2(B') = P, and let AA ;PC; = f2(AA'B'C'). 

C; 

Figure 25.20 
It is easy to see that there is a reflectionf3, across an L-line through P, such that 
f3(PC;) = PC,. (If P, C,, and C ; are not collinear, we reflect across the bisector 
of LC ; PC1, as indicated in the figure. If C c-P-C1, we reflect across the perpen-
dicular to PC, at P. If we already have PC, = PC;, we leave well enough alone.) 

Let AA 2 Pq = f3(AA 1 PC ;). Since f3  preserves distance and angular mea-
sure, we have 

LA2Pq a---  AA ;PC;. 

And since BC = PC1 , and B'C' = PC; = Pq, we have C, = C. 

A l --A? 

Cl  = q 

2W? 

Figure 25.21 
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There are now only two possibilities: 

(1) A; is on the same side of PC, as A,. In this case, since LA ;PC; ==-- LA,PC,, 
we have P.61 2 = PA,; and since PA, = PA;, we have A, = A. Thus P = P, 
A, = A; and C, = C. Therefore 

AA, PC, -=-- AA;PC;; 

this fits together with our other congruences to give AABC -=-• AA'B'C'. 

(2) A; and A, are on opposite sides of PC,. In this case we reflect across PC, 
and then proceed as in case (1). 

Curiously, this proof has a great deal in common, intuitively, with Euclid's 
"proof" of SAS, by superposition, in Book I of the Elements. You really can 
prove things by superposition, if you carry out the process using a family of 
transformations (in this case, the reflections) which are known to preserve the 
properties that you are concerned with. 



CHAPTER 

The Consistency of 
Euclidean Geometry 

	 26.1 Introduction 	  

Our proof of the consistency of hyperbolic geometry, in the preceding chapter, 
was conditional. We showed that if there is a mathematical system satisfying the 
postulates for Euclidean geometry, then there is a system satisfying the postu-
lates for hyperbolic geometry. We shall now investigate the if, by describing a 
model for the Euclidean postulates. Here again our consistency proof will be 
conditional. To set up our model, we shall need to assume that the real number 
system is given. 

DEFINITION 1. E = [FR x [R. 

That is, a point is defined to be an ordered pair of real numbers. 

DEFINITION 2. A line is a set of the form 

L = {(x,y)IAx + By + C = 0, A2  + B 2  > 0}. 

That is, a line is defined to be the graph of a linear equation in x and y. 

DEFINITION 3. If P = (x 1, y 1 ) and Q = (x2,y2), then 

d(P, Q) = V(x2  — x1)2  + (y2  — y1)2  . 

That is, distance is defined by the distance formula which appeared as a 
theorem in Chapter 17. 

We define betweenness in terms of distance. (As usual, we abbreviate 
d(P, Q) as PQ.) Segments and rays are defined in terms of betweenness; and 
angles are defined when rays are known. 
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It turns out that setting up an angular measure function is a formidable 
technical chore. We hope, therefore, that the reader will settle for a congruence 
relation .-.= for angles, satisfying the purely synthetic postulates C-6 through C-9 
of Chapter 8. This relation is defined in the following way. 

DEFINITION 4. An isometry is a one-to-one correspondence 

f: E <--> E , 
preserving distance. 

DEFINITION 5. Two angles LABC and LDEF are congruent if there is an 
isometry f: E <--> E such that f(LABC) = LDEF. 

We have now given definitions, in the Cartesian model, for the terms used 
in the Euclidean postulates. Each of these postulates thus becomes a statement 
about a question of fact; and our task is to show that all of these statements 
are true. 

	  26.2 The Ruler Postulate  	

By a vertical line we mean a line which is the graph of an equation x = a. The 
following are easy to check: 

(1) Every nonvertical line is the graph of an equation y = mx + b. 

(2) The graph of an equation y = mx + b is never vertical. 

(3) If x = a and x = b are equations of the same line, then a = b. 

(4) If y = m i x + b l  and y = m2x + b2  are equations of the same line, then m1  
m2  and b 1  = 62. 

• THEOREM 1. Every vertical line L has a coordinate system. 

PROOF. For each point P = (a,y) of L, let 

f(P) = )1 . 

Then f is a one-to-one correspondence L <---> R. If P = (a, y 1 ) and Q = (a,y2), 
then 

PQ = d(P, Q) = \/(a — a)2  + (y2 — yi)2  

= V(y2 — Y1)2  

= I y2 - Yll 
= If(Q) - f(P)! 

as desired. ❑ 
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• THEOREM 2. Every nonvertical line has a coordinate system. 

(x2, Y2) 

Figure 26.1 

PROOF. Let L be the graph of y = mx + b. If (x l ,y 1 ) and (x2,y2) E L, then it is 

easy to check that 

Y2 - Y1  = m, 	Y2 — yl = "(x2 	x1), 
x2 - x1 

and 

PQ = V(x2  — x1)2  + m 2(x2  — x1)2  = V(1 + m2) lx2  — xi l . 

From this we see how to define a coordinate system for L. Let 

f(x,y) = xVl + m 2 . 

Then for 

we have 

P = (xl,y1), 	Q = (x2,y2) 

PQ = 	+ m 2 1x2 

= 1x 2\/1 + m 2  — x1V1 + m21 

= If(Q) - f(P)I, 

as it should be. ❑ 

These two theorems give us: 

• THEOREM 3. In the Cartesian model, the ruler postulate holds. 

	 26.3 Incidence and Parallelism  	

• THEOREM 1. Every two points of the Cartesian model lie on a line. 

PROOF. Given P = (x 1,y1), Q = (x2,y2). If x1  = x2, then P and Q lie on the ver- 
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tical line x = a = x1. If not, then P and Q lie on the graph of the equation 

Y2 — yi  
Y — Yi=,„ 	(x 	x ,) , x2  — x1 

which is easily seen to be a line. ❑ 

■ THEOREM 2. Two lines intersect in at most one point. 

PROOF. Given L1  and L2, with L1  0 L2. If both are vertical, then they do not 
intersect at all. If one is vertical and the other is not, then the graphs of 

x = a, 	y = mx + b 

intersect at the unique point (a, ma + b). Suppose finally, that L 1  and L2 are the 
graphs of 

y = m i x + bi , 	y = m2x + b2 . 

If m1  0 m2, very elementary algebra gives us exactly one common solution and 
hence exactly one intersection point. If m1  = m2, then b1  0 b2, and the graphs 
do not intersect at all. ❑ 

We have already observed that if L is the graph of y = mx + b, then for 
every two points (x1,y1), (x2,y2) of L, we have 

Y2 — yi  = m. 
x 2  — x1  

 

Thus m is determined by the nonvertical line L. As usual, we call m the slope 
of L. 

■ THEOREM 3. Every vertical line intersects every nonvertical line. [At the 
point (a, ma + b).] 

By easy algebra we get: 

• THEOREM 4. Two lines are parallel if and only if (1) both are vertical, or 
(2) neither is vertical, and they have the same slope. 

PROOF. Given L1  0 L2. If both are vertical, then L1 II L2. If neither is vertical, 
and they have the same slope, then the equations 

y = mx + bi, 	y = mx + b2 	(b, 0 b2) 

have no common solution, and L 1 ll L2. 

Suppose, conversely, that L 1  11 L 2. If both are vertical, then (1) holds. It re-
mains only to show that if neither line is vertical, they have the same slope. 
Suppose not. Then 

L 1 : y = m I x + b1, 	L2: y = M2X ± b2 	(1721 0 MO . 
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We can now solve for x and y : 

0 = (m, — m2)x + (b, — b2) , 

b, — b2  
x = 	, 

M1 - M2 

b, —  b2  
	 + b,. 
in y  = —7711( 1 - M2) 

We got this value of y by substituting in the equation of L,. But our x and y also 
satisfy the equation of L2. This contradicts the hypothesis L, I1L2. ❑ 

■ THEOREM 5. Given a point P = (x,,y,) and a number m, there is exactly 
one line which passes through P and has slope = m. 

PROOF. The lines L with slope m are the graphs of equations 

y = mx + b . 

If L contains (x,,y,), then b = y, — mx,, and conversely. Therefore our line 
exists and is unique. ❑ 

■ THEOREM 6. In the Cartesian model, the Euclidean parallel postu-
late holds. 

PROOF. Given a line L and a point P = (x,,y1 ) not on L. 

(1) If L is the graph of x = a, then the line L': x = x, is the only vertical line 
through P, and, by Theorem 3, no nonvertical line is parallel to L. Thus the 
parallel L through P is unique. 

(2) If L is the graph of y = mx + b, then the only parallel to L through P is the 
line through P with slope = m. This is unique. ❑ 

	 26.4 Translations and Rotations 	 

By a translation of the Cartesian model, we mean a one-to-one correspondence 

f : E <--, E , 

: (x,y) 4-> (x + a,y + b). 

Merely by substituting in the distance formula, and observing that a and b can-
cel out, we have: 

• THEOREM 1. Translations are isometries. 



f(P)= (r cos (0+0, r sin (0+0) 

I%  P =(r cos 0, r sin 0)=(x, y) 
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If L is the graph of the equation 

Ax + By + C = 0 , 

then the points (x' ,y') = (x + a,y + b) of f(L) satisfy the equation 

A(x' — a) + B(y' — b) + C = 0 , 

or 

Ax' + By' + ( —aA — bB + C) = 0 . 

This is linear. Thus we have: 

■ THEOREM 2. Translations preserve lines. 

Since translations preserve lines and distance, they preserve everything de-
fined in terms of lines and distance. 

■ THEOREM 3. Translations preserve betweenness, segments, rays, angles, 
triangles, and angle congruences. 

Rotations are harder to describe, because at this stage we have no trigo-
nometry to work with. Let us first try using trigonometry, wishfully, to find out 
what we ought to be doing, and then find a way to do something equivalent, 
using only the primitive apparatus that we now have at our disposal in our 
study of the Cartesian model. 

Figure 26.2 

We want to rotate the Cartesian model through an angle of measure 0 
(Fig. 26.2). Trigonometrically, this can be done by a one-to-one correspondence, 

f: EH E, 

defined as the labels in the figure suggest. 
Now 

cos(0 + 0) = cos 0 cos 0 — sin 0 sin 0 , 

sin(0 + 4.) = sin 0 cos .0 + cos 0 sin 0. 
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Let 

a = cos (b, 	b = sin cb . 

Now 

r = 1/x2  + y 2 , 

cos 0 — 
1/x 2  + y2 ' 

sin 0 = 	Y  
V x 2  + y 2 ' 

We can therefore rewrite our formulas in the form 

f: (x,y) --> (x', y') , 

where 

x' = r cos(0 + (b) 

2  
x 

= V + 	(x y2 	a  	
Vx 2Y  + y2b

) 
V x 2  + y 2  

= ax — by , 

and 

y' = Vx 2  + y2 (v
x 2Y+ y 2

a  
x  

+  	
Vx2  + y2b) 

= ay + bx . 

Any correspondence of this form, with a2  + b2  = 1, is called a rotation of the 
Cartesian model. 

■ THEOREM 4. Rotations preserve distance. 

PROOF. We have 

P = (xi,yi) , 

Q = (x2,y2), 
P' = f(P) = (ax, — by,,ay, + bx,), 

Q' = f(Q) = (ax2  — by2,ay2  + bx2) . 

It is merely an exercise in patience to substitute in the distance formula, calculate 
P'Q', simplify with the aid of the equation a 2  + b 2  = 1, and observe that P'Q' = 
PQ. (The reader is warned that (P'Q')2  appears as a sum of twenty terms.) Solv-
ing for x and y in terms of x' and y', we get 

x = ax' + by', 	y = ay' — bx' . 

x 
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Comparing the formulas 

	

x' = ax — by, 	y' = bx + ay , 

for f and the corresponding formulas for f -1, we see that these have the 
same form 

	

x = a'x' — b'y', 	y = a'y' + b'x', 

where a' = a and b' = —b. Therefore we have the following theorem. 

■ THEOREM 5. The inverse of a rotation is a rotation. 

■ THEOREM 6. Rotations preserve lines. 

PROOF. L is the graph of an equation 

(1) x = k, 

(2) y = k, 
or 

(3) y = mx + k (m 0 0). 

In Case (1), f(L) is the graph of 

ax' + by' = k , 

where a and b are not both = 0, because a 2  + b2  = 1. Therefore L is a line. 
In Case (2), f(L) is the graph of 

ay' — bx' = k , 

which is a line. 
In Case (3), f(L) is the graph of 

ay' — bx' = max' + mby' + k , 

or 

(ma + b)x' + (mb — a)y' + k = 0. 

If we had both 

	

ma + b = 0, 	mb — a = 0 , 

then 

	

ma 2  + ab = 0, 	mb 2  — ab = 0, 

so that 

m(a 2  + b2) = 0, 

and m = 0, contradicting our hypothesis. ❑ 
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As for translations, once we know that rotations preserve lines and distance, 
it follows that they preserve everything that is defined in terms of lines and 
distance. 

Therefore we have: 

• THEOREM 7. Rotations preserve betweenness, segments, rays, angles, 
triangles, and angle congruences. 

We are going to use rotations in the Cartesian model in much the same way 
that we used reflections in the Poincare model, to show that postulates for angle 
congruence hold. To do this, we shall need to know that every ray starting at 
the origin (0,0) can be rotated onto the positive end of the x-axis, and vice versa. 
By Theorem 5, it will be sufficient to prove the following theorem. 

■ THEOREM 8. Let P = (x0, 0) (x0  > 0), let Q = (x,,y,), and suppose that 

xo  = Vx 2i y2i  

Then there is a rotation f such that f(P) = Q. 

	- X 

The equation in the hypothesis says, of course, that P and Q are equidistant 
from the origin. 

As a guide in setting up such a rotation, we note unofficially that we want 
to rotate E through an angle of measure 4), where 

x, 
a = cos — 

2 j_ X + y2, 

b = sin 0 = 	 v 2 L  2 
Xi Ty, 

Thus the rotation ought to be 

f: E E 

: (x,y) H (x',y'), 
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where 

x' = ax — by =  	
x i  

V X 1 + y 21 
x v 2 

Y i  

X 1 + y 2,Y  ' 

y' = bx + ay = Yi 	 x,  

vx2 + 	yl
x + 

v 	x 2, + y2,
y . 

Obviously a 2  + b 2  = 1 in these equations, and so f is a rotation. And 

f (x0,0) = 
( 	x i 	 yi  
,/ 2 i 	2 x0, 

 A/ 2 I 	2 x0) 
v X 1 + y, 	v  X I + yl 

= (x1,y1), 

which is the result that we wanted. 

   26.5 Plane Separation 	 

We shall show first that the plane-separation postulate holds for the case in 
which the given line is the x-axis. It will then be easy to get the general case. 

Let E +  be the "upper half plane." That is, 

E +  = {(x,Y)1Y > 0}. 

■ THEOREM 1. E + is convex. 

PROOF. Lemma 1, Section 3.4, says that if A, B, and C are points of a line, 
with coordinates x, y, and z, and x < y < z, then A-B-C. (This was proved 
merely on the basis of the ruler postulate, and we can therefore apply it now.) 
Since only one of the points A, B, C is between the other two, the lemma has a 
true converse: if A-B-C, then x < y < z or z < y < x. 

Consider now two points, A = (x,,y,), C = (x2,y2) of E +: 

x 

B= (x3, y3) 	C 

A 
I 

I I  y 
x1 	x2  

Figure 26.4 

We need to show that AC lies in Et That is, if A-B-C, with B = (x3, y3), then 
y3  > 0. Obviously, for the case x, 0 x2  we may assume that x1  < x2, as in the fig-
ure; and for the case x, = x2, we may assume that y i  < y2. 

A 

C 
I 

xl  
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In the first case, the line AC is the graph of an equation 

y = mx + b , 

and has a coordinate system of the form 

f(x,y) = V1 + m2  x . 

In the second case, the line is the graph of the equation 

X = X1 

and has a coordinate system of the form 

f(x,y) = y 

It is easy to check that in the first case 

f(A) < f(B) < f(C), 

so that 

x, < x3  < x2 . 

For m > 0, 

mx, + b < mx 3  + b < mx2  + b; 

for m < 0, the inequalities run the other way; but in either case y2  lies between 
two positive numbers. In the second case (x, = x2), the same result follows even 
more easily. 

Let E-  be the "lower half plane." That is, 

E-  = {(x,y)ly < 0}. 

Since the function, 

f: (x,y) <- (x, —y), 

is obviously an isometry, it preserves segments. Therefore it preserves convex-
ity. Since f(E +) = E -, we have the following theorem. ❑ 

• THEOREM 2. E-  is convex. 

It is an easy exercise in algebra to show that if A = (x,,y,) E E +, and B = 
(x2,y2) E E-  , then AB contains a point (x, 0) of the x-axis. Thus: 

• THEOREM 3. E and the line y = 0 satisfy the conditions for E and L in 
the plane separation postulate. 
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Now let L be any line in E, and let A = (x,,y,) be any point of L. By a trans-
lation f, we can move A to the origin. By a rotation g, we can move the resulting 
line onto the x-axis. Let 

H1 = C if -1(E +), 	H2 = 

Since all of the conditions of the plane separation postulate are preserved under 
isometries, we have the following theorems. 

■ THEOREM 4. E satisfies the conditions of the plane separation postulate. 

■ THEOREM 5. Isometries preserve half planes. 

PROOF. Let H, be a half plane with edge L, and let H2 be the other side of L. 
If f is an isometry, then f(L) is a line L'. Let 

Hi = f(H,), 	112 = f(H2). 

Then H; and T4 are convex, and every segment between two points f(A) of H; 
and f(B) of H2 must intersect f(L). Therefore H ; is a half plane with L' as edge. 

From Theorem 5 it follows that: 

■ THEOREM 6. Isometries preserve interiors of angles. 

That is, if I is the interior of LABC, then f(/) is the interior of f(LABC). 

   26.6 Angle Congruences 	 

We want to verify that angle congruence, defined by means of isometries of E 
onto itself, satisfies the postulates C-6 through C-9, Section 8.1, and also satis-
fies SAS. Only one of these verifications is trivial. 

C-6. For angles, congruence is an equivalence relation. 

PROOF. 

(1) LA = LA always, because the identity function E <-4 E is an isometry. 

(2) If LA = LB, then LB = LA, because the inverse of an isometry is an 
isometry. 

(3) If LA = LB and LB = LC, then LA "=" LC, because the composition of 
the isometries for which LA <---> LB and LB 44 LC is always an isometry for 
which LA H LC. ❑ 
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The other verifications are more difficult. We begin with a lemma. 

LEMMA 1. Let f be an isometry of E onto itself. If f (E +) = E +, and f (P) = P 
for every point P of the x-axis, then f is the identity. 

PROOF. Let A be the origin (0, 0), and let B = (1, 0). Let Q = (a, b) be any 
point, and let f(Q) = (c, d). Then 

AQ = f (A)f (Q), 	BQ = f(By(Q) . 

Taking the square of each of these distances, we get 

a2 + b2 = c2 + d2,  

(a — 1)2 
 

+ b 2  = (c — 1)2  + d2, 

a2 ± b 2 — 2a+ 1 = c2 + a ,2 — 2c + 1, 

so that a = c. Therefore b2  = d2. Since f(E 4') = E +, b and d are both positive, 
both zero, or both negative. Therefore b = d. Thus f(Q) = Q for every Q, which 
was to be proved. ❑ 

LEMMA 2. Let A be the origin; let B = (a, 0), (a > 0) be a point of the x-axis; 
and let C = (b, c) and D = (d, e) be points of E + and E - such that 

AC = AD, BC = BD . 

Then there is an isometry 

f: E 4-> E 

such that f(A) = A, f(B) = B, f(C) = D, and f(D) = C. 

D = (d, e) 

Figure 26.5 

PROOF. We shall show that d = b and e = —c. The desired isometry f will 
then be the function (x,y) <--> (x, —y). 

Given 

b2 + c2 = d2 + e 2,  

(b — ct)2  -I- c2  = (d — ct) 2  + e2, 
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we have —tab = —2ad. Since a > 0, this gives b = d. Therefore c2  = e 2. Since 
c > 0 and e < 0, we have e = —c. ❑ 

LEMMA 3. Given LABC, there is an isometry f of E onto itself such that 
f(BA) = BC and f(BC) = BA . That is, the sides of the angle can be inter-
changed by an isometry. 

In the proof, we may suppose that BA = BC, since A and C can always be 
chosen so as to satisfy this condition. 

Let D be the midpoint of AC. Using a translation followed by a rotation, 
we get an isometry g: E 44 E such that g(BD) is the positive end of the x-axis 
(Fig. 26.7). (First we translate B to the origin, and then we rotate.) By the pre-
ceding lemma there is an isometry h: E <-4 E, interchanging A' and C', and 
leaving B' and D' fixed. Let 

f = g ihg. 

That is, f is the composition of g, h, and g-'. Then f is an isometry; f(B) = B, 
f(A) = C, and f(C) = A. 

Figure 26.7 

It is now easy to verify the rest of our congruence postulates. Oddly enough, 
the easiest is SAS. We put this in the style of a restatement. 

SAS. Given LABC, AA'B'C', and a correspondence 

ABC 44 A'B'C'. 
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If (1) AB = A'B', (2) LB = LB', and (3) BC = B'C', then (4) LA = LA', 
(5) LC = LC', and (6) AC = A'C'. 

A' 

Figure 26.8 

PROOF. By hypothesis (2), there is an isometry E H E, LB <-3 LB'. By Lemma 3 
it follows that there is an isometry 

f: E E 

: B <-3 B' 

: BA <--> B'A' 

: BC <-3 B'C' . 

(If the given isometry moves LB onto LB' in "the wrong way," then we follow 
it by an isometry which interchanges the sides of LB'.) From (1) it follows that 
A' = f(A) and C' = f(C). Therefore LA' = f(LA), and LA' = LA; LC' = 
f(LC), and LC' = LC. Also AC = A'C', because f is an isometry. 

This proof bears a certain resemblance to Euclid's "proof" of SAS by 
superposition. ❑ 

C-7. Let LABC be an angle, let B'C' be a ray, and let H be a half plane whose 
edge contains B'C' . Then there is exactly one ray B' A' , with A' in H, such that 
LABC = LA'B'C'. 

We give the proof merely in outline. It should be understood that all of the 
functions mentioned are isometries of E onto E, and that the ray R is the posi-
tive x-axis. 

(1) Take f, so that f l (B'C') = R. 

(2) Take f2  so that f2(R) = R and f2 f,(H) = E. (Of course, if fl (H) is already 
E +, we let f2  be the identity.) 

(3) Take g, so that gl (BC) = R. 

(4) Take g2  so that g2(R) = R and g2g,(A) is in E +. 

(5) Let Lx = f7 1  fil  g2g,(LABC). Then Lx is the LA'B'C' that we wanted. 

(6) Suppose that there are two rays B' A' , B'A" satisfying these conditions. 



C 	A' 

Figure 26.10 
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Figure 26.9 

Then 

f2f1(13'11') = KL, 	f2f1(13'11") = KM, 

where K and M are in E +  and KL and KM are different rays. Since 

LLKN = LABC = LMKN, 

we have 

LLKN = LMKN 

Thus there is an isometry f, of E onto itself, such that 

f(LLKN) = LMKN.  

By Lemma 3, f can be chosen so that f(KN) = KN and f(KL) = KM. It follows 
that for each point P of the x-axis, f(P) = P. Since isometries preserve half-
planes, and f(L) is in E +  , we have f(E +) = E +  . By Lemma 1 it follows that f is 
the identity. This contradicts the hypothesis f(KL) = KM KL . 

C-8. If (1) D is in the interior of LBAC, (2) D' is in the interior of LB'A'C', 
(3) LBAD --"== LB'A'D' , and (4) LDAC = LB'A'C', then (5) LBAC = LB'A'C'. 

PROOF. 

(1) By an isometry f, we move AD onto R and B into E +. (For this we need a 
translation, followed by a rotation and perhaps a reflection (x,y) H (x, —y).) 

(2) By an isometry g, we move A'D' onto R and B' into E+. 
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(3) By the uniqueness condition in the preceding postulate, we know that 
f(AB) = g(A'B') and f(AC) = g(A'C'). 



CHAPTER 

The Postulational 
Method 

	 27.1 Introduction  	

In this chapter we give a general discussion of the ways in which sets of postu-
lates are used in mathematics, with illustrations from preceding chapters. The 
general discussion has been postponed until now precisely so that the illustra-
tions could be cited. The postulational method is used in a number of quite dif-
ferent ways, and the distinctions among these are difficult to explain in the 
abstract. 

27.2 Postulates Considered as 
	  Self-Evident Truths  	

In the time of Euclid, and for over two thousand years thereafter, the postu-
lates of geometry were thought of as self-evident truths about physical space; 
and geometry was thought of as a kind of purely deductive physics. Starting 
with the truths that were self-evident, geometers considered that they were 
deducing other and more obscure truths without the possibility of error. (Here, 
of course, we are not counting the casual errors of individuals, which in mathe-
matics are nearly always corrected rather promptly.) This conception of the 
enterprise in which geometers were engaged appeared to rest on firmer and 
firmer ground as the centuries wore on. As the other sciences developed, it 
became plain that in their earlier stages they had fallen into fundamental 
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errors. Meanwhile the "self-evident truths" of geometry continued to look like 
truths, and continued to seem self-evident. 

With the development of hyperbolic geometry, however, this view became 
untenable. We then had two different, and mutually incompatible, systems of 
geometry. Each of them was mathematically self-consistent, and each of them 
was compatible with our observations of the physical world. From this point on, 
the whole discussion of the relation beween geometry and physical space was 
carried on in quite different terms. We now think not of a unique, physically 
"true" geometry, but of a number of mathematical geometries, each of which may 
be a good approximation of physical space, and each of which may be useful in 
various physical investigations. Thus we have lost our faith not only in the idea 
that simple and fundamental truths can be relied upon to be self-evident, but 
also in the idea that geometry is an aspect of physics. 

This philosophical revolution is reflected, oddly enough, in the differences 
between the early passages of the Declaration of Independence and the Gettys-
burg Address. Thomas Jefferson wrote: 

.. We hold these truths to be self-evident, that all men are cre-
ated equal, that they are endowed by their creator with certain un-
alienable rights, that among these are Life, Liberty and the pursuit 
of Happiness ... ." 

The spirit of these remarks is Euclidean. From his postulates, Jefferson 
went on to deduce a nontrivial theorem, to the effect that the American 
colonies had the right to establish their independence by force of arms. 

Lincoln spoke in a different style: 

"Fourscore and seven years ago our fathers brought forth on 
this continent a new nation, conceived in liberty and dedicated to the 
proposition that all men are created equal." 

Here Lincoln is referring to one of the propositions mentioned by Jefferson, 
but he is not claiming, as Jefferson did, that this proposition is self-evidently 
true, or even that it is true at all. He refers to it merely as a proposition to which 
a certain nation was dedicated. Thus, to Lincoln, this proposition is a description 
of a certain aspect of the United States (and, of course, an aspect of himself). 
(I am indebted for this observation to Lipman Bers.) 

This is not to say that Lincoln was a reader of Lobachevsky, Bolyai or Gauss, 
or that he was influenced, even at several removes, by people who were. It 
seems more likely that a shift in philosophy had been developing indepen-
dently of the mathematicians, and that this helped to give mathematicians the 
courage to undertake non-Euclidean investigations and publish the results. 

At any rate, modern mathematicians use postulates in the spirit of Lincoln. 
The question whether the postulates are "true" does not even arise. Sets of pos-
tulates are regarded merely as descriptions of mathematical structures. Their 
value consists in the fact that they are practical aids in the study of the mathe-
matical structures that they describe. 
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	  27.3 Categoric Postulate Sets  	

It sometimes happens that a postulate set gives a complete description of a 
mathematical structure, in the sense that any two structures that satisfy all of 
the postulates are essentially the same. Rather than attempting to give a defini-
tion of the phrase "essentially the same," let us look at an example. 

Let 

and 

be two algebraic structures satisfying the field postulates of Section 1.3, and sat-
isfying the further postulate that each of the sets F and F' have exactly two ele-
ments. Let 0 be the element of F given by A-3, and let 0' be the element of F' 
given by A-3. Similarly, let 1 and 1' be the elements of F and F' given by M-3. 
We can then set up a one-to-one correspondence 

f: 0 <--> 0', 

: 1 <-0 1' ; 

it is easy to check that f preserves both sums and products, both ways. This is 
what we mean when we say that [F, +, •] and [F', +', •'] are essentially the same. 
For algebraic structures, this relation is called isomorphism. Thus a set of alge-
braic postulates is categoric if any two algebraic structures that satisfy the postu-
lates are isomorphic. 

Obviously the postulates for a field are not categoric, and neither are the 
postulates for an ordered field; they are satisfied by the rationals, by the surds, 
and by the real numbers, as well as the non-Archimedean ordered field de-
scribed in Chapter 32. 

Similarly, the postulates for synthetic plane geometry are not categoric. 
They are satisfied by a metric plane, in which the ruler postulate tells us that 
we have one-to-one coordinate functions 

f: L <-0 ER 

for every line. The same postulates are also satisfied in the surd plane, in which 
every line is everywhere full of holes. We can, however, get a categoric postu-
late set by adding two more postulates. 

We recall the metrization theorem of Section 20.6. Given a plane 
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satisfying the synthetic postulates, and also satisfying the geometric form of the 
Archimedean postulate, we can always introduce a distance function 

d: E x E — ll, 

which gives back to us the congruence and betweenness relations that we 
started with. (It would be worthwhile to review Section 20.6, at this point, be-
cause we are going to make heavy use of it.) Under the distance function given 
by the metrization theorem, the ruler postulate is almost satisfied; we have "co-
ordinate functions" 

f: L ---> 

such that 

d(P, Q) = (P) - f(Q)I, 

but we have no guarantee that all real numbers get used as coordinates. That 
is, the coordinate functions may be functions into R, and may fail to be one-to-
one correspondences. If it happens that all coordinate systems on all lines are 
one-to-one correspondences, then we say that the plane that we started with is 
complete in the sense of Dedekind. 

This suggests a way to get a categoric set of postulates for synthetic plane 
geometry: we should add, to the usual postulates, the conditions: 

(I) E is Archimedean 

(II) E is complete in the sense of Dedekind. 

Any two structures 

[E, 2, ==--' ,@], 	[E' , 	, 	, 911 

which satisfy all of these conditions are essentially the same. Oddly enough, this 
is not hard to prove, once we have come this far in this book. 

By the methods of Chapter 17, we set up coordinate systems in E and E'. 
Thus we have correspondences 

E 	D:R x 	 (x, y) 

and 

E' H l x 6B , 	 P' 	(x,y). 

These really are one to one, because both of our planes are complete in the 
sense of Dedekind. For each point P of E, we let P' = f(P) be the point of E' 
which has the same coordinates (x,y) as P. Then 

(1) f preserves distance. 

That is, d(P, Q) = d'(P', Q'), for all points P, Q of E. 
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PROOF. Let P and Q have coordinates (x,,y,) and (x2,y2). Then P' and Q' have 
the same coordinates (x,,y,) and (x2,y2). Therefore 

d(P, Q) = V (x2  — x1)2  + (y2  — yi)2  = d' (P ' , Q') . 

(2) f preserves lines. 

That is, L is a line in E if and only if f(L) is a line in E'. 

PROOF. If L is a line in E, then L is the graph of a linear equation 

Ax + By + C = 0 . 

It then follows that f(L) is the graph of the same linear equation. Therefore 
f(L) is a line in E'. The same proof works in reverse. 

(3) f preserves betweenness. 

That is, A-B-C in E if and only if A' -B' -C' in E'. 

PROOF. Each of the following statements is equivalent to the next: 

(a) A-B-C in E. 

(b) A, B, and C are collinear, and d(A,B) + d(B,C) = d(A,C). 

(c) A', B', and C' are collinear, and d'(A',B') + d'(B',C') = d'(A',C'). 

(d) A'-B'-C' in E' ❑ 

(4) f preserves segments, rays, and angles, because these are defined in terms of 
betweenness. 

(5) f preserves congruence between segments. 

PROOF. Each of the following statements is equivalent to the next: 

(a) AB = CD. 
(b) d(A, B) = d(C, D). 
(c) d' (A' ,B') = d' (C' , D'). 
(d) A'B' = C'D' . ❑ 

(6) f preserves congruence between angles. 

That is, LABC = LDEF if and only if f(LABC) f(LDEF). 

PROOF. First we observe that 

f(LABC) = LA'B'C' 

and 

f(LDEF) = LD'E'F', 
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by (4). We are free to choose D and F on the sides of LDEF, so that DE = AB 
and EF = BC. By SAS it follows that AC = DF. Therefore 

D'E' = A'B', 	E'F' = B'C', 	A'C' = D'F' 

because f preserves distance. (Here we are using the short notation for distance 
in both of our planes.) By SSS it follows that 

AA'B'C' =-- AD'E'F', 

and 

LA'B'C' ------- LD'E'F' , 

which was to be proved. ❑ 

Thus f preserves all the structure mentioned in our postulates. This means 
that our postulates for synthetic plane geometry became categoric once we had 
added (1) the Archimedean postulate and (2) the Dedekind postulate. 

A categoric postulate set is a sort of arch of triumph. When we are able to 
write such a postulate set for a particular mathematical structure, this means 
that we have a complete understanding of its essential properties. Note, for ex-
ample, in the case of synthetic plane geometry, that we did not know what con-
ditions to add to make our postulates categoric, until we had gone through the 
deep and difficult discussion in Chapter 20. 

27.4 The Use of Postulate 

	

   Sets as Codifications  	

In fact, categoric postulate sets are rare. Most of the time, when we write down 
a set of postulates, we do so not to get a complete description of a particular 
mathematical system, but for precisely the opposite purpose. Most of the time, 
the value of the postulates lies in their generality: they describe a common as-
pect of various mathematical systems which may have little else in common. 

One striking example of this is the idea of a group. (A group, of course, is a 
pair [F,.] satisfying M-1 through M-4 of Section 1.3.) Once we have proved a 
theorem about groups in general, on the basis of these four postulates, we are 
free to apply the theorem in an immense variety of contexts. This process gives 
an efficient codification of mathematics; it spares us the job of repeating essen-
tially the same proof over and over. (Often it leads us to simpler proofs, be-
cause it tends to protect us from being distracted by irrelevancies.) 

To some extent, postulates have been used in this way in this book. For ex-
ample, the postulates of metric absolute plane geometry are not categoric; they 
allow the possibility that the plane is either Euclidean or hyperbolic. In Chap-
ters 1 through 7, and in Chapter 10, we used neither of the two possible parallel 
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postulates. We were then free to use the resulting theorems both in Euclidean 
geometry (Chapters 11 through 23, and 25) and in hyperbolic geometry (Chap-
ter 24). The resulting economy was considerable. If we had introduced the 
Euclidean parallel postulate earlier, it would have been necessary to do some of 
our work over again in Chapter 24. Suppose, for example, that we had postponed 
the study of geometric inequalities until after Chapter 11, and had proved the 
exterior angle theorem in the way suggested by the following figure: 

A 

B 	 C 	D 
r+s+t-180; t+u=180; u=r+s; 

u>r, u>S. 

Figure 27.1 

It would then have been necessary to develop the theory of geometric inequali-
ties all over again in Chapter 24. 

Similarly, we used the postulates for a Euclidean ordered field in Chap-
ters 1, 3, 6, and Chapters 10 through 18. These postulates allow both the com-
plete real number system and the surd field, and therefore our results could be 
used in both Chapters 19 and 20. In Chapter 20 we introduced the Dedekind 
postulate, at the point where we really needed it. Thus, at most points in this 
book, the usefulness of our postulate sets has been due to the fact that they 
were not categoric. 

27.5 The Use of Postulates 

	

   to Keep the Record Straight  	

Often we use postulates when they aren't logically necessary at all. For example, 
we showed in Chapter 14 that all the area postulates of Chapter 13 were super-
fluous, because we could prove that in any metric geometry there has to be an 
area function satisfying these area postulates. The postulates for volume, in 
Chapter 23, are also superfluous, for the same sort of reason, although we have 
not proved the fact in this book. 

In each of these cases, we introduced new postulates simply in order to make 
it clear exactly what was being assumed at a particular stage of our investigations. 



CHAPTER 

The Theory of Numbers 

We recall, from Chapter 1, that the set N of positive integers is defined by the 
following three conditions. 

(1) N contains 1. 

(2) N is closed under the operation of adding 1. 

(3) N is the intersection of all sets of numbers satisfying (1) and (2). 

On the basis of this definition of N, we immediately got the following: 

INDUCTION PRINCIPLE. Let S be a set of numbers. If (1) S contains 1, and 
(2) S is closed under the operation of adding 1, then (3) S contains all of the 
positive integers. 

We then defined the set 7L of integers as the set whose elements are the 
positive integers, their negatives, and 0, and we showed that 7L formed a com-
mutative ring with unity. 

We shall now investigate the divisibility and factorization properties of the 
integers. Our first step is to observe that we can always divide one positive in-
teger by another, getting a quotient q and a remainder r. More precisely, with-
out mentioning division, we can state the following theorem. 

■ THEOREM 1. Let n and a be positive integers. Then n can be expressed 
in the form 

n = aq + r, 

where 

0 r < a. 
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The easiest formal proof is by induction. Take a as fixed, and let S be the 
set of all positive integers n which can be expressed in the desired form. Then 
S contains 1, because 

1 = a • 0 + 1 	(a > 1) 

or 

1 = 1 • 1 + 0 	(a = 1) . 

And S is closed under the operation of adding 1. Given 

n = aq + r, 	0 -.. r < a , 

we have 

n + 1 = aq + (r + 1), 

which is what we wanted, unless r = a — 1. If r = a — 1, then 

n + 1 = aq + a 

= a(q + 1), 

which has the desired form. 
An integer d 0 0 is a divisor of an integer a if a = dq for some integer q; 

that is, d divides a if a/d is an integer. If d divides both a and b, then d is a com-
mon divisor of a and b. If it is also true that every common divisor of a and b is 
also a divisor of d, then d is a greatest common divisor of a and b, and we write 

d = gcd (a, b). 

Note that this definition does not say merely that (1) d divides both a and b, 
and (2) d is the largest number that divides both a and b. When we say that 
d = gcd (a, b), we mean that d is "largest" in the sense of divisibility; that is, every 
common divisor of a and b must not only be d but must also be a divisor of d. 
Thus, while it is plain that no pair of numbers a, b can have more than one gcd, 
it is not plain that a and b have any gcd's at all; and so the following theorem is 
not trivial. 

■ THEOREM 2. Any two positive integers have a greatest common divisor. 

PROOF. Let a and b be the two numbers. Consider the set D of all positive in-
tegers that can be written in the form 

Ma + Nb , 

where M and N are any integers, positive, negative, or zero. Obviously D is not 
empty, because the positive integer a can be written as 

1 • a + 0 • b . 
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By the well-ordering principle, D has a least element d. We shall prove that 

d = gcd (a,b). 

(1) d divides b. Suppose that d does not divide b. Then 

b = dq + r, 	0 r < d 

We know that 

Ma + Nb = d , 

for some integers M, N, and 

r = b — dq . 

Therefore 

r = b — (Ma + Nb)q 

= (— Mq)a + (1 — Nq)b . 

Therefore r E D. This is impossible, because 0 r < d, and d was supposed 
to be the least positive element of D. Therefore d divides b. In exactly the 
same way we get 

(2) d divides a. 
Therefore d is a common divisor of a and b. If e is any other common 

divisor of a and b, then 

d = Mpe + Nqe = (Mp + Nq)e , 

so that e divides d. ❑ 

Note that in the proof of Theorem 2, we had d E D. This gives us the fol-
lowing theorem. 

• THEOREM 3. Let a and b be any positive integers. Then there are in-
tegers M, N such that 

Ma + Nb = gcd (a,b). 

We can now verify a familiar theorem. 

■ THEOREM 4. Every rational number can be expressed as a fraction in 
lowest terms. That is, given a rational number p/q, there are always integers r 
and s such that 

p = r 

q 	s 
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and 

gcd (r,$) = 1 . 

To prove this, we let 

d = gcd (p, q) , 

so that 

p = rd, 	q = sd 

for some positive integers r and s. Now r and s are the integers that we wanted. 
Obviously 

p = rd = r 
q 	sd 	s .  

And since 

for some M, N, we have 

and 

so that 

Mp + Ng = d 

Mrd + Nsd = d , 

Mr + Ns = 1, 

gcd (r, s) = 1 . 

A prime number is a positive integer p > 1 whose only positive divisors are 
itself and 1. 

■ THEOREM 5. If n divides ab, and gcd (n, a) = 1, then n divides b. 

(Here n, a, and b are positive integers.) 

PROOF. There are integers M and N such that 

Mn + Na = 1. 

Therefore 

Mnb + Nab = b . 

Since n divides both Mnb and Nab, it divides their sum. ❑ 
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■ THEOREM 6. Let a and b be positive integers, and let p be a prime. If p 
divides ab, then either p divides a or p divides b. 

PROOF. We need to show that if p does not divide a, then p divides b. If p does 
not divide a, then gcd (p, a) = 1, because p is a prime. By the preceding theo-
rem, p divides b. ❑ 

The above is all of the number theory that we shall really need for the pur-
poses of this book. Once we have gotten this far, however, we may as well prove 
the unique factorization theorem. 

■ THEOREM 7. Every natural number greater than one can be expressed 
as a product of primes. 

Here repeated factors are allowed. For example, 

12 = 2 • 3 • 2 

is a product of primes. 

PROOF. Suppose that the theorem is false. Then some number is not a prod-
uct of primes. Let n be the smallest such number. Then n is not a prime. 
Therefore n has some divisor a, different from n and from 1. Thus 

n = ab, 	1 < a < n, 	1 < b < n. 

Since n was the smallest number for which the theorem fails, a and b are prod-
ucts of primes. Therefore n is also a product of primes, and this contradicts our 
hypothesis. ❑ 

It follows that every natural number n can be expressed in the form 

n  = 131,142  ...pkak,  

where the pi's are different primes, and the ai's are natural numbers. Such a 
factorization is in standard form if (1) a, > 0 for each i, and (2) the pi's are writ-
ten in order of magnitude, so that 

pi < P2 < • • • < Pk • 

■ THEOREM 8. The factorization of a natural number into primes is unique, 
except for the order of the factors. 

PROOF. Suppose that 

n  = .IA1142 	= q b110 	gib), 
 pk 

where both of the indicated factorizations are in standard form. Suppose, as an 
induction hypothesis, that every number less than n has only one prime factori- 
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zation in standard form. We shall show, on this basis, that k = j, p, = q, for each 
i, and a, = b, for each i. 

Every prime factor p of n divides one of the factors ix Therefore p divides 
some p,. Therefore p is some p,. Therefore p, is the smallest prime factor of n. 
For the same reason, q, is the smallest prime factor of n. Therefore p, = 
Therefore 

	

P I 

= p  - .2 2  .p ha k = 	 b2 2 	qibf
•  

But n/p1  < n. Therefore n/p, has only one factorization in standard form. There-
fore k = j, p, = q, for each i, and a, = b, for each i. Therefore our "two" factori-
zations of n were the same all along, which was to be proved. ❑ 

	  Problem Set 	  

*1. Given two natural numbers r1, r2. Let q, and r3  be such that 

	

r i  = r2q i  + r3, 	0 	r3  < r2  

(That is, divide r2  into r i , to get a quotient and a remainder.) Let q2  and r4  be such that 

	

r2  = r3q2  + r4 	(0= r4  < r3) 

Proceed in this way until you get a last positive remainder r„: 

	

r1 = rsqi 	r3 

r2  = r3q2  + r4  

	

= ranqi 	rt+2 

rn-2 = rn-iqn-o + rn 

r„_, = r„q„ _ 1 . 

Of course, the process must terminate, because the r,'s are all positive, and they 
form a decreasing sequence. 

Show that 

r„ = gcd (r,, r2) 

*2. Show that if n is a natural number, then \rn is either a natural number or an irra-
tional number. 

*3. Theorem 2 tells us that certain integers M and N must exist, but it gives us no help 
in finding such a pair of numbers. Describe a scheme for finding them. 
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4. Find integers M and N, so that 

41M + 31N = 1. 

5. In the proof of Theorem 8, we appealed tacitly to the following theorem. 

■ THEOREM. If a and b are positive integers, and a > 1, then b < ab. Prove this. 

6. Justify the following statement from Problem I: "Of course, the process must termi-
nate, because the r,'s are all positive, and they form a decreasing sequence." (Re-
member the well-ordering principle.) 



CHAPTER 

The Theory of Equations 

For the minimum purposes of this book, it would suffice to discuss the theory 
of equations only for cases where all of the roots of our equations are real. But 
this would be hopelessly artificial and somewhat misleading. Throughout this 
chapter, therefore, when we speak of numbers, we allow the possibility that the 
numbers are complex, unless the contrary is explicitly stated. The set of all 
complex numbers is denoted by C. We assume that C forms a field. 

As usual, a polynomial of degree n is a function 

f: C - C 

of the form 

f(z) = a„z" + an _ lz"-1  + • • + a,z + a,. 

For n 	1, we require that a„ 	0. Thus the zero polynomial is allowed, as a 
polynomial of degree 0, but we don't call 0 • z2  + z + 1 a polynomial of degree 2. 

Note that we are allowing the coefficients a, to be complex. 

• THEOREM 1. Let f be a polynomial of degree n 1, and let z0  be any 
number. Then f can be expressed in the form 

f(z) = q(z) (z - z0) + r , 

where q is a polynomial of degree n - 1 and r E C. 

For reasons which will soon be plain, it is imperative to avoid mentioning 
division in stating this theorem. The proof is by induction. Let S be the set of 
all positive integers n for which it is true that every polynomial of degree n 
has the desired property. Then S contains 1, because 

a iz + a, = a,(z - zo) + (a i zo  + 

Here q(z) = a t  for every z, and r = a izo  + a,. 
If n E S, then n + 1 E S. 
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PROOF. Given 

fn-F1(z) = an+izn+1  + a„zn + — • + aiz + a0 . 

Then 

fn+1(z) = an+izn(z — zo) + (annzo  + an)zn  + — • + alz + a0  

=- an+,zn(z — z0) + fn(z) 

Here fn  is a polynomial of degree n. Therefore 

fn(z) = q(z) (z — zo) + r, 

and 

f„+1(z) = [a„+,zn + q(z)](z — z0) + r, 

which has the desired form. Therefore n + 1 E S, and S contains all the posi-
tive integers. ❑ 

In this theorem, when r = 0, we have 

f(z) = q(z) (z — zo). 

Here we say that z — zo  divides f(z). In the equation 

f(z) = q(z) (z — zo) + r , 

we set z = zo. This gives 

f (zo) = r . 

Thus we have: 

• THEOREM 2. The Remainder Theorem. If 

f(z) = q(z) (z — zo) + r, 

then 

f(zo) = T. 

■ THEOREM 3. The Factor Theorem. If zo  is a root of the equation, 

f(z) = anzn + an _1zn-1  + • • • + aiz + a0  = 0, 

then z — zo  divides f (x), and conversely. 

Note that we could not have proved Theorems 2 and 3 by first writing 

f (z) r  
= q(z) + 	, 

z — zo 	z — zo 
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and then multiplying by z — z, to get the equation that we really want. The di-
vision is valid only if z — zo  0 0, and z = z, happens to be the very value that 
we are interested in. 

An algebraic equation of degree n (n 	1) is an equation of the form 

anxn + an _ 1 xn-1  + • • • + a 1 x + a, = 0, 

where all of the coefficients a, are integers, and where an  0 0. 
The fundamental theorem of algebra, due to K. F. Gauss, asserts that every 

algebraic equation has at least one root in the field of complex numbers. Of 
course there may not be any roots in the field of real numbers. Moreover, the 
only roots that are easy to find, for n > 2, are the rational ones. The method of 
finding these is based on the following theorem. 

■ THEOREM 4. Let x = p/q, in lowest terms, be a root of the equation 

anxn + 	+ • • + ai x + a, = O. 

Then p divides a, and q divides a„. 

PROOF. We have 

	

an
q

pn + an- 
n
iPn 	a,p 

+ a, = . 

	

+ + — n 	 -1 

Therefore 

	

a„pn + an ipn-lq 	 aipqn-1 	aoqn 
	0. 

We know that gcd (p, q) = 1. Hence p and q have no prime factor in common. 
Thus q and pn have no prime factor in common. Therefore gcd (pn, q) = 1. 

Since q divides every term in the equation after the first term an pn, it fol-
lows that q divides an y'. Since gcd (Irn , q) = 1, it follows by Theorem 5 of Chap-
ter 28 that q divides an. 

In exactly the same way, we see that p divides a0. ❑ 

The applications of this theorem can be tedious; we have only a finite 'num-
ber of things to try, but finite numbers can be large. For example, given the 
equation 

8x3  — x2  — 27 = 0, 

the only possible rational roots are the numbers ±p/q, where q = 1, 2, 4, 8 and 
p = 1, 3, 9, 27. This gives 32 possibilities. On the other hand the theorem 
sometimes enables us to conclude very quickly that an equation has no rational 
roots at all. Consider 

x3  — 2x + 2 = . 
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Here the only possible rational roots are 1, —1, 2, and —2. None of them works. 
Therefore there are no rational roots. 

Finally, let us recall one of the consequences of the factor theorem. Given a 
polynomial 

fn(x) = xn + an _ i xn-1  + • • • + a 1x + a,. 

If x1  is a root of fn(x) = 0, then we have 

f„(x) = (x — x i)f„_,(x). 

If x2  is a root of f„_ 1 (x) = 0, then (x — x2) is a divisor of f„_,(x). Thus 

fn(x) = (x — x,) (x — x2)fn _ 2(x) . 

In a finite number of such steps, we get a factorization, 

fn(x) = (x — xl)(x — x2) • • (x — x,) 

Each of the numbers x, is a root of the equation fn(x) = 0. And no other num-
ber is a root, because a product is = 0 only if one of the factors is = 0. (This 
principle applies, of course, to complex roots as well as real roots.) 

It is important to remember, in all of the above discussions, that the num-
bers x, are not necessarily different. If we collect the repeated factors of fn(x), 
we get a factorization of the form 

fn(x) = (x — bi )k i(x — b2)02  • • (x — bm)km. 

We then say that each b, is a root of multiplicity k,; and we observe that the sum of 
the multiplicities of the roots is the degree of the equation. 

People often refer to this fact by saying that "every algebraic equation of 
degree n has n roots." But the latter statement, taken at face value, is silly. 
There are simple examples to show that the number of roots may be any in-
teger from 1 to n. For example, the equation x 10  = 0 is of degree ten, but it has 
only one root, namely, zero. 

The upper bound n, for the number of roots, tells us that two polynomials 
can never be alike unless they look alike. 

■ THEOREM 5. If 

an xn + an  ,xn-1  + ••• + a1 x + a, = bn xn + bn _ 1 xn-1  + • • • + b1 x + b0 , 

for every x, then a, = b, for every z from 0 to n. 

PROOF. Every number is a root of the equation 

(an  — bn)xn + (an_, — bn_ 1)xn-1  + • • + (a1  — b1)x + (a, — 1)0) = 0 . 

Therefore this equation cannot have a positive degree, so that a, = b, for i > 0. 
The equation must therefore take the form = bo. Therefore a, = b, for every 
i from 0 to n. ❑ 
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Finally, a remark on the fundamental theorem of algebra. It may seem that 
we have used this theorem, to prove Theorem 5, and in fact we did use it to 
show that every polynomial 

fn(x) = x" + 	+ • • • + a ix + ac, 

has a factorization 

fn(x) = (x — x 1) (x — x2) • • • (x — xn). 

But in the proof of Theorem 5, all that we really need is the following. 

LEMMA. Every equation of the form 

f„(x) = x' + a„_,x"-1  + • • • + ai x + ao  = 0 

has at most n roots. 

This lemma has an elementary proof, as follows. If the equation has no 
roots at all, then we are done. If it has a root x i , then 

f„(x) = (x — x i)f„_ 1(x), 

for some polynomial f„_,, of degree n — 1 and with leading coefficient 1. If the 
equation f„_1 (x) = 0 has no roots, then x, is the only root of fn(x) = 0. If 
fi,_1 (x2) = 0 for some x2, then we get 

fn(x) = (x — xi) (x — x2)fn_2(x) 

We proceed in this way as far as we can. If at every stage 

f„(x) = (x — x,) (x —  x2) • • • (x — Of„_,(x) 	(i < n) 

we find that f„_;  (x) = 0 has a root, then we get a complete factorization of fn(x) 
into linear factors. If at some stage the equation f„_1 (x) = 0 has no roots, then 
the original equation has at most i roots, with i n. The lemma follows. 

Similarly, the following is elementary: 

LEMMA. Given a cubic polynomial f3(x) = x 3  + a2 x2  + ai x + a0 , with real 
coefficients. If the equation f 3(x) = 0 has a root x,, then f3  has a complete 
factorization. 

PROOF. We know that f3(x) has a factorization of the form (x — x 1 )f2(x), where 
f2(x) is quadratic. By the quadratic formula, f2(x) has a root. Now complete the 
factorization. 111 



CHAPTER 

0/ 

Limits of Sequences 

Given a sequence, 

a,, a2, . . . , 

of real numbers. When we write 

lira an  = a , 
n—>w 

this means, roughly speaking, that when n is very large, then an  is very close to a. 
For example 

lim 
1 
— = 0 , 

n—,. n  

lim 
(n +  11 

 = lim(1 + —
1
) = 1 , 

n. —''' 	n 	.-- 	n 

and so on. 
Let us now try to frame a definition of this idea, in a sufficiently exact form 

to enable us to prove things about it. 
In the first place, when we say that an  is close to a, this means that lan  — al is 

small. The idea, then, is that we can make Ian  — al as small as we please, merely 
by making n large enough. 

To say how small we want Ian  — al to be, we should name a positive num-
ber, say s, and then demand that 

lan — a$ < 6  • 

To explain what integers n are large enough, we should name a positive in-
teger N, and require that n > N. In these terms, when we say that 

lira an  = a , 
n—>. 
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we are saying that no matter what number E > 0 is given, there is always an in-
teger N with the property that Ian — al < s for every n > N. This suggests the 
following definition. 

DEFINITION. limn, an  = a means that for every s > 0 there is an integer N 
such that if 

n > N , 

then 

la n — al < e ' 

Let us try this out on some simple examples. First we shall show, using the 
above definition, that 

(1) limn.,. 1/n = 0. By definition, this says that 

(2) for every e > 0, there is an integer N such that if 

n > N , 

then 

1 
— —0 
n 

 

The desired N is easy to find: 1/n < e means merely that n > 1/s. By the 
Archimedean postulate, some integer N is greater than 1/E. For n > N, we 
have 1/n < e, as desired. 

(The use of the Archimedean postulate was essential in this proof. In fact, 
the statement that limns. 1/n = 0 is precisely equivalent to the Archimedean 
postulate.) 

Let us try the same thing for 

n + 1  
lim 	= 1 
n->,. 	 n 

Given s > 0, we want an integer N such that if 

n > N , 

n + 1  
1 

n 

< e. 

then 

< e. 
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The second inequality is equivalent to 

1 — < 6 . 
n 

We can therefore let N be any integer greater than 1/s, as before. 
An upper bound of a sequence a l, a2, ... is simply an upper bound of the set 

{an}. A sequence which has an upper bound is said to be bounded above. A lower 
bound of a sequence a,, a2, ... is a lower bound of the set {an}. A sequence which 
has a lower bound is said to be bounded below. A sequence is bounded if it is both 
bounded above and bounded below. This is equivalent to the statement that 
there is a number b such that Ian)  b for every n. If 

a, < a2 < • • - 5-  an 5  an+i <• • • 

then the sequence is called increasing. (If the strict inequality an  < an+, always 
holds, then the sequence is called strictly increasing. But this idea does not come 
up very often.) 

The following theorem is a consequence of the Dedekind postulate. 

■ THEOREM 1. If a sequence is increasing, and has an upper bound, then 
it has a limit. 

PROOF. Let the sequence be 

Since {a„} has an upper bound, it follows by the Dedekind postulate that {a„} 
has a least upper bound. Let 

a = sup {a„} . 

We shall show that 

lim an  = a . 
n-,0,  

Let e be any positive number. Then 

aN  > a — s 

for some integer N, because a — 8 is not an upper bound of {an}. If n > N, then 
an  aN , because the sequence is increasing. Thus, if 

n > N , 

then 

an  > a — s . 

But an  < a + s for every n, because a is an upper bound of {a n}. If 

a — E < an  < a + 8, 
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then 

< an  — a < , 

and 

Ian  — al < E . 

Thus if 

n > N 

then 

— al < . 

That is, the number N that we found is of the sort we were looking for. ❑ 

The other fundamental theorems on limits of sequences are as follows. 

■ THEOREM 2. If limn _. an  = a, and lim 	bn  = b, then limn_,on(an  + bn) = 
a + b. 

■ THEOREM 3. If limn_,„ an  = a and hill?, bn  = b, then limn_„,(an  bn) = ab. 

■ THEOREM 4. If lim„„ an  = a, and an  k for every n, then a k. 

■ THEOREM 5. If limn_n  an  = a, and limn _„, bn  = b, and an  bn  for every 
n, then a 	b. 

▪ THEOREM 6. The Squeeze Principle. If 

a < bn < an 

for every n, and 

lim an  = a , n—>. 

then 

lim bn  = a . 
n—>. 

Of course the same conclusion follows if an  bn  a for every n. We shall 
refer to both of these theorems as the squeeze principle. 

We shall not prove these theorems. Instead, we give in the following prob-
lem set a sequence of theorems that should lead you to the proofs by fairly 
easy stages. 



478 	 Limits of Sequences 

	  Problem Set 	  

1. Show that 

lim = a 

if and only if 

lim(a„ - a) = . 

2. Show that if lim„_,„ 	= 0 and lim,„_>„ 	= 0, then lim„_„(a n  + b„) = 0. [Hint: 

You want la, + b, < e. This will hold if the inequalities an d < s/2 and lb„,] < 612 
both hold.] 

3. Prove Theorem 2. 

4. Show that if 	= a, then the sequence is bounded. 

5. Show that if lim n — a n  = 0 and {bn} is bounded, then lim, a„b,„ = 0. [Hint: If 
1)„1 < b, and la„! < elb, then lanbd < s.] 

6. Show that if lim„_„„ an  = a and 	bn  = b, then 

lim[an(b„ - 	= 0 . 

7. Show that if 

	

	an  = a and limn-, bn  = b, then 

lim[bn(a, - a) + a(b„ - b)] = 0 . 
n 

8. Prove Theorem 3. 

9. Prove Theorem 4. [Hint: Suppose that a > k, let a - k = s > 0, and use c in the 

definition of a limit.] 

10. Prove Theorem 5. 

11. Prove Theorem 6. 



CHAPTER 

Countable and 
Uncountable Sets 

   31.1 Finite and Countable Sets 	 

By a segment of the integers we mean a set of the form 

1„ = 

A finite sequence is a function whose domain is a set In. Usually we write se-
quences in the subscript notation 

a 1, a2, . 	, a, ; 

here for each z, a, is the object which corresponds to i under the action of the 
function. 

Let A be a set. If there is a one-to-one correspondence 

f: I,,  <---> A 

between A and a set I,,, then we say that A is finite and has n elements, and 
we write 

A — I„. 

In general, when we write 

A — B , 

this means that there is a one-to-one correspondence between the set A and the 
set B. In this case, we say that A and B are equivalent sets. 
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As usual, by an infinite sequence (or simply a sequence), we mean a function 
whose domain is the entire set N of natural numbers. In the subscript notation, 
we write sequences as 

a ,, a2, 	; 

here az  is the object corresponding to the natural number i. 
A set A is called countable if there is a sequence in which every element of A 

appears at least once. Note that since repetitions are allowed, every finite set is 
countable; we merely repeat one of its elements over and over. If 

A — N, 

then we say that the set A is countably infinite. Thus the set N itself is countably 
infinite, ex officio; we let each natural number n correspond to itself. And the 
set 71 of integers is countably infinite; we can arrange it in the sequence 

0,1, —1, 2, —2, ... ,n, —n, . . . , 

in which every integer appears exactly once. 

■ THEOREM 1. Every countable set is either finite or countably infinite. 

That is, if the elements of the set A can be arranged in a sequence 

a l , a 2, 	. , a „, . . , 

with repetitions allowed, then either A -S In  for some n or A — N. To prove this, 
we merely need to eliminate the repetitions from the sequence which is given 
by hypothesis, thus getting a sequence 

b,, b2, 	, b„ 

or 

b,, b2, 	, b„, 	, 

in which every a, appears exactly once. The method of doing this is fairly obvi-
ous. Let 

b = a,. 

Given 

b,,b2,...,bt, 

we look to see whether every one of the an's has already been listed. If so, we 
have finished; n = i, and the set A is finite. If not, we let bz+ , be the first term of 
the a-sequence which has not been listed so far. 

If this process terminates, then A is finite. If the process does not termi-
nate, we get an infinite sequence 
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with no repetitions. The new sequence includes all the elements of A, because 
for each n, an  is one of the objects b1 , b2, , bn. [Query: Under what conditions 
will an  = bu  for a particular n? Under what conditions will it be true that an  = bn  
for every n?] 

• THEOREM 2. The union of a countable collection of countable sets is 
countable. 

PROOF. Given 

	

A = A, U A2 U • • • U An 	• • , 

where each A, can be arranged in a sequence 

Ai  : 	 . 

Let us regard the objects au  as forming a doubly infinite array, as follows: 

all a12  

a21 a22 

a31 a32  

In this array, consider the diagonal sequences 

all 

a12, a21 
a13, a22, a31  , 

a1., 	a3,n-2 • • • and 

Laying these finite sequences end to end, we get a single sequence which in-
cludes all of the au's. ❑ 

Note that this theorem and its proof include the cases of (1) a finite collec-
tion of countably infinite sets, (2) a countably infinite collection of finite sets, 
and also the two other possibilities. The definition of a countable set was stated 
in such a way as to permit us to take care of all these cases at once. It is better to 
apply Theorem 1 at the times when we really need it than to worry about elimi-
nating repetitions at most stages of most proofs. 
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	  Problem Set 31.1 

1. Show that the rational numbers between 0 and 1 form a countable set. 

2. Show that the set 0 of all rational numbers is a countable set. 

3. Let EQ  be the set of all points (x,y) in a coordinate plane for which x and y are both 
rational. Show that EQ  is countable. 

31.2 The Countability of 
   the Surd Field  	

We recall, from p. 279, the definition of a surd. A real number x is a surd if we 
can calculate x by a finite number of additions, subtractions, multiplications, 
divisions, and extractions of square roots, starting with 0 and 1. S is the set of 
all surds. 

We shall show, using Theorem 2 of the preceding section, that S is 
countable. 

Let Sr, be the set of all surds that can be calculated by n operations of the 
sort that are allowed. Then Sn  is finite for every n. The proof is by induction. 

(1) So  is finite. (Because its only elements are 0 and 1.) 

(2) If Sn  is finite, then so also is Sn+1. 

PROOF. Let k, be the number of elements in Sn. The elements of Sn+1  are the 
numbers of the form x + y, x — y, xy, x/y, V, where x and y belong to Sn. For 
each of the first four of these forms, there are surely no more than k2n  possibili-
ties, because there are at most kn  choices for x and kn  choices for y. And there 
are at most kr, possibilities for V. Therefore the number of elements in Snn is 
surely no greater than 4k: + ki, (and, in fact, it is easy to see that this is a gross 
overestimate). Therefore Sn+, is finite. 

Since 

S = S I  U S2 U • • • U Sn  U • • • 

it follows by Theorem 2, Section 31.1, that S is countable. ❑ 

31.3 Proof That the Real 
	 Numbers Are Uncountable 	 

To show that the real numbers cannot be arranged in a sequence, we need a 
preliminary result. 
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By a closed interval (of the real numbers), we mean a set 

[a,b] = 

By a nested sequence of closed intervals we mean a sequence 

[a1, b1], [a2,b2],... 

in which 

[ai,i , bi+i] C [ai, i] 

for every i. 

■ THEOREM 1. The intersection of a nested sequence of closed intervals is 
not empty. 

That is, some number x—  lies in every interval in the sequence. The proof is 
as follows: 

(1) Let A = laj, and let B = {k}. Then 

a, < b, 

for every i, by definition of an interval. And 

ai 	< bi+1 < bi, 

because the sequence is nested. If i j, then 

ai < bj , 

because 

a,C a,,1 	• • • 	< bi  

Similarly, a, < b1  if i j. Therefore every b, is an upper bound of A. 

(2) Let i be the supremum of A, that is, the least upper bound of A. Then 

a, x for every i, 

because x is an upper bound of A. And 

b, for every i, 

because x is the least upper bound of A. Therefore 

x E [a„ b1 ] for every i 

which was to be proved. 
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■ THEOREM 2. The set R of all real numbers is uncountable. 

PROOF. Suppose that R can be arranged in a sequence 

X 1 , X2, • • • X„, • " 

We set up a nested sequence of closed intervals, in the following way. 

(1) Let [a 1,1,1 ] be any interval not containing x1 . 

(2) Given a finite sequence 

[a 1,b1 ],[a2,b2],...,[a„,b,], 

nested as far as it goes, such that [an, bn ] contains none of the numbers 
x1 ,x2,... ,x7,. Let [an+, b„, i] be any interval which lies in [an, bn] and does not 
contain x„,,. 

Now let I be the intersection of all the intervals in the sequence. Thus 

1 = [a,, bj n [a2, b2] n • • • n [a„, b„] n • • - . 

Then I is empty. The reason is that every real number x is supposed to be equal 
to x„ for some n ; and x„ cannot belong to I, because x„ does not belong to [an, bd. 

But I cannot be empty, by Theorem 1. Thus we have a contradiction, and 
Theorem 2 must be true. ❑ 

We found in Chapter 19 that some real numbers (for example, cos 20° and 
.) are not surds. The results of this section and the preceding one give an in-
dependent proof of the same fact: it is impossible for S and R to be the same 
set, because S is countable and R is not. In fact, since the nonsurds are more 
numerous, it is, in a way, a remarkable accident for a real number chosen at 
random to be a surd. The surds are more familiar, but this is not because they 
are more common; it is merely because they are easier to describe. 

	  Problem Set 31.3 	  

1. In the preceding paragraph, it is stated that the nonsurds are more numerous than 
the surds. Justify this statement, by showing that R — S is uncountable. 



CHAPTER Z/ 

An Ordered Field That 
Is Euclidean but 

Not Archimedean 

In Chapter 1 we postulated that the real number system had the Archimedean 
property. In fact, this postulate was necessary; it is not true that every Euclidean 
ordered field satisfies the Archimedean postulate. Following is an example of a 
Euclidean ordered field that does not. The example is countable. 

It was proved, in Chapter 31, that the surd field S is countable. Let P be 
the set of all polynomials with coefficients in S. Thus, P includes the "zero poly-
nomial," which is = 0 for every x, the constant polynomials f(x) = ao, and the 
polynomials of degree n > 0, of the form 

f(x) = a"x" + 	+ • • + a,x + ao , 

where a, belongs to S and a, 0 0. In any case, a, is called the leading coefficient. 
Thus the leading coefficient of f(x) = 2x 2  — 3x + 4 is 2, and the leading coeffi-
cient of a constant polynomial f(x) = a„ is the same constant a0. 

For the purposes of this chapter, a polynomial will be called positive if it 
takes on only positive values when x is sufficiently large. To be more precise, f 
is positive if there is a number k such that 

f(x) > 0 for every x > k. 

For example, f (x) = x2  — 2 is positive, because 

x 2 - 2 > 0 for every x > 

We are using k = V-2. Similarly, f(x) = x 4  + x 2  + 1 is positive; here any num-
ber at all can be used as k, because x4  + x2  + 1 > 0 for every x. 
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■ THEOREM 1. f > 0 if and only if the leading coefficient in f is > 0. 

PROOF. For constant polynomials, this is obvious. Suppose, then, that 

f(x) = an xn + an_,x"-1  + • • • + a,x + a0 , 

with an  > 0. Then 

f(x) = anxf 	
a„_,  

1 + 	+ 
a„_2 

 + 	
+ a, ] 

a„x 	a„x2 	anx" . 

Here the first factor is always > 0 when x > 0. And the expression in the 
brackets is > 0 whenever 

. 

Surely this holds when x is greater than a certain k, because as x —> co, each of 
the terms on the left —> 0. (For a complete proof of this, see a calculus book.) 

On the other hand, if a„ < 0, then a„x" < 0 when x > 0, and the bracket is 
still > 0 when x is greater than a certain k. 

Thus the positive polynomials are simply the ones that have positive num-
bers as their leading coefficients. ❑ 

A polynomial f is called negative if there is a number k such that 

f(x) < 0 for every x > k. 

From Theorem 1 it follows immediately that: 

• THEOREM 2. Every polynomial (other than the zero polynomial) is ei-
ther positive or negative. If f > 0, then —f < 0, and conversely. The algebraic 
system formed by our set P of polynomials has some of the properties that we 
want. It has a 0, namely, the polynomial f = 0 which is = 0 for every x. It has 
a 1, namely, the polynomial g = 1. Addition and multiplication are associative, 
commutative, and distributive, because the real numbers have these properties. 
We easily define an order relation, by defining 

f < g 

to mean that 

g — f > 0 . 

Thus f < g if f (x) < g(x) for every x greater than a certain k. It can also be 
checked that Conditions 0-1, 0-2, AO-1, and MO-1 hold. Thus P forms an or-
dered commutative ring with unity: it satisfies all of the postulates for an ordered 
field, with the sole exception of the postulate which says that every f 0 has a 
reciprocal. 

a „_ a n_2 
+ 

a , 
< 1 

an x 
+ 

an x 2 ane 
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(We omit the details of these verifications, but will give the analogous de-
tails presently, for the ordered field which we shall finally be interested in.) 

On the other hand, P is surely not Archimedean. Take, for example 

s = f, 	f(x) = 1 for every x , 
and 

M = g, 	g(x) = x for every x . 

No matter what the integer n may be, we have 

n < x when x > n . 

Therefore 

ns < M 

for every n, and our 6 and M do not satisfy the Archimedean postulate. We 
may say that f(x) = x is "infinitely large compared with" g(x) = 1. 

In the same way, x2  > nx when x is large enough. Therefore, if s(x) = x, 
M(x) = x 2, then 

ns < M for every n . 

Thus there is an ordered ring which is not Archimedean. To get a non-
Archimedean ordered field, we use the simple device of forming quotients of 
polynomials. 

By a rational functzon we mean a function r of the form 

r (x) — 
f(x) 

 , 
g(x) 

where f and g are polynomials with coefficients in a certain field, and g 0. A 
rational function r is called positive if there is a number k such that 

r(x) > 0 for every x > k . 

In this case we write r > 0. The function r is called negative if there is a number 
k such that 

r(x) < 0 for every x > k. 

In this chapter, we shall be interested in the case in which our polynomials 
have coefficients in S. But Theorems 3 through 6 below do not depend on the 
coefficient field, and so it would be misleading to mention S in stating them. 

• THEOREM 3. Every rational function (other than 0) is either > 0 or < 0. 

PROOF. Given 

f(x)  
r(x) — 

g(x)
, 
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where f is not the zero polynomial. We can surely choose f and g so that g > 0. 
(If this does not already hold, we multiply in numerator and denominator by 
—1.) Thus we have a k 1  such that 

g(x) > 0 for every x > k, . 

Suppose now that f > 0. Then there is a k2  such that 

f(x) > 0 for every x > k2  

Let k be the larger of the numbers k, and k2. If x > k, then we have x > k, and 
x > k2. Therefore f(x) > 0 and g(x) > 0. Hence 

r(x) = 
g(x) 

> 0 for every x > k. 

Similarly, if f < 0 and g > 0 it turns out that r < 0. ❑ 

■ THEOREM 4. If r > 0 and s > 0, then r + s > 0 and rs > O. 

PROOF. Given 

r(x) > 0 for every x> k, 

s(x) > 0 for every x > k2  

Let k be the larger of the numbers k, and k2. For every x > k, we then have 

r(x) + s(x) > 0, 

and 

r(x)s(x) > 0 . 

Therefore r + s > 0 and rs > 0, which was to be proved. 
It is easy, of course, for two rational functions to be essentially the same. 

For example, consider 

ri(x) = 	
x(x — 2) 

(x — 1)(x — 2) 

r2(x) = 	
x(x — 3)  

(x — 1) (x — 3) 

The first of these is defined except at x = 1 and x = 2; and the second is de-
fined except at x = 1 and x = 3. Wherever both functions are defined, they 
have the same value. Therefore, for every x > 3, r, and r2  are both defined, 
and ri(x) = r2(x). In this case we write r1  r2. In general, let r and s be func-
tions whose domains lie in R. Suppose that there is a k E S such that, for every 
x > k, r(x) and s(x) are both defined, and 

r(x) = s(x). 
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Then 

r 	s. 

Rational functions are awkward, because they are not defined for every x. 
(In the figure below, there may be no such thing as r(k).) The situation can be 
simplified as follows. We know that every rational function r is > 0, = 0, or < 0. 

Figure 32.1 

Given r and k, such that r(x) > 0 for x > k, we define a new function r' by 
providing that (1) r' = r for x k + 1, and (2) r' is any continuous function for 
x k + 1. (Note that, at x = k, r is not necessarily defined.) Evidently r r', 
for every r, r'. The graph of r' may look like this: 

• • 
k k + I 

• X 

Figure 32.2 

Evidently r r', for every r, r'. But r' may change sign; and even if ri and 
have constant sign, the function r — r2 may change sign. 

Let G be the set of all such functions 

r': R --> 	, 

where r' is rational when x is sufficiently large. We shall have no further use for 
rational functions, and so we shall denote elements of G by symbols r, 

■ THEOREM 5. In G, if r, r2  and s1  s2, then ri r2  sis2  and r1  + r2  —
s1  + s2. If r1 	r2  and r, > 0, then r2  > 0. (Similarly for <.) 
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This is clear. For every r in G, let 

= fs Is — 

By the preceding theorem, we can state the following definitions. 

(1) —r > 0 if r > O. 

(2) r + s = r + s. 

(3) I- 	= 

The point is that positiveness, sums, and products depend only on the _ _ 
equivalence classes r, s, and do not depend on their representatives r and s. 

■ THEOREM 6. If > 0 and > 0, then r + > 0 and Ts > O. 

PROOF. Let k, and k2  be such that 

r(x) > 0 for x > k, , 

s(x) > 0 for x > k, 

Let k be the larger of the numbers k,, k 2. Then, for x > k, we have 

r(x) + s(x) > 0 and r(x)s(x) > 0 ; 

and so 

r +s>0 and TT.  > 171. 

Now let F be the set of all equivalence classes -r (r E G). We assert that F 
forms a field. The associative, commutative, and distributive laws hold in F. For 
example, 

because 

and 

Cr sit = r(s t), 

rr sit = rst = rst, 

7-(T.t) = rst = rst , 

by definition at each step. Similarly for the other postulates which merely state 
algebraic identities. 

The set F contains a 0 and a 1, namely 0 and T. Also 	= 	and 

1 - (1) 
r 

Obviously F is closed under addition and multiplication, because, if and and be-
long to F, then r + s and rs are equivalent to elements of G, and these deter-
mine elements of E 
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We must now define an order relation in F, and show that F forms an or-
dered field. Given r, s, F. If 

then (by definition), 

r <S. 

For every 7 and s-, we have exactly one of the conditions 

— > 6, 	T - = 6, 	- < T. 

Therefore we have exactly one of the conditions 

r < s, 	r = s, 	< 77  . 

Thus our relation < satisfies 0-1. If 

< T and s< t, 

then 

By Theorem 6, we have 

so that 

and 

— > (I and 7- >T. 

Therefore the relation < satisfies 0-2. ❑ 

It remains to verify AO-1 and MO-1. 
Given 

we want to conclude that 

The first condition says that 

The second condition says that 

+ t) — + > T 
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Obviously these are equivalent. Therefore 0A-1 holds; we already know from 
Theorem 6 that MO-1 holds. Therefore F forms an ordered field. 

But F is not Archimedean. To show this, we proceed in exactly the same 
way that we did for P. Let s be the function which is = 1 for every x, and let M 
be the function which is = x for every x. For every positive integer n, ns(x) = n 
for every x. Therefore, for every n we have 

M(x) - ns(x) = rn(x) = x - n . 

Now x - n > 0 when x > n. Therefore rn  is a positive function for every n. 
Therefore, for every n, we have 

M - ns > . 

Therefore 

ns <M 

for every n. Thus F is not an Archimedean ordered field; 6 is so exceedingly 
small, compared with M, that no integral multiple of s is > M. 

In the same way, if we let 

r,i(x) = xm, 

it is rather easy to see that the equivalence classes r1 , r2, ... are not related in an 
Archimedean fashion in E In fact, every integral multiple nr, of is is < r2; we 
always have n-r2  < -r3, and so on. 

Using the ordered field F, we shall construct a Euclidean ordered field, by 
a recursion process, defined as follows. 

Let F„ be a countable ordered field, whose elements are equivalence classes 
s-  of continuous functions s: IR R. As usual, s s' if there is a k such that 
s(x) = s'(x) for x > k. Suppose that, for each s in F,,, we have s > 0, -s = 0, or 
s-  < 0. That is, for each s-  E F,,, we have exactly one of the following condi-
tions: (1) for each s E s, there is a k such that s(x) > 0 for x > k; (2) for each 
s E s-, there is a k such that s(x) = 0 for x > k; or (3) for each s E s-, there is a k 
such that s(x) < 0 for x > k. (We recall that this condition holds in F.) Let be be 
an element of F„, such that r(x) > 0 for every x, but V F,,. Throughout the 
following discussion, r is fixed. For each -a, b in F,,, 

a + b V-r 

is a well-defined equivalence class of continuous functions R —> IR: the sum 
+ bVT- depends only on -a b, and r, and does not depend on the choice of 

a E -a, b E b, and r E -r. Let 

F„+ , = {-a + 	, 

where a, b E F„ and r(x) > 0 for each x. The usual laws of addition and multi-
plication hold in Fn+ ,, because they hold in E11. The zero in F„+ , is the zero in F„. 
And it is easy to see that F„,, is a ring. To show that it is a field, we need the 
following lemma. 
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LEMMA. Every element of F,,1  is > 0, or = T, or < T, but no two of these 
conditions hold. 

PROOF. 

(1) If = 0, then a + 	= and a is > 0, or = 0, or < T. 
(2) Suppose, then that b 0 0, and choose b E b so that b(x) > 0 for every x or 

b(x) < 0 for every x. Then 

( 

a(x) + b(x)\./T-67) = b(x) La 
x)  

—boo  + r(x)]. 

Suppose that, for each k, there is an xo  such that xo  > k and a(x 0) + 
b(xo)1/r(xo) = 0. Then for each k, there is an xo  such that xo  > k and 

a(x0) vr(xo) 0 , 

b(x0) 

—a(x0)  
Vr(xo), 

b(x0) 

and 

a 2(x0)  
= r(x0). 

b 2(xo) 

Therefore, a 2 /6 2  > 7 and "c7,2 /1)2  < 7 are both impossible. Therefore, 
a2 /2 

0 = 7, and --a/T9 = Nrr, which contradicts the hypothesis for -17. The 
lemma follows. ❑ 

Next we shall show that every c T has an inverse T-1. 
Given 

T = + 	0. 

If b = 0, we have c = a, and c -1  = a 1. Suppose, then, that b 0 T. Choose 

b E b such that b(x) > 0 for every x or b(x) < 0 for every x. We assert that 

- b \./7- 0 . 

If not, V7- = Tiff), which is impossible. 
Since —a — 1)7.- 0 0, we have 

(a - Tvi) (a + b V7) 0 0 , 

so that 

T22 	/7,2-1, 	TD 
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and 

(a + 	= 	T\t '  

The set Fn++ , of all positive elements of F„+ , is closed under addition and 
multiplication, because the set of all positive elements of ff1 is closed. Therefore, 
we can use Fn++ , to define an order-relation in Fn+i , with 

+ b 	+ clVT- if (a - 7.) + (b - d)Vr E 

This relation is related to addition and multiplication by the usual laws. 
Since Fn  is countable, 	= 	+ b VT-} is a countable union of countable 

sets, and therefore is countable. 
Now let F1  = F, and let F1  = {a n,a12, ...}. We shall define an ascending 

sequence 

of ordered fields, inductively, as follows. Suppose that we have given a finite se-
quence F1 , F2, , FT, of ordered fields, such that F, = Ia,,,a,2, .1. We form a 
rectangular array, like this: 

F1: a11,a12,a13,... 

F2: it 21, a22, a23, ... 
. . • 

The next term F,z+1  is defined as follows. 

(1) Suppose that every positive element of Fn  has a square root in Fn. Then 
F n+ 1 = Fn , and -an+i, j  =Tin.]  for each j. (It follows, of course, that F, = Fr, for 
every m > n.) 

(2) Suppose that there is an -r =au  E Fn  such that 7 >6) but 7 has no square 
root in Fn. Such an 7 will be called irregular in Fn. Let q be the smallest in-
teger such that q = i + J  for some irregular -au . Then one of the elements 

must be irregular in Fn. (The indicated sequence is finite, with at most 
n terms.) Let 7„1  be  the first such irregular ay , in the order from al, q_,; let 
Fn+1 = + TVI-n+1 1(a,T) E Fn), and let 

an+1, 	an+1,2, • • • 

be a sequence such that 

Fn+1 = {an+1, 1, an+1,2,  • • •} • 
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Evidently the sequence Fl , F2 , ... is increasing. Let 

= U 
n= 

We assert that F. is Euclidean. Suppose not, and let 

/ = frIr E Foo, r > 0, Vr E 

Then I is not empty. The elements of I will be called irregular in F.. Let q be the 
least integer for which there is an r = au  E I with z +1 = q. Thus, if i + j < q, 
al  0 I. Let io  be the least integer such that r = E I. Let 

n = 1 + 2 + • • (q — 1) + io . 

Then 

F,„+1  = Fa + b v}, 

where 72, b E Fn. Therefore 7,i+1  is not irregular in F., after all. Therefore, F. is a 
Euclidean ordered field. F. is not Archimedean, because F. contains F1, and F1  
is not Archimedean. 
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114 
Plane, 44 
Plane angle, 222 
Plane-separation postulate, 74, 434, 447 
Poincare model, 140, 417 
Point, 43 

of tangency, 225 
Polygonal inequality, 151 
Polygonal region, 184 
Polynomial, 286 
Pons asinorum theorem, 105 
Positive integers, 23 
Postulate of Pasch, 74, 370 
Postulate sets as codifications, 460 
Postulational method, 455 
Preservation of order, 302 
Prime number, 465 
Prism, 358 
Proportionalities, for positive numbers, 

172 
synthetically defined, 297 

Proportionality constant, 261 
Punctured plane, 417 
Pyramid, 356 
Pythagoras, 180 
Pythagorean theorem, 179, 195 

Quadratic extension, 283 
Quadrilateral, 83 

Radian measure of an angle, 325 
Radius of a circle, 224 

of a sector, 331 
Range of a function, 49 
Rational function, 487 
Rational numbers, 28, 297 
Ratios between segments, 303 
Ray, 44, 65 
Real numbers, 1-2 
Reciprocal of a real number, 3 
Rectangle formula, 186 
Redundant postulate, 159 
Reflections, 257 

in the Poincare model, 427 
Relation on a set, 55 

Remainder theorem, 470 
Remote interior angle, 117 
Rhombus, 162 
Riemannian parallel postulate, 140 
Right angle, 97 

synthetically considered, 132 
Right cylinder, 358 
Right triangle, 123 
Rigid motion, 252 
Root of an equation, 293 
Rotation, in the Cartesian model, 443 
Ruler placement theorem, 59 
Ruler postulate, 58, 431, 439 

SAA theorem, 123 
Saccheri, Gerolamo, 158 
Saccheri quadrilaterals, 152 
Same ratio, 300 
SAS postulate, 103, 435, 451 
SAS similarity theorem, 177 
Scalene triangle, 104 
Secant line, 226 
Secant plane, 229 
Sector, 331 
Segment, 44, 64 
Segment addition, 301 
Segment-addition theorem, 70 
Segment-construction theorem, 69 
Segment inequality laws, 128 
Segment of the integers, 479 
Segment-subtraction theorem, 70 
Semicircle, 231 
Separation, 72 

of space by planes, 85 
S-equation, 280 
Sequence, 480 
Sets, 35 
Set-theoretic interpretation of functions 

and relations, 53 
Seven bridges of Konigsberg, 87-90 
Side, of an angle, 65 

of a line, 76 
of a quadrilateral, 84 
of a triangle, 65 

Similarities, between triangles, 174 
between any two plane figures, 263 

Slope, 247, 441 
Solid mensuration, 352 
Solution set, 15 
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Solving equations with ruler and 
compass, 271 

Space-separation postulate, 85 
Sphere, 225 
Spherical model for Riemannian 

geometry, 144 
Spherical sector, 368 
Spherical segment, 368 
Square region, 186 
Squeeze principle, 477 
SSS theorem, 107 
SSS similarity theorem, 176 
Standard form of factorization, 466 
Star triangulation, 390 
Straight angle, 67 
Strip complex, 205 
Strip decomposition, 206 
Subdivision, 390 
Subset, 35 
Subtraction, of real numbers, 4 
Supplement postulate, 96 
Supplementary angles, 96 
Supremum, 303 
Surd circle, 282 
Surd field, 279 

countability of, 482 
of order n, 288 

Surd line, 282 
Surd of order n, 288 
Surd plane, 282 
Synthetic postulates, 125-28 

Tangent angles, 426 
Tangent line to a circle, 225 
Tangent plane, 229 
Theory of equal-area, 202 
Theory of equations, 469 
Theory of numbers, 462 
Topology, 90 
Towers of Hanoi, 28 
Transitivity, 13 
Translation, in the Cartesian model, 442 
Transversal, 149 
Trapezoid, 162 
Triangle, 65 

Triangle theorem, 239 
Triangular inequality, 120 

synthetic form, 135 
Triangular region, 184 
Triangulation, 204, 389 
Trichotomy, 13 
Trisection of an angle, 279, 291 
Two-circle postulate, 242 
Two-circle theorem, 238 

Uncountability of the real numbers, 482 
Union of two sets, 35 
Unique factorization, 466 
Uniqueness of hyperbolic area theory, 

413 
Uniqueness of the L-line, 429 
Uniqueness of parallels, 160 
Unit postulate for area, 198 
Upper base of a Saccheri quadrilateral, 

152 
Upper base angles of a Saccheri 

quadrilateral, 152 
Upper bound, 304, 476 

Vertical projections, 163 
Vertex, of an angle or triangle, 65 

of a cone, 354 
of a pyramid, 356 
of a triangular region, 184 

Vertical angle theorem, 98 
Vertical line, 439 
Vertical pair of angles, 98 
Volumes, of prisms and cylinders, 360 

of pyramids and cones, 363 
of spheres, 366 

Well-ordering principle, 25, 26 

x-coordinate, 243 

y-coordinate, 244 

Zero angle, 67 
Zero polynomial, 286 
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