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Abstract. This paper concentrates on breaching the gap between the Smoluchowski
coagulation equations for Marcus-Lushnikov processes and the theory of random graphs.
It is known that in many cases the cluster dynamics of a random graph process can
be replicated with the corresponding coalescent process. The cluster dynamics of a co-
alescent process (without merger history) is reflected in a auxiliary process called the
Marcus-Lushnikov process. The merger dynamics of the Marcus-Lushnikov processes
will correspond to a greedy algorithm for finding the minimal spanning tree in the re-
spective random graph process. This observation allows one to express the limiting mean
length of a minimal spanning tree in terms of the solutions of the Smoluchowski coagu-
lation equations that represent the hydrodynamic limit of the Marcus-Lushnikov process
corresponding to the random graph process.

We concentrate on finding the limiting mean length of a minimal spanning tree on
an irregular graph. Specifically, an Erdős-Rényi random graph process on the bipartite
graph K↵[n],�[n] is considered with ↵[n] = ↵n + o(n) and �[n] = �n + o(n). There,
the following expression for the limiting mean lengths of the minimal spanning tree is
derived via the Smoluchowski coagulation equations of the Marcus-Lushnikov processes
with multidimensional weight vectors:
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where � = ↵
� . This is a completely new formula for the case of an irregular bipartite

graph � 6= 1. In the case of � = 1, the above series adds up to
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as derived in Frieze and McDiarmid [15] for a regular bipartite graph. A generalization
of the approach is considered in the discussion section.

1. Introduction

We begin with the following quote from Aldous [1]: It turns out that there is a large

scientific literature relevant to the Marcus-Lushnikov process, mostly focusing on its de-

terministic approximation. Curiously, this literature has been largely ignored by random
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