DÉCIMA LISTA DE EXERCÍCIOS DE MAE515

1. No jogo do exército azul contra o exército vermelho descrito pela Tabela 1, verifique que v=14/9, $\vec{p}=(4/9,4/9,0,0,1/9)$ e $\vec{q}=(1/18,1/18,4/9,4/9)$ é uma solução do jogo. Qual seria a melhor estratégia mista do exército azul caso ele saiba que o exército vermelho usará a estratégia $\vec{q}=(0,0,1/2,1/2)$?

	(3,0)	(0, 3)	(2, 1)	(1,2)
(4,0)	4	0	2	1
(0, 4)	0	4	1	2
(3, 1)	1	-1	3	0
(1, 3)	-1	1	0	3
(2,2)	-2	-2	2	2

Tabela 1: Jogo dos exércitos

- 2. Refaça o jogo dos exércitos onde cada exército agora tem três divisões e resolva. As regras do jogo são as mesmas explicadas em aula: Os exércitos lutam por dois objetivos, em cada objetivo o exército que tiver mais divisões ganha o objetivo mais as divisões derrotadas do adversário.
- **3.** No jogo definido pela bimatriz A_1 em (1), calcule os valores maxmin de cada jogador. Caso o jogador P_2 das colunas escolha a estratégia mista (1/4, 3/4) qual seria a melhor estratégia para o jogador P_1 ? Calcule as estratégias mistas de equilíbrio neste caso.

$$A_1 = \begin{pmatrix} (5,1) & (0,0) \\ (0,0) & (1,5) \end{pmatrix} \tag{1}$$

4. Calcule o valor maxmin de cada jogador no jogo descrito pela bimatriz A_2 em (2)

$$A_2 = \begin{pmatrix} (-1,3) & (1,0) \\ (2,-1) & (0,1) \\ (1,1) & (-2,1) \end{pmatrix}$$
 (2)

5. Achar os valores maxmin e os pares de estratégias de equilíbrios nos jogos descritos pelas bimatrizes abaixo:

$$A_3 = \begin{pmatrix} (2,-1) & (-1,1) \\ (0,2) & (1,-1) \end{pmatrix} e A_4 = \begin{pmatrix} (2,1) & (0,0) \\ (0,0) & (1,5) \end{pmatrix}$$