Fredholm Operators and the Family Index

Joseph Breen

Advisor: Ezra Getzler

April 28th, 2016

Contents

1 Introduction 5
2 Preliminaries 7
2.1 Functional Analysis 7
2.2 Topology 10
3 Fredholm Operators 13
3.1 Definitions and Examples 13
3.2 The Fredholm Index 14
3.3 Continuity of the Fredholm Index 16
3.4 The Connected Components of $\mathfrak{F}(\mathcal{H})$. 18
4 Vector Bundles and K-Theory 23
4.1 Vector Bundles: Definitions and Examples 23
4.2 Vector Bundles with Compact Base Space 27
$4.3 K$-Theory 29
5 The Atiyah-Jänich Theorem 33
5.1 The Family Index 33
5.2 Kuiper's Theorem 37
5.3 Bijectivity of the Index 42
6 Toeplitz Operators 45
6.1 The Hardy Space 45
6.2 Definitions and Properties 45
6.3 The Toeplitz Index Theorem 48
6.4 Generalizations 49
References 50

Chapter 1

Introduction

Many problems in mathematics arise from the desire to understand the behavior of linear operators. The simplest example comes from elementary linear algebra, where systems of linear equations are represented by an $m \times n$ matrix; such a matrix is a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}. More generally, suppose that V and W are vector spaces and that $T: V \rightarrow$ W is a linear transformation. For a fixed $w \in W$, we are interested in solutions to the equation $T(v)=w$. Equipping V and W with varying amount of structure, say a metric or inner product, introduces complications and makes the study of such equations more interesting and potentially more difficult.

Partial differential equations provide a particularly motivating source of examples. For instance, Laplace's equation

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=0 \tag{1.1}
\end{equation*}
$$

can be written as $\Delta(f)=0$, where $\Delta:=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ is a linear differential operator between appropriate vector spaces of functions. Integral equations are also of interest. Suppose that $K(x, y)$ is a continuous equation of two variables, and $g(x)$ is a fixed function. The equation

$$
\begin{equation*}
\int_{a}^{b} K(x, y) f(y) d y=g(x) \tag{1.2}
\end{equation*}
$$

can be written as $K(f)=g$, where $K(f)(x):=\int_{a}^{b} K(x, y) f(y) d y$ is, again, a linear operator between function spaces.

In all of these examples, the solution space of the equation $T(v)=w$ can be better understood by asking the following questions: does a solution exist, and if so, is it unique? In other words, wish to measure the surjectivity and injectivity of the operator T. The index of an operator, defined as

$$
\begin{equation*}
\operatorname{ind}(T):=\operatorname{dim} \operatorname{ker} T-\operatorname{dim} \operatorname{coker} T \tag{1.3}
\end{equation*}
$$

is one such measurement. Despite being defined algebraically, the index of an operator T is an interesting topological invariant. For example, the index distinguishes the connected components of the space of Fredholm operators, that is, operators for which the index in (1.3) is well-defined. This is the beginning of a much deeper connection between the functional analysis of Fredholm operators and topology.

In the 1960's, Michael Atiyah and Friedrich Hirzebruch developed topological K-theory, a powerful tool in algebraic topology $[3,4]$. The starting point for this theory is the abelian group $K(X)$, constructed using isomorphism classes of complex vector bundles on a compact space X. Unsurprisingly, associated to any family of Fredholm operators parametrized by X is a natural element of $K(X)$, given by a generalization of the Fredholm index. That
this family index is actually an isomorphism between homotopy classes of families of Fredholm operators and $K(X)$ is the subject of the Atiyah-Jänich theorem [5]. This theorem contains the basic topological theory of the Fredholm operators as a special case, and is a powerful connection between functional analysis and algebraic topology. The main goal of this thesis is to prove this theorem.

The structure of this text is as follows. In Chapter 2, we review the functional analytic and topological tools that will be employed in later chapters. In Chapter 3, we cover the theory of Fredholm operators and the classical index. We conclude with the fact that the index induces a bijection between the connected components of the space of Fredholm operators and the integers. As preparation for the generalization of this result, in Chapter 4 we establish the basic theory of vector bundles and the group $K(X)$, and in Chapter 5 we prove the Atiyah-Jänich theorem, which, said differently from above, states that the space of Fredholm operators is a classifying space for K-theory. Finally, in Chapter 6, we use the theory developed in the previous chapters to study a particular class of operators, the Toeplitz operators.

Were more time available, this chapter would conclude with a proof of Bott periodicity. Unfortunately, we direct the reader to Atiyah's expository papers [2] and [1] and the references therein for further details.

The material in this text is not original, but rather a personal synthesis and exposition of the work of great mathematicians such as M. Atiyah, F. Hirzebruch, R. Bott, and K. Jänich. My thanks also goes out to my advisor, Ezra Getzler, for his guidance and insight throughout the writing of this document. Without him, none of this would have been possible.

Chapter 2

Preliminaries

The goal of this exposition is to study the foundations of topological K-theory. Concretely, this entails topological analysis of the space of Fredholm operators on a Hilbert space. This requires a synthesis of ideas from functional analysis and topology, and we assume the reader is familiar with both subjects. For convenience, we use this chapter to collect some standard results. Proofs will often be omitted, and standard references will be given.

2.1 Functional Analysis

The underlying arena for the mathematics that follows is infinite dimensional Hilbert space. This section will review the basic definitions and facts of the theory. Details on any of the following results can be found in any text on functional analysis, such as [10], [11], and [19].

Definition 2.1. A Hilbert space \mathcal{H} is a vector space with an inner product $\langle\cdot, \cdot\rangle$ which is a complete metric space in the norm induced by the inner product. A Hilbert space is separable if it has a countably dense subset.

Recall that a Banach space is a normed vector space which is complete under the metric induced by the norm. Every Hilbert space is a Banach space, but the converse is not true not every norm comes from an inner product. Though much of what we discuss generalizes to Banach spaces, the inner product structure on a Hilbert space simplifies the theory greatly.

Proposition 2.2. All separable Hilbert spaces admit a countable orthonormal basis. Hence, all separable infinite dimensional Hilbert spaces are isomorphic.

Example 2.3. Let (X, μ) be a measure space. The standard example of a separable complex Hilbert space is $L^{2}(X, \mu)$, defined as

$$
L^{2}(X, \mu):=\left\{f: X \rightarrow \mathbb{C}: \int_{X}|f(x)|^{2} d \mu<\infty\right\} .
$$

In words, $L^{2}(X, \mu)$ is the space of all square-integrable functions. The inner product is given by $\langle f, g\rangle=\int_{X} f(x) \overline{g(x)} d \mu$. When $X=\mathbb{N}, L^{2}(\mathbb{N})$ is the set of square-summable sequences and is written ℓ^{2}.

Though inseparable spaces exist, all Hilbert spaces we consider in this text will be separable.

There is a rich theory to be developed from studying Hilbert spaces such as $L^{2}(X, \mu)$ in their own right, but our primary interest lies in the transformations of the space.

Definition 2.4. A linear map $T: \mathcal{H} \rightarrow \mathcal{H}$ is bounded if $\sup _{\|f\|=1}\|T f\|<\infty$. The set of bounded operators on \mathcal{H} is denoted $\mathfrak{L}(\mathcal{H})$. The set of invertible bounded operators is written $G L(\mathcal{H})$. When there is a distinction between the domain and codomain, we write $\mathfrak{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ and $G L\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$.

Theorem 2.5 (Open Mapping Theorem). Let $T \in \mathfrak{L}(\mathcal{H})$. If T is surjective, then T is open.
Corollary 2.6. If $T \in \mathfrak{L}(\mathcal{H})$ is a bijection, then T is a homeomorphism.
It is a basic fact that an operator T is bounded if and only if it is continuous. Moreover, $\mathfrak{L}(\mathcal{H})$ becomes a Banach space under the norm $\|T\|:=\sup _{\|f\|=1}\|T f\|$.

An important tool in the study and classification of Hilbert space operators is the adjoint operator.

Definition 2.7. Let $T \in \mathfrak{L}(\mathcal{H})$. The adjoint of T, denoted T^{*}, is the unique operator on \mathcal{H} satisfying $\langle T f, g\rangle=\left\langle f, T^{*} g\right\rangle$ for all $f, g \in \mathcal{H}$.

Several classes of important operators are defined in terms of the adjoint.
Definition 2.8. Let $T \in \mathfrak{L}(\mathcal{H})$.
(a) T is normal if $T^{*} T=T T^{*}$;
(b) T is self-adjoint / Hermitian if $T=T^{*}$;
(c) T is unitary if $T^{*}=T^{-1}$.

Note that self-adjoint and unitary operators are both normal.
The space $\mathfrak{L}(\mathcal{H})$ is the most important example of a Banach algebra, and in particular, a C^{*}-algebra.

Definition 2.9. A Banach algebra \mathcal{B} is a complex algebra with identity equipped with a norm $\|\cdot\|$ such that:
(a) \mathcal{B} is a Banach space under $\|\cdot\|$;
(b) $\|1\|=1$;
(c) $\|x y\| \leq\|x\|\|y\|$ for all $x, y \in \mathcal{B}$.

Proposition 2.10. Let \mathcal{B} be a Banach algebra. If $x \in \mathcal{B}$ with $\|1-x\|<1$, then x is invertible.
The following fact is frequently used.
Proposition 2.11. The set of invertible elements \mathcal{B}^{\times}in a Banach algebra is open. In particular, if x is invertible, then \mathcal{B}^{\times}contains an open ball around x of radius $1 /\left\|x^{-1}\right\|$.

Proof. Let $x \in \mathcal{B}$ be invertible. If $y \in \mathcal{B}$ with $\|x-y\|<1 /\left\|x^{-1}\right\|$, then

$$
1>\left\|x^{-1}\right\|\|x-y\| \geq\left\|1-x^{-1} y\right\|
$$

Hence, $x^{-1} y$ is invertible, and therefore $x\left(x^{-1} y\right)=y$ is invertible. It follows that the set of invertible elements is open.

Next, some basic spectral theory.

Definition 2.12. Let \mathcal{B} be a Banach algebra. The spectrum of $x \in \mathcal{B}$ is the set

$$
\sigma(x):=\{\lambda \in \mathbb{C}: x-\lambda \text { is not invertible in } \mathcal{B}\} .
$$

The resolvent set of x is the complement of the spectrum:

$$
\rho(x)=\mathbb{C} \backslash \sigma(x) .
$$

The spectral radius of x is $r(x):=\sup _{\lambda \in \sigma(x)}|\lambda|$.
Proposition 2.13. Let \mathcal{B} be a Banach algebra. If $x \in \mathcal{B}$, then $\sigma(x)$ is nonempty, compact, and $r(x) \leq\|x\|$.

In fact, we can say even more about the spectral radius:
Theorem 2.14. Let \mathcal{B} be a Banach algebra. If $x \in \mathcal{B}$, then $r(x)=\lim _{n \rightarrow \infty}\left\|x^{n}\right\|^{\frac{1}{n}}$.
With the motivating example of the Hilbert space adjoint in mind, we define an abstract involution on a Banach algebra, giving rise to the notion of a C^{*}-algebra.

Definition 2.15. Let \mathcal{B} be a Banach algebra. An involution on \mathcal{B} is a a mapping $x \mapsto x^{*}$ such that
(a) $x^{* *}=x$ for all $x \in \mathcal{B}$;
(b) $(\alpha x+\beta y)^{*}=\bar{\alpha} x^{*}+\bar{\beta} y^{*}$ for $x, y \in \mathcal{B}$ and $\alpha, \beta \in \mathbb{C}$;
(c) $(x y)^{*}=y^{*} x^{*}$ for all $x, y \in \mathcal{B}$.

If $\left\|x^{*} x\right\|=\|x\|^{2}$ for all $x \in \mathcal{B}$, then \mathcal{B} is a C^{*}-algebra.
As $\mathfrak{L}(\mathcal{H})$ is a C^{*}-algebra, every operator in $\mathfrak{L}(\mathcal{H})$ has a spectrum. When the dimension of \mathcal{H} is finite, this coincides with the set of eigenvalues. In infinite dimensions, the spectrum of an operator is in general more complicated. For example, an operator may have a nonempty spectrum with no eigenvalues. Of self-adjoint and unitary operators, we can say the following.

Proposition 2.16. A normal operator $T \in \mathfrak{L}(\mathcal{H})$ is self-adjoint if and only if $\sigma(T) \subseteq \mathbb{R}$. Similarly, T is unitary if and only if $\sigma(T) \subseteq S^{1}:=\{z \in \mathbb{C}:|z|=1\}$.

Since the discrete spectrum of a finite dimensional operator is desirable, we introduce another important class of operators.

Definition 2.17. An operator $T \in \mathfrak{L}(\mathcal{H})$ is compact if $T\left(B_{1}\right)$ is compact, where B_{1} is the closed unit ball in \mathcal{H}.

We denote the set of compact operators on \mathcal{H} by $\mathfrak{K}(\mathcal{H})$. Note that if the image of T is finite dimensional (i.e., T is a finite rank operator), then T is compact. In fact, the space of compact operators is the norm-closure of the space of finite rank operators.

Proposition 2.18. The space $\mathfrak{K}(\mathcal{H})$ is the minimal nontrivial closed ideal in $\mathfrak{L}(\mathcal{H})$, and is the closure of the ideal of finite rank operators.

As noted above, the spectrum of an operator may not contain any eigenvalues at all. For compact operators, this is not the case. For example, when T is compact and self-adjoint, we have the following.

Theorem 2.19. Let $T: \mathcal{H} \rightarrow \mathcal{H}$ be a compact self-adjoint operator. There is an orthonormal basis $\left\{e_{n}\right\}$ for \mathcal{H} of eigenvectors of T, with corresponding real eigenvalues $\left\{\lambda_{n}\right\}$ such that $\lambda_{n} \rightarrow 0$. Furthermore, for all $f \in \mathcal{H}$,

$$
T f=\sum_{n=1}^{\infty} \lambda_{n}\left\langle f, e_{n}\right\rangle e_{n} .
$$

This result is the spectral theorem for compact self-adjoint operators, and is generalizes the diagonalizability of a Hermitian matrix from finite dimensional linear algebra. With more sophisticated tools, one can generalize the idea of diagonalization to normal operators.

Finally, we discuss the tensor product of Hilbert spaces. Information on tensor products can be found in [19], so we only recall the basics. The tensor product of two vector spaces V and W, denoted $V \otimes W$, satisfies the following universal property. Let $f: V \times W \rightarrow X$ be a bilinear map. There is a unique linear map $\tilde{f}: V \otimes W \rightarrow X$ making the diagram

commute, where $\phi: V \times W \rightarrow V \otimes W$ is given by $\phi(v, w)=v \otimes w$. Such a space is unique up to isomorphism. Elements of $V \otimes W$ are written as formal sums of elements $v \otimes w$ satisfying $v_{1} \otimes w+v_{2} \otimes w=\left(v_{1}+v_{2}\right) \otimes w, v \otimes w_{1}+v \otimes w_{2}=v \otimes\left(w_{1}+w_{2}\right)$, and $\lambda(v \otimes w)=\lambda v \otimes w=v \otimes \lambda w$. If V and W are inner product spaces with inner products $\langle\cdot, \cdot\rangle_{V}$ and $\langle\cdot, \cdot\rangle_{W}$, then $V \otimes W$ becomes an inner product space under

$$
\left\langle v_{1} \otimes w_{1}, v_{2} \otimes w_{2}\right\rangle_{\otimes}:=\left\langle v_{1}, v_{2}\right\rangle_{V}\left\langle w_{1}, w_{2}\right\rangle_{W} .
$$

If \mathcal{H}_{1} and \mathcal{H}_{2} are Hilbert spaces, then we denote by $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ the metric space completion under $\langle\cdot, \cdot\rangle_{\otimes}$ of the vector space tensor product of \mathcal{H}_{1} and \mathcal{H}_{2}.

Given any two linear operators $T: V \rightarrow V$ and $S: W \rightarrow W$, it follows from the universal property described above that there is a unique linear operator $T \otimes S: V \otimes W \rightarrow$ $V \otimes W$ given by

$$
(T \otimes S)(v \otimes w)=(T v) \otimes(S w) .
$$

Finally, we record some important isomorphisms.
Proposition 2.20. Let \mathcal{H} be an infinite dimensional Hilbert space. Then $\mathbb{C}^{n} \otimes \mathbb{C}^{m} \cong \mathbb{C}^{n m}$, and $\mathbb{C}^{n} \otimes \mathcal{H} \cong \mathcal{H}$.

2.2 Topology

We assume familiarity with basic topological language and results. Standard references for the following material are [17] and [14].

Theorem 2.21 (Tietze Extension Theorem). Let X be a compact Hausdorff topological space and let $A \subseteq X$ be closed. Suppose that $f: A \rightarrow V$ is a continuous function into a vector space V. Then there exists a continuous extension $\tilde{f}: X \rightarrow V$ such that $\left.\tilde{f}\right|_{A}=f$.

Theorem 2.22. Let X be compact Hausdorff, and let $\left\{U_{i}\right\}$ be an finite open cover. There exist continuous functions $f_{i}: X \rightarrow \mathbb{R}$ such that $0 \leq f_{i} \leq 1$, the support of each f_{i} is contained in U_{i}, and $\sum_{i} f_{i}(x)=1$ for each $x \in X$. The collection of functions $\left\{f_{i}\right\}$ is called a partition of unity.

The existence of partitions of unity is frequently used in Chapters 4 and 5.

Lemma 2.23 (Tube Lemma). Let X, Y be topological spaces with X compact. Endow $X \times Y$ with the product topology. Suppose that $y \in Y$ and $U \subseteq X \times Y$ is an open set containing $X \times\{y\}$. Then there exists an open subset $V \subseteq Y$ such that $y \in V$ and $X \times V \subseteq U$.

We finish with some comments on elementary homotopy theory.
Definition 2.24. Let X, Y be topological spaces and let $f, g: X \rightarrow Y$ be continuous maps. A homotopy between f_{0} and f_{1} is a continuous family of functions

$$
f_{t}: X \times I \rightarrow Y
$$

such that $f_{0}(x)=f(x)$ and $f_{1}(x)=g(x)$ for all $x \in X$. If such a homotopy exists between f and g, then f and g are homotopic.

Informally, two functions are homotopic when they can be continuously deformed into one another. It is clear that homotopy defines an equivalence class on the set of functions $X \rightarrow Y$. We will use the notation $[X, Y]$ to denote the homotopy equivalence class of functions from $X \rightarrow Y$.

Definition 2.25. Two spaces X and Y are homotopy equivalent if there exist functions (called homotopy equivalences $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $f \circ g$ is homotopic to id_{Y} and $g \circ f$ is homotopic to id_{X}. A space is contractible if it is homotopy equivalent to a point.

Homotopy groups play a central role in topology. We briefly comment on their definition, and refer to [14] for details. Let S^{1} be the unit circle, and let $p \in S^{1}$. Let X be a topological space with base point x_{0}. Consider the set of homotopy classes of basepointpreserving maps $\left(S^{1}, p\right) \rightarrow\left(X, x_{0}\right)$. There is a natural notion of concatenation on this set which gives it a group structure. This group is $\pi_{1}\left(X, x_{0}\right)$, the fundamental group of X at x_{0}. If X is connected, $\pi_{1}\left(X, x_{0}\right) \cong \pi_{1}\left(X, x_{1}\right)$ for any $x_{0}, x_{1} \in X$, so we can write $\pi_{1}(X)$ without confusion. When S^{1} is replaced by S^{n}, the resulting group is written $\pi_{n}(X)$.

Chapter 3

Fredholm Operators

We begin studying a special class of Hilbert space operators, namely, the Fredholm operators. These are "almost invertible" operators, by which we mean invertible up to a compact operator. The space of Fredholm operators on a Hilbert space, written $\mathfrak{F}(\mathcal{H})$, has an interesting topology, and is the main focus of this chapter. In particular, we will construct an "index" map from $\mathfrak{F}(\mathcal{H})$ to \mathbb{Z}, and show that any two Fredholm operators with equal index can be connected by a path. Hence, the index map gives a bijection between the set of connected components of $\mathfrak{F}(\mathcal{H})$ and \mathbb{Z}. This fact will be our first exposure to the subject of K-theory, and is a special case of the main theorem of Chapter 5.

The contents of this chapter are well-known; for reference, see [11] and [7]. As a reminder, \mathcal{H} will be a separable, complex Hilbert space. We denote the set of all bounded linear operators $T: \mathcal{H} \rightarrow \mathcal{H}$ by $\mathfrak{L}(\mathcal{H})$, and the ideal of compact operators $K: \mathcal{H} \rightarrow \mathcal{H}$ by $\mathfrak{K}(\mathcal{H})$. Much of the following theory generalizes to Banach spaces, but emphasis is placed on Hilbert space for the sake of simplicity.

3.1 Definitions and Examples

Fredholm operators were originally studied at the turn of the 20th century in the context of solutions to certain integral equations [13]. The classical definition is as follows:

Definition 3.1. An operator $T \in \mathfrak{L}(\mathcal{H})$ is a Fredholm operator if $\operatorname{ker} T$ and $\operatorname{coker} T:=$ $\mathcal{H} / \operatorname{im} T$ are both finite dimensional.

This definition is often presented with a third condition; namely, that the image of T be closed. In fact, this follows from the finite-dimensionality of the cokernel of T.

Proposition 3.2. If $T \in \mathfrak{L}(\mathcal{H})$ is a Fredholm operator, then im T is closed.
Proof. Suppose that T is Fredholm. Note that the restriction $\left.T\right|_{(\operatorname{ker} T)^{\perp}}:(\operatorname{ker} T)^{\perp} \rightarrow \operatorname{im} T$ is bijective. Let $n=\operatorname{dim} \operatorname{coker} T<\infty$. Extend $\left.T\right|_{(\operatorname{ker} T)^{\perp}}$ to a map

$$
\tilde{T}:(\operatorname{ker} T)^{\perp} \oplus \mathbb{C}^{n} \rightarrow \operatorname{im} T \oplus \operatorname{coker} T
$$

by sending a basis of \mathbb{C}^{n} to a basis of coker T. Then this map is a continuous bijection, and thus, by the open mapping theorem, a homeomorphism. Since $\operatorname{ker} T$ and thus $(\operatorname{ker} T)^{\perp}$ is closed, $\operatorname{im} T=\tilde{T}\left((\operatorname{ker} T)^{\perp}\right)$ is closed.

A useful characterization quickly follows:
Corollary 3.3. An operator $T \in \mathfrak{L}(\mathcal{H})$ is a Fredholm operator if and only if $\operatorname{ker} T$ and $\operatorname{ker} T^{*}$ are both finite dimensional. In particular, T is Fredholm if and only if T^{*} is Fredholm.

Proof. Suppose that T is Fredholm. Recall that $\operatorname{ker} T^{*}=(\operatorname{im} T)^{\perp}$. Since im T is closed and $\mathcal{H}=\operatorname{im} T \oplus(\operatorname{im} T)^{\perp}$, it follows that $\operatorname{ker} T^{*}=(\operatorname{im} T)^{\perp} \cong \mathcal{H} / \operatorname{im} T=\operatorname{coker} T$. Hence, T is Fredholm if and only if T^{*} is Fredholm.

An alternative approach to the theory of Fredholm operators is to consider the space of bounded operators modulo the ideal of compact operators. The resulting quotient Banach algebra $\mathfrak{L}(\mathcal{H}) / \mathfrak{K}(\mathcal{H})$ (see [11]) is called the Calkin algebra, and will be denoted $\mathfrak{C}(\mathcal{H})$. Let $\pi: \mathfrak{L}(\mathcal{H}) \rightarrow \mathfrak{L}(\mathcal{H}) / \mathfrak{K}(\mathcal{H})$ be the natural projection map. The following theorem, originally due to Atkinson [6], asserts that an operator is Fredholm exactly when it is image under the projection is invertible in $\mathfrak{C}(\mathcal{H})$.

Theorem 3.4. An operator $T \in \mathfrak{L}(\mathcal{H})$ is Fredholm if and only if $\pi(T)$ is invertible in the Calkin algebra. In particular, an operator T is Fredholm if and only if there exists an $S \in \mathfrak{L}(\mathcal{H})$ such that

$$
S T=I+K_{1} \quad \text { and } \quad T S=I+K_{2}
$$

for some $K_{1}, K_{2} \in \mathfrak{K}(\mathcal{H})$.
Proof. Let $T \in \mathfrak{L}(\mathcal{H})$.
First, suppose that $\operatorname{ker} T$ and coker T are finite dimensional. Let $P \in \mathfrak{L}(\mathcal{H})$ be the orthogonal projection onto $\operatorname{ker} T$, and let $Q \in \mathfrak{L}(\mathcal{H})$ be the orthogonal projection onto $(\operatorname{im} T)^{\perp}$. The following restriction of T is invertible:

$$
T:(\operatorname{ker} T)^{\perp} \rightarrow \operatorname{im} T .
$$

Let

$$
S: \operatorname{im} T \rightarrow(\operatorname{ker} T)^{\perp}
$$

be the inverse of this restricted operator. We can extend the domain of S to all of \mathcal{H} by defining $S\left((\operatorname{im} T)^{\perp}\right)=0$. With this extension, it follows that $S T+P$ and $T S+Q$ are the identity operators on \mathcal{H}. Since $\operatorname{ker} T$ and $(\operatorname{im} T)^{\perp}$ are finite dimensional, P and Q are compact operators. Hence, $S T=I-P$ and $T S=I-Q$, and so S is the inverse of T modulo compact operators. Thus, $\pi(T)$ is invertible in $\mathfrak{C}(\mathcal{H})$.

Next, suppose that there exists an $S \in \mathfrak{L}(\mathcal{H})$ such that $S T=I+K_{1}$ and $T S=I+K_{2}$ for some $K_{1}, K_{2} \in \mathfrak{K}(\mathcal{H})$. Then $I-S T$ is compact. Let $f \in \operatorname{ker} T$. Then

$$
f=(I-S T) f+S T f=(I-S T) f .
$$

Hence, $f \in \operatorname{im} I-S T$, which means that $\operatorname{ker} T \subseteq \operatorname{im} I-S T$. In particular, the closed unit ball in $\operatorname{ker} T$ is contained in the closed unit ball of im $I-S T$. Since $I-S T$ is compact, the closed unit ball of $\operatorname{ker} T$ is compact. Thus, $\operatorname{ker} T$ is finite dimensional. Next, the equation $T S=I+K_{2}$ implies that $I-T S$ is compact. Taking the adjoint of this equation gives $(I-T S)^{*}=I-S^{*} T^{*}$, and repeating the previous argument shows that $\operatorname{ker} T^{*}$ is finite dimensional. Hence, T is Fredholm.

3.2 The Fredholm Index

The finiteness of $\operatorname{dim} \operatorname{ker} T$ and $\operatorname{dim} \operatorname{coker} T$ for a Fredholm operator T allows for the definition of a particular map $\mathfrak{F}(\mathcal{H}) \rightarrow \mathbb{Z}$ which attaches an integer to each Fredholm operator, the Fredholm index of T.

Definition 3.5. Let $T \in \mathfrak{F}(\mathcal{H})$. The Fredholm index of T is

$$
\begin{aligned}
\operatorname{ind}(T) & :=\operatorname{dim} \operatorname{ker} T-\operatorname{dim} \operatorname{coker} T \\
& =\operatorname{dim} \operatorname{ker} T-\operatorname{dim} \operatorname{ker} T^{*} .
\end{aligned}
$$

The Fredholm index is a weak measure of how distant an operator is from being invertible. Indeed, if T is invertible, then T is Fredholm with index 0.

Before moving on, we consider a few examples.
Example 3.6. Suppose that \mathcal{H} is finite dimensional. Then any operator $T: \mathcal{H} \rightarrow \mathcal{H}$ is Fredholm, and

$$
\begin{aligned}
\operatorname{ind}(T) & =\operatorname{dim} \operatorname{ker} T-\operatorname{dim} \operatorname{coker} T=\operatorname{dim} \operatorname{ker} T-\operatorname{dim} \mathcal{H} / \operatorname{im} T \\
& =\operatorname{dim} \operatorname{ker} T-\operatorname{dim} \mathcal{H}+\operatorname{dim} \operatorname{im} T .
\end{aligned}
$$

By the Rank-Nullity Theorem, it follows that ind $(T)=0$. In general, if \mathcal{H}_{1} and \mathcal{H}_{2} are finite dimensional Hilbert spaces of possibly different dimension, then any linear $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is Fredholm (extending our definition of Fredholm to account for the different domain and range spaces in the natural way) and a similar computation gives $\operatorname{ind}(T)=\operatorname{dim} \mathcal{H}_{1}-$ $\operatorname{dim} \mathcal{H}_{2}$.

Example 3.7. Let $S_{-1}: \ell_{2} \rightarrow \ell_{2}$ be the unilateral shift operator given by

$$
S_{-1}\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(0, a_{0}, a_{1}, \ldots\right) .
$$

Clearly, S_{-1} is injective, so dim $\operatorname{ker} S_{-1}=0$. Furthermore, $\operatorname{coker} S_{-1}=\ell_{2} / S_{-1}\left(\ell_{2}\right)=$ Span $\left(e_{1}\right)$, and so dim coker $S_{-1}=1<\infty$. Hence, S_{-1} is a Fredholm operator, and

$$
\operatorname{ind}\left(S_{-1}\right)=\operatorname{dim} \operatorname{ker} S_{-1}-\operatorname{dim} \operatorname{coker} S_{-1}=0-1=-1 .
$$

It is a straightforward calculation to verify that $S_{1}:=S_{-1}^{*}$ is the backwards unilateral shift operator given by

$$
S_{1}\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(a_{1}, a_{2}, a_{3}, \ldots\right) .
$$

In this case, $\operatorname{ker} S_{1}=\operatorname{Span}\left(e_{1}\right)$ and coker $S_{1}=\{0\}$. Hence, S_{1} is also Fredholm and

$$
\operatorname{ind}\left(S_{1}\right)=\operatorname{dim} \operatorname{ker} S_{1}-\operatorname{dim} \operatorname{coker} S_{1}=1-0=1 .
$$

It is clear that $S_{-n}:=\left(S_{-1}\right)^{n}$ and $S_{n}:=\left(S_{1}\right)^{n}$ are both Fredholm with index $-n$ and n, respectively. Hence, for any $k \in \mathbb{Z}$, there are Fredholm operators on ℓ_{2} with index k.
Example 3.8. As a consequence of Theorem 3.4, if $K: \mathcal{H} \rightarrow \mathcal{H}$ is compact, then $I+K$ is Fredholm.
We collect some basic properties of Fredholm operators and the Fredholm index.

Proposition 3.9.

(a) The map ind: $\mathfrak{F}(\mathcal{H}) \rightarrow \mathbb{Z}$ is surjective;
(b) If $T \in \mathfrak{F}(\mathcal{H})$, then $\operatorname{ind}\left(T^{*}\right)=-\operatorname{ind}(T)$;
(c) $\mathfrak{F}(\mathcal{H})$ is an open subset of $\mathfrak{L}(\mathcal{H})$.

Proof.
(a) Every Hilbert space is isomorphic to ℓ_{2}, and S_{n} as defined in Example 3.7 is Fredholm with index n.
(b) A calculation gives:

$$
\operatorname{ind}\left(T^{*}\right)=\operatorname{dim} \operatorname{ker} T^{*}-\operatorname{dim} \operatorname{ker} T=-\left(\operatorname{dim} \operatorname{ker} T-\operatorname{dim} \operatorname{ker} T^{*}\right)=-\operatorname{ind}(T) .
$$

(c) By Proposition 2.11, the set of invertible elements in the Calkin algebra $\mathfrak{C}(\mathcal{H})$ is open. Since the natural projection $\pi: \mathfrak{L}(\mathcal{H}) \rightarrow \mathfrak{C}(\mathcal{H})$ is continuous, it follows that the space of Fredholm operators (the preimage under π of the invertible elements in $\mathfrak{C}(\mathcal{H})$) is open.

3.3 Continuity of the Fredholm Index

The most important property of the Fredholm index is that it is a continuous mapping from $\mathfrak{F}(\mathcal{H})$ onto \mathbb{Z}, hence locally constant. In contrast to the topological proofs of Chapter 5, we present an algebraic proof. We begin by showing that the Fredholm index is additive, i.e., if $T, S \in \mathfrak{F}(\mathcal{H})$, then $\operatorname{ind}(S T)=\operatorname{ind}(S)+\operatorname{ind}(T)$.

Definition 3.10. A sequence

$$
V_{0} \xrightarrow{f_{0}} V_{1} \xrightarrow{f_{1}} V_{2} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{n-1}} V_{n}
$$

of vector spaces V_{i} and linear transformations f_{i} is exact if im $f_{i-1}=\operatorname{ker} f_{i}$.
Proposition 3.11. If $V \rightarrow E \rightarrow W$ is an exact sequence and V and W are finite dimensional, then E is finite dimensional.

Proof. Suppose that $V \xrightarrow{f} E \xrightarrow{g} W$ is exact, with V and W finite dimensional. By the Rank Nullity Theorem,

$$
\begin{aligned}
\operatorname{dim} E & =\operatorname{dimim} g+\operatorname{dim} \operatorname{ker} g \\
& =\operatorname{dimim} g+\operatorname{dimim} f .
\end{aligned}
$$

The second equality follows from exactness. Since W is finite dimensional, $\operatorname{dim} \operatorname{im} g<\infty$. Since V is finite dimensional, $\operatorname{dim} \operatorname{im} f<\infty$. Hence, $\operatorname{dim} E<\infty$.

Proposition 3.12. If $0 \rightarrow V_{1} \rightarrow V_{2} \rightarrow \cdots \rightarrow V_{n} \rightarrow 0$ is an exact sequence of finite dimensional vector spaces, then

$$
\begin{equation*}
\sum_{i=1}^{n}(-1)^{i} \operatorname{dim} V_{i}=0 \tag{3.1}
\end{equation*}
$$

Proof. We proceed by induction on n.
If $n=1$, then the exactness of $0 \rightarrow V_{1} \rightarrow 0$ implies that $V=0$. Perhaps more interesting is the base case $n=2$. The exactness of the sequence

$$
0 \rightarrow V_{1} \xrightarrow{f} V_{2} \rightarrow 0
$$

implies that f is bijective. Hene, $\operatorname{dim} V_{1}=\operatorname{dim} V_{2}$, and equation (3.1) holds.
Now, suppose that (3.1) holds for some $n>2$. Suppose that

$$
0 \xrightarrow{f_{0}} V_{1} \xrightarrow{f_{1}} V_{2} \xrightarrow{f_{3}} \cdots \xrightarrow{f_{n-1}} V_{n} \xrightarrow{f_{n}} V_{n+1} \xrightarrow{f_{n+1}} 0
$$

is exact. Note that this implies that f_{n} is surjective. Next, consider the reduced sequence

$$
0 \xrightarrow{f_{0}} V_{1} \xrightarrow{f_{1}} V_{2} \xrightarrow{f_{3}} \cdots \xrightarrow{f_{n-2}} V_{n-1} \xrightarrow{f_{n-1}} \operatorname{ker} f_{n} \rightarrow 0 .
$$

By the inductive hypothesis,

$$
\begin{equation*}
\left(\sum_{i=1}^{n-1}(-1)^{i} \operatorname{dim} V_{i}\right)+(-1)^{n} \operatorname{dim} \operatorname{ker} f_{n}=0 . \tag{3.2}
\end{equation*}
$$

Since f_{n} is surjective, by the Rank Nullity Theorem, we have

$$
\begin{equation*}
\operatorname{dim} V_{n}=\operatorname{dim} \operatorname{ker} f_{n}+\operatorname{dim} V_{n+1} . \tag{3.3}
\end{equation*}
$$

Combining equations (3.2) and (3.3) gives

$$
\left(\sum_{i=1}^{n-1}(-1)^{i} \operatorname{dim} V_{i}\right)+(-1)^{n}\left(\operatorname{dim} V_{n}-\operatorname{dim} V_{n+1}\right)=0
$$

and hence

$$
\sum_{i=1}^{n+1}(-1)^{i} \operatorname{dim} V_{i}=0
$$

With these two properties of exact sequences of vector spaces, we prove additivity of the index.

Proposition 3.13. If $T, S \in \mathfrak{F}(\mathcal{H})$, then $S T \in \mathfrak{F}(\mathcal{H})$ and $\operatorname{ind}(S T)=\operatorname{ind}(S)+\operatorname{ind}(T)$.
Proof. Consider the following sequence:

$$
0 \rightarrow \operatorname{ker} T \xrightarrow{i} \operatorname{ker} S T \xrightarrow{T} \operatorname{ker} S \xrightarrow{f} \operatorname{coker} T \xrightarrow{S} \operatorname{coker} S T \xrightarrow{p} \operatorname{coker} S \rightarrow 0
$$

where $i: \operatorname{ker} T \rightarrow \operatorname{ker} S T$ is the inclusion map, $f: \operatorname{ker} S \rightarrow \mathcal{H} / \operatorname{im} T$ is the projection map, and $p: \mathcal{H} / \operatorname{im} S T \rightarrow \mathcal{H} / \operatorname{im} T$ takes equivalence classes $\bmod \operatorname{im} S T$ to equivalence classes $\bmod \operatorname{im} T$. It is straightforward to verify that this sequence is exact. Since $\operatorname{ker} T, \operatorname{ker} S$, coker T, ansd coker S are all finite dimensional, by Proposition 3.11, ker $S T$ and coker $S T$ are finite dimensional. Thus, $S T$ is Fredholm. By Proposition 3.12, we have:

$$
\begin{aligned}
0= & -\operatorname{dim} \operatorname{ker} T+\operatorname{dim} \operatorname{ker} S T-\operatorname{dim} \operatorname{ker} S \\
& +\operatorname{dim} \operatorname{coker} T-\operatorname{dim} \operatorname{coker} S T+\operatorname{dim} \operatorname{coker} S \\
= & \operatorname{ind}(S T)-\operatorname{ind}(T)-\operatorname{ind}(S) .
\end{aligned}
$$

Thus, $\operatorname{ind}(S T)=\operatorname{ind}(S)+\operatorname{ind}(T)$.

Theorem 3.14. The map ind: $\mathfrak{F}(\mathcal{H}) \rightarrow \mathbb{Z}$ is continuous.
Proof. Let $T \in \mathfrak{F}(\mathcal{H})$. Let $J:(\operatorname{ker} T)^{\perp} \rightarrow \mathcal{H}$ be the inclusion of $(\operatorname{ker} T)^{\perp}$ into \mathcal{H}, and let $Q: \mathcal{H} \rightarrow \operatorname{im} T$ be the orthogonal projection of \mathcal{H} onto im T. Since $\operatorname{ker} J=0$ and coker $J=$ $\mathcal{H} /(\operatorname{ker} T)^{\perp}=\operatorname{ker} T, J$ is Fredholm with index

$$
\operatorname{ind}(J)=\operatorname{dim} \operatorname{ker} J-\operatorname{dim} \operatorname{coker} J=-\operatorname{dim} \operatorname{ker} T .
$$

Similarly, since ker $Q=(\operatorname{im} T)^{\perp}=\operatorname{coker} T$ and $\operatorname{coker} Q=\operatorname{im} T / \operatorname{im} T=0, Q$ is Fredholm with index

$$
\operatorname{ind}(Q)=\operatorname{dim} \operatorname{ker} Q-\operatorname{dim} \operatorname{coker} Q=\operatorname{dim} \operatorname{coker} T .
$$

Hence,

$$
\begin{equation*}
\operatorname{ind}(T)+\operatorname{ind}(J)+\operatorname{ind}(Q)=0 \tag{3.4}
\end{equation*}
$$

Note that $Q T J:(\operatorname{ker} T)^{\perp} \rightarrow \operatorname{im} T$ is invertible. Fix $\epsilon=1 /\left\|(Q T J)^{-1}\right\|>0$, and pick $T^{\prime} \in \mathfrak{F}(\mathcal{H})$ such that $\left\|T-T^{\prime}\right\|<\frac{\epsilon}{\|Q\|\|J\|}$. Then

$$
\begin{aligned}
\left\|Q T J-Q T^{\prime} J\right\| & =\left\|Q\left(T-T^{\prime}\right) J\right\| \\
& \leq\|Q\|\left\|T-T^{\prime}\right\|\|J\| \\
& <\epsilon .
\end{aligned}
$$

By Proposition 2.11, it follows that $Q T^{\prime} J$ is invertible. Hence, ind $\left(Q T^{\prime} J\right)=0$. Applying Proposition 3.13 gives us

$$
\begin{equation*}
\operatorname{ind}(Q)+\operatorname{ind}\left(T^{\prime}\right)+\operatorname{ind}(J)=0 . \tag{3.5}
\end{equation*}
$$

From equations (3.4) and (3.5) it follows that $\operatorname{ind}(T)=\operatorname{ind}\left(T^{\prime}\right)$. Hence, the index map is locally constant, and therefore continuous.

One immediate application of the continuity of the Fredholm index is the following proposition, which shows that the index is invariant under perturbation by compact operators.

Corollary 3.15. Let $T \in \mathfrak{F}(\mathcal{H})$, and let $K \in \mathfrak{K}(\mathcal{H})$. Then $T+K \in \mathfrak{F}(\mathcal{H})$, and

$$
\operatorname{ind}(T+K)=\operatorname{ind}(T)
$$

Proof. Since $T+K$ and T have the same image in the Calkin algebra under the natural projection map, it is clear that $T+K$ is Fredholm if T is.

Next, consider the path $[0,1] \rightarrow \mathfrak{F}(\mathcal{H})$ given by $t \mapsto T+t K$. This is a continuous path of Fredholm operators, and since the index is locally constant, it follows that ind $(T+t K)=$ ind (T) for all $t \in[0,1]$.

3.4 The Connected Components of $\mathfrak{F}(\mathcal{H})$.

We have demonstrated the continuity and surjectivity of the index. Next, we prove that any two Fredholm operators of equal index can be connected by a path, and hence the connected components are in bijection with \mathbb{Z}.

To do this we need an important fact: that the space $G L(\mathcal{H})$ of invertible operators on a Hilbert space is path-connected. This fact is typically proven using the spectral theorem for unitary operators. The proof we present here is purely elementary, and has a natural generalization that we will employ in Chapter 5 to show that $G L(\mathcal{H})$ satisfies even stronger connectivity conditions.

We begin with a general lemma.
Lemma 3.16. Let \mathcal{H} be an infinite dimensional Hilbert space with orthogonal decomposition $\mathcal{H}=$ $\mathcal{H}^{\prime} \oplus \mathcal{H}_{1}$ where both \mathcal{H}_{1} and \mathcal{H}^{\prime} are infinite dimensional. Then the subspace

$$
\left\{T \in G L(\mathcal{H}):\left.T\right|_{\mathcal{H}^{\prime}}=I \text { and }\left.T\right|_{\mathcal{H}_{1}} \in G L\left(\mathcal{H}_{1}\right\}\right)
$$

is contractible to $I \in G L(\mathcal{H})$.
Proof. Let $X=\left\{T \in G L(\mathcal{H}):\left.T\right|_{\mathcal{H}^{\prime}}=I\right.$ and $\left.T\right|_{\left.\mathcal{H}_{1} \in G L\left(\mathcal{H}_{1}\right\}\right) \text {. It suffices to construct a }}$ homotopy from the identity map $\operatorname{id}_{X}: X \rightarrow X$ to the constant map whose value is the identity operator.

Consider \mathcal{H}^{\prime}. Because \mathcal{H}^{\prime} is infinite dimensional, we can decompose it into a sum of infinitely many infinite-dimensional orthogonal subspaces:

$$
\mathcal{H}^{\prime}=\mathcal{H}_{2} \oplus \mathcal{H}_{3} \oplus \cdots .
$$

For example, suppose $\left\{e_{k}\right\}$ is an orthonormal basis for \mathcal{H}^{\prime}. Let \mathcal{H}_{2} be the closure of the span of $\left\{e_{k}: k\right.$ even $\}$, and let \mathcal{H}_{2}^{\prime} be the orthogonal complement in \mathcal{H}^{\prime}. Repeat this process with \mathcal{H}_{2}^{\prime} to get an infinite-dimensional subspace \mathcal{H}_{3}, etc. Hence,

$$
\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}^{\prime}=\mathcal{H}_{1} \oplus \mathcal{H}_{2} \oplus \mathcal{H}_{3} \oplus \cdots .
$$

Any linear operator on \mathcal{H} is determined by an "infinite matrix" in terms of this decomposition; i.e, by a collection of elements $m(i, j) \in \mathfrak{L}\left(\mathcal{H}_{i}, \mathcal{H}_{j}\right)$. Using this decomposition, any $T \in X$ can be written:

$$
T=\left[\begin{array}{llll}
U & & & \\
& I & & \\
& & I & \\
& & & \ddots
\end{array}\right]
$$

where $U=\left.T\right|_{\mathcal{H}_{1} \in G L\left(\mathcal{H}_{1}\right) \text {. Because each } I \text { is an identity operator on an infinite-dimensional }}$ Hilbert space \mathcal{H}_{i}, we have

$$
T=\left[\begin{array}{ccccc}
U & & & & \\
& I & & & \\
& & I & & \\
& & & I & \\
& & & & \ddots
\end{array}\right]=\left[\begin{array}{ccccc}
U & & & & \\
& U^{-1} U & & & \\
& & U^{-1} U & & \\
& & & U^{-1} U & \\
& & & & \ddots
\end{array}\right]
$$

We construct a homotopy $\gamma: X \times[0, \pi] \rightarrow X$ as follows. For $t \in[0, \pi / 2]$, let γ be the block matrix:

$$
\gamma_{t}(T)=\left[\begin{array}{lllll}
U & & & & \\
& M_{t}(T) & & & \\
& & M_{t}(T) & & \\
& & & M_{t}(T) & \\
& & & & \ddots
\end{array}\right]
$$

where the $M_{t}(T)$ blocks are given by

$$
M_{t}(T)=\left[\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right]\left[\begin{array}{cc}
U & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right]\left[\begin{array}{cc}
U^{-1} & 0 \\
0 & I
\end{array}\right] .
$$

When $t=0$, we have

$$
M_{0}(T)=\left[\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
U & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
U^{-1} & 0 \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right]
$$

so $\gamma_{0}(T)=T$. Hence, $\gamma_{0}=\operatorname{id}_{X}$. When $t=\pi / 2$,

$$
\begin{aligned}
M_{\pi / 2}(T) & =\left[\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right]\left[\begin{array}{cc}
U & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]\left[\begin{array}{cc}
U^{-1} & 0 \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
0 & -I \\
U & 0
\end{array}\right]\left[\begin{array}{cc}
0 & I \\
-U^{-1} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
U^{-1} & 0 \\
0 & U
\end{array}\right] .
\end{aligned}
$$

Hence,

$$
\gamma_{\pi / 2}(T)=\left[\begin{array}{ccccc}
U & & & & \\
& U^{-1} & & & \\
& & U & & \\
& & & U^{-1} & \\
& & & & \ddots
\end{array}\right]
$$

The next step of the homotopy is defined similarly, with the rotation matrices shifted upwards. For $t \in[\pi / 2, \pi]$, let

$$
\gamma_{t}(T)=\left[\begin{array}{cccc}
M_{t}^{\prime}(T) & & & \\
& M_{t}^{\prime}(T) & & \\
& & M_{t}^{\prime}(T) & \\
& & & \ddots
\end{array}\right]
$$

where

$$
M_{t}^{\prime}(T)=\left[\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right]\left[\begin{array}{cc}
U^{-1} & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right]\left[\begin{array}{cc}
U & 0 \\
0 & I
\end{array}\right] .
$$

When $t=\pi / 2$,

$$
\begin{aligned}
M_{\pi / 2}^{\prime}(T) & =\left[\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right]\left[\begin{array}{cc}
U^{-1} & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]\left[\begin{array}{cc}
U & 0 \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
0 & -I \\
U^{-1} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & I \\
-U & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
U & 0 \\
0 & U^{-1}
\end{array}\right]
\end{aligned}
$$

so $\gamma_{\pi / 2}(T)$ agrees with the previous definition. When $t=\pi$, we have:

$$
\begin{aligned}
M_{\pi}^{\prime}(T) & =\left[\begin{array}{cc}
-I & 0 \\
0 & -I
\end{array}\right]\left[\begin{array}{cc}
U^{-1} & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
-I & 0 \\
0 & -I
\end{array}\right]\left[\begin{array}{cc}
U & 0 \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
-U^{-1} & 0 \\
0 & -I
\end{array}\right]\left[\begin{array}{cc}
-U & 0 \\
0 & -I
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right] \\
\text { so } \gamma_{\pi}(T) & =I .
\end{aligned}
$$

Lemma 3.16 will be the last step in the proof that $G L(\mathcal{H})$ is path-connected, and will be used again in the proof of the stronger result in Chapter 5.

Proposition 3.17. The space of invertible operators on \mathcal{H} is path-connected.
Proof. It suffices to prove that $T \in G L(\mathcal{H})$ can be connected to the identity operator I. We will build a path connecting T and I using the interval $[0,4]$. By the previous lemma, if we can connect T to an operator which fixes an infinite dimensional subspace of \mathcal{H} and is invertible on its complement, we can contract to the identity. Our first order of business is to build such an infinite dimensional subspace.

Pick any unit vector $a_{1} \in \mathcal{H}$. Let $A_{1}=\operatorname{Span}\left(a_{1}, T\left(a_{1}\right)\right)$. We want a unit vector a_{2} such that a_{2} and $T\left(a_{2}\right)$ are both orthogonal to A_{1}. Pick $a_{2} \in A_{1}^{\perp} \cap T^{-1}\left(A_{1}^{\perp}\right)$, which is possible by the infinite-dimensionality of \mathcal{H}. Define $A_{2}=\operatorname{Span}\left(a_{2}, T\left(a_{2}\right)\right)$. Continue inductively, choosing unit vectors a_{i} such that

$$
a_{k} \in \bigcap_{i=1}^{k-1} A_{i}^{\perp} \cap T^{-1}\left(A_{i}^{\perp}\right) .
$$

Hence, for each k, a_{k} and $T\left(a_{k}\right)$ are orthogonal to A_{1}, \ldots, A_{k-1}.
Next, we define planar rotations on each A_{k} which rotate $T\left(a_{k}\right)$ in the direction of a_{k}. Explicitly, define $R_{k}(t) \in G L\left(A_{k}\right)$ by

$$
R_{k}(t):=\left[\begin{array}{cc}
\cos \left(\frac{\pi}{2} t\right) & -\sin \left(\frac{\pi}{2} t\right) \\
\sin \left(\frac{\pi}{2} t\right) & \cos \left(\frac{\pi}{2} t\right)
\end{array}\right] \text { with respect to the basis }\left\{T\left(a_{k}\right),\left\|T\left(a_{k}\right)\right\| a_{k}\right\}
$$

for $0 \leq t \leq 1$. Then $R_{k}(0)=I$, and $R_{k}(1)\left(T\left(a_{k}\right)\right)=\left\|T\left(a_{k}\right)\right\| a_{k}$. For each $k, R_{k}(t)$ is a rotation, hence continuous. Next, we define $R(t)$ as the execution of all of these rotations simultaneously:

$$
R(t)=\left\{\begin{array}{cc}
R_{k}(t) & \text { on } A_{k} \\
I & \text { on }\left(A_{1} \oplus A_{2} \oplus \cdots\right)^{\perp}
\end{array}\right.
$$

for $0 \leq t \leq 1$. By the orthogonality of the A_{k} 's, $R(t)$ is continuous. Explicitly, fix $\epsilon>0$. Since each $R_{k}(t)$ is continuous, choose $t, t^{\prime} \in[0,1]$ so that $\left\|R_{k}(t)-R_{k}\left(t^{\prime}\right)\right\|<\epsilon$ for all k. If $x \in \mathcal{H}$,

$$
\left\|\left(R\left(t^{\prime}\right)-R(t)\right) x\right\|^{2}=\left\|\left(R\left(t^{\prime}\right)-R(t)\right) \sum_{k=1}^{\infty}\left\langle x, a_{k}\right\rangle a_{k}\right\|^{2}=\left\|\sum_{k=1}^{\infty}\left(R_{k}\left(t^{\prime}\right)-R_{k}(t)\right)\left(\left\langle x, a_{k}\right\rangle a_{k}\right)\right\|^{2} .
$$

By the Pythagorean theorem,

$$
\begin{aligned}
\left\|\left(R\left(t^{\prime}\right)-R(t)\right) x\right\|^{2} & =\sum_{k=1}^{\infty}\left\|\left(R_{k}\left(t^{\prime}\right)-R_{k}(t)\right)\left(\left\langle x, a_{k}\right\rangle a_{k}\right)\right\|^{2} \\
& \leq \sum_{k=1}^{\infty}\left\|R_{k}\left(t^{\prime}\right)-R_{k}(t)\right\|^{2}\left\|\left\langle x, a_{k}\right\rangle a_{k}\right\|^{2} \\
& <\epsilon^{2}\|x\|^{2} .
\end{aligned}
$$

Hence, $R(t)$ is continuous.
The rotation function $R(t)$ lets us define the first step of the path. Let

$$
T_{t}=R(t) T \quad 0 \leq t \leq 1
$$

Then $T_{0}=R(0) T=T$, and T_{1} is an invertible operator that satisfies $T_{1}\left(a_{k}\right)=\left\|T\left(a_{k}\right)\right\| a_{k}$ for all k.

Define $\mathcal{H}^{\prime}=\operatorname{Span}\left(a_{1}, a_{2}, \ldots\right)$. The operator T_{1} almost fixes \mathcal{H}^{\prime}; all we need to do is scale accordingly. So define

$$
T_{t}=\left\{\begin{array}{ccc}
(2-t) T_{1}+(t-1) I & \text { on } \mathcal{H}^{\prime} & 1 \leq t \leq 2 . \\
T_{1} & \text { on }\left(\mathcal{H}^{\prime}\right)^{\perp} & 1 \leq 20 .
\end{array}\right.
$$

Then T_{1} agrees with the previous definition, and T_{2} is an operator which restricts to the identity on \mathcal{H}^{\prime}.

In order to invoke Lemma 3.16, we need an operator which not only fixes \mathcal{H}^{\prime}, but also sends $\left(\mathcal{H}^{\prime}\right)^{\perp}$ to $\left(\mathcal{H}^{\prime}\right)^{\perp}$. We can achieve this as follows: let P denote the orthogonal projection onto $\left(\mathcal{H}^{\prime}\right)^{\perp}$ (and so $I-P$ is the orthogonal projection onto \mathcal{H}^{\prime}), and define:

$$
T_{t}=(3-t) T_{2}+(t-2)\left[(I-P)+P T_{2} P\right] \quad 2 \leq t \leq 3 .
$$

Then T_{3} restricts to I on \mathcal{H}^{\prime}, and is invertible on its orthogonal complement.
Now we apply Lemma 3.16. Let γ be the homotopy constructed in the proof of the lemma, and define

$$
T_{t}=\gamma_{\pi(t-3)}\left(T_{3}\right) \quad 3 \leq t \leq 4 .
$$

Then $T_{3}=\gamma_{0}\left(T_{3}\right)=T_{3}$, and $T_{4}=\gamma_{\pi}\left(T_{3}\right)=I$. Hence, T_{t} is a continuous path inside $G L(\mathcal{H})$ witch connects T to I. Therefore, $G L(\mathcal{H})$ is path-connected.

Finally, we state and prove the main theorem of this section.
Theorem 3.18. The Fredholm index induces a bijection $\pi_{0}(\mathfrak{F}(\mathcal{H})) \rightarrow \mathbb{Z}$.
Proof. Surjectivity has been established. It remains to show injectivity. For each n, set $\mathfrak{F}_{n}=\{T \in \mathfrak{F}(\mathcal{H}): \operatorname{ind}(T)=n\}$. Since the index is locally constant, injectivity follows after we show that each \mathfrak{F}_{n} is path-connected.

First, consider $n=0$. Let $T \in \mathfrak{F}_{0}$. By Proposition 3.17, it suffices to connect T to an invertible operator by a path. Since $T \in \mathfrak{F}_{0}, \operatorname{dim} \operatorname{ker} T=\operatorname{dim} \operatorname{ker} T^{*}$. Let $\left\{v_{i}\right\}_{i=1}^{k}$ and $\left\{w_{i}\right\}_{i=1}^{k}$ be orthonormal bases for $\operatorname{ker} T$ and $\operatorname{ker} T^{*}$ respectively. Define an operator $\varphi: \mathcal{H} \rightarrow \mathcal{H}$ as follows: for $x=x_{0}+\sum \lambda_{i} v_{i} \in \mathcal{H}$ where $x_{0} \in(\operatorname{ker} T)^{\perp}$, set

$$
\varphi(x)=\sum_{i=1}^{k} \lambda_{i} w_{i} .
$$

Then $\operatorname{ker} \varphi=(\operatorname{ker} T)^{\perp}$ and $\operatorname{im} \varphi=\operatorname{ker} T^{*}$. Note that $T+\varphi$ is invertible, since if $x \in$ $\operatorname{ker}(T+\varphi)$, then $T(x)=-\varphi(x)$, and hence $x=0$, and $\operatorname{im}(T+\varphi)=\mathcal{H}$. In fact, the same
reasoning shows that $T+t \varphi$ is invertible for all real $t>0$. Hence, $\gamma:[0,1] \rightarrow \mathfrak{L}(H)$ given by $\gamma(t)=T+t \varphi$ is a path contained in $\mathfrak{F}(\mathcal{H})$ that connects T with an invertible operator. Thus, \mathfrak{F}_{0} is path-connected.

For $n>0$, we use the unilateral shift operator S_{-n}. Let $T \in \mathfrak{F}_{n}$. Recall from Example 3.7 that ind $\left(S_{-n}\right)=-n$. Then by Proposition 3.13, $T S_{-n}$ is Fredholm and ind $\left(T S_{-n}\right)=$ ind $(T)+\operatorname{ind}\left(S_{-n}\right)=0$, so $T S_{-n} \in \mathfrak{F}_{0}$. Since $S_{-n} S_{n}=I$, we have $T=T S_{-n} S_{n} \in \mathfrak{F}_{0} S_{n}$. Hence, $\mathfrak{F}_{n} \subseteq \mathfrak{F}_{0} S_{n}$. Proposition 3.13 implies that $\mathfrak{F}_{0} S_{n} \subseteq \mathfrak{F}_{n}$. Therefore, $\mathfrak{F}_{n}=\mathfrak{F}_{0} S_{n}$, and it follows that \mathfrak{F}_{n} is path-connected.

For $n<0$, it follows from taking adjoints that $\mathfrak{F}_{n}=\mathfrak{F}_{-n}^{*}$, and so \mathfrak{F}_{n} is path-connected for all $n \in \mathbb{Z}$.

As mentioned in the introduction, this theorem is a simple case of a deeper connection between homotopy classes of maps into $\mathfrak{F}(\mathcal{H})$ and the abelian group $K(X)$. This relation is the focus of the rest of this thesis.

Chapter 4

Vector Bundles and K-Theory

In order to develop an appropriate generalization of the theory of Fredholm operators developed in Chapter 3, it is necessary to establish the basics of the theory of vector bundles and K-theory. Indeed, T

The classical Fredholm index gives a relation between finite dimensional vector spaces (the kernel and cokernel of a Fredholm operator) and the integers. Moving forward, we are concerned with families of finite dimensional vector spaces and more general abelian groups. Naturally, we need to establish the basics of the theory of vector bundles and K theory. This chapter covers the necessary theory. We refer to sources such as [5] and [18] for more details; we follow these texts closely.

4.1 Vector Bundles: Definitions and Examples

Intuitively, a vector bundle is a collection of vector spaces parameterized by a topological space continuous manner. To make this idea precise, we begin with the definition of a general family of vector spaces.
Definition 4.1. Let X be a topological space. A family of vector spaces over X is a topological space E and a continuous surjective map $p: E \rightarrow X$ (called the projection) such that each $E_{x}:=p^{-1}(x)$ is a finite dimensional vector space compatible with the subspace topology induced by E. A family will be denoted $p: E \rightarrow X, E \rightarrow X$, or just E, depending on the context.

Definition 4.2. A section of $p: E \rightarrow X$ is a continuous map $s: X \rightarrow E$ such that $p \circ s=\mathrm{id}_{X}$.
Our focus is on families of vector spaces with complex vector space structures, but working over \mathbb{R} is perfectly valid.
Example 4.3. Let $E=X \times \mathbb{C}^{n}$. Then $p: X \times \mathbb{C}^{n} \rightarrow X$ given by $p(x, v)=x$ is surjective and is continuous since projections onto factors are continuous. For each $x \in X, p^{-1}(x)=$ $\{x\} \times \mathbb{C}^{n} \cong \mathbb{C}^{n}$. Thus, $X \times \mathbb{C}^{n}$ is a family of vector spaces over X. A family $X \times V$ where V is a finite dimensional vector space is called a product family.

The map $s: X \rightarrow X \times \mathbb{C}^{n}$ given by $s(x)=(x, 0)$ is a section of this family. Any map $s(x)=(x, f(x))$ where $f: X \rightarrow \mathbb{C}^{n}$ is continuous is a section.

Definition 4.4. A homomorphism of families $p: E \rightarrow X$ and $q: F \rightarrow X$ is a continuous map $\varphi: E \rightarrow F$ such that the diagram

commutes, and $\varphi_{x}: E_{x} \rightarrow F_{x}$ is a linear transformation for every $x \in X$. If φ is a homeomorphism, then φ is an isomorphism of families, and we write $E \cong F$. If E is isomorphic to a product family, E is trivial.
Example 4.5. Let $X=S^{1}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$. Let $T S^{1}:=\bigsqcup_{(x, y) \in S^{1}} \operatorname{Span}\left(\left[\begin{array}{c}-y \\ x\end{array}\right]\right)$, topologized as a subspace of $S^{1} \times \mathbb{R}^{2}$. Then $T S^{1}$ is the collection of tangent spaces of the unit circle:

Let $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \in T S^{1}$, and define $p: T S^{1} \rightarrow S^{1}$ by $p(v)=\frac{1}{\|v\|}\left[\begin{array}{c}v_{2} \\ -v_{1}\end{array}\right]$. Then p is surjective and continuous, and $p^{-1}(x, y)=\operatorname{Span}\left(\left[\begin{array}{c}-y \\ x\end{array}\right]\right)$. Hence, $p: T S^{1} \rightarrow S^{1}$ is a family of vector spaces.

Let $q: S^{1} \times \mathbb{R} \rightarrow S^{1}$ be the product family of vector spaces, and define $\varphi: S^{1} \times \mathbb{R} \rightarrow T S^{1}$ by $\varphi((x, y), \lambda)=\lambda\left[\begin{array}{c}-y \\ x\end{array}\right]$. Then

$$
(p \circ \varphi)((x, y), \lambda)=p(\varphi((x, y), \lambda))=p\left(\lambda\left[\begin{array}{c}
-y \\
x
\end{array}\right]\right)=\frac{1}{\lambda} \lambda\left[\begin{array}{l}
x \\
y
\end{array}\right]=(x, y)=q((x, y), \lambda)
$$

and so φ is a homomorphism of families. Moreover, $\varphi^{-1}: T S^{1} \rightarrow S^{1} \times \mathbb{R}$ is given by

$$
\varphi^{-1}(v)=\left(\frac{1}{\|v\|}\left[\begin{array}{c}
v_{2} \\
-v_{1}
\end{array}\right],\|v\|\right) .
$$

Hence, φ is an isomorphism. Thus, $T S^{1} \cong S^{1} \times \mathbb{R}$, and so $T S^{1}$ is a trivial family of vector spaces over S^{1}.
Proposition 4.6. A family of vector spaces $E \rightarrow X$ is trivial if and only if there exist sections $s_{i}: X \rightarrow E$ such that $\left\{s_{i}(x)\right\}$ is a basis for E_{x} for all $x \in X$.
Proof. Suppose $E \rightarrow X$ is trivial. Then there exists an isomorphism $\varphi: X \times V \rightarrow E$ for some n-dimensional vector space V. Let v_{1}, \ldots, v_{n} be a basis for V. Define sections $\tilde{s}_{i}: X \rightarrow X \times V$ by $\tilde{s}_{i}(x)=\left(x, v_{i}\right)$. Set $s_{i}=\varphi \circ \tilde{s}_{i}$. By commutativity of the diagram

it follows that each s_{i} is a section of $E \rightarrow X$. For each $x \in X, \varphi_{x}$ is injective, hence $\left\{s_{i}(x)\right\}$ is linearly independent. Since $\varphi_{x}^{-1}: E_{x} \rightarrow\{x\} \times V$ is injective, it follows that $\left\{s_{i}(x)\right\}$ is a basis for E_{x} for each $x \in X$.

Conversely, suppose that $s_{1}(x), \ldots, s_{n}(x)$ are sections that form a basis for E_{x} for each $x \in X$. Define $\varphi: E \rightarrow X \times \mathbb{C}^{n}$ by $\varphi\left(s_{i}(x)\right)=\left(x, e_{i}\right)$ and extend by linearity. Then φ is bijective and continuous with a continuous inverse. Hence, $E \cong X \times \mathbb{C}^{n}$.

Suppose that $E \rightarrow X$ is a family of vector spaces and that f is a continuous function from another topological space Y into X. We can define a family of vector spaces over Y by "pulling back" E along f :

Explicitly, we have the following.
Proposition 4.7. Let $f: Y \rightarrow X$ be continuous. If $p: E \rightarrow X$ is a family of vector spaces, then the induced family $f^{*} p: f^{*} E \rightarrow Y$ defined by

$$
f^{*} E:=\{(y, e) \in Y \times E: f(y)=p(e)\} \quad f^{*} p(y, e)=y
$$

is a family of vector spaces over Y. Moreover, if $f: Y \rightarrow X$ and $g: Z \rightarrow Y$ are continuous, then $(f \circ g)^{*} E \cong g^{*} f^{*} E$.

Proof. Let $y \in Y$. Since $p: E \rightarrow X$ is surjective, there exists an $e \in E$ such that $p(e)=f(y)$. Hence, $f^{*} p(y, e)=y$, and so $f^{*} p$ is surjective. Furthermore,

$$
f^{*} p^{-1}(y)=\{y\} \times\{e \in E: f(y)=p(e)\}=\{y\} \times E_{f(y)}
$$

and so $f^{*} E$ has the appropriate vector space structure on fibers.
Next, suppose that $g: Z \rightarrow Y$ is continuous. Then

$$
\begin{aligned}
g^{*} f^{*} E & =\left\{\left(z, e^{\prime}\right) \in Z \times f^{*} E: g(z)=f^{*} p\left(e^{\prime}\right)\right\} \\
& \cong\{(z, y, e) \in Z \times Y \times E: f(g(z))=p(e)\} \\
& \cong\{(z, e) \in Z \times E:(f \circ g)(z)=p(e)\}
\end{aligned}
$$

and it follows that $(f \circ g)^{*} E \cong g^{*} f^{*} E$.
Corollary 4.8. Let $p: E \rightarrow X$ be a family of vector spaces, and let $U \subseteq X$ be a subspace. Then the restriction of E to U, defined as $\left.E\right|_{U}:=p^{-1}(U)$, is a family of vector spaces over U.

Proof. Let $f: U \rightarrow X$ be the inclusion map. Then

$$
f^{*} E=\{(x, e) \in U \times E: p(e)=x\} \cong p^{-1}(U)
$$

is a family of vector spaces over U.
Definition 4.9. A family of vector spaces $E \rightarrow X$ is locally trivial at $x \in X$ if there is an open neighborhood U containing x such that $\left.E\right|_{U}$ is trivial; we say $E \rightarrow X$ is locally trivial if E is locally trivial at every $x \in X$. A vector bundle over X is a locally trivial family of vector spaces over X.

One immediate consequence of the local triviality of a vector bundle is that the dimension of the fibers of a vector bundle is locally constant. If X is connected, then the dimension of the fibers is constant, and we call this dimension the rank of E.

The definitions of homomorphisms and isomorphisms of families of vector spaces immediately extend to vector bundles. If $E \rightarrow X$ is a vector bundle, we denote its isomorphism class by $[E]$ or $[E \rightarrow X]$. The set of isomorphism classes of (complex) vector bundles on X is written Vect X.

Example 4.10.

(i) Any product family is a vector bundle.
(ii) The family $T S^{1} \rightarrow S^{1}$ was shown to be trivial on S^{1}. Hence, $T S^{1}$ is a vector bundle over S^{1}.
(iii) If $E \rightarrow X$ is a vector bundle and $f: Y \rightarrow X$ is continuous, then $f^{*} E \rightarrow Y$ is a vector bundle. Indeed, for any y, let $f(y) \in U$ be an open neighborhood such that $\left.E\right|_{U}$ is trivial. Then $f^{-1}(U)$ is an open neighborhood of y such that $\left.f^{*} E\right|_{f^{-1}(U)}$ is trivial.

Example 4.11. Define the complex projective line as $\mathbb{C P}^{1}:=\left(\mathbb{C}^{2}-(0,0)\right) / \sim$ where $\left(z_{1}, z_{2}\right) \sim$ $\left(\lambda z_{1}, \lambda z_{2}\right)$ for all $\lambda \in \mathbb{C}$, endowed with the quotient topology. Denote the equivalence class of the point $\left(z_{1}, z_{2}\right)$ by $\left[z_{1} ; z_{2}\right]$.

Intuitively, $\mathbb{C P}^{1}$ is the collection of one-dimensional subspaces of \mathbb{C}^{2}. Hence, we can define a natural vector bundle over $\mathbb{C P}^{1}$. Let H^{*} denote the disjoint union of these subspaces, topologized as a subspace of $\mathbb{C P}^{1} \times \mathbb{C}^{2}$, and let $H^{*} \rightarrow \mathbb{C} \mathbb{P}^{1}$ be the obvious projection map. We want to show that H^{*} is a vector bundle over $\mathbb{C P}^{1}$, and thus need to demonstrate local triviality. Let

$$
\begin{aligned}
& U_{1}=\left\{\left[z_{1} ; z_{2}\right] \in \mathbb{C P}^{1}: z_{1} \neq 0\right\} ; \\
& U_{2}=\left\{\left[z_{1} ; z_{2}\right] \in \mathbb{C P}^{1}: z_{2} \neq 0\right\} .
\end{aligned}
$$

Then $\mathbb{C P}^{1}=U_{1} \cup U_{2}$. Consider the function $\varphi:\left.H^{*}\right|_{U_{1}} \rightarrow U_{1} \times \mathbb{C}$ given by

$$
\varphi\left(\operatorname{Span}\left(z_{1}, z_{2}\right)\right)=\left(\left[z_{1} ; z_{2}\right], z_{2} / z_{1}\right)
$$

Then φ commutes with the projection maps, and its inverse is given by $\left(\left[z_{1} ; z_{2}\right], \lambda\right) \mapsto$ $\lambda\left(z_{1}, z_{2}\right)$. Hence, φ is a bundle isomorphism. We can define an isomorphism over U_{2} in an analogous manner. Thus, H^{*} is locally trivial, and is therefore a vector bundle over $\mathbb{C P}^{1}$.

As defined, an isomorphism of vector bundles E and F is simply a fiberwise-linear homeomorphism between E and F; as one might expect, this is equivalent to having isomorphisms of fibers.

Proposition 4.12. A bundle homomorphism $\varphi: E \rightarrow F$ is an isomorphism if and only if φ_{x} : $E_{x} \rightarrow F_{x}$ is a vector space isomorphism for each $x \in X$.

Proof. Suppose that $E, F \rightarrow X$ are vector bundles.
If $\varphi: E \rightarrow F$ is an isomorphism, then $\varphi_{x}: E_{x} \rightarrow F_{x}$ is a linear transformation for each $x \in X$, and since φ is bijective, each φ_{x} is necessarily bijective. Hence, φ_{x} is a vector space isomorphism for each $x \in X$.

Conversely, suppose that $\varphi_{x}: E_{x} \rightarrow F_{x}$ is a vector space isomorphism for each $x \in$ X. Then φ is bijective and has a set-theoretic inverse φ^{-1}. We need to show that φ^{-1} is continuous. Let U be an open set such that $\left.E\right|_{U}$ and $\left.F\right|_{U}$ are trivial. Let $\gamma:\left.E\right|_{U} \rightarrow U \times \mathbb{C}^{n}$ and $\gamma^{\prime}:\left.F\right|_{U} \rightarrow U \times \mathbb{C}^{n}$ be isomorphisms. Then the map

$$
\gamma^{\prime} \circ \varphi \circ \gamma^{-1}: U \times \mathbb{C}^{n} \rightarrow U \times \mathbb{C}^{n}
$$

is given by $(x, v) \mapsto\left(x, f_{x}(v)\right)$ for some transformation $f_{x}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ where $x \mapsto f_{x}$ is a continuous mapping $U \rightarrow G L(n, \mathbb{C})$. Hence, $\gamma \circ \varphi^{-1} \circ\left(\gamma^{\prime}\right)^{-1}$ is given by $(x, v) \mapsto\left(x, f_{x}^{-1}(v)\right)$. Since inversion is continuous is $G L(n \mathbb{C}), \varphi^{-1}$ is continuous on $\left.F\right|_{U}$. As this holds for all such neighborhoods U, φ^{-1} is continuous on F.

Natural operations on vector spaces such as the direct sum can be generalized to operations on vector bundles.

Proposition 4.13. Let E, F be vector bundles over X with projections p and q, respectively. Define $E \oplus F \rightarrow X$ by:

$$
E \oplus F:=\{(e, f) \in E \times F: p(e)=q(f)\} .
$$

Then $p \oplus q: E \oplus F \rightarrow X$ given by $(p \oplus q)(e, f):=p(e)=q(f)$ is a vector bundle over X. Moreover, there are natural isomorphisms $E \oplus F \cong F \oplus E$ and $E \oplus(F \oplus G) \cong(E \oplus F) \oplus G$.

Proof. The map $p \oplus q$ as defined is clearly surjective and continuous. Furthermore, $(E \oplus$ $F)_{x} \cong E_{x} \oplus F_{x}$ for each $x \in X$, and so $E \oplus F$ is a family of vector spaces. To see local triviality, fix $x \in X$ and let U_{1} and U_{2} be open neighborhoods of x with trivializations

$$
\left.E\right|_{U_{1}} \xrightarrow{\varphi_{1}} U_{1} \times \mathbb{C}^{n} \quad \text { and }\left.\quad F\right|_{U_{2}} \xrightarrow{\varphi_{2}} U_{2} \times \mathbb{C}^{m}
$$

Set $U=U_{1} \cap U_{2}$, and let $\varphi:\left.E \oplus F\right|_{U} \rightarrow U \times\left(\mathbb{C}^{n} \oplus \mathbb{C}^{m}\right)$ be given by

$$
\varphi(e, f)=\left(p(e), \varphi_{1 p(e)}(e), \varphi_{2 q(f)}(f)\right) .
$$

Then φ is an isomorphism of $\left.E \oplus F\right|_{U}$ and $U \times\left(\mathbb{C}^{n} \oplus \mathbb{C}^{m}\right)$, and hence $E \oplus F$ is locally trivial. The vector bundle isomorphisms $E \oplus F \cong F \oplus E$ and $E \oplus(F \oplus G) \cong(E \oplus F) \oplus G$ follow from the natural isomorphisms of the corresponding vector space structures.

We can similarly define the dual bundle E^{*} and quotient bundle E / F.

4.2 Vector Bundles with Compact Base Space

Vector bundles over compact base spaces posses many nice properties. We first investigate the behavior of isomorphism classes of vector bundles under homotopy, beginning with a few technical lemmas.

Lemma 4.14. Let X be compact, and let $Y \subseteq X$ be a closed subspace. Suppose that $E, F \rightarrow X$ are vector bundles, and that $\sigma:\left.\left.E\right|_{Y} \rightarrow F\right|_{Y}$ is a vector bundle homomorphism. Then σ can be extended to a vector bundle homomorphism $\tilde{\sigma}: E \rightarrow F$.

Proof. Assume without loss of generality that X is connected. Let U_{1}, \ldots, U_{n} be an open cover of X so that $\left.E\right|_{\overline{U_{k}}} \cong \overline{U_{k}} \times \mathbb{C}^{N}$ and $\left.F\right|_{\overline{U_{k}}} \cong \overline{U_{k}} \times \mathbb{C}^{M}$. Let

$$
\sigma_{k}:\left.\left.E\right|_{Y \cap \overline{U_{k}}} \rightarrow F\right|_{Y \cap \overline{U_{k}}} .
$$

be the restriction of σ to $Y \cap \overline{U_{k}}$. Then σ_{k} determines a contunuous function $f_{k}: Y \cap \overline{U_{k}} \rightarrow$ $\mathcal{M}(M, N, \mathbb{C})$ into the space of $M \times N$ matrices. By the Tietze extension theorem, f_{k} extends to a continuous map $\tilde{f}_{k}: \overline{U_{k}} \rightarrow \mathcal{M}(M, N, \mathbb{C})$. Each \tilde{f}_{k} induces a bundle homomorphism $\sigma_{k}^{\prime}:\left.\left.E\right|_{\overline{U_{k}}} \rightarrow F\right|_{\overline{U_{k}}}$. Let $\varphi_{1}, \ldots, \varphi_{n}$ be a partition of unity corresponding to the open cover U_{1}, \ldots, U_{n}. Let $p: E \rightarrow X$ be the bundle projection, and define:

$$
\tilde{\sigma}_{k}(e)=\left\{\begin{array}{cc}
\varphi_{k}(p(e)) \sigma^{\prime}(e) & e \in p^{-1}\left(U_{k}\right) \\
0 & \text { otherwise }
\end{array}\right.
$$

Then $\tilde{\sigma}=\sum_{i=1}^{n} \tilde{\sigma}_{k}$ is a bundle homomorphism which extends σ.
Lemma 4.15. Let X be any topological space, $E, F \rightarrow X$ vector bundles. If $\sigma: E \rightarrow F$ is a bundle homomorphism, then

$$
\mathcal{O}=\left\{x \in X: \sigma_{x} \text { is an isomorphism }\right\}
$$

is open in X.
Proof. Again, assume that X is connected. Suppose that \mathcal{O} is nonempty. Then the rank of E and F must be equal, since their fibers are isomorphic in at least one spot. For each $x \in X$, let U_{x} be an open neighborhood of x so that $\left.E\right|_{U_{x}} \cong U_{x} \times\left.\mathbb{C}^{N} \cong F\right|_{U_{x}}$. Let σ^{x} denote the restriction of σ to U_{x}. Then, as in the proof of Lemma 4.14, σ^{x} induces a continuous function $f_{x}: U_{x} \rightarrow \mathcal{M}(N, \mathbb{C})$. Let $\mathcal{O}_{x}=f_{x}^{-1}(G L(N, \mathbb{C}))$. Since $G L(N, \mathbb{C})$ is open and f_{x} is continuous, \mathcal{O}_{x} is open. Then $\bigcup_{x \in X} \mathcal{O}_{x}=\mathcal{O}$ is open.

Lemma 4.16. Let X be compact, and let $E \rightarrow X \times[0,1]$ be a vector bundle. If $i_{t}: X \rightarrow X \times[0,1]$ is the inclusion map given by $i_{t}(x)=(x, t)$, then $i_{0}^{*} E \cong i_{1}^{*} E$.

Proof. Fix $\tau \in[0,1]$. Then the pullback bundle $i_{\tau}^{*} E \rightarrow X$ is isomorphic to $\left.E\right|_{X \times\{\tau\}}$. If we define a new vector bundle $E^{\tau}:=i_{\tau}^{*} E \times[0,1]$ over $X \times[0,1]$ in the natural way, then $\left.\left.E\right|_{X \times\{\tau\}} \cong E^{\tau}\right|_{X \times\{\tau\}}$. Choose a bundle isomorphism: $\sigma:\left.\left.E\right|_{X \times\{\tau\}} \rightarrow E^{\tau}\right|_{X \times\{\tau\}}$. Since $X \times\{\tau\} \subseteq X \times[0,1]$, Lemma 4.14 gives an extension of σ to a bundle homomorphism $\tilde{\sigma}: E \rightarrow E^{\tau}$. By Lemma 4.15,

$$
\mathcal{O}=\left\{(x, t) \in X \times[0,1]: \tilde{\sigma}_{x, t}: E_{x, t} \rightarrow E_{x, t}^{\tau} \text { is an isomorphism }\right\}
$$

is open in $X \times[0,1]$. Moreover, $X \times\{\tau\} \subseteq \mathcal{O}$. By the Tube Lemma, there is an open interval $I_{\tau} \subseteq[0,1]$ containing τ such that $X \times I_{\tau} \subseteq \mathcal{O}$. Since $\tilde{\sigma}_{x, t}$ is an isomorphism for every $(x, t) \in X \times I_{\tau}$, it follows that $\left.\left.E\right|_{X \times I_{\tau}} \cong E^{\tau}\right|_{X \times I_{\tau}}$. Thus, for any $t \in I_{\tau}$,

$$
\left.\left.i_{t}^{*} E \cong E\right|_{X \times\{t\}} \cong E^{\tau}\right|_{X \times\{t\}} \cong i_{\tau}^{*} E .
$$

So for all $t \in I_{\tau}, i_{t}^{*} E$ are isomorphic vector bundles. Since $[0,1]$ is compact, we can find a finite open covering of such intervals and conclude that $i_{0}^{*} E \cong i_{1}^{*} E$.

Theorem 4.17. Let X and Y be compact, and let $E \rightarrow Y$ be a vector bundle. If $f, g: X \rightarrow Y$ are homotopic, then $f^{*} E \cong g^{*} E$.

Proof. Since f and g are homotopic, there exists a homotopy $F: X \times[0,1] \rightarrow Y$ such that $F_{0}=f$ and $F_{1}=g$. If $i_{t}: X \rightarrow X \times[0,1]$ is as above, then $f=F \circ i_{0}$ and $g=F \circ i_{1}$. Then

$$
f^{*} E=\left(F \circ i_{0}\right)^{*} E \cong i_{0}^{*} F^{*} E \cong i_{1}^{*} F^{*} E \cong\left(F \circ i_{1}\right)^{*} E=g^{*} E
$$

Consequences of this theorem are immediate.
Corollary 4.18. Let X and Y be compact. If $f: X \rightarrow Y$ is a homotopy equivalence, then the map f^{*} induces a bijection:

$$
f^{*}: \operatorname{Vect} Y \rightarrow \operatorname{Vect} X
$$

Proof. If $f: X \rightarrow Y$ is a homotopy equivalence, then there is a function $g: Y \rightarrow X$ such that $f \circ g$ and $g \circ f$ are homotopic to the identities i_{Y} and i_{X}, respectively. Hence, for any vector bundle $E \rightarrow X$,

$$
f^{*} g^{*} E \cong(g \circ f)^{*} E \cong\left(i_{X}\right)^{*} E \cong E
$$

and for any bundle $F \rightarrow Y$,

$$
g^{*} f^{*} F \cong(f \circ g)^{*} F \cong\left(i_{Y}\right)^{*} F \cong F
$$

so that f^{*} and g^{*} are inverses on the set of isomorphism classes of vector bundles.
Corollary 4.19. Every vector bundle over a contractible space X is trivial. Hence, Vect $X \cong \mathbb{N}$.
Proof. If X is contractible, it is homotopy equivalent to a point. Any vector bundle over a point is a single vector space, so elements of Vect X are distinguished by dimension. Thus, Vect $X \cong \mathbb{N}$.

Finally, we describe how to embed vector bundles into trivial bundles.
Proposition 4.20. Let $E \rightarrow X$ be a vector bundle with X compact. Then E is isomorphic to a subbundle of a trivial vector bundle.

Proof. Suppose that X is connected. By compactness, there exists an open cover U_{1}, \ldots, U_{m} of X with isomorphisms

$$
f_{i}:\left.E\right|_{U_{i}} \rightarrow U_{i} \times \mathbb{C}^{n}
$$

for each i. Let $P: X \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ denote the projection onto \mathbb{C}^{n}. Let $\varphi_{1}, \ldots, \varphi_{m}$ be a partition of unity corresponding to U_{1}, \ldots, U_{m}. Define $\Phi: E \rightarrow \mathbb{C}^{n} \oplus \cdots \oplus \mathbb{C}^{n}$ by

$$
\Phi(e)=\left(\varphi_{1}(p(e)) P\left(f_{1}(e)\right), \ldots, \varphi_{m}(p(e)) P\left(f_{m}(e)\right)\right) .
$$

We are abusing notation here, since each f_{i} is only defined on $\left.E\right|_{U_{i}}$. The partition of unity allows us to do this. Let $f(e):=(p(e), \Phi(e))$. It is clear that f commutes with the bundle projections. Since Φ is continuous and fiberwise linear, f is a bundle homomorphism from E to $X \times\left(\mathbb{C}^{n} \oplus \cdots \oplus \mathbb{C}^{n}\right)$. Note that Φ is injective. Indeed, for each $x \in X$, consider Φ_{x} as a map from the fiber E_{x}. If $\Phi_{x}(e)=0$ for some $e \in E_{x}$, then $\varphi_{i}(p(e)) P\left(f_{i}(e)\right)=0$ for all i, and so $f_{i}(e)=(x, 0)$ whenever this is well-defined. Since each f_{i} is a fiberwise isomorphism, it follows that Φ_{x}, and hence Φ, is injective. Using an isomorphism

$$
\mathbb{C}^{n} \oplus \cdots \oplus \mathbb{C}^{n} \cong \mathbb{C}^{n m}
$$

and setting $N=n m$ gives the desired result.
If X is not connected, work on each connected component X_{1}, \ldots, X_{k} of X and set $N=N_{1}+\cdots+N_{k}$.

Corollary 4.21. Let $E \rightarrow X$ be a vector bundle over a compact space X. There exists a vector bundle E^{\perp} such that $E \oplus E^{\perp}$ is trivial.

Proof. By Proposition 4.20, E is isomorphic to a subbundle of $X \times V$ for some finite dimensional V. Set $E^{\perp}:=(X \times V) / E$. For each $x \in X$,

$$
E_{x} \oplus E_{x}^{\perp}=E_{x} \oplus((X \times V) / E)_{x} \cong E_{x} \oplus V / E_{x} \cong V
$$

and so $E \oplus E^{\perp} \cong X \times V$.

$4.3 \quad K$-Theory

To motivate the main definition of K-theory, we recall the construction of \mathbb{Z} from \mathbb{N}. Consider the product of \mathbb{N} with itself:

$$
\mathbb{N} \times \mathbb{N}=\{(m, n): m, n \in \mathbb{N}\}
$$

Addition of elements in $\mathbb{N} \times \mathbb{N}$ is performed component wise. Place the following equivalence relation on $\mathbb{N} \times \mathbb{N}$:

$$
\left(m_{1}, n_{1}\right) \sim\left(m_{2}, n_{2}\right) \Longleftrightarrow m_{1}+n_{2}=m_{2}+n_{1} .
$$

Then \mathbb{Z} is isomorphic to the set of equivalence classes under this relation. We are formally introducing subtraction by identifying tuples such that $m_{1}-n_{1}=m_{2}-n_{2}$. An integer m is the equivalence class $[(m, 0)],-m$ is the equivalence class $[(0, m)]$, etc.

We can describe the construction of \mathbb{Z} from \mathbb{N} in a more sophisticated manner. Under addition, \mathbb{N} is an abelian monoid. The construction of \mathbb{Z} is a sort of "group-completion" of \mathbb{N}, constructed by introducing additive inverses to \mathbb{N}. This is the Grothendieck completion of \mathbb{N}, and is a construction that can be applied to a general commutative monoid. The set of isomorphism classes of vector bundles over X forms a commutative monoid under the direct sum operation. The K-theory group of X, denoted $K(X)$, is defined to be the Grothendieck completion of this monoid. We now make explicit.

Theorem 4.22 (Grothendieck Completion). Let A be an abelian monoid. There exists an abelian group $\mathcal{G}(A)$ (the Grothendieck completion of A) with the following properties.
(i) For any abelian group G and monoid homomorphism $\varphi: A \rightarrow G$, there is a monoid homomorphism $i: A \rightarrow \mathcal{G}(A)$ and a unique group homomorphism $\tilde{\varphi}: \mathcal{G}(A) \rightarrow G$ such that $\varphi=\tilde{\varphi} \circ i$.
(ii) The group $\mathcal{G}(A)$ possesing the properties in (i) is unique up to isomorphism.
(iii) If $\varphi: A \rightarrow B$ is a monoid homomorphism, then there is a unique group homomorphism $\mathcal{G}(\varphi): \mathcal{G}(A) \rightarrow \mathcal{G}(B)$ making the diagram

commute. Moreover, if $\psi: B \rightarrow C$ is a monoid homomorphism, then $\mathcal{G}(\psi \circ \varphi)=\mathcal{G}(\psi) \circ \mathcal{G}(\varphi)$, and $\mathcal{G}\left(1_{A}\right)=1_{\mathcal{G}(A)}$. Hence, $\mathcal{G}(\cdot)$ is a functor from the category of abelian monoids to the category of abelian groups.

Proof. Let $\mathcal{G}(A):=A \times A / \sim$, where \sim is the equivalence relation defined by

$$
(a, b) \sim\left(a^{\prime}, b^{\prime}\right) \quad \Longleftrightarrow \quad a+b^{\prime}+k=a^{\prime}+b+k \text { for some } k \in A
$$

Let $[(a, b)]$ denote the equivalence class of (a, b). Then $\mathcal{G}(A)$ clearly becomes an abelian monoid under the addition operation given by:

$$
[(a, b)]+\left[\left(a^{\prime}, b^{\prime}\right)\right]:=\left[\left(a+a^{\prime}, b+b^{\prime}\right)\right] .
$$

The identity element is $[(0,0)]$, since $(a, b)+(0,0)=(a, b)$. Moreover,

$$
[(a, b)]+[(b, a)]=[(a+b, a+b)]=[(0,0)]
$$

and so $\mathcal{G}(A)$ is an abelian group. We now verify (i)-(iii).
(i) The map $i: A \rightarrow \mathcal{G}(A)$ given by $i(a)=[(a, 0)]$ is a monoid homomorphism. Suppose that $\varphi: A \rightarrow G$ is any monoid homomorhpism into an abelian group G. Define

$$
\tilde{\varphi}([(a, b)]):=\varphi(a)-\varphi(b) .
$$

Clearly, $\tilde{\varphi}$ is a well-defined group homomorphism, and $\varphi=\tilde{\varphi} \circ i$. Uniqueness of $\tilde{\varphi}$ follows from the fact that the image of A under i generates all of $\mathcal{G}(A)$, and so any group homomorphism out of $\mathcal{G}(A)$ is determined by $i(A)$.
(ii) Suppose that $\hat{\mathcal{G}}(A)$ and $i^{\prime}: A \rightarrow \hat{\mathcal{G}}(A)$ satisfy the same universal properties as $\mathcal{G}(A)$ and i. Since i^{\prime} is a monoid homomorphism out of A, there exists a unique $\tilde{i}^{\prime}: \hat{\mathcal{G}}(A) \rightarrow$ $\underset{\tilde{G}}{\mathcal{G}}(A)$ such that $i^{\prime}=\tilde{i}^{\prime} \circ i$. Applying the same argument to $i: A \rightarrow \mathcal{G}(A)$ gives $\tilde{i}: \mathcal{G}(A) \rightarrow \hat{\mathcal{G}}(A)$ such that $i=\tilde{i} \circ i^{\prime}$. Hence,

$$
i=\tilde{i} \circ i^{\prime}=\tilde{i} \circ \tilde{i}^{\prime} \circ i
$$

and so $\tilde{i} \circ \tilde{i}^{\prime}$ is the identity. Similarly, $\tilde{i}^{\prime} \circ \tilde{i}$ is the identity, hence \tilde{i} and \tilde{i}^{\prime} are inverses. Thus, $\hat{\mathcal{G}}(A) \cong \mathcal{G}(A)$.
(iii) Since $\varphi \circ i_{B}: A \rightarrow \mathcal{G}(B)$ is a monoid homomorphism, the existence and uniqueness of $\mathcal{G}(\varphi)$ is given by (i). Functorality of $\mathcal{G}(\cdot)$ follows from the commutativity of

With this construction, we define K-theory and develop some of its immediate properties.

Proposition 4.23. Let X be a compact topological space. Then Vect X is an abeleian monoid under the direct sum operation.

Proof. This is imemdiate from Proposition 4.13. The identity element is the 0 vector bundle.

Definition 4.24. Let X be a compact topological space. The K-theory (or K-group) of X is $K(X):=\mathcal{G}(\operatorname{Vect} X)$.

Proposition 4.25. $K(\cdot)$ is a contravariant homotopy-invariant functor from the category of compact topological spaces to the category of abelian groups.

Proof. Homotopy invariance follows from Corollary 4.18. Indeed, if X and Y are homotopy equivalent, then Vect $X \cong \operatorname{Vect} Y$, and so $K(X) \cong K(Y)$.

If $f: X \rightarrow Y$ is continuous, then by Proposition 4.7 (see also Corollary 4.18), there is an induced monoid homomorphism $f^{*}: \operatorname{Vect} Y \rightarrow \operatorname{Vect} X$. By Theorem 4.22,

$$
K(f):=\mathcal{G}\left(f^{*}\right): K(Y) \rightarrow K(X)
$$

is a group homomorphism. Since $(g \circ f)^{*}=f^{*} \circ g^{*}$ for a continuous map $g: Y \rightarrow Z$, we have $K(g \circ f)=K(f) \circ K(g)$. If $1_{X}: X \rightarrow X$ is the identity map on X, then

$$
K\left(1_{X}\right)=\mathcal{G}\left(1_{X}^{*}\right)=\mathcal{G}\left(1_{\operatorname{Vect} X}\right)=1_{\mathcal{G}(\operatorname{Vect} X)}=1_{K(X)} .
$$

We often write elements $[([E],[F])]$ of $K(X)$, which are equivalence classes of pairs of isomorphism classes of vector bundles over X, as $[E]-[F]$.

Using Corollary 4.19, we can compute the K-theory of a particular class of topological spaces.

Example 4.26. Let X be a contractible space. Then $\operatorname{Vect} X \cong \mathbb{N}$, and so $K(X) \cong \mathcal{G}(\mathbb{N}) \cong \mathbb{Z}$. In particular, $K\left(x_{0}\right) \cong \mathbb{Z}$.

More generally, we have the following.
Proposition 4.27. Suppose that X is a disjoint union of compact spaces X_{1}, \ldots, X_{n}. Then

$$
K(X) \cong K\left(X_{1}\right) \oplus \cdots \oplus K\left(X_{n}\right)
$$

In particular, if X is a disjoint union of n contractible spaces, say a collection of n points, then $K(X) \cong \mathbb{Z}^{n}$.

Proof. If X is the disjoint union of X_{1}, \ldots, X_{n}, then a vector bundle over X is a choice of vector bundles over X_{1}, \ldots, X_{n}. Hence,

$$
\text { Vect } X \cong \operatorname{Vect} X_{1} \oplus \cdots \oplus \operatorname{Vect} X_{n}
$$

from which we get

$$
K(X) \cong K\left(X_{1}\right) \oplus \cdots \oplus K\left(X_{n}\right) .
$$

Hence, if each X_{i} is contractible,

$$
K(X) \cong \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \cong \mathbb{Z}^{n}
$$

Finally, we make the following observation about elements of $K(X)$.
Proposition 4.28. Every element of $K(X)$ can be written in the form $[E]-\left[X \times \mathbb{C}^{N}\right]$ for some N. Moreover, two elements $[E]-\left[X \times \mathbb{C}^{N}\right]$ and $[F]-\left[X \times \mathbb{C}^{M}\right]$ are equal in $K(X)$ if and only if there is an $r>0$ such that $E \oplus\left(X \times \mathbb{C}^{M+r}\right) \cong F \oplus\left(X \times \mathbb{C}^{N+r}\right)$.

Proof. Let $\left[F_{1}\right]-\left[F_{2}\right] \in K(X)$. By Proposition 4.21, there is a vector bundle F_{2}^{\perp} such that $F_{2} \oplus F_{2}^{\perp} \cong X \times \mathbb{C}^{N}$ for some N. Then
$\left[F_{1}\right]-\left[F_{2}\right]=\left(\left[F_{1}\right]-\left[F_{2}\right]\right) \oplus\left(\left[F_{2}^{\perp}\right]-\left[F_{2}^{\perp}\right]\right)=\left[F_{1} \oplus F_{2}^{\perp}\right]-\left[F_{2} \oplus F_{2}^{\perp}\right]=\left[F_{1} \oplus F_{2}^{\perp}\right]-\left[X \times \mathbb{C}^{N}\right]$.
Setting $E=F_{1} \oplus F_{2}^{\perp}$ gives the desired result.
By definition of $K(X)$ via the Grothendieck completion, $[E]-\left[X \times \mathbb{C}^{N}\right]$ and $[F]-[X \times$ $\left.\mathbb{C}^{M}\right]$ are equal if and only if there exists a vector bundle G such that

$$
E \oplus\left(X \times \mathbb{C}^{M}\right) \oplus G \cong F \oplus\left(X \times \mathbb{C}^{N}\right) \oplus G
$$

Let G^{\perp} be such that $G \oplus G^{\perp} \cong X \times \mathbb{C}^{r}$. Then

$$
\begin{aligned}
E \oplus\left(X \times \mathbb{C}^{M}\right) \oplus G \oplus G^{\perp} & \cong F \oplus\left(X \times \mathbb{C}^{N}\right) \oplus G \oplus G^{\perp} \\
E \oplus\left(X \times \mathbb{C}^{M}\right) \oplus\left(X \times \mathbb{C}^{r}\right) & \cong F \oplus\left(X \times \mathbb{C}^{N}\right) \oplus\left(X \times \mathbb{C}^{r}\right) \\
E \oplus\left(X \times \mathbb{C}^{M+r}\right) & \cong F \oplus\left(X \times \mathbb{C}^{N+r}\right) .
\end{aligned}
$$

This is a small glimpse into K-theory, but it will suffice for the development of the Atiyah-Jänich theorem, which is the subject of the next chapter.

Chapter 5

The Atiyah-Jänich Theorem

In Chapter 3, we began studying the topology of the space of Fredholm operators. Our main result was the bijection

$$
\begin{equation*}
\pi_{0}(\mathfrak{F}(\mathcal{H})) \rightarrow \mathbb{Z} \tag{5.1}
\end{equation*}
$$

induced by the classical index map $T \mapsto$ ind (T). This chapter begins with the observation that $\pi_{0}(\mathfrak{F}(\mathcal{H}))=\left[x_{0}, \mathfrak{F}(\mathcal{H})\right]$, the set of homotopy classes of maps from a single point into $\mathfrak{F}(\mathcal{H})$. That is, two Fredholm operators T and S are in the same connected component exactly when the functions $x_{0} \mapsto T$ and $x_{0} \mapsto S$ are homotopic. In the previous chapter, we learned that \mathbb{Z} is the K-theory group of a single point space. Hence, the bijection (5.1) can be written

$$
\left[x_{0}, \mathfrak{F}(\mathcal{H})\right] \rightarrow K\left(x_{0}\right) .
$$

The goal of this chapter is to generalize this result to arbitrary compact topological spaces.
Theorem 5.1 (Atiyah-Jänich). Suppose that X is a compact topological space. Then there is a group isomorphism $[X, \mathfrak{F}(\mathcal{H})] \xrightarrow{\sim} K(X)$.

This isomorphism will be given by a generalization of the Fredholm index. The construction of this index is our first order of business.

5.1 The Family Index

Consider a family of Fredholm operators parametrized by a topological space X, i.e., a continuous map $T: X \rightarrow \mathfrak{F}(\mathcal{H})$. We need to associate an element of $K(X)$, ideally resembling the classical index, to the family T. For every $x \in X, \operatorname{ker} T(x)=: \operatorname{ker} T_{x}$ and $\operatorname{coker} T_{x}$ are finite dimensional vector spaces. One might suspect that $\operatorname{ker} T:=\bigsqcup_{x \in X} \operatorname{ker} T_{x} \rightarrow X$ and coker $T \rightarrow X$, topologized as a subspace and quotient space of $X \times \mathcal{H}$ respectively, define vector bundles. If this were the case, we could define the index of the map T as

$$
\operatorname{ind}(T)=[\operatorname{ker} T]-[\operatorname{coker} T] \in K(X)
$$

If the dimension of $\operatorname{ker} T_{x}$ is constant, this is indeed possible.
Proposition 5.2. Let $T: X \rightarrow \mathfrak{F}(\mathcal{H})$ be continuous, and suppose that $\operatorname{dim} \operatorname{ker} T_{x}$ is constant for all $x \in X$. Then $\operatorname{ker} T \rightarrow X$ is a vector bundle.

Proof. The space $\bigsqcup_{x \in X} \operatorname{ker} T_{x}$ with projection $\operatorname{ker} T_{x} \mapsto x$ is clearly a family of vector spaces. We must show local triviality.

Let $x_{0} \in X$. Let $P: \mathcal{H} \rightarrow \operatorname{im} T_{x_{0}}$ and $Q: \mathcal{H} \rightarrow \operatorname{ker} T_{x_{0}}$ be the orthogonal projections. For every $x \in X$, define

$$
\hat{T}_{x}: \mathcal{H} \longrightarrow \operatorname{ker} T_{x_{0}} \oplus \operatorname{im} T_{x_{0}}
$$

by $\hat{T}_{x}(f)=\left(Q f, P T_{x} f\right)$.
Observe that $\hat{T}_{x_{0}}$ is an isomorphism. Clearly, $\hat{T}_{x_{0}}$ is surjective. If $f \in \operatorname{ker} \hat{T}_{x_{0}}$, then $Q f=0$ and $P T_{x_{0}} f=0$. The first equality implies that $f \in\left(\operatorname{ker} T_{x_{0}}\right)^{\perp}$, while the second equality implies that $T_{x_{0}} f \perp \operatorname{im} T_{x_{0}}$, which is only possible if $f \in \operatorname{ker} T_{x_{0}}$. Hence, $f=0$, and so $\hat{T}_{x_{0}}$ is injective.

As infinite dimensional Hilbert spaces, $\operatorname{ker} T_{x_{0}} \oplus \operatorname{im} T_{x_{0}} \cong \mathcal{H}$. Since $G L(\mathcal{H})$ is open in $\mathfrak{L}(\mathcal{H})$, the set of isomorphisms in $\mathfrak{L}\left(\mathcal{H}, \operatorname{ker} T_{x_{0}} \oplus \operatorname{im} T_{x_{0}}\right)$ is open. Hence, there is an open neighborhood of isomorphisms containing $\hat{T}_{x_{0}}$. Since $x \mapsto T_{x}$ is continuous and

$$
\left\|\left(\hat{T}_{x}-\hat{T}_{y}\right) f\right\|=\left\|P\left(T_{x}-T_{y}\right) f\right\| \leq\left\|T_{x}-T_{y}\right\|\|f\|
$$

the map $x \mapsto \hat{T}_{x}$ is continuous. Thus, there exists an open neighborhood U of x such that \hat{T}_{x} is an isomorphism $\mathcal{H} \xrightarrow{\sim} \operatorname{ker} T_{x_{0}} \oplus \operatorname{im} T_{x_{0}}$ for all $x \in U$.

If $f \in \operatorname{ker} T_{x}$, then $\hat{T}_{x}(f)=(Q f, 0)$, so $\hat{T}_{x}\left(\operatorname{ker} T_{x}\right) \subseteq \operatorname{ker} T_{x_{0}}$. Since \hat{T}_{x} is an isomorphism and dim $\operatorname{ker} T_{x}=\operatorname{dim} \operatorname{ker} T_{x_{0}}, \hat{T}_{x}$ induces an isomorphism $\operatorname{ker} T_{x} \rightarrow \operatorname{ker} T_{x_{0}}$ on U. Hence, $\operatorname{ker} T$ is locally trivial, and so $\operatorname{ker} T \rightarrow X$ is a vector bundle.

Similarly, when $\operatorname{dim} \operatorname{ker} T_{x}$ is constant, $\operatorname{coker} T \rightarrow X$ is a vector bundle. Unfortunately, as the dimensions of $\operatorname{ker} T_{x}$ and coker T_{x} can vary, $\operatorname{ker} T \rightarrow X$ and $\operatorname{coker} T \rightarrow X$ will in general not be vector bundles. Indeed the fact that \hat{T}_{x} was an isomorphism of $\operatorname{ker} T_{x}$ onto $\operatorname{ker} T_{x_{0}}$ in the proof above relied on the fact that their dimensions were equal. In general, all we can say is that $\hat{T}_{x}\left(\operatorname{ker} T_{x}\right) \subseteq \operatorname{ker} T_{x_{0}}$. Consider the following simple example.

Example 5.3. Let $X=\mathbb{R}$ and $\mathcal{H}=\mathbb{C}$. Define $T: \mathbb{R} \rightarrow \mathfrak{F}(\mathbb{C})$ by $T_{x}(z):=x z$. Then

$$
\operatorname{dim} \operatorname{ker} T_{x}=\left\{\begin{array}{ll}
0 & x \neq 0 \\
1 & x=0
\end{array} .\right.
$$

Since \mathbb{R} is connected, any vector bundle over \mathbb{R} must have constant rank.
In order to remedy this situation, we will alter the function T so that we can extract a well-defined vector bundle. For a single operator, we do this as follows. Let $T: \mathcal{H} \rightarrow \mathcal{H}$ be Fredholm. Let $V=(\operatorname{im} T)^{\perp}$. Define $\tilde{T}: \mathcal{H} \oplus V \rightarrow \mathcal{H}$ by $\tilde{T}(f, v)=T(f)+v$. Then \tilde{T} is surjective and $\operatorname{ker} \tilde{T} \cong \operatorname{ker} T$. Thus,

$$
\operatorname{ind}(T)=\operatorname{dim} \operatorname{ker} \tilde{T}-d
$$

where $d=\operatorname{dim} V=\operatorname{dim}$ coker T.
Our goal is to generalize the construction of \tilde{T} to a family of Fredholm operators T : $X \rightarrow \mathfrak{F}(\mathcal{H})$ when X is compact. We begin with a lemma.

Lemma 5.4. Let V be a finite dimensional subspace of \mathcal{H}. The set

$$
\mathcal{O}(V):=\{T \in \mathfrak{F}(\mathcal{H}): \operatorname{im} T+V=\mathcal{H}\}
$$

is open in $\mathfrak{F}(\mathcal{H})$.
Proof. Let $T_{0} \in \mathcal{O}(V)$. View T_{0} as a map $T_{0}: \operatorname{ker} T_{0} \oplus\left(\operatorname{ker} T_{0}\right)^{\perp} \rightarrow \mathcal{H}$. Define

$$
\begin{aligned}
U & :=\left\{T \in \mathfrak{F}(\mathcal{H}):\left.T\right|_{\left(\operatorname{ker} T_{0}\right)^{\perp}}:\left(\operatorname{ker} T_{0}\right)^{\perp} \xrightarrow{\sim} \operatorname{im} T_{0}\right\} \\
& =\left\{\left(T_{1}, T_{2}\right): T_{1} \in \mathfrak{L}\left(\operatorname{ker} T_{0}, \mathcal{H}\right), T_{2} \in G L\left(\left(\operatorname{ker} T_{0}\right)^{\perp}, \operatorname{im} T_{0}\right)\right\} .
\end{aligned}
$$

Since $G L\left(\left(\operatorname{ker} T_{0}\right)^{\perp}, \operatorname{im} T_{0}\right)$ is open, U is an open set containing T_{0}. Since im $T_{0}+V=\mathcal{H}$, $U \subseteq \mathcal{O}(V)$. Hence, $\mathcal{O}(V) \subseteq \mathfrak{F}(\mathcal{H})$ is open.

Let X be compact and $T: X \rightarrow \mathfrak{F}(\mathcal{H})$ continuous. Assume without loss of generality that X is connected; if not, work on each component separately. For each $x \in X$, set $V_{x}=\left(\operatorname{im} T_{x}\right)^{\perp}$. Then $\left\{\mathcal{O}\left(V_{x}\right)\right\}_{x \in X}$ is an open cover of $T(X)$. By compactness of $T(X)$, there is a finite subcover $\left\{\mathcal{O}\left(V_{x_{i}}\right)\right\}_{i=1}^{n}$. Let $V=V_{x_{1}}+V_{x_{2}}+\cdots+V_{x_{n}}$. Then $T(X) \subseteq \mathcal{O}(V)$, since $\mathcal{O}\left(V_{x_{i}}\right) \subseteq \mathcal{O}(V)$.

Define $\tilde{T}: X \rightarrow \mathfrak{F}(\mathcal{H} \oplus V, \mathcal{H})$ by

$$
\tilde{T}_{x}(f, v)=T_{x}(f)+v
$$

Continuity of $x \mapsto \tilde{T}_{x}$ follows from continuity of $x \mapsto T_{x}$. Since $T(X) \subseteq \mathcal{O}(V), \tilde{T}_{x}$ is surjective for each $x \in X$. Since X is connected, ind $\left(T_{x}\right)=\operatorname{ker} \tilde{T}_{x}$ is constant. Hence, by Proposition $5.2, \operatorname{ker} \tilde{T} \rightarrow X$ is a vector bundle.

Definition 5.5. Let X be compact and $T: X \rightarrow \mathfrak{F}(\mathcal{H})$ continuous. The family index (also generalized index or index bundle) of T is

$$
\operatorname{ind}(T):=[\operatorname{ker} \tilde{T}]-[X \times V] \in K(X)
$$

where $V \subseteq \mathcal{H}$ is a finite dimensional subspace with $T(X) \subseteq \mathcal{O}(V)$ and $\tilde{T}: X \rightarrow \mathfrak{F}(\mathcal{H} \oplus V, \mathcal{H})$ is given by $\tilde{T}_{x}(f, v)=T_{x}(f)+v$.

We have associated an index in $K(X)$ to each family of Fredholm operators $T: X \rightarrow$ $\mathfrak{F}(\mathcal{H})$. Next, we show that the family index is well-defined, homotopy invariant, and a homomorphism.

Lemma 5.6. The family index is well-defined, i.e., ind (T) does not depend on the choice of subspace V.

Proof. Suppose that V^{\prime} is another finite dimensional subspace such with $T(X) \subseteq \mathcal{O}\left(V^{\prime}\right)$. Since $V+V^{\prime}$ is another such subspace, we can assume without loss of generality that $V \subseteq$ V^{\prime}. Moreover, it suffices to check the case when V^{\prime} extends V by one dimension.

Suppose that $V^{\prime}=V+\operatorname{Span}(g)$ for some $g \notin V$. Any element of V^{\prime} can be written $v+\lambda g$ for some $v \in V$ and $\lambda \in \mathbb{C}$. If $\tilde{T}: X \rightarrow \mathfrak{F}(\mathcal{H} \oplus V, \mathcal{H})$ and $\hat{T}: X \rightarrow \mathfrak{F}\left(\mathcal{H} \oplus V^{\prime}, \mathcal{H}\right)$ are defined by

$$
\tilde{T}_{x}(f, v)=T_{x}(f)+v \quad \text { and } \quad \hat{T}_{x}(f, v+\lambda g)=T_{x}(f)+v+\lambda g
$$

then we need to show that $[\operatorname{ker} \tilde{T}]-[X \times V]=[\operatorname{ker} \hat{T}]-\left[X \times V^{\prime}\right]$.
Define a homotopy \hat{T}^{t} by $\hat{T}_{x}^{t}(f, v+\lambda g)=T_{x}(f)+v+(1-t) \lambda g$. Since \hat{T}_{x}^{t} is surjective for all $t \in[0,1]$, $\operatorname{ker} \widehat{T}^{t} \rightarrow X \times[0,1]$ is a vector bundle. Let $i_{t}: X \rightarrow X \times[0,1]$ be the usual inclusion map. By Lemma 4.16,

$$
\begin{equation*}
i_{0}^{*}\left(\operatorname{ker} \hat{T}^{t}\right) \cong i_{1}^{*}\left(\operatorname{ker} \hat{T}^{t}\right) . \tag{5.2}
\end{equation*}
$$

Note that $i_{0}^{*}\left(\operatorname{ker} \hat{T}^{t}\right) \cong \operatorname{ker} \hat{T}$, and $i_{1}^{*}\left(\operatorname{ker} \hat{T}^{t}\right) \cong \operatorname{ker} S$, where $S: X \rightarrow \mathfrak{F}(\mathcal{H} \oplus V \oplus \mathbb{C}, \mathcal{H})$ is defined by $S_{x}(f, v, \lambda)=T_{x}(f)+v$. Since $\operatorname{ker} S \cong \operatorname{ker} \tilde{T} \oplus(X \times \mathbb{C})$, (5.2) gives $\operatorname{ker} \hat{T} \cong$ $\operatorname{ker} \tilde{T} \oplus(X \times \mathbb{C})$. Hence,

$$
\operatorname{ker} \hat{T} \oplus(X \times V) \cong \tilde{T} \oplus(X \times \mathbb{C}) \oplus(X \times V)
$$

Since $V^{\prime} \cong V \oplus \mathbb{C}$,

$$
[\operatorname{ker} \hat{T}]-\left[X \times V^{\prime}\right]=[\operatorname{ker} \tilde{T}]-[X \times V]
$$

as desired.
Next, we show that the family index is homotopy-invariant.

Lemma 5.7. If $S, T: X \rightarrow \mathfrak{F}(\mathcal{H})$ are homotopic, then $\operatorname{ind}(T)=\operatorname{ind}(S)$. Hence, the map

$$
\text { ind }:[X, \mathfrak{F}(\mathcal{H})] \longrightarrow K(X)
$$

is well-defined.
Proof. Since S and T are homotopic, there exists a homotopy $F: X \times[0,1] \rightarrow \mathfrak{F}(\mathcal{H})$ such that $S=F \circ i_{0}$ and $T=F \circ i_{1}$. By functorality of $K(\cdot)$, ind $(S)=\operatorname{ind}\left(F \circ i_{0}\right)=i_{0}^{*} \operatorname{ind}(F)$. By Lemma 4.16, i_{0}^{*} ind $(F)=i_{1}^{*}$ ind (F). Hence,

$$
\operatorname{ind}(S)=i_{1}^{*} \operatorname{ind}(F)=\operatorname{ind}\left(F \circ i_{1}\right)=\operatorname{ind}(T) .
$$

Finally, we consider the additive properties of the index.
Lemma 5.8. Suppose that $T, S: X \rightarrow \mathfrak{F}(\mathcal{H})$. Define $T \oplus S: X \rightarrow \mathfrak{F}(\mathcal{H} \oplus \mathcal{H})$ by

$$
(T \oplus S)_{x}=\left[\begin{array}{cc}
T_{x} & 0 \\
0 & S_{x}
\end{array}\right]
$$

for $x \in X$. Then ind $(T \oplus S)=\operatorname{ind}(T) \oplus \operatorname{ind}(S)$.
Proof. Let V and W be finite dimensional subspaces such that $T(X) \subseteq \mathcal{O}(V)$ and $S(X) \subseteq$ $\mathcal{O}(W)$, and let \tilde{T} and \tilde{S} be defined as usual. Then $T \oplus S \subseteq \mathcal{O}(V \oplus W)$, and $\widetilde{T \oplus S}=\tilde{T} \oplus \tilde{S}$. Hence,

$$
\operatorname{ind}(T \oplus S)=[\operatorname{ker}(\tilde{T} \oplus \tilde{S})]-[X \times(V \oplus W)]
$$

There is an obvious isomorphism of vector bundles $\operatorname{ker}(\tilde{T} \oplus \tilde{S}) \cong \operatorname{ker} \tilde{T} \oplus \operatorname{ker} \tilde{S}$. Thus,

$$
\begin{aligned}
\operatorname{ind}(T \oplus S) & =[\operatorname{ker}(\tilde{T} \oplus \tilde{S})]-[X \times(V \oplus W)] \\
& =[\operatorname{ker} \tilde{T}] \oplus[\operatorname{ker} \tilde{S}]-([X \times V] \oplus[X \times W]) \\
& =([\operatorname{ker} \tilde{T}]-[X \times V]) \oplus([\operatorname{ker} \tilde{S}]-[X \times W]) \\
& =\operatorname{ind}(T) \oplus \operatorname{ind}(S) .
\end{aligned}
$$

Lemma 5.9. Let $T, S: X \rightarrow \mathfrak{F}(\mathcal{H})$. Define $T S: X \rightarrow \mathfrak{F}(\mathcal{H})$ by $(T S)_{x}=T_{x} S_{x}$. Then ind $(T S)=$ ind $(T) \oplus \operatorname{ind}(S)$.

Proof. Let $T, S: X \rightarrow \mathfrak{F}(\mathcal{H})$. The identity map $I: X \rightarrow \mathfrak{F}(\mathcal{H})$ given by $I_{x}=I$ has index [0]. By the previous lemma,

$$
\operatorname{ind}(T S)=\operatorname{ind}(T S) \oplus \operatorname{ind}(I)=\operatorname{ind}(T S \oplus I)
$$

Consider the following homotopy for $0 \leq t \leq \pi / 2$:

$$
\left[\begin{array}{cc}
T S & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & S^{-1}
\end{array}\right]\left[\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & S
\end{array}\right]
$$

When $t=0$,

$$
\left[\begin{array}{cc}
T S & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & S^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & S
\end{array}\right]=\left[\begin{array}{cc}
T S & 0 \\
0 & I
\end{array}\right] .
$$

When $t=\pi / 2$,

$$
\begin{aligned}
{\left[\begin{array}{cc}
T S & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & S^{-1}
\end{array}\right]\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & S
\end{array}\right] } & =\left[\begin{array}{cc}
0 & -T S \\
I & 0
\end{array}\right]\left[\begin{array}{cc}
0 & I \\
-S^{-1} & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & S
\end{array}\right] \\
& =\left[\begin{array}{cc}
T & 0 \\
0 & S
\end{array}\right]
\end{aligned}
$$

Hence, $T S \oplus I$ and $T \oplus S$ are homotopic maps. Thus,

$$
\operatorname{ind}(T S)=\operatorname{ind}(T S \oplus I)=\operatorname{ind}(T \oplus S)=\operatorname{ind}(T) \oplus \operatorname{ind}(S)
$$

Pointwise composition of families of Fredholm operators turns $[X, \mathcal{F}(\mathcal{H})]$ into an abelian monoid with identity element $x \mapsto I$. On the other hand, $K(X)$ is an ableian monoid under the direct sum. We have shown that the family index is a well-defined map from $[X, \mathfrak{F}(\mathcal{H})]$ to $K(X)$ satisfying ind $(T S)=\operatorname{ind}(T) \oplus \operatorname{ind}(S)$. This proves the following theorem, which summarizes our knowledge of the family index thus far.

Theorem 5.10. Let X be compact. The family index is a monoid homomorphism $[X, \mathfrak{F}(\mathcal{H})] \rightarrow$ $K(X)$.

5.2 Kuiper's Theorem

One of the significant results from Chapter 3 is that the space of invertible operators on a Hilbert space is path connected. In Section 5.3, we will complete the proof of Theorem 5.1 by proving bijectivity of the index, which relies on a generalization of the aforementioned result due to Nicolaas Kuiper.

Theorem 5.11 (Kuiper). Let X be compact, and let $G L(\mathcal{H})$ be the space of invertible bounded operators on an infinite dimensional Hilbert space. Then $[X, G L(\mathcal{H})]=0$.

The proof of Theorem 5.11 is quite direct in that we will consider a continuous map f : $X \rightarrow G L(\mathcal{H})$ and simply construct a homotopy from f to the identity $x \mapsto I$. The will be done in a series of steps. We follow Kuiper's approach closely [15].
Step 1: Reducing to Finite Dimensions. Let $f: X \rightarrow G L(\mathcal{H})$ be continuous. We will show that f is homotopic to a map whose image is contained in a finite dimensional vector space in $\mathfrak{F}(\mathcal{H})$. Explicitly,

Lemma 5.12. The map f is homotopic to a map f_{1} such that $f_{1}(X) \subseteq G L(\mathcal{H})$ is contained in a finite dimensional subspace of $\mathfrak{L}(\mathcal{H})$.

Proof. Let $f_{0}=f$. Recall that $G L(\mathcal{H})$ is open in $\mathfrak{L}(\mathcal{H})$. For each $x \in X$, place an open ball around $f_{0}(x)$ in $G L(\mathcal{H})$. For reasons that will soon become apparent, we require the radius ϵ of each ball to be small enough so that the ball of radius 3ϵ is still in $G L(\mathcal{H})$. This gives an open cover of $f_{0}(X)$. Since f_{0} is continuous and X is compact, $f_{0}(X)$ is compact, and so there is a finite subcover of open balls U_{1}, \ldots, U_{N} centered at $f_{0}\left(x_{1}\right), \ldots, f_{0}\left(x_{N}\right)$. Let $\varphi_{1}, \ldots, \varphi_{N}$ be a partition of unity corresponding to U_{1}, \ldots, U_{N}, and define, for each $T \in \bigcup U_{i}$,

$$
h_{t}(T)=(1-t) T+t \sum_{i=1}^{N} \varphi_{i}(T) f_{0}\left(x_{i}\right) .
$$

Then h_{0} is the identity on $\bigcup U_{i}$, and the image of h_{1} is contained in a finite dimensional vector space spanned by $f_{0}\left(x_{1}\right), \ldots, f_{0}\left(x_{N}\right)$. Moreover, $h_{t}(T) \in G L(\mathcal{H})$ for all t. To see this,
let $U_{i_{1}}, \ldots, U_{i_{k}}$ be the open balls such that $T \in U_{i_{j}}$. Let U^{\prime} denote the ball from this set of largest radius ϵ. Then by the triangle equality, each $U_{i_{j}} \subseteq 3 U^{\prime}$, where $3 U^{\prime}$ is the ball of radius 3ϵ with the same center as U^{\prime}. Since open balls are convex, it follows that the convex hull of $T, f_{0}\left(x_{i_{1}}\right), \ldots, f_{0}\left(x_{i_{k}}\right)$ is contained in $3 U^{\prime}$, which is contained in $G L(\mathcal{H})$ by choice of the open cover. Hence, $h_{t}(T)$ is contained in $G L(\mathcal{H})$.

Set $f_{t}:=h_{t} f_{0}$ for $0 \leq t \leq 1$. Then $f_{0}=f$, and $f_{1}=h_{1} f_{0}$ is contained in a finite dimensional vector subspace of $\mathfrak{L}(\mathcal{H})$.

Step 2: Planar Rotations. The next step of the homotopy involves a series of rotations in finite dimensional subspaces of \mathcal{H}. We inductively define a sequence of unit vectors and subspaces as follows.

First, to simplify notation, let g_{1}, \ldots, g_{N} be the operators $f_{0}\left(x_{1}\right), \ldots, f_{0}\left(x_{n}\right)$. Let W be the vector space spanned by g_{1}, \ldots, g_{N}.

Let $a_{1} \in \mathcal{H}$ be any unit vector. Consider the vectors $g_{1}\left(a_{1}\right), \ldots, g_{N}\left(a_{1}\right)$; let a_{1}^{0} be a unit vector orthogonal to $a_{1}, g_{1}\left(a_{1}\right), \ldots, g_{N}\left(a_{1}\right)$, and let $A_{1} \subseteq \mathcal{H}$ be an $N+2$ dimensional subspace containing $a_{1}, g_{1}\left(a_{1}\right), \ldots, g_{N}\left(a_{1}\right), a_{1}^{0}$.

Next, suppose that a_{j}, a_{j}^{0}, and A_{j} have been defined for $j<i$. We want to define a_{i} so that $a_{i}, g_{1}\left(a_{i}\right), \ldots, g_{N}\left(a_{i}\right)$ are orthogonal to A_{j} for all $j<i$. Consider the space

$$
\tilde{A}_{i}=\bigcap_{j=1}^{i-1}\left[A_{j}^{\perp} \cap\left(\bigcap_{\ell=1}^{N} g_{\ell}^{-1}\left(A_{j}^{\perp}\right)\right)\right] .
$$

We claim that \tilde{A}_{i} is nonempty. Since each A_{j} is finite dimensional, A_{j}^{\perp} is finite codimensional. Invertibility of the g_{ℓ} 's implies the same for $g_{\ell}^{-1}\left(A_{j}^{\perp}\right)$. In general, we have $V^{\perp} \cap W^{\perp}=(V+W)^{\perp}$ for finite dimensional V, W. Thus, since the $A_{j}{ }^{\prime}$ s and $g_{\ell}^{-1}\left(A_{j}\right)^{\prime} \mathrm{s}$ are finite dimensional, the intersection of their orthogonal complements is the orthogonal complement of a finite dimensional space, and is therefore nonempty. Hence, by choosing a unit vector a_{i} in \tilde{A}_{i}, we have $a_{i} \in A_{j}^{\perp}$ and $g_{\ell}\left(a_{i}\right) \in A_{j}^{\perp}$ for all j. Let a_{i}^{0} be a unit vector orthogonal to $a_{i}, g_{1}\left(a_{i}\right), \ldots, g_{N}\left(a_{i}\right)$, and let A_{i} be an $N+2$ dimensional subspace containing these $N+2$ vectors.

The homotopy that we construct will be based on rotating the vectors in each A_{i} in a particular way. First, choose $C \geq 1$ such that $\left\|f_{1}(x)\right\| \leq C$ nd $\left\|f_{1}(x)^{-1}\right\| \leq C$ for all $x \in X$. Define the following space:

$$
W_{C}:=\left\{w \in W \cap G L(\mathcal{H}):\|w\| \leq C,\left\|w^{-1}\right\| \leq C\right\}
$$

Then $f_{1}(X) \subseteq W_{C}$, and W_{C} is closed under inversion. By construction, for every $w \in W_{C}$, $w\left(a_{i}\right) \in A_{i}$, and that $w\left(a_{i}\right)$ is orthogonal to a_{i}^{0}. Define the function

$$
k_{i}: W_{C} \times[0,1] \rightarrow G L\left(A_{i}\right)
$$

as follows. If $0 \leq t \leq \frac{1}{2}$, then $k_{i}(w, t)$ is a rotation in the plane spanned by $w\left(a_{i}\right)$ and a_{i}^{0} :

$$
k_{i}(w, t):=\left\{\begin{array}{cc}
{\left[\begin{array}{cc}
\cos (\pi t) & -\sin (\pi t) \\
\sin (\pi t) & \cos (\pi t)
\end{array}\right]} & \text { on } \operatorname{Span}\left(w\left(a_{i}\right),\left\|w\left(a_{i}\right)\right\| a_{i}^{0}\right) \\
I & \text { on } \operatorname{Span}\left(w\left(a_{i}\right),\left\|w\left(a_{i}\right)\right\| a_{i}^{0}\right)^{\perp}
\end{array}\right.
$$

If $\frac{1}{2} \leq t \leq 1$, then $k_{i}(w, t)$ is a rotation in the plane spanned by a_{i}^{0} and a_{i} :

$$
k_{i}(w, t):=\left\{\begin{array}{cc}
{\left[\begin{array}{cc}
\cos \left(\pi\left(t-\frac{1}{2}\right)\right) & -\sin \left(\pi\left(t-\frac{1}{2}\right)\right) \\
\sin \left(\pi\left(t-\frac{1}{2}\right)\right) & \cos \left(\pi\left(t-\frac{1}{2}\right)\right)
\end{array}\right] k_{i}\left(w, \frac{1}{2}\right)} & \text { on } \operatorname{Span}\left(a_{i}^{0}, a_{i}\right) \\
k_{i}\left(w, \frac{1}{2}\right) & \text { on } \operatorname{Span}\left(a_{i}^{0}, a_{i}\right)^{\perp}
\end{array}\right.
$$

Each of the rotation matrices above are defined with respect to the bases

$$
\left\{w\left(a_{i}\right),\left\|w\left(a_{i}\right)\right\| a_{i}^{0}\right\} \text { and }\left\{a_{i}^{0}, a_{i}\right\}
$$

respectively.
Lemma 5.13. For each i, k_{i} is continuous in both w and t.
Proof. Let $w, w^{\prime} \in W_{C}$ and let $t, t^{\prime} \in[0,1]$. The triangle inequality gives

$$
\begin{aligned}
\left\|k_{i}\left(w^{\prime}, t^{\prime}\right)-k_{i}(w, t)\right\| \leq & \left\|k_{i}\left(w^{\prime}, t^{\prime}\right)-k_{i}\left(w^{\prime}, t\right)\right\|+\left\|k_{i}\left(w^{\prime}, t\right)-k_{i}(w, t)\right\| \\
\leq & \left\|k_{i}\left(w^{\prime}, t^{\prime}\right) k_{i}\left(w^{\prime}, t\right)^{-1}-I\right\|\left\|k_{i}\left(w^{\prime}, t\right)^{-1}\right\|+ \\
& \left\|k_{i}\left(w^{\prime}, t\right) k_{i}(w, t)^{-1}-I\right\|\left\|k_{i}(w, t)^{-1}\right\| \\
= & \left\|k_{i}\left(w^{\prime}, t^{\prime}\right) k_{i}\left(w^{\prime}, t\right)^{-1}-I\right\|+\left\|k_{i}\left(w^{\prime}, t\right) k_{i}(w, t)^{-1}-I\right\| .
\end{aligned}
$$

The last equality follows from the fact that $k_{i}(w, t)$ is unitary.
First, consider the case where $t, t^{\prime} \in[0,1 / 2]$. Then $k_{i}\left(w^{\prime}, t^{\prime}\right) k_{i}\left(w^{\prime}, t\right)^{-1}$ is a rotation in a plane by an angle of $\theta=\pi\left(\left|t^{\prime}-t\right|\right)$. Since the length of a chord of a circle between two points is less than the arc length of the portion of circle connecting those points, it follows that

$$
\left\|k_{i}\left(w^{\prime}, t^{\prime}\right) k_{i}\left(w^{\prime}, t\right)^{-1}-I\right\| \leq 2 \pi \frac{\theta}{2 \pi}=\pi\left(\left|t^{\prime}-t\right|\right) .
$$

Next, we consider $k_{i}\left(w^{\prime}, t\right) k_{i}(w, t)^{-1}$ for $t^{\prime}, t \in[0,1 / 2]$. Suppose that $w^{\prime} \neq w$. Since $w^{\prime}, w \in$ W_{C}, we have $\left\|w^{\prime}\left(a_{i}\right)\right\|,\left\|w\left(a_{i}\right)\right\| \geq C^{-1}$. Let α be the angle between $w^{\prime}\left(a_{i}\right)$ and $w\left(a_{i}\right)$. Since an isosceles triangle with legs of length C^{-1} and angle α has base length $2 C^{-1} \sin (\alpha / 2)$, it follows that

$$
\begin{equation*}
2 C^{-1} \sin (\alpha / 2) \leq\left\|w^{\prime}\left(a_{i}\right)-w\left(a_{i}\right)\right\| \leq\left\|w^{\prime}-w\right\| . \tag{5.3}
\end{equation*}
$$

By construction, both $w^{\prime}\left(\alpha_{i}\right)$ and $w\left(\alpha_{i}\right)$ are orthogonal to a_{i}^{0}. Let E be the vector space spanned by $\alpha_{i}^{0}, w\left(\alpha_{i}\right)$ and $w^{\prime}\left(\alpha_{i}\right)$. Since $k_{i}\left(w^{\prime}, t\right) k_{i}(w, t)^{-1}$ comprises of rotations inside E, it leaves E^{\perp} fixed. Moreover, since $k_{i}\left(w^{\prime}, t\right) k_{i}(w, t)^{-1}$ is the product of two rotations about an angle α, by the same argument as above, $\left\|k_{i}\left(w^{\prime}, t\right) k_{i}(w, t)^{-1}-I\right\| \leq 2 \cdot 2 \sin (\alpha / 2)$. With equation (5.3), this implies that

$$
\left\|k_{i}\left(w^{\prime}, t\right) k_{i}(w, t)^{-1}-I\right\| \leq 2 C\left\|w^{\prime}-w\right\| .
$$

Thus, for $t^{\prime}, t \in[0,1 / 2]$,

$$
\left\|k_{i}\left(w^{\prime}, t^{\prime}\right)-k_{i}(w, t)\right\| \leq \pi\left(\left|t^{\prime}-t\right|\right)+2 C\left\|w^{\prime}-w\right\|
$$

and so k_{i} is continuous in w and t for $t \in[0,1 / 2]$.
Next, suppose that $t^{\prime}, t \in[1 / 2,1]$. As before, $k_{i}\left(w^{\prime}, t^{\prime}\right) k_{i}\left(w^{\prime}, t\right)^{-1}$ is a planar rotation by an angle of $\theta=\pi\left(\left|t^{\prime}-t\right|\right)$, and so

$$
\left\|k_{i}\left(w^{\prime}, t^{\prime}\right) k_{i}\left(w^{\prime}, t\right)^{-1}-I\right\| \leq 2 \pi \frac{\theta}{2 \pi}=\pi\left(\left|t^{\prime}-t\right|\right) .
$$

For $1 / 2 \leq t \leq 1$, the rotation is in the $a_{i}^{0}-a_{i}$ plane, hence $k_{i}\left(w^{\prime}, t\right) k_{i}(w, t)^{-1}$ is the identity. Thus,

$$
\left\|k_{i}\left(w^{\prime}, t\right) k_{i}(w, t)^{-1}-I\right\|=0
$$

Hence, for $t^{\prime}, t \in[1 / 2,1]$,

$$
\left\|k_{i}\left(w^{\prime}, t^{\prime}\right)-k_{i}(w, t)\right\| \leq \pi\left(\left|t^{\prime}-t\right|\right)
$$

and so k_{i} is continuous in both t and w. Hence, k_{i} is continuous in both t and w for $t \in$ $[0,1]$.

The continuity of each rotation k_{i} on A_{i} did not depend on the choice of i. This allows us to execute all the rotations at once in a continuous map.

Lemma 5.14. Let $k: W_{C} \times[0,1] \rightarrow G L(\mathcal{H})$ be defined by

$$
k(w, t):=\left\{\begin{array}{cc}
k_{i}(w, t) & \text { on } A_{i} \\
I & \text { on }\left(A_{1} \oplus A_{2} \oplus \cdots\right)^{\perp}
\end{array} .\right.
$$

Then k is continuous in w and t.
Proof. Let $x \in \mathcal{H}$. Let x_{i} be the orthogonal projection of x_{i} onto A_{i}, and let x_{0} be the orthogonal projection of x onto $\left(A_{1} \oplus A_{2} \oplus \cdots\right)^{\perp}$. Then

$$
x=x_{0}+x_{1}+x_{2} \cdots
$$

Let $w^{\prime}, w \in W_{C}$ and $t^{\prime}, t \in[0,1]$. Then

$$
\begin{aligned}
\left\|\left(k\left(w^{\prime}, t^{\prime}\right)-k(w, t)\right) x\right\| & =\left\|\left(k\left(w^{\prime}, t^{\prime}\right)-k(w, t)\right)\left(\sum_{i=0}^{\infty} x_{i}\right)\right\| \\
& =\left\|\left(k\left(w^{\prime}, t^{\prime}\right)-k(w, t)\right) x_{0}+\sum_{i=1}^{\infty}\left(k\left(w^{\prime}, t^{\prime}\right)-k(w, t)\right) x_{i}\right\| \\
& =\left\|\sum_{i=1}^{\infty}\left(k_{i}\left(w^{\prime}, t^{\prime}\right)-k_{i}(w, t)\right) x_{i}\right\|
\end{aligned}
$$

Since the A_{i} 's are orthogonal, we can apply the Pythagorean Theorem, followed by our continuity estimates from above:

$$
\begin{aligned}
& =\sqrt{\sum_{i=1}^{\infty}\left\|\left(k_{i}\left(w^{\prime}, t^{\prime}\right)-k_{i}(w, t)\right) x_{i}\right\|^{2}} \\
& \leq \sqrt{\sum_{i=1}^{\infty}\left\|\left[\pi\left(\left|t^{\prime}-t\right|\right)+2 C\left\|w^{\prime}-w\right\|\right] x_{i}\right\|^{2}} \\
& =\sqrt{\left[\pi\left(\left|t^{\prime}-t\right|\right)+2 C\left\|w^{\prime}-w\right\|\right]^{2} \sum_{i=1}^{\infty}\left\|x_{i}\right\|^{2}} \\
& \leq\left[\pi\left(\left|t^{\prime}-t\right|\right)+2 C\left\|w^{\prime}-w\right\|\right]\|x\|
\end{aligned}
$$

Therefore,

$$
\left\|k\left(w^{\prime}, t^{\prime}\right)-k(w, t)\right\| \leq \pi\left(\left|t^{\prime}-t\right|\right)+2 C\left\|w^{\prime}-w\right\|
$$

so k is continuous in both w and t.
With these technicalities out of the way, we can construct the next step of our homotopy. By the definition of k, for any $w, k(w, 0)$ is the identity transformation (at time 0 we have not rotated anything), and $k(w, 1)$ rotates $w\left(a_{i}\right)$ in the direction of a_{i}. Explicitly, $k(w, 1)\left(w\left(a_{i}\right)\right)=\left\|w\left(a_{i}\right)\right\| a_{i}$. In particular, for $x \in X, k\left(f_{1}(x), 1\right)\left(f_{1}(x)\left(a_{i}\right)\right)=\left\|f_{1}(x)\left(a_{i}\right)\right\| a_{i}$. This gives us the following lemma:

Lemma 5.15. The map $f: X \rightarrow G L(\mathcal{H})$ is homotopic to a map $f_{2}: X \rightarrow G L(\mathcal{H})$ such that

$$
f_{2}(x)\left(a_{i}\right)=\left\|f_{1}(x)\left(a_{i}\right)\right\| a_{i}
$$

for every a_{i} and every $x \in X$.

Proof. For $1 \leq t \leq 2$, define $f_{t}(x)=k\left(f_{1}(x), t-1\right) f_{1}(x)$. This map is continuous, and when $t=1$ we have

$$
k\left(f_{1}(x), 0\right) f_{1}(x)=I f_{1}(x)=f_{1}(x)
$$

When $t=2$,

$$
f_{2}(x)\left(a_{i}\right)=k\left(f_{1}(x), 1\right) f_{1}(x)\left(a_{i}\right)=\left\|f_{1}(x)\left(a_{i}\right)\right\| a_{i} .
$$

Since f is homotopic to f_{1}, f is homotopic to f_{2}.
Step 3: Scaling Down. Let \mathcal{H}^{\prime} denote the closure of the span of the vectors a_{1}, a_{2}, \ldots. Let $\mathcal{H}_{1}=\left(\mathcal{H}^{\prime}\right)^{\perp}$. By the previous lemma, any transformation $f_{2}(x)$ acts by scaling \mathcal{H}^{\prime}. The next step of the homotopy is to "pull back" all of the scaled a_{i} 's so that $f_{3}(x)\left(a_{i}\right)=a_{i}$ for all i. We achieve this as follows. For $t \in[2,3]$, define:

$$
\left\{\begin{array}{rlrl}
f_{t}(x)\left(a_{i}\right)= & (3-t) f_{2}(x)\left(a_{i}\right)+(t-2) a_{i} & i=1,2, \ldots \\
& f_{t}(x) v=f_{2}(x) v & v \in \mathcal{H}_{1}
\end{array} .\right.
$$

When $t=2$, this definition agrees with the definition of f_{2}. When $t=3, f_{3}(x)\left(a_{i}\right)=a_{i}$ for each i, and $f_{3}(x) v=f_{2}(s) v$ for $v \in \mathcal{H}_{1}$. In effect, we have homotoped f to the identity on \mathcal{H}^{\prime}. All that remains is to homotope f_{2} to the identity on \mathcal{H}_{1}.
Step 4: Projecting onto \mathcal{H}_{1}. Let P^{\prime} denote the projection onto \mathcal{H}^{\prime}, and let P_{1} be the projection onto \mathcal{H}_{1}. Consider the following space of operators:

$$
\mathcal{E}=\left\{w \in G L(\mathcal{H}): w=P^{\prime}+w P_{1}\right\} .
$$

In words, \mathcal{E} is the space of operators that act as the identity on \mathcal{H}^{\prime}. Note that $f_{3}(x) \in \mathcal{E}$ for all $x \in X$. We define a map $\omega: \mathcal{E} \rightarrow G L(\mathcal{H})$ by

$$
\omega(w)=P^{\prime}+P_{1} w P_{1} \quad \text { for all } w \in \mathcal{E}
$$

Then $\omega(w)$ acts as the identity on \mathcal{H}^{\prime}, and $\omega(w)\left(\mathcal{H}_{1}\right)=\mathcal{H}_{1}$. This allows us to construct the next step of the homotopy. Define

$$
f_{t}(x)=(4-t) f_{3}(x)+(t-3) \omega\left(f_{3}(x)\right) ; \quad 3 \leq t \leq 4 .
$$

When $t=3$, we have $f_{3}(x)$, and when $t=4$, we have $\omega\left(f_{3}(x)\right)$, which is the identity on \mathcal{H}^{\prime} and maps \mathcal{H}_{1} to \mathcal{H}_{1}.
Step 5: Contracting onto I. Our homotopy thus far has morphed the image of X under f in $G L(\mathcal{H})$ so that it is contained in the following subspace:

$$
\left\{g \in G L(\mathcal{H}):\left.g\right|_{\mathcal{H}^{\prime}}=I \text { and } g\left(\mathcal{H}_{1}\right)=\mathcal{H}_{1}\right\} .
$$

In Chapter 3, we proved a general result about the contractibility of such spaces (see Lemma 3.16). This gives us the final step in our homotopy.

Proof of Theorem 5.11. Let γ be defined as in the proof of Lemma 3.16. For $4 \leq t \leq 5$, define

$$
f_{t}(x)=\gamma_{\pi(t-4)}\left(f_{4}(x)\right) .
$$

When $t=4, \gamma_{0}\left(f_{4}(x)\right)=f_{4}(x)$, and when $t=5$, we have $f_{5}(x)=\gamma_{\pi}\left(f_{4}(x)\right)=I$. Hence $f_{t}(x)$ for $0 \leq t \leq 5$ is a homotopy for which $f_{0}=f$ and f_{5} is the constant map $X \mapsto I$. Therefore, every continuous map $f: X \rightarrow G L(\mathcal{H})$ is homotopic to the constant map, and so $[X, G L(\mathcal{H})]=0$.

Corollary 5.16. For $n=0,1,2, \ldots, \pi_{n}(G L(\mathcal{H})=0$.
Proof. For any n, S^{n} is compact. By Kuiper's Theorem, $\left[S^{n}, G L(\mathcal{H})\right]=0$, and so $\pi_{n}(G L(\mathcal{H}))$.

Though we do not prove it here, it is worth mentioning that another corollary of Kuiper's Theorem is the contractibility of $G L(\mathcal{H})$. For details, see Kuiper's paper [15].

5.3 Bijectivity of the Index

Summarizing our progress, we have shown that for a compact space X, there is a welldefined monoid homomorphism $[X, \mathfrak{F}(\mathcal{H})] \rightarrow K(X)$ given by the family index. In this section, we demonstrate the bijectivity of the index. As a bijective homomorphism of monoids, $[X, \mathfrak{F}(\mathcal{H})]$ is a group, and the family index is actually a group isomorphism.

We begin with surjectivity. Recall that every element of $K(X)$ can be written in the form $[E]-\left[X \times \mathbb{C}^{k}\right]$. We produce a family of Fredholm operators with index $-\left[X \times \mathbb{C}^{k}\right]$, and then a family with index $[E]$. Surjectivity then follows from the additive property of the index.

Lemma 5.17. Let \mathcal{H} have orthonormal basis e_{1}, e_{2}, \ldots. For each nonnegative integer k, let S_{k} be the shift operator $S_{k}\left(e_{j}\right)=e_{j-k}$. Then if $S_{k}: X \rightarrow \mathfrak{F}(\mathcal{H})$ denotes the constant map, then ind $\left(S_{k}\right)=\left[X \times \mathbb{C}^{k}\right]$ and $\operatorname{ind}\left(S_{-k}\right)=-\left[X \times \mathbb{C}^{k}\right]$.
Proof. Let $k>0$ be an integer. Since $S_{k}: \mathcal{H} \rightarrow \mathcal{H}$ is surjective, ind $\left(S_{k}\right)=\left[\operatorname{ker} S_{k}\right]$. Since ker $S_{k}=\operatorname{Span}\left(e_{1}, \ldots, e_{k}\right) \cong \mathbb{C}^{k}$,

$$
\left[\operatorname{ker} S_{k}\right]=\left[\bigsqcup_{x \in X} \operatorname{ker} S_{k}\right]=\left[X \times \mathbb{C}^{k}\right]
$$

The fact that ind $\left(S_{-k}\right)=-\left[X \times \mathbb{C}^{k}\right]$ follows from

$$
[0]=\operatorname{ind}(I)=\operatorname{ind}\left(S_{k} S_{-k}\right)=\operatorname{ind}\left(S_{k}\right) \oplus \operatorname{ind}\left(S_{-k}\right) .
$$

Proposition 5.18. The family index $[X, \mathfrak{F}(\mathcal{H})] \rightarrow K(X)$ is surjective.
Proof. Let $E \rightarrow X$ be a vector bundle. We will construct a family T such that ind $(T)=[E]$. Then ind $\left(T S_{-k}\right)=\operatorname{ind}(T) \oplus \operatorname{ind}\left(S_{-k}\right)=[E]-\left[X \times \mathbb{C}^{k}\right]$.

By Proposition 4.20, E is isomorphic to a subbundle of a trivial bundle of rank N. Let $P_{x}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ be the orthogonal projection onto E_{x}, and let $Q_{x}=I-P_{x}$. We will use these projections to build a new family of Fredholm operators on the tensor space $\mathbb{C}^{N} \otimes \mathcal{H}$. Let S_{1} be the shift operator, and define $T: X \rightarrow \mathfrak{F}\left(\mathbb{C}^{N} \otimes \mathcal{H}\right)$ by

$$
T_{x}:=P_{x} \otimes S_{1}+Q_{x} \otimes I .
$$

Then T_{x} is surjective for each $x \in X$, since if $v \otimes e_{i} \in \mathbb{C}^{N} \otimes \mathcal{H}$ with e_{i} a basis element,

$$
\begin{aligned}
T_{x}\left(Q_{x}(v) \otimes e_{i}+P_{x}(v) \otimes e_{i+1}\right)= & \left(P_{x} \otimes S_{1}+Q_{x} \otimes I\right)\left(Q_{x}(v) \otimes e_{i}+P_{x}(v) \otimes e_{i+1}\right) \\
= & P_{x} Q_{x}(v) \otimes S_{1}\left(e_{1}\right)+Q_{x}^{2}(v) \otimes e_{i} \\
& +P_{x}^{2}(v) \otimes S_{1}\left(e_{i+1}\right)+Q_{x} P_{x}(v) \otimes e_{i+1} \\
= & Q_{x}(v) \otimes e_{i}+P_{x}(v) \otimes e_{i} \\
= & v \otimes e_{i} .
\end{aligned}
$$

Thus, $\operatorname{ker} T$ is a vector bundle. Suppose that $v \otimes f \in \operatorname{ker} T_{x}$ for $v, f \neq 0$. Then

$$
P_{x}(v) \otimes S_{1}(f)+Q_{x}(v) \otimes f=0 .
$$

Since $f \neq 0$ and $P_{x}+Q_{x}=I$,

$$
P_{x}(v) \otimes S_{1}(f)=0 \quad \text { and } \quad Q_{x}(v) \otimes f=0 .
$$

Since $f \neq 0, Q_{x}(v) \otimes f=0$ exactly when $v \in E_{x}$. Since $v \in E_{x}, P_{x}(v) \otimes S_{1}(f)=0$ exactly when $f \in \operatorname{Span}\left(e_{1}\right)$. Hence, $\operatorname{ker} T_{x}=E_{x} \otimes \operatorname{Span}\left(e_{1}\right) \cong E_{x}$, and $\mathbb{C}^{N} \otimes \mathcal{H} \cong \mathcal{H}$, and so $T: X \rightarrow \mathfrak{F}\left(\mathbb{C}^{N} \otimes \mathcal{H}\right) \cong \mathfrak{F}(\mathcal{H})$ is a continuous map with $\operatorname{ker} T_{x} \cong E_{x}$ for each $x \in X$. Therefore ker $T \cong E$ as vector bundles. By surjectivity of each T_{x}, ind $(T)=[E]$.

Next, we prove injectivity. In the classical case $X=\left\{x_{0}\right\}$, this amounts to showing that a Fredholm operator with index 0 is in the same connected component as the invertible operators. To recall (see the proof of Theorem 3.18), suppose that $T \in \mathfrak{F}(\mathcal{H})$ with ind $(T)=$ 0 . Since $\operatorname{dim} \operatorname{ker} T=\operatorname{dim} \operatorname{coker} T$, we can choose an isomorphism

$$
\varphi: \operatorname{ker} T \rightarrow(\operatorname{im} T)^{\perp}
$$

and define

$$
\Phi=\left\{\begin{array}{cc}
\varphi & \text { on } \operatorname{ker} T \\
0 & \text { on }(\operatorname{ker} T)^{\perp} .
\end{array}\right.
$$

Then $T+\Phi: \mathcal{H} \rightarrow \mathcal{H}$ is invertible. Since Φ is a finite rank operator, $T+t \Phi \subseteq \mathfrak{F}(\mathcal{H})$ is a path from T to an invertible operator.

The generalization of this argument to a family of Fredholm operators $T: X \rightarrow \mathfrak{F}(\mathcal{H})$ invokes Kuiper's Theorem.

Proposition 5.19. The family index $[X, \mathfrak{F}(\mathcal{H})] \rightarrow K(X)$ is injective.
Proof. Let $T: X \rightarrow \mathfrak{F}(\mathcal{H})$ be a family of Fredholm operators with ind $(T)=[0]$. It suffices to show that T is homotopic to a function $X \rightarrow G L(\mathcal{H})$. Indeed, by Kuiper's Theorem, any $\operatorname{map} X \rightarrow G L(\mathcal{H})$ is homotopic to the identity map $X \mapsto I$. Since $[X, \mathfrak{F}(\mathcal{H})]$ is a monoid with identity element $[X \rightarrow I]$ and the index is a monoid homomorphism, injectivity then follows.

Pick a subspace V with $T(X) \subseteq \mathcal{O}(V)$ and define $\tilde{T}: X \rightarrow \mathfrak{F}(\mathcal{H} \oplus V, \mathcal{H})$ as usual. Then $[0]=[\operatorname{ker} \tilde{T}]-[X \times V]$. Since the family index is well-defined, and by Propositon 4.28, we can pick V of large enough dimension so that

$$
\operatorname{ker} \tilde{T} \cong X \times V
$$

Let $\varphi: \operatorname{ker} \tilde{T} \rightarrow X \times V$ be a bundle isomorphism. For each $x, \tilde{T}_{x}: \mathcal{H} \oplus V \rightarrow \mathcal{H}$ is surjective and $\varphi_{x}: \operatorname{ker} \tilde{T}_{x} \subseteq \mathcal{H} \oplus V \rightarrow V$ is an isomorphism. We want to construct an invertible operator on $\mathcal{H} \oplus V$. Set

$$
\Phi_{x}=\left\{\begin{array}{cc}
\varphi_{x} & \text { on } \operatorname{ker} \tilde{T}_{x} \\
0 & \text { on }\left(\operatorname{ker} \tilde{T}_{x}\right)^{\perp}
\end{array}\right.
$$

and define $\gamma_{x}: \mathcal{H} \oplus V \rightarrow \mathcal{H} \oplus V$ by

$$
\gamma_{x}(f, v):=\left(\tilde{T}_{x}(f, v), \Phi_{x}(f, v)\right) .
$$

This is the analogue of the operator $T+\Phi$ from above. Indeed, γ_{x} is injective and surjective, hence $\gamma: X \rightarrow G L(\mathcal{H} \oplus V)$. We need to show that this map is homotopic to T.

By definition, $\tilde{T}_{x}(f, v)=T_{x}(f)+v$. Hence,

$$
\gamma_{x}^{t}(f, v)=\left(T_{x}(f)+t v, t \Phi_{x}(f, v)\right) \quad 0 \leq t \leq 1
$$

is a homotopy from $\gamma^{0}=T$ to an invertible family γ^{1}. Since Φ_{x} is finite rank, γ^{t} remains in $\mathfrak{F}(\mathcal{H} \oplus V)$ for all t.

Proof of Theorem 5.1. It has been established that ind : $[X, \mathfrak{F}(\mathcal{H})] \rightarrow K(X)$ is a well-defined bijective monoid homomorphism. Since $K(X)$ is a group, it follows that $[X, \mathfrak{F}(\mathcal{H})]$ is a group, and thus the generalized index is a group isomorphism.

Chapter 6

Toeplitz Operators

We close this thesis with a brief study of a particular class of operators, the Toeplitz operators. This chapter serves two purposes: to give an interesting realization of the abstract Fredholm theory developed in Chapter 3, and to offer a glimpse of more general theories in mathematics.

One of the primary resources for the study of Toeplitz operators is [9]. More details can be found in [11], [8], and [16].

6.1 The Hardy Space

Recall that $L^{2}\left(S^{1}\right)$ is the complex Hilbert space of square-integrable functions on the unit circle. There is a natural identification of $L^{2}\left(S^{1}\right)$ with $L^{2}([0,2 \pi])$ which we employ without comment. In this chapter, we normalize the inner product as follows:

$$
\langle f, g\rangle:=\frac{1}{2 \pi} \int_{S^{1}} f(z) \overline{g(z)} d z=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) \overline{g\left(e^{i \theta}\right)} d \theta .
$$

The functions $\left\{z^{n}=e^{i n \theta}\right\}_{n=-\infty}^{\infty}$ form an orthonormal basis for this space. We are interested in subspace which is the closed span of $\left\{z^{n}\right\}_{n=0}^{\infty}$.
Definition 6.1. The Hardy space is defined as:

$$
H^{2}\left(S^{1}\right):=\left\{f \in L^{2}\left(S^{1}\right):\left\langle f, z^{n}\right\rangle=0 \text { for } n<0\right\} .
$$

Observe that a function f is in $H^{2}\left(S^{1}\right)$ if it can be written in the form

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \text { with } \sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty .
$$

Throughout this chapter, we let $P: L^{2}\left(S^{1}\right) \rightarrow H^{2}\left(S^{1}\right)$ be the orthogonal projection onto $H^{2}\left(S^{1}\right)$.

The definition of the Hardy space $H^{2}\left(S^{1}\right)$ can be extended quite naturally to spaces $H^{p}\left(S^{1}\right) \subseteq L^{p}\left(S^{1}\right)$, though we restrict ourselves to $H^{2}\left(S^{1}\right)$ for the sake of simplicity.

6.2 Definitions and Properties

If $\varphi \in L^{\infty}\left(S^{1}\right)$, then the multiplication operator M_{φ} defined by $M_{\varphi} f(z)=\varphi(z) f(z)$ is a bounded operator on $L^{2}\left(S^{1}\right)$. In particular,

$$
\begin{aligned}
\left\|M_{\varphi} f\right\|^{2} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi\left(e^{i \theta}\right) f\left(e^{i \theta}\right) \overline{\varphi\left(e^{i \theta}\right) f\left(e^{i \theta}\right)} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\varphi\left(e^{i \theta}\right)\right|^{2}\left|f\left(e^{i \theta}\right)\right|^{2} d \theta \\
& \leq\|\varphi\|_{\infty}^{2}\|f\|^{2} .
\end{aligned}
$$

Hence, $\left\|M_{\varphi}\right\| \leq\|\varphi\|_{\infty}$. A Toeplitz operator is the "compression" of a multiplication operator to the Hardy space.

Definition 6.2. Let $\varphi \in L^{\infty}\left(S^{1}\right)$. The Toeplitz operator with $\operatorname{symbol} \varphi$ is the operator $T_{\varphi}: H^{2}\left(S^{1}\right) \rightarrow H^{2}\left(S^{1}\right)$ defined by

$$
T_{\varphi} f:=P M_{\varphi} f
$$

for all $f \in H^{2}\left(S^{1}\right)$.
Basic properties of Toeplitz operators are immediate.
Proposition 6.3. Let $\varphi \in L^{\infty}\left(S^{1}\right)$. Then $\left\|T_{\varphi}\right\| \leq\|\varphi\|_{\infty}$ and $T_{\varphi}^{*}=T_{\bar{\varphi}}$.
Proof. Compute:

$$
\left\|T_{\varphi}\right\|=\left\|P M_{\varphi}\right\| \leq\left\|M_{\varphi}\right\| \leq\|\varphi\|_{\infty} .
$$

For $f, g \in H^{2}\left(S^{1}\right)$,

$$
\begin{aligned}
\left\langle T_{\varphi}^{*} f, g\right\rangle & =\left\langle f, T_{\varphi} g\right\rangle=\left\langle f, P M_{\varphi} g\right\rangle=\left\langle P f, M_{\varphi} g\right\rangle=\langle f, \varphi g\rangle \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) \overline{\varphi\left(e^{i \theta}\right) g\left(e^{i \theta}\right)} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{\varphi\left(e^{i \theta}\right)} f\left(e^{i \theta}\right) \overline{g\left(e^{i \theta}\right)} d \theta
\end{aligned}
$$

and so $\left\langle T_{\varphi}^{*} f, g\right\rangle=\langle\bar{\varphi} f, g\rangle=\left\langle T_{\bar{\varphi}} f, g\right\rangle$.
Toeplitz operators have nice interpretations as matrices in terms of the orthonormal basis $\left\{z^{n}\right\}_{n=0}^{\infty}$. A Toeplitz matrix is a (possibly infinite) matrix with constant diagonals; i.e., a matrix of the form:

$$
\left[\begin{array}{ccccc}
a_{0} & a_{-1} & a_{-2} & a_{-3} & \\
a_{1} & a_{0} & a_{-1} & a_{-2} & \ddots \\
a_{2} & a_{1} & a_{0} & a_{-1} & \ddots \\
a_{3} & a_{2} & a_{1} & a_{0} & \ddots \\
& \ddots & \ddots & \ddots & \ddots
\end{array}\right]
$$

Proposition 6.4. If $T: H^{2}\left(S^{1}\right) \rightarrow H^{2}\left(S^{1}\right)$ is a Toeplitz operator, then its matrix with respect to the orthonormal basis $\left\{z^{n}\right\}_{n=0}^{\infty}$ is a Toeplitz matrix.

Proof. Let $n, m \geq 0$. Suppose that T is a Toeplitz operator with symbol φ. Note that

$$
\left\langle T z^{n}, z^{m}\right\rangle=\left\langle P M_{\varphi} z^{n}, z^{m}\right\rangle=\left\langle M_{\varphi} z^{n}, P z^{m}\right\rangle=\left\langle M_{\varphi} z^{n}, z^{m}\right\rangle .
$$

Since

$$
\begin{aligned}
\left\langle M_{\varphi} z^{n}, z^{m}\right\rangle & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi\left(e^{i \theta}\right) e^{i(n-m) \theta} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi\left(e^{i \theta}\right) e^{i((n+1)-(m+1)) \theta} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi\left(e^{i \theta}\right) e^{i(n+1) \theta} e^{-i(m+1) \theta} d \theta \\
& =\left\langle M_{\varphi} z^{n+1}, z^{m+1}\right\rangle
\end{aligned}
$$

we have $\left\langle T z^{n}, z^{m}\right\rangle=\left\langle M_{\varphi} z^{n+1}, z^{m+1}\right\rangle=\left\langle T z^{n+1}, z^{m+1}\right\rangle$. Hence, the diagonals of the matrix representation of T are constant.

A natural question to ask is the following: when is a Toeplitz operator a Fredholm operator? For Toeplitz operators with continuous symbol, we will give a partial answer. We begin with a lemma.

On $L^{2}\left(S^{1}\right)$, the map $\varphi \rightarrow M_{\varphi}$ is multiplicative in that $M_{\varphi \psi}=M_{\varphi \psi}$. That this is not the case for Toeplitz operators is one of the main reasons why the theory is more difficult. For Toeplitz operators with continuous symbol, we can say the following.
Lemma 6.5. Let $\varphi \in C\left(S^{1}\right)$. Then $P M_{\varphi}-M_{\varphi} P$ is a compact operator on $L^{2}\left(S^{1}\right)$.
Proof. We consider the case when $\varphi(z)=z$, and apply the operator to each element of the standard basis for $L^{2}\left(S^{1}\right)$. If $n \geq 0$, we have

$$
\left(P M_{z}-M_{z} P\right) z^{n}=P M_{z} z^{n}-M_{z} P z^{n}=P z^{n+1}-z^{n+1}=0 .
$$

If $n<-1$,

$$
\left(P M_{z}-M_{z} P\right) z^{n}=P z^{n+1}-M_{z} 0=0-0=0 .
$$

If $n=-1$,

$$
\left(P M_{z}-M_{z} P\right) z^{-1}=P M_{z} z^{-1}-M_{z} P z^{-1}=P z^{0}=z^{0} .
$$

Hence, the image of the set of polynomials under the operator $P M_{z}-M_{z} P$ has dimension 1. By the Stone-Weierstrauss theorem, the image of $L^{2}\left(S^{1}\right)$ has dimension 1. Thus, $P M_{z}-$ $M_{z} P$ is finite rank, hence compact.

The next observation that we make is that

$$
E=\left\{\varphi \in C\left(S^{1}\right): P M_{\varphi}-M_{\varphi} P \text { is compact }\right\}
$$

is a C^{*}-subalgebra of $C\left(S^{1}\right)$. To see this, consider

$$
\left(P M_{\varphi}-M_{\varphi} P\right)^{*}=M_{\varphi}^{*} P^{*}-P^{*} M_{\varphi}^{*}=M_{\bar{\varphi}} P-P M_{\bar{\varphi}}=-\left(P M_{\bar{\varphi}}-M_{\bar{\varphi}} P\right) .
$$

So compactness of $P M_{\varphi}-M_{\varphi} P$ implies compactness of $P M_{\bar{\varphi}}-M_{\bar{\varphi}} P$. Hence, E is invariant under conjugation. That E is closed under addition and scalar multiplication is clear. Since $P M_{\varphi}-M_{\varphi} P$ depends linearly on φ, the $\operatorname{map} \varphi \mapsto P M_{\varphi}-M_{\varphi} P$ is continuous and so E is norm-closed. It remains to verify that E is closed under multiplication. Let $\psi \in E$. Then

$$
\begin{aligned}
P M_{\varphi \psi}-M_{\varphi \psi} P & =P M_{\varphi \psi}-M_{\varphi} P M_{\psi}+M_{\varphi} P M_{\psi}-M_{\varphi \psi} P \\
& =\left(P M_{\varphi}-M_{\varphi} P\right) M_{\psi}+M_{\varphi}\left(P M_{\psi}-M_{\psi} P\right) .
\end{aligned}
$$

Since $P M_{\varphi}-M_{\varphi} P$ and $P M_{\psi}-M_{\psi} P$ are compact and $\mathfrak{K}\left(L^{2}\left(S^{1}\right)\right)$ is an ideal, E is closed under multiplication. Hence, E is a C^{*}-subalgebra of $C\left(S^{1}\right)$ containing z. By the StoneWeierstrauss theorem, z generates $C\left(S^{1}\right)$, so $E=C\left(S^{1}\right)$. Therefore, $P M_{\varphi}-M_{\varphi} P$ is compact for all $\varphi \in C\left(S^{1}\right)$.
Proposition 6.6. If $\varphi \in C\left(S^{1}\right)$ is nowhere-zero, then T_{φ} is Fredholm.
Proof. Suppose that $\varphi \in C\left(S^{1}\right)$ is nowhere-zero. We show that T_{φ} is invertible up to a compact operator. Since φ is nonzero on S^{1}, the function $1 / \varphi$ is well-defined. Then

$$
\begin{aligned}
T_{\varphi} T_{1 / \varphi} & =P M_{\varphi} P M_{1 / \varphi} \\
& =P M_{\varphi} M_{1 / \varphi}+P M_{\varphi} P M_{1 / \varphi}-P M_{\varphi} M_{1 / \varphi} \\
& =P+P\left(M_{\varphi} P-P M_{\varphi}\right) M_{1 / \varphi} .
\end{aligned}
$$

Since $P=I$ on $H^{2}\left(S^{1}\right)$, and since $M_{\varphi} P-P M_{\varphi}$ is compact by Lemma 6.5,

$$
T_{\varphi} T_{1 / \varphi}=I+K_{1}
$$

where K_{1} is compact. A similar calculation gives $T_{1 / \varphi} T_{\varphi}=I+K_{2}$ for some compact operator K_{2}. Hence, T_{φ} is invertible modulo compact operators, and is therefore Fredholm.

On $L^{2}\left(S^{1}\right)$, the map $\varphi \rightarrow M_{\varphi}$ is multiplicative in that $M_{\varphi \psi}=M_{\varphi \psi}$. This is not the case for Toeplitz operators. However, generalizing the calculation in the proof above gives us the following fact.

Corollary 6.7. Suppose that $\varphi, \psi \in C\left(S^{1}\right)$. Then $T_{\varphi \psi}=T_{\varphi} T_{\psi}+K$ for some compact operator K.
Proof. Compute as above with ψ in place of $1 / \varphi$.

6.3 The Toeplitz Index Theorem

In this section, we give an elegant relationship between the Fredholm index of a Toeplitz operator and the winding number of its symbol. This connection between an analytic invariant (the index) with a topological invariant (the winding number) is suggestive of the power of index theory.

One of the basic facts of algebraic topology is the isomorphism $\pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$. Similarly, $\pi_{1}\left(\mathbb{C}^{\times}\right) \cong \mathbb{Z}$. Since $\pi_{1}\left(\mathbb{C}^{\times}\right)$consists of homotopy classes of continuous functions $\varphi: S^{1} \rightarrow$ \mathbb{C}^{\times}, every such function has an associated integer n which is invariant under homotopy. This number is what we call the winding number of φ.

Definition 6.8. Let $\varphi: S^{1} \rightarrow \mathbb{C}^{\times}$be continuous. The winding number of φ, denoted $w(\varphi)$, is the image of the homotopy class of φ under the isomorphism $\pi_{1}\left(\mathbb{C}^{\times}\right) \rightarrow \mathbb{Z}$.

There are many equivalent definitions of the winding number; for example, from complex analysis, we have

$$
w(\varphi)=\frac{1}{2 \pi i} \oint_{\varphi\left(S^{1}\right)} \frac{1}{z} d z .
$$

The main result of this chapter equates, up to a sign difference, the Fredholm index of a Toeplitz operator to the winding number of its symbol.

Theorem 6.9 (Toeplitz Index Theorem). If $\varphi: S^{1} \rightarrow \mathbb{C}^{\times}$is continuous, then ind $\left(T_{\varphi}\right)=-w(\varphi)$.
Proof. First, we compute the index of T_{z}. Recall that $\left\{z^{k}\right\}_{k=0}^{\infty}$ is an orthonormal basis for $H^{2}\left(S^{1}\right)$. For each $k=0,1, \ldots$, we have

$$
T_{z}\left(z^{k}\right)=z^{k+1}
$$

Since T_{z} is injective, $\operatorname{dim} \operatorname{ker} T_{z}=0$. Since $\operatorname{coker} T=\operatorname{Span}\left(z^{0}\right), \operatorname{dim} \operatorname{coker} T=1$. Hence, ind $\left(T_{z}\right)=-1$.

Next, by Corollary 6.7, Corollary 3.15, and Proposition 3.13, for nonvanishing $\varphi, \psi \in$ $C\left(S^{1}\right)$,

$$
\operatorname{ind}\left(T_{\varphi \psi}\right)=\operatorname{ind}\left(T_{\varphi} T_{\psi}-K\right)=\operatorname{ind}\left(T_{\varphi} T_{\psi}\right)=\operatorname{ind}\left(T_{\varphi}\right)+\operatorname{ind}\left(T_{\psi}\right) .
$$

By induction on n, for $n \geq 1$,

$$
\operatorname{ind}\left(T_{z^{n}}\right)=-n .
$$

The fact that ind $\left(T_{z^{-n}}\right)=n$ follows from $T_{\varphi}^{*}=T_{\bar{\varphi}}$.
Next, let φ be any nonvanishing continuous function. Then by the isomorphism $\pi_{1}\left(\mathbb{C}^{\times}\right) \cong$ \mathbb{Z}, φ is homotopic to z^{n} for some n. Hence, $w(\varphi)=n$. This homotopy gives a continuous path in $C\left(S^{1}\right)$ from φ to z^{n}. Composing this map with the map $C\left(S^{1}\right) \rightarrow \mathfrak{L}\left(H^{2}\left(S^{1}\right)\right)$ which sends $\psi \mapsto T_{\psi}$ gives a path in $\mathfrak{F}\left(H^{2}\left(S^{1}\right)\right)$ from T_{φ} to $T_{z^{n}}$. Since the Fredholm index is locally constant and the winding number is homotopy invariant, we then have

$$
\operatorname{ind}\left(T_{\varphi}\right)=\operatorname{ind}\left(T_{z^{n}}\right)=-n=-w\left(z^{n}\right)=-w(\varphi)
$$

as desired.

6.4 Generalizations

We finish with a brief discussion on generalizations of the theory of Toeplitz operators developed in this chapter. As per the introduction, this section contains a natural progression of the family index theory from Chapter 5 , and would have more details were time available. Unfortunately, we restrict ourselves to a few comments, mostly without proof.

Extensions of C^{*}-algebras.

Consider the following proposition.
Proposition 6.10. Let $\pi: H^{2}\left(S^{1}\right) \rightarrow \mathfrak{C}\left(H^{2}\left(S^{1}\right)\right)$ be the projection onto the Calkin algebra. The map $\varphi \rightarrow \pi\left(T_{\varphi}\right)$ is an injective $*$-homomorphism from $C\left(S^{1}\right)$ to $\mathfrak{C}\left(H^{2}\left(S^{1}\right)\right)$.

Proof. We have $T_{\varphi}^{*}=T_{\bar{\varphi}}$, and $T_{\varphi \psi}=T_{\varphi} T_{\psi}+K$ for some compact K. Hence, $\varphi \rightarrow \pi\left(T_{\varphi}\right)$ is a $*$-homomorphism into $\mathfrak{C}\left(H^{2}\left(S^{1}\right)\right)$. It remains to check injectivity.

Observe the following about the spectrum of a Toeplitz operator with continuous symbol φ. For $f \in H^{2}\left(S^{1}\right)$, we have

$$
\begin{aligned}
\left(T_{\varphi}-\lambda I\right) f & =T_{\varphi} f-\lambda f=P(\varphi f)-P(\lambda f) \\
& =P((\varphi-\lambda) f) \\
& =T_{\varphi-\lambda} f .
\end{aligned}
$$

So if $T_{\varphi-\lambda}$ is not invertible for some λ, then $\lambda \in \sigma\left(T_{\varphi}\right)$. If $\lambda \in \operatorname{im} \varphi$, then $\varphi-\lambda=0$ at some point in S^{1}, and $T_{\varphi-\lambda}$ will not have a bounded inverse. Hence, $\operatorname{im} \varphi \subseteq \sigma\left(T_{\varphi}\right)$.

Suppose that $\pi\left(T_{\varphi}\right)=0$. Then T_{φ} is compact. But the spectrum of a compact operator is discrete, which means $\operatorname{im} \varphi \subseteq \sigma\left(T_{\varphi}\right)$ is discrete. Since φ is continuous and S^{1} is connected, $\varphi(z)=a$ for some constant $a \in \mathbb{C}$. But if $a \neq 0$, then T_{φ} is a nonzero multiple of the identity and is not compact. Therefore, $\varphi=0$, and injectivity follows.

We can rephrase this proposition in the following way. Let $\mathfrak{T} \subseteq \mathfrak{L}\left(H^{2}\left(S^{1}\right)\right)$ be the C^{*}-algebra generated by the Toeplitz operators with continuous symbols and the compact operators. Then $\mathfrak{K}\left(H^{2}\left(S^{1}\right)\right)$ injects into \mathfrak{T}. By Proposition $6.10, \pi(\mathfrak{T})$ is isomorphic to $C\left(S^{1}\right)$ as a subalgebra of $\mathfrak{C}\left(H^{2}\left(S^{1}\right)\right)$. Hence, there is a short exact sequence of the form

$$
0 \rightarrow \mathfrak{K}\left(H^{2}\left(S^{1}\right)\right) \rightarrow \mathfrak{T} \rightarrow C\left(S^{1}\right) \rightarrow 0 .
$$

This exact sequence is called the Toeplitz extension. It is of interest to study more general extensions of the form

$$
0 \rightarrow \mathfrak{K}(\mathcal{H}) \rightarrow \mathcal{E} \rightarrow C(X) \rightarrow 0
$$

where \mathcal{H} is a Hilbert space, $X \subseteq \mathbb{C}$ is compact, and \mathcal{E} is some C^{*}-algebra. We refer to [12] for further details.

Generalizing the Toeplitz Index Theorem.

We can generalize our index computation in Theorem 6.9 in a few ways. The results in this section we state without proof, and refer to [2] and [7] for details.

Consider the following vector-valued generalization of $L^{2}\left(S^{1}\right)$:

$$
L^{2}\left(S^{1} ; \mathbb{C}^{n}\right):=\left\{f: S^{1} \rightarrow \mathbb{C}^{n}: \int_{S^{1}}\|f(z)\|_{\mathbb{C}^{n}}^{2} d z<\infty\right\}
$$

with inner product given by

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{S^{1}}\langle f(z), g(z)\rangle_{\mathbb{C}^{n}} d z .
$$

There is an evident isomorphism $L^{2}\left(S^{1} ; \mathbb{C}^{n}\right) \cong L^{2}\left(S^{1}\right) \otimes \mathbb{C}^{n}$. Hence, we define

$$
H^{2}\left(S^{1} ; \mathbb{C}^{n}\right):=H^{2}\left(S^{1}\right) \otimes \mathbb{C}^{n}
$$

and let $P_{n}: L^{2}\left(S^{1} ; \mathbb{C}^{n}\right) \cong L^{2}\left(S^{1}\right) \otimes \mathbb{C}^{n} \rightarrow H^{2}\left(S^{1} ; \mathbb{C}^{n}\right)$ be the orthogonal projection.
We replace the scalar-valued maps $S^{1} \rightarrow \mathbb{C}^{\times}$with maps $\varphi: S^{1} \rightarrow G L(n, \mathbb{C})$. If φ is a such a map, then the multiplication operator $M_{\varphi}: L^{2}\left(S^{1} ; \mathbb{C}^{n}\right) \rightarrow L^{2}\left(S^{1} ; \mathbb{C}^{n}\right)$ given by $M_{\varphi} f(z)=\varphi(z) f(z)$ is a bounded operator. Define the Toeplitz operator $T_{\varphi}: H^{2}\left(S^{1} ; \mathbb{C}^{n}\right) \rightarrow$ $H^{2}\left(S^{1} ; \mathbb{C}^{n}\right)$ by $T_{\varphi}:=P_{n} M_{\varphi}$. The proofs from the previous sections generalize naturally, and we get the following theorem.

Theorem 6.11. Let $\varphi: S^{1} \rightarrow G L(n, \mathbb{C})$ be continuous. Then T_{φ} is a Fredholm operator on $H^{2}\left(S^{1} ; \mathbb{C}^{n}\right)$, and ind $\left(T_{\varphi}\right)=-w(\operatorname{det} \varphi)$.

We can generalize further by considering families of Toeplitz operators. For example, suppose that X is a compact space. Let $\varphi: S^{1} \times X \rightarrow G L(n, \mathbb{C})$ be continuous. Define a family of Fredholm operators $X \rightarrow \mathfrak{F}\left(H^{2}\left(S^{1} ; \mathbb{C}^{n}\right)\right)$ by $x \mapsto T_{\varphi_{x}}$. Then this family has a well-defined index ind $\left(T_{\varphi}\right) \in K(X)$ per the construction in Chapter 5 .

Even more generally, let $E \rightarrow X$ be a complex vector bundle of rank n. Let $p: S^{1} \times X \rightarrow$ X be the projection. Then $p^{*} E \rightarrow S^{1} \times X$ is a vector bundle. If $\varphi: p^{*} E \rightarrow p^{*} E$ is a vector bundle automorphism, then for every $x \in X, \varphi_{x}: S^{1} \rightarrow G L\left(E_{x}\right)$ is a continuous map. In this way, we get a family of Fredholm operators $X \rightarrow \mathfrak{F}\left(H^{2}\left(S^{1} ; E_{x}\right)\right)$ given by $x \mapsto T_{\varphi_{x}}$. Though it may seem problematic that the Hilbert space $H^{2}\left(S^{1} ; E_{x}\right)$ varies with x, it turns out that there is no issue. Take $\bigsqcup_{x \in X} H^{2}\left(S^{1} ; E_{x}\right) \rightarrow X$ to be a vector bundle of Hilbert spaces over X. Using Kuiper's Theorem, it is possible to show that every vector bundle of Hilbert spaces is trivial, and so $\bigsqcup_{x \in X} H^{2}\left(S^{1} ; E_{x}\right) \cong X \times \mathcal{H}$. Hence, we can view T_{φ} as a family $X \rightarrow \mathfrak{F}(\mathcal{H})$, and the family index ind $\left(T_{\varphi}\right) \in K(X)$ is then well-defined.

Continuing down this path leads to the concept of Bott periodicity, which is one of the building blocks of K-theory. We end our discussion here, and refer to resources such as [5], [2], and [7] for more details on families of Toeplitz operators, Bott periodicity, and the relation between these concepts.

Bibliography

[1] M. F. Atiyah. "Algebraic topology and elliptic operators". In: Communications on Pure and Applied Mathematics 20.2 (1967), pp. 237-249. ISSN: 1097-0312.
[2] M. F. Atiyah. "Lectures in Modern Analysis and Applications I". In: ed. by C. T. Taam. Berlin, Heidelberg: Springer Berlin Heidelberg, 1969. Chap. Algebraic topology and operators in Hilbert space, pp. 101-121. ISBN: 978-3-540-36145-9.
[3] M. F. Atiyah and F. Hirzebruch. "Riemann-Roch theorems for differentiable manifolds". In: Bull. Amer. Math. Soc. 65.4 (July 1959), pp. 276-281.
[4] M. F. Atiyah and F. Hirzebruch. "Vector bundles and homogeneous spaces". In: Algebraic Topology - A Student's Guide. Ed. by G. C. Shepherd. Cambridge Books Online. Cambridge University Press, 1972, pp. 196-222. ISBN: 9780511662584.
[5] M.F. Atiyah and D.W. Anderson. K-theory. Advanced Books Classics Series. Westview Press, 1994. ISBN: 9780201407921.
[6] F.V. Atkinson. "Die normale Lösbarkeit linearer Gleichungen in normierten Räumen." Russian. In: Mat. Sb., Nov. Ser. 28 (1951), pp. 3-14.
[7] D.D. Bleecker and B. Booss-Bavnbek. Index Theory with Applications to Mathematics and Physics. International Press. International Press, 2013. ISBN: 9781571462640.
[8] Böttcher and Silbermann. Analysis of Toeplitz Operators. Second. 665 pp: Springer, 1990.
[9] Arlen Brown and Halmos. "Algebraic Properties of Toeplitz operators." In: Journal für die reine und angewandte Mathematik 213 (1964), pp. 89-102.
[10] J. Conway. A Course in Functional Analysis. Second. 383 pp: Springer, 1990.
[11] R. Douglas. Banach Algebra Techniques in Operator Theory. Second. 194 pp: Springer, 1998.
[12] R.G. Douglas. C*-algebra Extensions and K-homology. Annals of mathematics studies. Princeton University Press, 1980. ISBN: 9780691082660.
[13] Ivar Fredholm. "Sur une classe d'équations fonctionnelles". In: Acta Mathematica 27.1 (), pp. 365-390. ISSN: 1871-2509.
[14] A. Hatcher. Algebraic Topology. First. 544 pp: Cambridge University Press, 2002.
[15] Nicolaas H. Kuiper. "The Homotopy Type of of the Unitary Group of Hilbert Space". In: Topology 3 (1965), pp. 19-30.
[16] R.A. Martinez-Avendano and P. Rosenthal. An Introduction to Operators on the HardyHilbert Space. Graduate Texts in Mathematics. Springer New York, 2007.
[17] J. Munkres. Topology. Second. 537 pp: Prentice Hall, 2000.
[18] E. Park. Complex Topological K-Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2008. ISBN: 9781139469746.
[19] M. Reed and B. Simon. Methods of Modern Mathematical Physics I: Functional Analysis. Enlarged. Inc., 400 pp: Revised and Academic Press, 1980.

