EQUAÇÕES RELACIONAIS FUZZY E COMO RESOLVÊ-LAS

PEDRO ALADAR TONELLI

1. Introdução

Nosso objetivo é apresentar de uma forma simples o procedimento para achar soluções de uma equação relacional fuzzy para alguns casos particulares.

Uma relação binária fuzzy entre dois conjuntos U e V é simplesmente uma aplicação

$$R: U \times V \rightarrow [0,1]$$

o número R(x,y) é interpretado como o grau de relacionamento entre os elementos $x \in U$ e $y \in V$. Usamos também a notação:

$$R:U\leadsto V$$

para expressarmos esta relação.

Se $A:U\to [0,1]$ é um conjunto fuzzy em U a imagem de A pela relação fuzzy R é o subconjunto fuzzy de V dado por

$$R(A)(y) = \bigvee_{x} R(x, y) \wedge A(x)$$

Se $R:U\leadsto V$ e $S:V\leadsto W$ são duas relações fuzzy, podemos então compô-las como a extensão de composição clássica. A composição será uma relação $T:U\leadsto W$ definida como:

$$T(x, w) = \bigvee_{y \in V} R(x, y) \land S(y, w)$$

Uma notação natural para esta composição é $T = S \circ R$.

De fato, esta não é a única forma de se definir razoavelmente uma composição. Se * denotar uma t-norma contínua em [0,1] então podemos definir uma composição usando esta t-norma no lugar do \wedge :

$$T_*(x, w) = \bigvee_{y \in V} R(x, y) * S(y, w) = S \circ_* R$$

No caso dos espaços envolvidos serem finitos, digamos que

$$U = \{x_1, \dots, x_n\}$$

$$V = \{y_1, \dots, y_m\}$$

$$W = \{z_1, \dots, z_p\}$$

as relações fuzzy podem ser representadas por matrizes ${\bf R},\,{\bf S}$ e ${\bf T}$ cujas entradas são, respectivamente:

$$(1) r_{ij} = R(x_i, y_j)$$

$$(2) s_{jl} = S(y_j, z_l)$$

$$(3) t_{il} = T_*(x_i, z_l)$$

Olhando a definição da composição de relações fuzzy obtemos:

$$(4) t_{il} = \bigvee_{k} r_{ik} * s_{kl}$$

ou seja t_{il} é obtida da i—ésima linha da matriz ${\bf R}$ comparada com a l—ésima coluna da matriz ${\bf S}$ usando a t-norma *. Isto define então um produto de matrizes usando a t-norma, e vamos escrever usando a equação 4

$$\mathbf{T} = \mathbf{R} * \mathbf{S}$$

O problema de resolução de uma equação relacional fuzzy é o seguinte: Conhecidas as matrizes \mathbf{T} e \mathbf{R} , determinar a matriz \mathbf{S} (ou equivalentemente a relação S) que satisfaz a equação (5)

2. Caso simples com uma equação e uma incógnita

Vamos começar com o caso mais simples, mas antes faremos uma observação sobre a equação geral 5. Note que para cada coluna l de \mathbf{T} fixada teremos que resolver o conjunto de n equações com m incógnitas:

$$(6) t_{il} = \bigvee_{k} r_{ik} * s_{kl}$$

Assim do ponto de vista geral, ou para ver o método de resolução basta analisar o caso em que p=1, ou seja só precisamos nos preocupar com as soluções de:

$$(7) b_i = \bigvee_k r_{ik} * x_k$$

onde a incógnita é o vetor $\mathbf{x} = x_1, \dots, x_m$

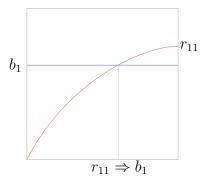
No caso mais simples vamos supor que nossa única equação é

$$(8) b_1 = r_{11} * x_1$$

Para este caso note como a t-norma * é contínua então a função $F_{r_{11}}:[0,1]\to[0,1]$ dada por

$$F_{r_{11}}(z) = r_{11} * z$$

é contínua. Por causa da propriedade de t-norma temos que $r_{11} * x_1 \le r_{11}$ assim a equação só tem solução quando $b_1 \le r_{11}$. Da continuidade de $F_{r_{11}}$ o número que satisfaz esta equação é $x_1 = \sup\{z := r_{11} * z \le b_1\}$ este número é também conhecido como $r_{11} \Rightarrow b_1$. Aqui \Rightarrow denota a implicação residual com relação à t-norma *.



Note que podem existir outras soluções x_1 menores que aquele dada pelo resíduo mas não pode existir nenhuma maior já que se $z > r_{11} \Rightarrow b_1$ então $z * r_{11} > b_1$.

Uma outra coisa: suponha que x_0 e $x_1 > x_0$ são soluções então se x_2 é tal que $x_0 < x_2 < x_1$ então x_2 também é solução pois pelas propriedades de t-norma temos $r_{11} * x_0 \le r_{11} * x_2 \le r_{11} * x_1$

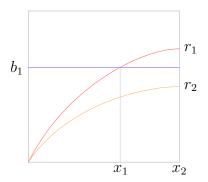
3. O PRÓXIMO PASSO: DUAS INCÓNITAS E UMA EQUAÇÃO.

Agora podemos considerar as soluções de

(9)
$$b_1 = (r_1 * x_1) \bigvee (r_2 * x_2)$$

Em primeiro lugar observamos que no caso de $b_1 > \sup\{r_1, r_2\}$ não podemos ter solução pois (como já observamos) $r_i * x_i \le r_i$ e portanto $(r_1 * x_1) \bigvee (r_2 * x_2) \le r_1 \vee r_2 < b_1$.

Quando, digamos, $r_2 < b_1 < r_1$ temos o caso ilustrado na figura abaixo.



Neste caso $x_1 = r_1 \Rightarrow b_1$ e $x_2 = r_2 \Rightarrow b_2$ é uma solução. De fato, é fácil ver neste caso que podemos tomar x_2 um número qualquer entre 0 e 1 que sempre o par (x_1, x_2) será solução. Só não podemos mexer em x_1 .

No terceiro caso teremos $b_1 < r_2 < r_1$. Novamente a solução maximal é $x_1 = r_1 \Rightarrow b_1$ e $x_2 = r_2 \Rightarrow b_2$. Nenhum destes número pode ser aumentado, pois o resultado ficaria maior que b_1 , por isso a chamamos de solução maximal. Mas podemos baixar estes valores, um de cada vez, que ainda assim teriamos solução da nossa equação. Por exemplo, $x_1 = 0$ e $x_2 = r_2 \Rightarrow b_2$ é uma outra solução do sistema. Assim a equação 9 pode ter muitas soluções. Se consideramos o conjunto:

$$S = \{(x_1, x_2) \in [0, 1] \times [0, 1] \text{ soluções de } 9\}$$

Proposição 1. Se $(u_1, u_2) \in \mathcal{S}$ e $(v_1, v_2) \in \mathcal{S}$ então $(u_1 \lor v_1, u_2 \lor v_2) \in \mathcal{S}$.

Basta fazer a conta

$$r_1 * (u_1 \lor v_1) \bigvee r_2 * (u_2 \lor v_2) = (r_1 * u_1) \lor (r_1 * v_1) \lor (r_2 * u_2) \lor (r_2 * v_2) = (r_1 * u_1) \lor (r_2 * u_2) \lor (r_1 * v_1) \lor (r_2 * v_2) = b_1 \lor b_1 = b_1$$

Proposição 2. Se $(u_1, u_2), (v_1, v_2) \in \mathcal{S}$ são tais que $u_1 \leq v_1$ e $u_2 \leq v_2$ então para todo $x \in [u_1, v_1]$ e $y \in [u_2, v_2]$ temos que $(x, y) \in \mathcal{S}$.

Pois

$$b_1 = r_1 * u_1 \bigvee r_2 * u_2 \le r_1 * x \bigvee r_2 * y \le r_1 * v_1 \bigvee r_2 * v_2 = b_1$$

4. Duas equações e duas incógnitas

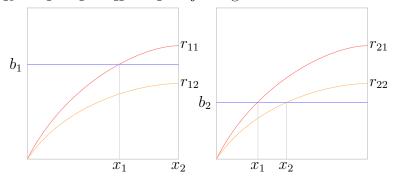
Consideremos agora a resolução simultânea das seguintes equações:

$$(10) b_1 = (r_{11} * x_1) \bigvee (r_{12} * x_2)$$

(11)
$$b_2 = (r_{21} * x_1) \bigvee (r_{22} * x_2)$$

Primeiro resolvemos separadamente cada uma das equações acima se estiverem satisfeitas as condições de solução: $b_1 \leq r_{11} \vee r_{12}$ e $b_2 \leq r_{21} \vee r_{22}$.

A solução maximal da primeira equação é $x_1=r_{11}\Rightarrow b_1$ e $x_2=r_{12}\Rightarrow b_1$. E da mesma forma expressa-se a solução da segunda equação: $x_1=r_{21}\Rightarrow b_2$ e $x_2=r_{22}\Rightarrow b_2$. Veja a figura:



Para que um para (x_1, x_2) seja solução do sistema de equações é necessario que ele satizfaça cada uma das equações separadamente. Neste caso devemos ter

$$x_1 \le r_{11} \Rightarrow b_1 \in x_1 \le r_{21} \Rightarrow b_2$$

 $x_2 \le r_{12} \Rightarrow b_1 \in x_2 \le r_{22} \Rightarrow b_2$

ou seja

$$x_1 \le r_{11} \Rightarrow b_1 \bigwedge r_{21} \Rightarrow b_2$$

 $x_2 \le r_{12} \Rightarrow b_1 \bigwedge r_{22} \Rightarrow b_2$

Vamos estipular que

$$\bar{x}_1 = r_{11} \Rightarrow b_1 \bigwedge r_{21} \Rightarrow b_2$$

 $\bar{x}_2 = r_{12} \Rightarrow b_1 \bigwedge r_{22} \Rightarrow b_2$

Claramente se (\bar{x}_1, \bar{x}_2) for solução do sistema, será uma solução maximal. E se não for? Será que pode acontecer de existir uma solução $(\tilde{x}_1, \tilde{x}_2)$ com, digamos, $\tilde{x}_1 < \bar{x}_1$? Mostraremos que não.

Se (\bar{x}_1, \bar{x}_2) não é solução do sistema então não é solução de alguma das duas equações. (Digamos da primeira, tanto faz!) Mas $(\tilde{x}_1, \tilde{x}_2)$ é solução desta equação também (já que é solução do sistema). Das desigualdades $\tilde{x}_i \leq \bar{x}_i \leq x_i$ temos:

$$(r_{11} * \tilde{x}_1) \bigvee (r_{12} * \tilde{x}_2) \le (r_{11} * \bar{x}_1) \bigvee (r_{12} * \bar{x}_2) \le (r_{11} * x_1) \bigvee (r_{12} * x_2)$$

Como o último e o primeiro termo desta desigualdade é b_1 o termo intermediário também é b_1 contradizendo nossa hipótese de (\bar{x}_1, \bar{x}_2) não satisfaz a primeira equação.

Assim temos a proposição:

Proposição 3. O sistema tem solução se e somente se (\bar{x}_1, \bar{x}_2) , como definido anteriormente é a solução maximal.

5. Caso geral

Agora voltamos à situação geral descrita na introdução. Trata-se de determinar a matriz **S** tal que:

$$(12) t_{il} = \bigvee_{k} r_{ik} * s_{kl}$$

Como já observado, para cada $l \in \{1...p\}$ temos um sistema da forma estudada no parágrafo anterior. Fazendo o mesmo tipo de análise que fizemos naquele parágrafo temos que se a condição $t_{il} \leq \bigvee_k r_{ik}$ estiver satisfeita e existir solução então a solução maximal será:

$$s_{kl} = \bigwedge_{i} r_{ik} \Rightarrow t_{il}$$

Em alguns livros esta solução é denotada assim:

$$\mathbf{S} = \mathbf{R}^t \circ_{\Rightarrow} \mathbf{T}$$

Onde o operador é definido para que a fórmula dê certo.

Como vimos, é fácil achar a solução maximal de uma equação relacional. Basta conhecermos a t-norma e a implicação residual envolvidas que temos uma fórmula direta para o cálculo. No entanto as entradas s_{kl} desta solução maximal só nos informa qual é o grau máximo de relacionamento entre y_k e z_l . Se obtemos que esta entre é 1 a conclusão é que o grau máximo de relacionamento é este, mas não é uma informação prática boa pois pode não haver relacionamento nenhum. Por outro lado, se obtemos um s_{kl} muito baixo (ou mesmo zero) isto significa que, qualquer que seja a solução, o relacionamento entre y_k e z_l será muito pequeno. Achar soluções menores é difícil pois se temos duas soluções não sabemos se podemos criar uma menor que estas duas. Mas dadas duas soluções é fácil conseguir uma maior que as duas (veja a primeira proposição acima). Terminamos com uma pergunta para os bons espíritos: Será que as equações relacionais têm utilidade em sistemas dinâmicos fuzzy?