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1. SOME SIMPLE UNIFORMITY LEMMAS

1.1. Notation. On an arbitrary metric space we denote by B[z; 7] the closed
ball of center x and radious r» > 0 and by B(z;7) the open ball of center z
and radious r > 0.

1.2. Lemma. Let X be a topological space, (M,d) be a metric space, U be
an open subset of X x M and K C U be a compact subset. Then there exists
e > 0 such that for every (x,y) € K, {x} x B(y;¢) is contained in U.

Proof. For every (z,y) € K, choose an open neighborhood V/, .y of z in X
and 7,y > 0 such that V{, ) X B(y;7(3,)) C U. We have an open cover:

KEC {J Viw xB570y):
(z,y)EK

from which we can take a finite subcover:

K C U ‘/(xivyi) X B(yi;%r(mi,yi))‘
=1

Now take ¢ = 3 min{r(, . }i,. For every (z,9) € K we can find i =
1L,...,nwithz € Vi, .y and d(y, y;) < %T(%yi); then B(y; ) C B(yi, 7(w,,4:))
and therefore:

{z} x B(y;€) € Vig, ) X Bis T(@i ) C U. U

1.3. Lemma. Let (M,d), (N,d') be metric spaces, K C M be compact subset
and f: M — N a continuous function. Then given € > 0, there exists § > 0
such that for all z € K, y € M, d(z,y) < & implies d'(f(z), f(y)) <e.

Proof. Otherwise, we would be able to find € > 0 such that for every in-
teger n > 1, there would exist =, € K, y, € M with d(zy,yn) < % but
d'(f(zn), f(yn)) = €. Some subsequence (2, )reN converges to z € K and
then also (yn, )kew converges to x. By the continuity of f, we have:

lim d (f(xnk)? f(ynk)) =0,

k—4o00

which yields a contradiction. O
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2. SECTIONS OF QUOTIENT TOPOLOGICAL SPACES

2.1. Lemma. Let X, Y be topological spaces and q : X — Y be a continuous
map. Assume that X is Hausdorff and that there exists a continuous right
inverse s : Y — X of q. Then the image of s is closed.

Proof. Let uw € X \ s(Y) be given and set v = s(g(u)). Then u # v and
therefore there exist disjoint open sets U, V in X with v € U and v € V.
Define:

W=Un(soq) (V).
Obviously, W is open and u € W. We claim that W N s(Y) = (). Namely,
if we had w € W N s(Y) then (so¢q)(w) = w, so that w € V, contradicting
weU. O

3. UNIFORM DOMINATED CONVERGENCE THEOREM

Let A be a topological space, A be a subset of A, A\g € A be a limit point
of A, (M,d) be a metric space and I be an arbitrary set. Let (p})icsrca
and (p;);es be families of points of M. We say that pf‘ tends to p; as A — Ao
uniformly in I if for every € > 0 there exists a neighborhood V of A\g in A
such that d(p),p;) < ¢, for all i € I and for all A € V N A with A # ).

3.1. Lemma. Let A be a first countable topological space (i.e., every point
of A has a countable fundamental system of neighborhoods), A be a subset
of A, Mg € A be a limit point of A, (M,d) be a metric space' and I be
an arbitrary set. Let (p})icrrea and (p;)icr be families of points of M. If
for every countable subset Iy of I we have that pf‘ tends to p; as A — Ao
uniformly in Iy then p} tends to p; as A — \o uniformly in I.

Proof. Assume that it is not the case that pf‘ tends to p; as A — Ag uniformly
in I. Then, there exists € > 0 such that for every neighborhood V of g
in A, there exists i € I and A € V N A with A\ # Ag and d(p},p;) > &; let
such an € > 0 be fixed. Let (V},),>1 be a countable fundamental system of
neighborhoods of A\g in A and for each n > 1 choose i,, € I and \" € V, N A
with A" # \g and d(pf‘nn,pin) >e. Set Iy = {zn in > 1}. Clearly, it is not
the case that pg\ tends to p; as A — Ag uniformly in Iy. This contradicts our
hypothesis. O

Recall that a measure space is a triple (2,4, u), where €2 is a set, A is
a o-algebra of subsets of Q and p : A — [0,+00] is a countable additive
measure on A. We have the following “uniform version” of the Lebesgue’s
Dominated Convergence Theorem.

3.2. Lemma. Let (Q, A, u) be a measure space, A be a topological space, A
be a subset of A, \g € A be a limit point of A, and I be an arbitrary set. Let
(fNierrea, (fi)ier be families of maps £ : @ = R, f; : @ — R. Assume
that:

n fact, we could consider an arbitrary uniform space.
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e f is measurable, for alli € I, A € A\ {\o};
o fNw) tends to fi(w) as A — Ao uniformly in I, for every w € Q;
o there exists an integrable map ¢ : @ — [0, 400] such that

A W) < w),
forallwe Q,iel and A€ A\ {\o}.

Then, for alli € I, A € A\ {\o}, the maps f? and f; are integrable and
fQ ff‘ dp tends to fQ fidu as A — g uniformly in I.

Proof. Since )\g is a limit point of A and A is first countable, there exists a
sequence (A"),>1 in A with A" # )¢ for all n > 1 and A" — XAg. Then, for all
1 € I, we have that fi)‘" — f; pointwise in €. It follows that f; is measurable
and that |f;(w)| < ¢(w), for all i € I, w € Q. Thus, the maps f? and f; are
integrable, for all i € I, A € A\ {Xo}. Let us prove that [, fdu tends to
fQ fidu as X — Ag uniformly in I; by Lemma 3.1, it suffices to show that
Jo £ dp tends to [, f; dp as A — Ag uniformly in Iy, for any fixed countable
subset Iy of I. For each A € A, we define a map g* : Q — [0, +00] by setting:

9w = Sup | (w) = filw)

)

for all w € Q. Since Iy is countable, it follows that ¢ is measurable for
all A € A\ {\o}. Clearly [¢*(w)| < 2¢(w), for all w € Q, A € A\ {)\o}.
Moreover, the fact that f{(w) tends to f;(w) as A — Ag uniformly in I for
all w € Q implies that limy_,, g*(w) = 0, for all w € Q. If (\"),>1 is an
arbitrary sequence in A with A" # Ag for all n > 1 and with A" — Ag then,
by the standard version of Lebesgue Dominated Convergence Theorem, we
get:
lim g dp = 0.

n—0o0 Q
Since the sequence (A\"),>1 is arbitrary and A is first countable, it follows
that:

li Ap = 0.
g Jo

From the inequality:

‘/sz')‘dM—Afidﬂ‘S/Qg)‘du, iel, e A\ {) o},

it follows that [, f du tends to [, fidu as A — Ao uniformly in Io. This
concludes the proof. O

4. A NIcE LEMMA THAT IMPLIES TYCHONOFF’S THEOREM

4.1. Lemma. Let (X, 7T) be a topological space and let S C T be a subbasis
for T, i.e., every U € T is a union of finite intersections of elements of S.
If every open cover of X by elements of S has a finite subcover then X 1is
compact.
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Proof. Let o denote the set of all open covers C C 7 which does not have a
finite subcover, i.e.:

U:{CCT:UC:XandUC’;éXifC’CCisﬁnite}.

If one considers o to be ordered by inclusion then it is easy to see that every
non empty chain in o has an upper bound; if X were not compact, then
o would be non empty and by Zorn’s Lemma we would be able to find a
maximal element C € 0. We will show that C NS is a cover of X, which
will yield a contradiction, since C N'S does not have a finite subcover. Let
r € X be fixed and choose U € C with x € U. Since § is a subbasis, we can
find S1,...,5, € S with € (), S; C U. We will show that some S; is in
C; this will yield z € S; € C NS and will complete the proof. Assume that
S; € C for every i = 1,...,n; then, for each 7, C U {S;} has a finite subcover
and therefore we can find V;; € C, j =1,...,n,, with S; U U;Zl Vij=X. It
is easy to see that the latter implies:

n n o n; n.o n;
x=(Ns)vJUvscovJUvis
i=1 i=1j=1 i=1j=1
thus C has a finite subcover, which is a contradiction. O

5. TOPOLOGY FOR SETS OF MAPS

5.1. Notation. We denote by p(X) the power set of X, i.e., the set of all
subsets of X.

If X is a topological space then the set:
{(U): U C X open}

is a covering of p(X) which is closed under finite intersections; therefore,
such set is the basis of a topology for p(X) which we call the power set
topology on p(X) induced from the topology of X.

If X and Y are topological spaces and F(X,Y) = Y denotes the set of
all maps f: X — Y then we consider the graphing map:

$(X,Y) 3 fr—gr(f) € p(X xY)

which assigns to every map f : X — Y its graph. The strong map topology
on §(X,Y) is the topology induced by the graph map, where p(X x Y) has
the power set topology induced from the product topology on X xY. If & is
any set of maps from X to Y (for instance, if S is the set of continuous maps
from X to Y') then the strong map topology on & is the topology induced
from the strong map topology on §(X,Y); the strong map topology on &
coincides with the topology induced by the restriction to & of the graph
map.

A basis of neighborhoods for f € F(X,Y) in the strong map topology is
given by:

{G(U):U c X xY open and gr(f) C U},
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where:
G(U)={g€F(X,Y):gr(g) CU}.

Recall that a family (A;);c; of subsets of a topological space X is called
locally finite in X if every point of X has a neighborhood which intersects
A; for at most a finite number of indices 7.

5.2. Lemma. Let (F;)icr be a locally finite family of closed subsets of X and
let for each i € I, U; be an open subset in F; X Y. Then the set:

G((Fier, Ui)ier) = {f € §(X,Y) : gr(f|r,) C Uy, for alli € I}
is open in §F(X,Y) with respect to the strong map topology.
Proof. Set:

V:{(x,y)EXXY:foralliEI,x¢Fi or (ac,y)EUi};
obviously g((Fi)ig, (Uj)ie]) = G(V), so it suffices to show that V is open
in X x Y. The complement of V is X X Y is given by:

Ve = {(m,y) € X xY :forsomei€l, x€F;and (x,y) ¢ Ui}
=J (B =<\ ).
i€l
The set (F; xY)\Uj is closed in F; x Y and hence closed in X x Y. Moreover,
the family ((F; x Y)\ Ui)z‘el is locally finite in X X Y because (F; X Y);er

is locally finite. Since the union of a locally finite family of closed subsets is
again closed, the conclusion follows. O

Below we describe the strong map topology of F(X,Y) when Y is (at least
locally) metrizable.

5.3. Corollary. Let (F;)icr be a locally finite family of closed subsets of X
and (Z;)ier an arbitrary family of open subsets of Y. For each i € I let d;
be a metric for Z; (compatible with its topology) and choose k; € 10, +00]. If
f: X =Y is a continuous map such that f(F;) C Z; for all i € I then the
set:

V(f; (Fs, Ziydiski)ier) = {9 € §(X,Y) : for all i € I, g(F;) C Z; and

d; (f(x),g(x)) < ki, for all x € Fl}

is an open neighborhood of f in F(X,Y) with respect to the strong map
topology.
Proof. Observe that the set:

Ui ={(z,y) € F; x Z; : di(f(2),y) < ki}

is open in F; x Y for all ¢ € I; moreover:
V(f; (F, Ziydi ki)ier) = G((Fyier, (Us)ier)

and the conclusion follows from Lemma 5.2. O
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6. THE SMALLEST LOCALLY ARC-CONNECTED REFINEMENT OF A
TOPOLOGY

Let X be a topological space. We say that X is arc-connected if for
every z,y € X there exists a continuous map  : [0,1] — X with v(0) = z
and v(1) = y. A subset A of X is called arc-connected if A is an arc-
connected topological space, endowed with the topology induced from X;
this is obviously the same as saying that for every z,y € A there exists a
continuous map v : [0, 1] = X with v(0) = z, v(1) = y and Im(y) C A. For
an arbitrary topological space, the relation:

x ~ y <= there exists a continuous map = : [0,1] — X with
7(0) =z, yv(1) =y

is an equivalence relation on X. For every p € X, the equivalence class C
containing p is the largest arc-connected subset of X containing p, i.e., C
is arc-connected and C' contains any arc-connected subset of X containing
p. The equivalence classes are called the arc-connected components of the
topological space X. If A C X is a subset then the arc-connected components
of A are defined to be the arc-connected components of the topological space
A, endowed with the topology induced from X; obviously, the arc-connected
component of A containing p € A is the largest arc-connected subset of X
which contains p and is contained in A.

6.1. Definition. We say that X is locally arc-connected if every point p € X
has a fundamental system of arc-connected neighborhoods, i.e., if every
neighborhood of p contains a (not necessarily open) arc-connected neigh-
borhood of p.

Obviously if X is locally arc-connected then every open subset of X is
also locally arc-connected, when endowed with the topology induced from
X.

6.2. Lemma. If X is locally arc-connected then the arc-connected compo-
nents of an open subset of X are open.

Proof. Let U C X be open and let C' be an arc-connected component of U.
Given p € C, we can find an arc-connected neighborhood V' of p contained
in U. Then p € V C C and thus p is an interior point of C. O

6.3. Corollary. If X is locally arc-connected then every point of X has
a fundamental system of open arc-connected neighborhoods, i.e., for every
p € X and every neighborhood V' of p, there exists an arc-connected open
set C withpe C CV.

Proof. Take C to be the arc-connected component of the interior of V' con-
taining p. O
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Let (X, 7) be a topological space and consider the set B C p(X) defined
by:

B= {C C X : C is an arc-connected component of some

open subset of (X,7)}.

We claim that B is a basis for a topology on X. To prove that we have to
check that:

(i) every point of X belongs to some C' € B;
(ii) given C1,Cq € B and p € C1 N Cy there exists C' € B with p € C C
C1NCs.

To prove (i), observe that the arc-connected components of X are in B and
they obviously form a covering of X. To prove (ii), we argue as follows; let
U; be an open subset of X such that C; is an arc-connected component of
U;,i=1,2. Then p € UyNUs and U1 NUs is open in X, so the arc-connected
component C' of U; N Uy containing p is in B. Moreover, C' C U; and the
arc-connectedness of C' imply that C' C Cj, ¢ = 1,2; thus C' C C; N Ch.

We denote by 7, the (unique) topology on X having B as a basis. By
definition, the arc-connected components in (X,7) of an open subset of
(X, 7) are open in (X, Tac). Since every open subset of (X, 7) is the union
of its arc-connected components in (X, 7), it follows that:

T C Tac,

i.e., Tac is a refinement of 7. We have the following basic lemma.

6.4. Lemma. Let Y be a locally arc-connected topological space and let f :
Y — X be a map. Then f :' Y — (X,7) is continuous if and only if
f:Y = (X, Tac) is continuous.

Proof. Obviously the continuity of f with respect to 7, implies the con-
tinuity of f with respect to 7, because T, refines 7. Now assume that f
is continuous with respect to 7 and let us prove that f is continuous with
respect to T at an arbitrary point p € Y. Let C be a neighborhood of
f(p) in (X, 7ac); we can assume that C' is a basic open set, i.e., that C' is an
arc-connected component in (X, 7) of some open subset U of (X, 7). Then
f~1(U) is a neighborhood of p in Y; since Y is locally arc-connected, we
can find an arc-connected neighborhood V of p in Y with V' c f~1(U).
Then f(p) € f(V) C U and the continuity of f : Y — (X, 7) implies that
f(V) is arc-connected in (X, 7). Hence V is a neighborhood of p in Y with
f(V) C C and f is continuous at the point p. O

6.5. Corollary. A map v :[0,1] — X is continuous with respect to T if and
only if it is continuous with respect to Tac. O

6.6. Corollary. A subset of X is arc-connected with respect to T if and only
if it is arc-connected with respect to Tyc. O

6.7. Corollary. The space (X, Tac) is locally arc-connected.
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Proof. Observe that 7,. admits a basis of open sets that are arc-connected
with respect to 7 and thus also arc-connected with respect to 7. O

6.8. Corollary. The topology Tac is the smallest refinement of T which is lo-
cally arc-connected, i.e., every locally arc-connected topology in X containing
T contains Tyc.

Proof. Let 7' be a locally arc-connected topology on X that contains 7.
Then the identity map Id : (X,7") — (X, 7) is continuous and hence also
the map Id : (X,7") — (X, 7ac) is continuous, because (X,7’) is locally
arc-connected. U

From now on we refer to 7, as the smallest locally arc-connected refine-
ment of 7.

6.9. Lemma. Let (X,7) be a topological space and let Toc be the smallest
locally arc-connected refinement of 7. Let U C X be an open subset of
(X, Tac) and denote by Ty and (Tac)y Tespectively the topology induced in U
by T and by Tac. Then (Tac)y is the smallest locally arc-connected refinement

of Ty.

Proof. Denote by (71)ac the smallest locally arc-connected refinement of ;.
Since U is open in (X, Tac), the topology (7ac)u is locally arc-connected;
since obviously 7 C (Tac)v, we have also (7¢7)ac C (Tac)r. We know that
the inclusion map:

(Uv (TU)ac) — (X7 T)
is continuous. Since (U, (7¢/)ac) is locally arc-connected, also the inclusion
map:

(U7 (TU)ac) — (X7 Tac)

is continuous and hence the identity map:

(U, (10)ac) — (Uv (Tac)U)

is continuous, i.e., (Tac)v C (T0)ac- O
In what follows we will use the following simple lemma.

6.10. Lemma. Let M be a topological space and let M = | J,c; U; be an open
cover of M. Assume that each U; is endowed with a mazximal differentiable
atlas A;, compatible with the topology that U; inherits from M, such that
for alli,5 € I, U; NU; inherits the same maximal differentiable atlas from
(Ui, Ai) and from (Uj, A;). Then there exists a unique mazimal differen-
tiable atlas A on M that induces the atlas A; on U; for all i € 1. O

Now we prove the main the result.

6.11. Proposition. Let M be a differentiable manifold and let N be a subset
of M. Denote by T the topology of M, by Tn the topology induced by T
on N and by (Tn)ac the smallest locally arc-connected refinement of .
Assume that every point of N belongs to an open subset of (TN )ac which is
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an embedded submanifold of M. Then there exists a maximal differentiable
atlas A on N, compatible with the topology (taun)ac, such that the inclusion
(N, A) — M is an immersion.

Proof. If U C N is an open subset with respect to (7x)ac that is embedded
in M, then we may endow U with the maximal differentiable atlas that
makes the inclusion U — M an embedding. Denote by 77 the topology
induced on U by (N, 7x); observe that 7y is also the topology induced on U
by (M, 7). Since U is open with respect to (7 )ac, Lemma 6.9 implies that
the topology induced on U by (7n)ac is the smallest locally arc-connected
refinement of 77. Since (U, 77) is already locally arc-connected, we conclude
that 7 is equal to the topology induced on U by (7n)ac.

Now let U, V be open subsets of (N, (TN)aC) that are embedded in M.
Then U NV is open in (N, (TN)aC) and contained in U; hence U NV is open
in (U, 1y). Similarly, UNV is open in (V, 7). Then UNV inherits the same
maximal differentiable atlas from U and from V: that is the unique maximal
differentiable atlas for which the inclusion U NV — M is an embedding.
Finally, Lemma 6.10 gives us a maximal differentiable atlas A on N such
that every open subset of (N , (TN)aC) that is embedded on M is an open
submanifold of (N,.A). This implies that the inclusion map (N, A) — M is
locally an embedding and hence an immersion. ([

7. SHRINKING

Recall that a topological space X is called normal if given disjoint closed
subsets F1, Fy C X we can find disjoint open sets Uy, Uy C X with F; C U,
i = 1,2. The space X is called T/ if X is T1 (i.e., the points of X are
closed) and X is normal.

A family (U;)ier of subsets of X is called pointwise finite if for every
x € X there exists at most a finite number of indices ¢ € I with x € U;. We
say that (U;);er is a covering of X if X = J,c; U;; we say that (U;)er is an
open covering of X if in addition each U; is open in X. Let (U;);er be an
open covering of X. A shrinking of (U;);er is an open covering (V;);er of X
such that V; Cc U; for all i € I.

Our main result is the following:

7.1. Lemma. A topological space X is normal if and only if every pointwise
finite open covering of X has a shrinking.

Proof. We start with the easier part. Assume that every pointwise finite
open cover of X has a shrinking and let us prove that X is normal. Given
disjoint closed subsets Fy, F» C X then their complements X \ Fi, X \ F»
form a (obviously pointwise finite) open cover of X. We can thus find open
sets V4,Vo C X such that X = ViU Vs and V; C X\ F;, i = 1,2. Then
X\ V; and X \ V5 are disjoint open sets containing F; and F; respectively.

Now we go for the harder part. Assume that X is normal and let X =
Uier Ui be a pointwise finite open cover of X. We will use Zorn’s Lemma.
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Let A denote the set of all families of open sets (V});jes, J C I, such that
V; C U; for all j € J and:

(7.1) X:(UVj>U< U U)

jeJ iel\J

The proof will be completed once we show that there exists a family (V});cs
in A with J = I. We define a partial order < on A by requiring that
(Vi)jes = (V)jes if and only if J C J" and V; = V] for all j € J. Let
{(Vf‘) jedy T A€ A} be an arbitrary linearly ordered subset of A. We set
J=UyerJr CTand forall jeJ, V; = Vj’\, where A € A is chosen with
J € Jx. We obviously have a well-defined family of open sets (V});c; and
Vj C Ujforall j € J. We show that (7.1) holds. Let z € X be fixed and
consider the set F' = {z el ze UZ-}. Since F is finite, there exists A € A
with F'NJ C Jy. We know that:

x=(Uw)u( U w)
JEIN iel\Jy

If v € Uje , Vj then z € J;c; V; and then (7.1) is proved; otherwise, there
exists i € T\ Jy with x € Uj, i.e., there exists i € (I\J\)NF. But FNJ C Jy
implies (I \ Jy\) N F C I\ J and thus again (7.1) is proved.

We are now under the hypothesis of the Zorn Lemma. Let (Vj);es be
a maximal element of A and assume by contradiction that J & I. Choose
ip € I\ J. We will obtain a contradiction if we can find an open set V' with

V C U;, and:
x=(Uw)uvu( U w).
jedJ i€I\J
i#io
Denote by F' the complement of the open set:

(Urn)u(Uw)
jeJ el\J
iio
so that F' and X \ U;, are disjoint closed subsets of X. Since X is normal,
we can find disjoint open sets V, W containing F' and X \ Uj, respectively.
Then V. C X\W C U;, and X = (X \ F)UV. This concludes the proof. O

7.2. Corollary. Let X be a normal topological space, FF C X be a closed
subset and (U;)icr be a pointwise finite family of open subsets of X such
that ' C J;c; Ui Then there exists a family (Vi)icr of open subsets of X
such that V; C U; for alli € I and F C Uicr Vi-

Proof. Take a shrinking of the pointwise finite open cover:

X=(X\Ful U

el
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of X;lve then obtain a family (V;);es of open sets and an open set A C X
with A C X\ F, X = AUJ,c; Vi and V; C U; for all i € I. Obviously
F C Uier Vi- O

8. PARACOMPACTNESS

Let (U;);er be a family of subsets of a topological space X. We say that
(Ui)ier is locally finite (in X) if every point of x has a neighborhood that
intersects U; for at most a finite number of indices 7 € I. Given coverings
(Ui)ier, (Vj)jes of X, we say that (V})jes is a refinement of (U;)ier if for
every j € J there exists i € I with V; C U;; we say that (V}),cy is a strict
refinement of (U;)ier if J =1 and V; C U; for all ¢ € I.

8.1. Lemma. If a family (U;)icr is locally finite in a topological space X
then the family (U;)ier is also locally finite in X .

Proof. Observe that if V' is an open neighborhood of z € X then V intersects
U; if and only if V intersects U;. O

8.2. Lemma. If (F})cr is a locally finite family of closed subsets of a topo-
logical space X then the union F' = |J;c; F; is closed.

Proof. Choose © € X with x ¢ F. Let V be a neighborhood of x such that
theset J = {i € I:F,NV # (0} is finite. Then:

Wz(ﬂ(X\E))ﬂV

ieJ
is a neighborhood of x that is disjoint from F'. ([l

8.3. Corollary. If X is a topological space and (U;)ier is a locally finite
family in X then:

Proof. The inclusion:

holds in general. The reverse inclusion is proven by observing that | J;c U
is closed, by Lemmas 8.1 and 8.2.

A topological space X is called paracompact if every open cover of X
admits a locally finite open refinement. We say that X is hereditarily para-
compact if every subspace of X is paracompact. We have the following basic
lemmas.

8.4. Lemma. If X is paracompact then every open cover of X admits a
strict locally finite open refinement.
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Proof. Let (U;)icr be an open cover of X and let (V});es be a locally finite
open refinement. Define a map ¢ : J — I by choosing for every j € J an
index ¢(j) € I with V; C Ug;y. Set:

Wi = U ‘/j:
Jj€J
o(j)=i
for all i € I. Then it is easy to see that (W;);er is a strict locally finite open
refinement of (U;)cr. O

8.5. Lemma. If every open subspace of X is paracompact then X is hered-
itarily paracompact.

Proof. Let Y C X be an arbitrary subspace and let (U;);c; be an open cover
of Y. For each ¢ € I choose an open subset V; C X with U; = V; NY. By
hypothesis, the open set V' = [ J;c; V; is paracompact; thus, there exists a
locally finite open refinement (W;);c; of the open cover (V;);cr of V. Now
it is easy to see that (W; NY)cs is a locally finite open refinement of the
open cover (U;)er of Y. O

8.6. Lemma. Let X be a paracompact space and F C X be a closed subset.
Let (Us)ier be a family of open sets with F' C |J;c; Us. Then there exists a
family of open sets (V;)ier which is locally finite in X, V; C U; for alli € 1
and F' C J;c1 Vi

Proof. The open cover X = (X \ F) UJ,;c; U; of X admits a strict locally
finite open refinement, i.e., we can find a family of open sets (V;);c; which
is locally finite in X, an open subset A C X with V; C U; for all ¢ € I,
AC X\ Fand X =AUJ,c; Vi. Obviously F' C e, Vi O

8.7. Corollary. If X is paracompact and F C X is a closed subspace then
F' is paracompact.

Proof. let (W;);er be an open cover of F' and for each i € I choose an
open set U; C X with W; = U; N F. Choose (V;)icr as in Lemma 8.6.
Then (V; N F);cr is a (strict) locally finite open refinement of the open cover
(Wi)iel of F. O

8.8. Lemma. Every compact space is paracompact. O

Recall that a topological space X is called regular if given x € X and
a closed subset F© C X with x ¢ F then we can find disjoint open sets
VW C X with x € V and FF C W. The space X is called T3 if X is T1
and regular. In view of Lemma 8.8, we know that paracompact spaces may
not be Hausdorff. On the other hand, Hausdorff paracompact spaces are
automatically T3 and T4, as we show in the following:

8.9. Lemma. A paracompact Hausdorff space is T3.

Proof. Let X be a paracompact Hausdorff space, z € X be a point and
F C X be a closed subset with x ¢ F. For every y € F we can find an
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open neighborhood U, of y with z & U,. Then X = (X \ F) U Uyer Uy
is an open cover of X, from which we can find a strict locally finite open
refinement, i.e., a locally finite family of open sets (V,),cr and an open
subset W C X\ F with V,, C U, forally € Y and X = WUUyeF Vy. Then
Uye r Vy is an open set containing F' and, by Corollary 8.3:

w&UV:UVy. O

yeF yey
8.10. Lemma. A paracompact Hausdorff space is T4.

Proof. Let X be a paracompact Hausdorff space and let Fi, Fo C X be
disjoint closed subspaces. We already know by Lemma 8.9 that X is T3, so
for each x € F} we can find an open neighborhood U, of x with:

U, N Fy =0).

Then X = {J,ep, Uz U(X \ F1) is an open cover of X, from which we obtain
a strict locally finite open refinement, i.e., a locally finite family of open sets
(Vi)zer, and an open set W C X \ Fy with V, C U, for all x € F; and
X = Uzex Ve UW. Then UgceF1 V. is an open set containing F; and its

closure (J e, Va (Corollary 8.3) is disjoint from Fb. O

Recall that, given topological spaces X, Y then a map f : X — Y is called
a local homeomorphism if for every x € X there exists an open set U in X
such that z € U, f(U) is open in Y and f|y : U — f(U) is a homeomor-
phism. Observe that a local homeomorphism is continuous and open (i.e.,
takes open sets to open sets); moreover, a bijective local homeomorphism is
a homeomorphism. Our main result is the following:

8.11. Lemma (the tubular neighborhood trick). Let X, Y be topological
spaces, with Y hereditarily paracompact and Hausdorff. Let f : X — Y be
a local homeomorphism; if S C X is a subset such that f|s:S — f(S) is a
homeomorphism then there exists an open subset Z C X containing S such
that flz : Z — f(Z) is a homeomorphism.

We need a preparatory lemma.

8.12. Lemma. Let X, Y be topological spaces, f: X — Y be a continuous
map and S C X be a subset such that fls : S — f(S) is an open map.
Given x € S and an open neighborhood U of x in X then we can find an
open neighborhood V' of x contained in U such that f(VNS) = f(V)N f(S).

Proof. The set U N S is open in S and thus f(U N S) is open in f(S5); let
A C Y be an open set with f(UNS) = ANf(S). Then V =UNf"1(A) is an
open neighborhood of x contained in U. Obviously f(VN.S) C f(V)N f(S);

fV)Nf(S) cANf(S) = fUNS) = fVNS).

The last equality above follows by observing that UNS C f~'(A) and hence
uns=vns,. O
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Proof of Lemma 8.11. 1t suffices to find an open set Z C X containing S
such that f|z is injective. For each x € S let U, be an open neighborhood
of  in X such that f(U,) = V, is open in Y and flyy : U, — V] is a
homeomorphism. By Lemma 8.12, we can assume that:

(8.1) fULNS)=VIN f(9).
The set:
Yo=Jw
zeS

is open in Y and it contains f(S). Moreover, Y| is Hausdorff and paracom-
pact; therefore, by Lemma 8.10, Yp is also T4. Let Yy = (J,c; Vi be a locally
finite open refinement of the open cover Yy = (J,cgVy of Yy (the family
(Vi)ier is locally finite in Yy). For each i € I, choose x € S with V; C V/
and set:

Ui = (fluy) "' (Vi).
Then U; C U, is open in X, f|y, : U; — V; is a homeomorphism and from
(8.1) we get:
(8.2) f(UNS) =V;n f(S),
for all i € I. By Lemma 7.1, there exists a shrinking Yy = (J;c; Wi of the

open cover Yy = [J;c; Vi of Yo, ie., W; C V; for all i € I (the closure on W;
will always be taken with respect to the space Yy). For each i € I set:

Zi = (flv,) ™ (Wy).
Then Z; C U; is open in X, f|z, : Z; — W; is a homeomorphism and from
(8.2) we get:
(8.3) f(Z;nS) =W;n f(S),
for all ¢ € I. We claim that:
(8.4) sclJz
el
Namely, given x € S, there exists ¢ € I with f(x) € W;. Then f(z)
Wi f(S) and therefore, by (8.3), we can find y € Z; NS with f(z) = f(y).
Since f|g is injective, we obtain x = y € Z;, proving the claim.
Now for x € S, we set:
L ={icl: f(z) e W;};

since the cover Yy = J;c; Wi is locally finite, the set I, is finite and
nonempty. Observe that for i € I, we have, using (8.2):

f(x) e Win f(S) C Vin f(S) = f(UiNS)
and thus the injectivity of f|g implies x € U;. We have just shown that:
(8.5) ze (U,
1€l
for all x € S.
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Our next goal is to find for each x € S an open neighborhood G, of f(x)
in Yp with the following properties:

(i) for each i € I, G5 intersects Wj if and only if i € I,;;
(i) Go € f(Nies, Ui)-
The desired set G, can be defined by:

Go=f(Nu)n(v\ U W).

1€ly 1€l\I,

The fact that f(x) € G, follows from (8.5) and property (ii) is obvious.
For property (i), observe that i € I, implies f(z) € G, N W; and thus
Gz NW; # 0; moreover, for i € I \ I, we obviously have G, N W; = 0. The
fact that GG, is open follows from the fact that f is an open map and from
Lemma 8.2.

Now set G = |J,cg G, and finally:

Z=f1e)nJz.
i€l
Obviously Z is open in X and S C Z, by (8.4). We complete the proof by
showing that f|z is injective. Let z,y € Z be chosen with f(z) = f(y). We
can find 4,j € I with € Z; and y € Z;. Moreover, f(z) = f(y) € G, for
some z € S. We have f(z) € G,NW; and f(y) € G, NW;, so that i,j € I,
by property (i). Now property (ii) implies G, C f(U; N Uj); we can thus
find p € U; N U; with f(z) = f(p) = f(y). Since f is injective in U; and in
Uj, we conclude that x = p = y. ([l

8.13. Remark. In Lemma 8.11, if we add the hypothesis that f(S) be closed in
Y then we may replace the hypothesis that Y be hereditarily paracompact
by the hypothesis that Y be paracompact. To this aim, the proof of the
lemma has to be adapted as follows. When we take the locally finite open
refinement (V;);er of (V))zes, we use Lemma 8.6 and obtain a family of
open sets (V;)ier which is locally finite in Y, f(S) C [U;c; Vi and each V;
contained in some V] (actually Lemma 8.6 allows us to take I = S and
V. C VI, but we don’t need that). Similarly, when we take the shrinking
(Wy)ier of (V;)ier we may use Corollary 7.2 to obtain a family of open sets
(Wy)ier with W; C V; for all i € I and f(S) C U;c; Wi (in this case we may
even take the closure of W; in Y, rather than in Yp).

8.14. Corollary. Let X be a Hausdorff topological space and D C X be a
discrete subspace. If either X is paracompact and D is closed or X is hered-

itarily paracompact then for each p € D we can find an open neighborhood
Up of p in D with UyNU,; =0 for all p,q € D, p # q.

Proof. Denote by m: D x X — X the projection onto the second coordinate
and by A C D x X the diagonal of D x D. Then « is a local homeomor-
phism and 7|an : A — D is a homeomorphism. By Lemma 8.11 (see also
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Remark 8.13) there exists an open subset U C D x X containing A such
that 7|y is injective. The proof is now completed by setting:

Up:{xeX:(p,x)eU},
for all p € D. O

8.15. Remark. If X is metrizable then there exists a much simpler proof of
Corollary 8.14. Namely, for each p € D let 7, > 0 be such that the open
ball B(p;rp) intersects D only at p. The desired set U, can be taken equal

to B(p; 22).

If X is a topological space then a sheaf over X is a pair (S, ), where S
is a topological space and 7w : § — X is a local homeomorphism. If A C X
then a section of the sheaf (S, ) over Aisamap s: A — S with mos = Id 4.

8.16. Corollary. Let X be a Hausdorff space and A C X a subset. As-
sume that either X is paracompact and A is closed or that X is hereditarily
paracompact. Given a sheaf (S,7) over X then every continuous section
s: A— S of (S§,m) over A extends to a continuous section defined on an
open subset U C X containing A.

Proof. We have that 7 : § — X is a local homeomorphism (by definition)
and that 7|4 : s(A) — A is a homeomorphism (whose inverse is s). By
Lemma 8.11 (see also Remark 8.13), there exists an open subset Z C S
containing s(A) such that 7|z : Z — 7w(Z) is a homeomorphism. Now
simply set U = 7(Z) and observe that (7|z)™! : U — S extends s. O

8.17. Definition. A topological space X is called strongly paracompact if
for every basis B of open subsets of X there exists a locally finite open cover
(Ui)iel of X with U; € Bfor alli € I.

8.18. Lemma. If X is strongly paracompact then for every basis of open sets
B and for every open cover (U;)ier of X, there exists an open locally finite
refinement (V;)jcs of (Ui)icr with V; € B for all j € J. In particular, every
strongly paracompact space is paracompact.

Proof. The set:
B’:{BEB:BCUi,forsomeiEI},

is a basis of open sets for X. Then simply take (V;);cs to be a locally finite
open cover of X with V; € B’ for every j € J. O

Observe that in general one is not supposed to find strict locally finite
open refinements of an open cover (U;);cr consisting of elements of B.

Recall that a topological space X is called o-compact if X is a countable
union of compact subspaces. Every second countable locally compact space
is o-compact.

We have the following important result concerning strong paracompact-
ness:
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8.19. Lemma. FEvery locally compact Hausdorff o-compact topological space
is strongly paracompact.

Proof. We can write X = ;ri'i K,, as a union of compact subsets K,, C X
with K, contained in the interior of K, for all n. This is a standard
construction whose proof we recall. Write X = (J/> L, as a union of
compact subsets L,,. We construct the sequence K,, inductively. Take K; =
Lq. If K, has been constructed, cover K,, with a finite number of open sets
with compact closure; now define K, 1 to be equal to the union of L,
and the closure of the finite union of such open sets. This completes the
construction. For the rest of the proof we set K,, = () for n < 0.

Now let B be a basis of open subsets of X and let us construct a locally

finite open cover of X consisting of elements of B. For each n > 1 we set:
Cn =K, \ K, 1=K, \ int(Kn—l);

observe that X = > C,,. Let n > 1 be fixed. For each = in the compact
set Cp, we choose V' € B with x € V' C int(K,41) \ Kp—2. Consider a

finite subcover:
Tn

Cnc | Vi,
7j=1

of the open cover C,, C | V'. Now the family:

zeChp
Y= (Vh

Zj )1§j§7"n7 n=1

is an open cover of X consisting of elements of B. We now show that V
is locally finite. Let x € X be fixed and let n > 1 be the smallest integer
with z € K,,. Then A = int(K,,4+1) \ K,—1 is an open neighborhood of z.
Moreover, A does not intersect Vi if m < n —2orm > n+3. Thus A

J
intersects at most ZZ;FZ_I ry < +00 elements of V. ]

9. TOPOLOGICAL VECTOR SPACES

Let X be a vector space over K (K = R or K = C) and let 7 be a topology
on X. We say that (X, 7) is a topological vector space if the maps:

(9.1) XxXs(@xyr—z+yeX, KxX>s5(\z)— \eX,

are continuous, where the products X x X and K x X are endowed with
the usual product topologies and K is endowed with the usual Euclidean
topology.

9.1. Lemma. Let (X, 7) be a topological vector space and let T : K™ — X be
a linear map. If K™ is endowed with the standard Euclidean topology then
T s continuous.

Proof. Let (e;)!'_, denote the canonical basis of K" and set T'(e;) = b;,
i=1,...,n. If 1; : K" — K denotes the projection onto the first coordinate
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then: .
T(v) = mi(v)b;.
i=1

Since the projections of K™ are continuous and the vector space operations
of X are continuous, it follows that 7" is continuous. ([l

9.2. Lemma. Let X be a topological vector space. If U C X is a neigh-
borhood of the origin then there exists an open neighborhood of the origin
V C X such that every segment with endpoints in V' is contained in U, i.e.,
1—-t)z+tyeU forallz,yecV,te]0,1].

Proof. We may assume without loss of generality that U is open. The map
S:]0,1] x X x X — X defined by S(¢,z,y) = (1 — t)x + ty is continuous,
because the vector space operations of X are continuous. Thus, S~1(U) is
an open subset of the product [0,1] x X x X containing [0, 1] x {0} x {0}.
Since [0, 1] is compact, there exists a neighborhood A of (0,0) in X x X
such that [0,1] x A € S~}(U). We may thus find an open neighborhood V'
of 0 in X such that V' x V C A. Hence every segment with endpoints in V
is contained in U. O

9.3. Definition. A topology in a vector space X is said to be translation
invariant if for every v € X the translation map:

t: Xsxr—ax4+ve X
is continuous.

Since the inverse of the translation t, is the translation t_,, it follows that
if X is endowed with a translation invariant topology then all translation
maps are actually homeomorphisms of X. Obviously the topology of a
topological vector space is translation invariant.

9.4. Lemma. Let X, Y be vector spaces over IK endowed with translation in-
variant topologies (this is the case if X andY are topological vector spaces).
Then a linear map T : X — Y 1is continuous if and only if it is continuous
at the origin.

Proof. Obviously if T' is continuous then T is continuous at the origin. As-
sume now that 7' is continuous at the origin. Since T is linear, for every
v € X, we have:

(92) T = tT(U) oT o t,v.

Since translations are continuous, the continuity of 17" at the origin implies
the continuity of the righthand side of (9.2) at the point v. Thus, T is
continuous at the point v. O

9.5. Lemma. Let X be a topological vector space. If U C X is open and
A € K is not zero then the set:

(9.3) N ={\z:2eU},

18 open in X.
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Proof. Simply observe that the homotety = — Ax is a homeomorphism of
X onto itself. O

9.6. Lemma. let T be a topology on K™ for which (IK", T) is a Hausdorff topo-
logical vector space. Then T coincides with the standard Euclidean topology
of K™ (in particular, all norms on a finite-dimensional vector space define
the same topology).

Proof. Denote by 7. the Euclidean topology of K". By Lemma 9.1, the
identity map:

(9.4) Id: (K", 7o) — (K", 7)
is continuous. We will show now that the identity map:
(9.5) Id: (K", 7) — (K", 7e)

is also continuous. By Lemma 9.4, it suffices to show that (9.5) is continuous
at the origin. We claim that such continuity will follow from the existence of
a neighborhood of the origin in (K™, 7) which is bounded with respect to the
Fuclidean metric. Namely, assume that there exists an open neighborhood
V of 0 in (K", 7) which is bounded with respect to the Euclidean metric.
Given an Euclidean ball B(0,7), r > 0, we may then find A > 0 such that
AV C B(0,7); thus, by Lemma 9.5, AV is a neighborhood of the origin in
(K™, 7) which is carried by (9.5) to a subset of B(0,7). This proves the
claim.

Let us now show the existence of a neighborhood V' of the origin in (K", 7)
which is bounded in the Euclidean metric. Let S"~! denote the Euclidean
unit sphere of IK™. Since S”~! is compact in (K", 7.) and (9.4) is continuous,
it follows that S™~! is also compact in (K", 7). Since 7 is Hausdorff, S"~! is
closed (and hence IK™\ S"~! is open) in (K", 7). By Lemma 9.2, there exists
an open neighborhood of the origin V' in (K", 7) such that every segment
with endpoints in V is contained in U = K™ \ S"~!. But this implies that
V' is contained in the open unit ball (because a segment with one endpoint
outside the open unit ball and the other endpoint at the origin crosses the
sphere S"~1). Hence V is bounded. O

We recall a couple of basic definitions and a few facts from general topol-
ogy.

9.7. Definition. Let ((yi,n))ie[ be a family of topological spaces, X be a
set and for each i € I let f; : X — ); be a map; the topology on X induced
by the family of maps (f;)ier is the smallest topology on X for which all
the maps f; are continuous (it is the intersection of all topologies on X
containing the sets f; '(U), U € 7, i € I).
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A basis of open sets for the topology induced by the maps f; consists of
the sets of the form?:

-1 -1
(9.6) fi (U)n...n fi, (Ug),
with 41,...,9, € [, Uy € 74y, ..., Uy € 73,. Given a map ¢ defined in some
topological space and taking values in X, then g is continuous at a given
point with respect to the topology induced by the maps f; if and only if
fi o g is continuous at that point, for all ¢ € I.

9.8. Definition. Given a family (7;);c; of topologies in a set X’ then the
supremum

sup 7;

el
is the smallest topology in X that contains 7; for all ¢ € I, i.e.; it is the
topology induced by the identity maps:

Id: X — (X,7), i€l

A basis of open sets for the topology sup;c; 7; consists of the sets of the
form:
UnNn...NUg,
with Uy € 74, ..., Uy € 74, t1,...,% € I. Given a map ¢ defined in some
topological space and taking values in X, then g is continuous at a given
point with respect to the topology sup;c; 7; if and only if g is continuous at
that point with respect to 7;, for all 7 € I.

9.9. Lemma. Let (X;);es be a family of topological vector spaces over IK, X
be a vector space over K and for each i € I let T; : X — X, be a linear map.
The topology on X induced by the maps T; makes it into a topological vector
space.

Proof. To prove the continuity of the maps (9.1), we have to prove the
continuity of the maps:
(9.7) X x X3 (z,y) — Ti(z +y) =Ti(z) + Ti(y) € Xi,
(9.8) Kx X > (\z)— T;(A\x) = \T;(x) € X;,
for all ¢ € I. The map (9.7) is the composite of the map:

T, x T X x X 3 (z,y) — (Ti(2), Ti(y)) € Xi x X;,
with the map:

XixX;3 (z,w) — z+w € X;,

and therefore it is continuous. Similarly, the map (9.8) is the composite of
the map:

IdxT;: Kx X3 (\z)— (A\Ti(z) € K x X,
2When T is empty, the induced topology is the chaotic topology {0, X}. In this case,

the only possibility in (9.6) is & = 0 and the intersection in (9.6) is understood to be equal
to X.
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with the map:
Kx X; > (\z)— Az € X;,
and therefore it is also continuous. O

9.10. Corollary. Let X be a vector space over K and let (1;)icr be a family
of topologies on X such that, for all i € I, (X,7;) is a topological vector

space over K. If T = sup,c; 7 then (X, T) is a topological vector space over
K.

Proof. In Lemma 9.9 let X; be X endowed with 7; and let T; be the identity
map of X. O

9.11. Lemma. Let X be a complex vector space endowed with a topology. If
the maps:
XxX3(xy) —zt+yelX,
(9.9) RxX>3(\x)— AzeX,
Xszxr—ize X
are continuous then also the map:
(9.10) CxX>W\Nz)—AzeX

1S continuous.

Proof. By identifying C with R x R, the map (9.10) is identified with the
map:

RxRxX > (a,b,z)— ax + biz € X,
which can be easily written as a composition involving the maps (9.9). O

10. LOCALLY CONVEX TOPOLOGIES

Let X be a vector space over K, where K = R or IK = C. A semi-norm on
X is a non negative real valued function p : X — R satisfying the triangle
inequality:

pz+y) <p(@)+py), =yelX,
and the condition:

(10.1) p(Az) = |Ap(z), AeK, xe€ X.

Condition (10.1) implies p(0) = 0 (set z = 0 and A = 0). Observe that
condition (10.1) depends on the field KK; we shall sometimes speak of a real

semi-norm (resp., a compler semi-norm) when condition (10.1) is satisfied®
with K = R (resp., with K = C).

10.1. Lemma. Let X be a vector space over K.

(a) given semi-norms p, p' on X then p+ p' is a semi-norm on X;

3When we speak just of a “semi-norm” on a vector space X we mean that K in (10.1)
is the scalar field of the space X; however, when X is complex, it is more convenient to
speak of a “real semi-norm” on X than to speak of a “semi-norm in the real vector space
obtained from X by restricting to R x X the operation of multiplication by scalars”.
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(b) given a non empty family of semi-norms (p;)icr on X, if the supre-
mums:
p(@) < sup pi(x)
i€l
is finite for all x € X then p is a semi-norm on X (in particular, if
I is finite then p(z) = max;er pi(x) defines a semi-norm on X );
(¢) given another vector space Y over K, a linear map T : X — 'Y and

a semi-norm p on Y then poT is a semi-norm on X.
Proof. Straightforward. O

10.2. Lemma. Let X be a vector space endowed with a translation invariant
topology (see Definition 9.3; that is the case if X is a topological vector space)
andletp: X — R be a semi-norm in X. Then p is continuous if and only if
it is continuous at the origin (where R is endowed with the usual Fuclidean

topology).

Proof. Obviously if p is continuous then p is continuous at the origin. Con-
versely, assume that p is continuous at the origin and let x € X and € > 0
be given. We have to show that for y in some neighborhood of  we have
Ip(y) — p(z)| < e. The triangle inequality for p easily implies:

p(y) — p(x)] < ply — ),
so that |p(y) — p(z)] < € for all y in the set:

(10.2) {ye X :ply—=z) <e}.

But the set (10.2) is the image under the translation t, : y — y+x of the set
p_l(]—oo7 5[), which is a neighborhood of the origin, by the continuity of p
at the origin. Since the translation t, is a homeomorphism, the set (10.2) is
a neighborhood of x. O

10.3. Corollary. Let X be a topological vector space and let p: X — R be a
semi-norm in X. Then p is continuous if and only if p is bounded in some
neighborhood of the origin.

Proof. If p is continuous then p~!(]—o0,1[) is a neighborhood of the origin
in which p is bounded. Conversely, if there exists a neighborhood of the
origin V' and a constant ¢ > 0 such that p(z) < ¢ for all x € V then for all
e > 0 the set (recall (9.3)):

W=c¢

C
is a neighborhood of the origin such that p(y) < ¢, for all y € W, so that p
is continuous at the origin and hence continuous. O

A semi-norm p on X defines a pseudo-metric:

Xx X3 (zy r—pr—y eR

4A pseudo-metric satisfies the same axioms of a metric, except for the fact that the
distance between distinct points is allowed to be zero.
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on X which defines a topology 7(p) on X. By definition, a subset U of X is
in 7(p) if and only if for every & € U there exists r > 0 such that the open
ball of center x and radius r:

(10.3) {yeX:ply—=)<r}

is contained in U.
10.4. Lemma. Ifp is a semi-norm on a vector space X then X endowed with

the topology 7(p) is a topological vector space. Moreover, if X is endowed
with T(p) then the map p: X — R is continuous.

Proof. We have to prove the continuity of the maps:

(10.4) XxX3(xyr—z+yelX,
(10.5) Kx X3 (\zx)— Az e X.

The continuity of the sum map (10.4) follows easily from the inequality:

p((@ +y) = (@ +y) <p@ —2)+py —y), z.y2y X
More explicitly, given z,y € X and € > 0 then it follows from such inequality
that:
p((@ +y) = (z+y)) <e,

)

for all 2/,y" € X with p(z’ —x) < § and p(y' —y) < 5. For the continuity
of the multiplication map (10.5), observe that for z,2’ € X, \, N € K, we
have:

p(Na' = Az) < p(N' (@' — 2)) + p((X' = N)z) = [Np(a’ —z) + [N = Alp(=),
so that, if |\ — X'| <1, then:
p(Nz' = Az) < (|l +1)p(z" — 2) + [ = Alp(z).
Thus, given z € X, A € K, € > 0, we have:
p(\Na' —\x) <e

provided that 2’ € X, X € K satisfy:

e I
2(|Al+1) 2(p(z) +1)

Finally, for the continuity of the map p, simply observe that the open ball

p! (]—oo, 1[) is a neighborhood of the origin on which p is bounded, so that

p is continuous, by Corollary 10.3. ([

p(z ;N = <min{

10.5. Lemma. Let X be a vector space and p be a semi-norm on X. The
topology T(p) is the smallest translation invariant topology on X (see Defi-
nition 9.3) for which the map p : X — R is continuous, i.e., 7(p) is a trans-
lation invariant topology on X for which p is continuous and it is contained
in every translation invariant topology T on X for which p is continuous.
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Proof. Tt follows from Lemma 10.4 that 7(p) is a translation invariant topol-
ogy for which p is continuous. Let 7 be a translation invariant topology on
X for which p is continuous. The open ball (10.3) is the image under the
translation t, : y — y + = of the set pfl(]—oo, 'r[) and therefore it belongs
to 7. Since every element of 7(p) is a union of open balls, it follows that
T(p) C 7. O

Let X be a vector space over KK and let P be a set of semi-norms in X.
We set (recall Definition 9.8):
7(P) = sup7(p).
peP
A fundamental system of (open) neighborhoods of the origin with respect
to the topology 7(P) consists of all sets of the form®:

(10.6) {zeX pi(z)<e, i=1,...,k},

with p1,...,pr € P and € > 0. A map defined in some topological space
and taking values in X is continuous at a given point with respect to 7(P) if
and only if it is continuous at that point with respect to 7(p), for all p € P.

10.6. Lemma. Let P be a set of semi-norms in a vector space X. Then
X is a topological vector space endowed with the topology T(P). Moreover,
every p € P is continuous with respect to 7(P).

Proof. The fact that X endowed with 7(P) is a topological vector space
follows from Lemma 10.4 and Corollary 9.10. The fact that each p € P is
continuous with respect to 7(P) follows from Lemma 10.4 and from the fact
that 7(p) C 7(P). O

10.7. Lemma. Let P be a set of semi-norms in a vector space X. Then
7(P) is the smallest translation invariant topology on X that makes each
p € P continuous.

Proof. 1t follows from Lemma 10.6 that 7(P) is a translation invariant
topology for which each p € P is continuous. Moreover, if 7 is a trans-
lation invariant topology on X for which each p € P is continuous then,
by Lemma 10.5, 7 contains 7(p) for each p € P and therefore T contains
7(P) = supyep 7(p)- O
10.8. Corollary. Let P be a set of semi-norms in a vector space X and let
Pmax denote the set of all semi-norms in X that are continuous with respect
to 7(P). Then 7(P) = 7(Pmax) and every set of semi-norms P' in X such
that 7(P) = 7(P’) is contained in Pmax.

Proof. Since P C Pmax, we have 7(P) C 7(Pmax). Moreover, since 7(P) is
a translation invariant topology that makes each p € Ppax continuous, it
follows that 7(Pmax) C 7(P). Finally, if 7(P) = 7(P’) then each p € P’ is
continuous with respect to 7(P’') = 7(P), so that P’ C Ppax. O

SWhen P is empty, 7(P) is the chaotic topology {0, X}. In this case, in (10.6) one
must take k = 0 and the set (10.6) is X.
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10.9. Lemma. Let Y be a topological space, X be a vector space and P be
a set of semi-norms in X; assume X to be endowed with the topology T(P).
Let f:Y — X be a map and y € Y be a point with f(y) = 0. Then f is
continuous at the point y if and only if p o f is continuous at the point y,

for allp € P.

Proof. If f is continuous at y then po f is continuous at y, for all p € P, since
p: X — R is continuous. Conversely, in order to check that f: ) — X is
continuous at y it suffices to show that, for each p € P, the map f: )Y — X
is continuous at y when X is endowed with 7(p). In order to establish such
continuity, observe that a neighborhood of 0 = f(y) in (X , T(p)) contains a
set of the form p~*(]—o0,7[), for some r > 0 and that:

FH e (J=e0,rl)) = o )7 (100, r])
is a neighborhood of 4 in Y, by the continuity of po f at y. (|

10.10. Corollary. Let X, Y be vector spaces over IK. Assume that P is
a set of semi-norms in X, that X is endowed with the topology 7(P) and
that Y is endowed with a translation invariant topology (that is the case if
Y is a topological vector space). Given a linear map T 1Y — X, then T is
continuous if and only if po T is continuous for all p € P.

Proof. Since every p € P is continuous, the continuity of T implies the
continuity of p o T. Conversely, if p o T" is continuous for all p € P then,
since 7'(0) = 0, Lemma 10.9 implies that 7" is continuous at the origin and
then the continuity of T" follows from Lemma 9.4. O

10.11. Lemma. Let (X;)icr be a family of vector spaces over K and let X
be a wvector space over IK. For each v € I let P; be a set of semi-norms
in X; and let T; : X — X; be a linear map. If each X; is endowed with
the topology T(P;) then the topology T on X induced by the maps T; (recall
Definition 9.7) coincides with the topology T(P), where:

P:U{poTi:pEPi}.
el
Proof. By Lemma 10.6, each X; is a topological vector space and therefore,
by Lemma 9.9, (X, 7) is a topological vector space; in particular, the topol-
ogy T is translation invariant®. Since every element of P is continuous with
respect to 7, it follows from Lemma 10.7 that 7 contains 7(P). Moreover,
it follows from Corollary 10.10 that all the maps 7; are continuous with
respect to 7(P) and therefore 7(P) contains 7. O

10.12. Definition. Given semi-norms p, ¢ in a vector space X, we say that
p is dominated by q and we write:

P=4q

6Alternatively, one can check directly that 7 is translation invariant by observing that
for every v € X the translation map t, : * — x + v is continuous with respect to 7.
Namely, observe that for every ¢ € I the map T; o t, = tr,(,) o T} is continuous.
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if there exists a non negative constant ¢ such that p(x) < cq(z), for all
x € X. Given a semi-norm p and a set of semi-norms P in X, we say that
p is dominated by P and we write

p=sP
if there exist p1,...,pr € P with"
(10.7) p=p1+-+ Dk
Given two sets of semi-norms P, P’ in X, we say that P’ is dominated by
P and we write:
PP
ifpx P, forallpeP.

Clearly the binary relation < in the set of semi-norms in X is both reflex-
ive and transitive. Moreover, given semi-norms p, q, p’, ¢’ in X then p < ¢
and p' < ¢ imply p+ ¢ < p' + ¢’ and given semi-norms p, ¢ in X and a
positive constant ¢ > 0 then:

pSqE=pIcg=cp<q.
It is also easy to see that given a semi-norm p in X and sets of semi-norms P,
P’ in X, then p x P and P < P’ imply p < P’; moreover, the binary relation
< in the set of sets of semi-norms in X is also reflexive and transitive. Notice
also that given semi-norms p, ¢ in X then:
<l =rs{d =r=<q

10.13. Remark. For k > 1, given semi-norms py, ..., pr in X then:

max {p1(z),....pr(@)} <pi(x) + - + pre(z) < kmax {pi(z),...,p(x)},
for all x € X, so that:

max{plv v )pk} < D1 + - +p/€ < max{plv v )pk}’
Thus, for k > 1, one can replace py +- - - +p with max{p1,...,px} in (10.7).
10.14. Lemma. Let X be a vector space, P be a set of semi-norms in X

and p be a semi-norm in X. Then p is continuous with respect to T(P) if
and only if p X P.

Proof. If p < P then there exist p1,...,pr € P and a constant ¢ > 0 such
that:
p(@) < c(pr(z) + -+ pi(@)),
for all z € X. The continuity of the map x — c(p1 (x)+ -+ pk(x)) with
respect to 7(P) implies that the set:
{zeX c(pi(z)+ - +pu(x)) <1}

is a neighborhood of the origin with respect to 7(P); since p is bounded in
that set, it follows from Corollary 10.3 (and from Lemma 10.6) that p is

P is empty then k£ must be zero and the sum p; + - - - + p, is understood to be equal
to zero. Thus, if P is empty, p < P if and only if p is the zero semi-norm.
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continuous with respect to 7(P). Conversely, assume that p is continuous
with respect to 7(P). Then:

{zeX:px) <1}

is a neighborhood of the origin with respect to 7(P) and therefore it contains
a fundamental neighborhood of the form (10.6), with p;,...,pr € P and
e > 0. We claim that:

(10.8) p(z) < 2(pr(@) + - + i),
for all z € X, so that p < P. Given z € X, if p;(x) =0foralli=1,...,k
then ¢tz is in (10.6) for all ¢ > 0 and therefore:

p(tz) = tp(z) <1,

for all ¢ > 0, so that p(x) = 0 and (10.8) is satisfied. If, on the other hand,
pi(x) > 0 for some i, set:

t = > 0,
2(p1(2) + - + pi(2))
so that:
pi(z)
i(ter) =tpi(x) = <
piltw) = tpilw) =5 pi(z) + -+ pi()
for all i = 1,..., k, which implies ¢tz in (10.6). Thus p(tx) < 1 and hence:

p(x)<%:§(p1(x)+-~+pk(x)). ([l

10.15. Corollary. Let X, Y be vector spaces over K, P be a set of semi-
norms in X, Q be a set of semi-norms in'Y and T : X — Y be a linear
map. If X is endowed with 7(P) and Y is endowed with 7(Q) then T is
continuous if and only if:

<e¢g,

{qu:qE Q} <P.
Proof. Follows directly from Corollary 10.10 and Lemma 10.14. (]

10.16. Corollary. Let X be a vector space over KK and P, P’ be sets of
semi-norms in X. Then 7(P) C 7(P') if and only if P < P'.

Proof. Apply Corollary 10.15 with T the identity map from (X ,T(P' )) to

10.17. Lemma. Let X be a complex vector space and let p : X — R be a
real semi-norm. Then:

(10.9) p(z) =sup {p(Az) : A€ C, [\ =1}
defines a complex semi-norm p: X — R and:

(10.10) p(z) < p(z) < p(z) + pliz),
forallx € X.
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Proof. Since p(x) belongs to the set in the righthand side of (10.9), it follows
that p(z) < p(z), for all x € X. Moreover, given A = a + bi € C, with
a,be R, |\ =1, then |a] <1, |b] <1 and:

p(Az) = paz + biz) < [a|p(z) + |b|p(iz) < p(z) + p(iz),

so that p(x) is finite and inequalities (10.10) hold. Since for each A € C,
the map z + Az is linear and since p is a real semi-norm, it follows that
x — p(Az) is a real semi-norm and therefore p, being the (finite) supremum
of a family of real semi-norms, is a real semi-norm (see Lemma 10.1). It
follows directly from the definition of p that:

p(px) = p(x),
for all x € X and and all p € C with |u| = 1. Therefore, for any non zero
complex number A, we have:

p(Az) = p(|A|pz) = [Alp(uz) = [A[B(2),
where p = ﬁ Hence p is a complex semi-norm. ([

10.18. Corollary. Let X be a complex vector space and let P be a set of
real semi-norms in X. Assume that the complex structure x — ix of X is
continuous with respect to the topology T(P). Then:

75:{]5:;967?},

with p defined as in (10.9) is a set of complex semi-norms in X such that:

7(P) = 7(P).

Proof. The first inequality in (10.10) implies that P < P. The continuity
of the map x +— iz with respect to 7(P) implies that for all p € P the
semi-norm x — p(z) + p(iz) is continuous with respect to 7(P) and thus,
by Lemma 10.14, it is dominated by P. It then follows from the second
inequality in (10.10) that P < P. Hence, by Corollary 10.16, 7(P) = 7(P).

([

10.19. Definition. Let X be a vector space and let V' be a subset of X.
Given a point x € X, we say that V' absorbs x if there exists o > 0 such
that ax € V. We say that V is absorbent if V absorbs every x in X.

Clearly, V' absorbs the origin if and only if the origin is in V; thus, every
absorbent set contains the origin.

10.20. Lemma. Given vector spaces X, Y, if T : X = Y 1is a surjective
linear map and V' is an absorbent subset of X then T(V') is an absorbent
subset of Y. In particular, if V is an absorbent subset of X and X\ is a
nonzero scalar then \V = {)\x tx € V} is an absorbent subset of X.

Proof. Given y € Y then y = T'(z) for some x € X; then az € V for some
a > 0 and therefore ay = T'(ax) is in T'(V). O
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10.21. Lemma. If X is a topological vector space then every meighborhood
V' of the origin is absorbent.

Proof. Since the map (a, ) — ax is continuous and it carries (0, z) to 0, it
follows that ax is in V for all « in some neighborhood of zero; in particular,
ax is in V for some o > 0. O

10.22. Definition. Given an absorbent subset V' of a vector space X, we
set:

(10.11) pv(z)=inf{a>0:Z eV}
The map py is called the gauge of V.

Notice that the hypothesis that V' be absorbent guarantees that the set
in (10.11) is nonempty; clearly such set is bounded from below by zero, so
that py(z) > 0, for all z € X.

10.23. Lemma. Let V be an absorbent subset of a vector space X. Then:
(10.12) pv(Az) = Apy (@),

for every x € X and every non negative scalar A € R.

Proof. If # =0 then £ =0 € V for all & > 0, so that py(z) = 0 and (10.12)
holds with A = 0. If A > 0 then, setting:

(10.13) Ap={a>0:2 eV},
it is easy to see that:
Ay, = MNA, def {)\a € Ax},
so that:
py(Azx) = inf Ay, = Ainf A, = A\py (). O

Recall that a subset V of a vector space X is called convez if for every
x,y € V, the line segment [z, y] = {(1 —tr+ty:telo, 1]} is contained in
the set V. The direct and the inverse image of a convex set under a linear
map is again convex and the intersection of a family of convex sets is convex.

10.24. Lemma. Let V be a convex absorbent subset of a vector space X.
Given x € X then £ €V for all o > py(z).

Proof. Since a > py () there exists 5 € |0, a] with % €V. But ¥ = g%
and 0 < g < 1, so that £ is in the line segment connecting % € V and the
origin (which is in V). O

10.25. Corollary. If V is a convex absorbent subset of a vector space X
then:

(10.14) pyt (]—00,1[) C V C pyt(]—00, 1]).

Proof. If py(x) < 1 then, by Lemma 10.24, x = { is in V. Moreover, it is

obvious that if = is in V' then py(x) < 1. O
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10.26. Corollary. If V., W are conver absorbent subsets of a vector space
X then VNW is also (conver and) absorbent.

Proof. Given x € X then, by Lemma 10.24, we have = € VN W if « is
bigger than both py (z) and py (). O

10.27. Lemma. If a subset V of a vector space X is absorbent and convex
then its gauge py satisfies the triangle inequality, i.e.:

pv(z+y) <pv(z) +pv(y),
forall x,y € X.

Proof. Let € > 0 be given. By Lemma 10.24, we have:

Le‘/j Le‘c
pv(z)+e

pv(y) +¢
so that, by the convexity of V:

T+y _ py(z)+e x
pv(z) +pv(y) +2¢  py(z) +pv(y) + 2 pr(z) +e
pv(y) +e¢ Y

pv (@) +pv(y) +2¢ pv(y) +¢
is in V. This implies:
pv(z+y) < pv(z)+pv(y) + 2,
and since € > 0 is arbitrary the conclusion follows. ([

10.28. Definition. A subset V of a vector space X over K is called balanced
(with respect to the field K) if Az € V for all x € V and all A € K with
A < 1.

10.29. Lemma. Let V be a convexr subset of a vector space X over K con-
taining the origin (this is the case if V' is conver and absorbent). Then V is
balanced if and only if \x is in 'V for all x € V and all A € K with |\| = 1.
In particular, if IK = R, then a conver subset V of X containing the origin
is balanced if and only if —x is in 'V for allx € V.

Proof. Obviously if V' is balanced then Az € V for all x € V and all A € K
with |[A| = 1. Conversely, assume that Az € V for all z € V and all A € K
with [A\| =1 and let z € V and A € K with |A\| <1 be given. If A = 0 then
Ar=0isin V. If A #£ 0, we set:
M — i
Al

so that |u| = 1 and px is in V. Then Az = |A|pz is in the line segment
connecting px and the origin and therefore it is also in V. Hence V is
balanced. (|
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10.30. Corollary. If V is a convex absorbent subset of a real vector space
X then:
Vn(=V)
is convezx, absorbent and balanced, where —V = {—3: tx € V}.

Proof. The set —V is convex and it is absorbent by Lemma 10.20. Therefore
V N (=V) is convex and absorbent, by Corollary 10.26. Since:

~(Va(=v) =vn(-v),
and the field of scalars is R, it follows from Lemma 10.29 that V N (V) is
balanced. g

10.31. Lemma. If V is an absorbent balanced subset of a vector space X
over IK then its gauge py satisfies:

(10.15) pv(Az) = [Alpv (),
forallz e X, A € K.

Proof. Since the set of those A € K for which (10.15) holds for all z € X
is closed under multiplication, it follows from Lemma 10.23 that we only
have to check (10.15) in case |A| = 1. Defining A, as in (10.13), it is readily
checked using the fact that V' is balanced that:

Aoc = A)\I?
if [A\] = 1. Thus:
py(Ax) = inf Ay, = inf A, = py(z) = [A|]pv (). O

10.32. Corollary. If V is an absorbent, balanced, convexr subset of a vector
space X over IK then its gauge py is a semi-norm in X.

Proof. Tt follows directly from Lemmas 10.27 and 10.31. O

10.33. Definition. A topology 7 on a vector space X over K is called lo-
cally conver (with respect to the field KK) if it turns X into a topological
vector space over K and if the origin of X has a fundamental system of con-
vex neighborhoods (i.e., every neighborhood of the origin contains a convex
neighborhood of the origin). If X is endowed with a locally convex topology
7 then we say that (X, 7) is a locally convex topological vector space.

Observe that, since the topology of a topological vector space is trans-
lation invariant, it follows that every point of a locally convex topological
vector space has a fundamental system of convex neighborhoods.

10.34. Lemma. Let X be a vector space over IK. A topology T for X is
locally convex if and only if there exists a set of semi-norms P in X such

that 7 = 7(P).



SOME GOOD LEMMAS 33

Proof. If 7 = 7(P) for some set of semi-norms P then (X, 7) is a topolog-
ical vector space (Lemma 10.6) and, since the fundamental neighborhood
(10.6) of the origin is convex, it follows that 7 is a locally convex topology.
Conversely, assume that the topology 7 is locally convex. First, we observe
that it suffices to consider the case IK = R. Namely, assume that the lemma
has been proven for K = R. If (X, 7) is a complex locally convex topolog-
ical vector space, we restrict the operation of multiplication by scalars of
X to R x X, obtaining a real locally convex topological vector space; then
7 = 7(P) for some set of real semi-norms P in X. Since (X, 7) is a com-
plex topological vector space, the map x + iz is continuous with respect to
7 = 7(P) and then it follows from Corollary 10.18 that there exists a set P
of complex semi-norms in X such that 7(P) = 7(P).

Now let us prove the lemma for IK = R. Let P denote the set of all
semi-norms p : X — R that are continuous with respect to 7. Let us show
that 7 = 7(P). Since 7 is a translation invariant topology and each p € P
is continuous with respect to 7, it follows from Lemma 10.7 that 7 contains
7(P). Proving that 7(P) contains 7 is the same as proving the continuity
of the identity map from (X, 7(P)) to (X,7) and, by Lemma 9.4, it suffices
to establish such continuity at the origin. We have thus to show that every
neighborhood U of the origin with respect to 7 is a neighborhood of the origin
with respect to 7(P). Since 7 is locally convex we can assume without loss
of generality that U is convex; U is also absorbent, by Lemma 10.21. Setting
—U:{—x:$€U} and:

V=Un(-0U)

then, by Corollary 10.30, V' is convex, absorbent and balanced (here we
use the fact that I = R). Since the map = — —z is a homeomorphism
with respect to 7 it follows that —U (and thus V') is a neighborhood of the
origin with respect to 7. By Corollary 10.32, the gauge py is a semi-norm.
Since py is bounded in V' (recall (10.14)) and V is a neighborhood of the
origin with respect to 7, it follows from Corollary 10.3 that py is continuous
with respect to 7, i.e., py € P. Hence the open ball p‘_/l(]—oo, 1[) is a
neighborhood of the origin with respect to 7(P) and it follows from (10.14)
that V' (and hence U) is also a neighborhood of the origin with respect to
7(P). O

10.1. The locally convex topology co-induced by a family of maps.

10.35. Lemma. Let (X;)icr be a family of locally convex topological vector
spaces over IK, X be a vector space over K and for eachi € I letT; : X; — X
be a linear map. There exists a unique topology T on X such that:

(i) (X,7) is a locally convex topological vector space over IK;
(ii) the map T; : X; — (X, 7) is continuous, for alli € I;
(iii) given a locally convex topological vector space Y over K and a linear
map S : X — Y such that S o T; is continuous for all i € I then
S:(X,7) =Y is continuous.
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The topology T coincides with the topology T(P), where P is the set of all
semi-norms p : X — R such that p o T; is continuous, for all i € I.

Proof. First, let us show the uniqueness of 7. Let 7, 7/ be topologies in X
satisfying (i), (ii) and (iii). If S is the identity map from (X, 7) to (X, 7’)
then S oT; is continuous for all i € I (because 7/ satisfies (ii)) and therefore
(since T satisfies (iii) and 7’ satisfies (i)), S is continuous, i.e., 7/ C 7. An
analogous argument shows that 7 C 7/. In order to complete the proof,
it suffices to show that the topology 7 = 7(P) satisfies (i), (ii) and (iii).
Clearly 7 = 7(P) satisfies (i) (Lemma 10.34). Since p o T; is continuous
for all i € I and all p € P, it follows from Corollary 10.10 that 7 = 7(P)
satisfies (ii). Let Y be a locally convex topological vector space over KK and
let S: X — Y be a linear map such that S o T; is continuous, for all ¢ € I.
Let Q be a set of semi-norms in Y such that the topology of Y is 7(Q).
For every ¢ € Q, the semi-norm q o S is in P; namely, for all ¢ € I the
map (qoS)oT; =qo (SoT;)is continuous. Thus, g o S is continuous with
respect to 7(P) for all ¢ € Q and it follows from Corollary 10.10 that 7" is
continuous, proving that 7 = 7(P) satisfies (iii). O

10.36. Definition. The topology on X whose existence and uniqueness is
guaranteed by Lemma 10.35 is called the locally convex topology on X co-
induced by the family of linear maps (T;)ier-

10.37. Corollary (of Lemma 10.35). Let (X;);er be a family of locally convex
topological vector spaces over K, X be a vector space over K and for each
1€l letT; : X; — X be a linear map. If X is endowed with the locally
convex topology co-induced by the family of maps (T;)icr then a semi-norm
p: X — R is continuous if and only if p o T; is continuous, for all i € I.

Proof. If p is continuous then p o T; is continuous for all ¢ € I, because
the topology of X satisfies property (ii) in the statement of the lemma.
Conversely, if p o T; is continuous for all ¢ € I then p is in the set P defined
in the statement of the lemma and since the topology of X is 7(P), it follows
that p is continuous. O

Given a complex vector space X, we denote by X® its realification, i.e.,
the real vector space obtained from X by restricting to R x X its operation
of multiplication by scalars. We now analyze the relationship between the
locally convex topology co-induced by a family of maps and the operation
of realification.

10.38. Lemma. Let (X;);cr be a family of complex locally convex topological
vector spaces, X be a complex vector space and for eachi € I letT; : X; — X
be a complex linear map; denote by 7€ the topology on X co-induced by the
family of linear maps T; : X; — X, i € I. Now, consider the realification
XR® of the vector space X and for each i € I consider the realification XiR
of the vector space X;; denote by T the topology on X co-induced by the

family of linear maps T : XZ-IR — X®. Then % = 7€,
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Proof. The topology 7€ is characterized by the following properties:

(i) (X, TC) is a complex locally convex topological vector space;
(ii) the map T; : X; — (X, 7%) is continuous, for all i € I;
(iii) given a complex locally convex topological vector space Y and a
complex linear map S : X — Y such that S oT; is continuous for all
i € I then S: (X,7%) — Y is continuous;

the topology 7R is characterized by the following properties:

(i’) (X,7R) is a real locally convex topological vector space;

(ii’) the map T; : X; — (X, 7R) is continuous, for all i € I;

(iii’) given a real locally convex topological vector space Y and a real
linear map S : X — Y such that S o T; is continuous for all i € I
then S : (X,7®) — Y is continuous.

We prove that the topology TR satisfies properties (i), (ii) and (iii); since
such properties characterize 7€, it will follow that 7® = 7€. Property
(ii) is the same as (ii’) and thus 7R satisfies (ii). To prove that 7% satisfies
property (iii), let Y be a complex locally convex topological vector space and
let S: X — Y be a complex linear map such that S o7} is continuous for all
i € I. Then the realification Y is a real locally convex topological vector
space and, since S o T} is continuous for all ¢ € I, it follows from property
(iii’) that S is continuous with respect to 7®. Let us check now that 7%
satisfies property (i). Denote by J : X — X the complex structure of X
(i.e., J(zx) is the product of x by the imaginary unit) and by J; : X; — X;
the complex structure of X;, for all ¢ € I. By Lemma 9.11 and property
(i), in order to prove that (X,7R) is a complex locally convex topological
vector space, it suffices to prove that the map J is continuous with respect
to 7R. Since 7R satisfies (iii’), we have to prove that Jo T} : X; — (X, 7R)
is continuous, for all ¢ € I; but, since each T; is complex linear, we have
JoT; =1T;0J;. Since X; is a complex topological vector space, the map
Ji is continuous and the map T} : X; — (X, 7®) is continuous by (ii’). This
concludes the proof. O

10.39. Lemma. Let (X;)icr be a family of locally convex topological vector
spaces over IK, X be a vector space over K and for eachi € I letT; : X; — X
be a linear map. Assume that X is endowed with the locally convex topology
co-induced by the family of maps (T;)icr. If V is an absorbent convex subset
of X such that T, *(V) is a neighborhood of the origin in X; for alli € T
then V is a neighborhood of the origin in X.

Proof. By Lemma 10.38, we can replace the spaces X; and X by their re-
alifications (so that the co-induced topology on X does not change), and
therefore we can assume without loss of generality that IK = R. Since V is
absorbent and convex (and K = R), by Corollary 10.30, the set:

W=vn(-V),
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is absorbent, convex and balanced, where —V = {—1‘ tx € V}. Clearly:

T W) =T (V)N T (=V) =T (V) n (=T71(V)),

3 (2

for all 7 € I; since the map x — —x is a homeomorphism of X; and Ti_l(V)
is a neighborhood of the origin in Xj, it follows that also T, (W) is a
neighborhood of the origin in X;. By Corollary 10.32, the gauge py of W
is a semi-norm in X and by (10.14) py is bounded in W; thus py o T;
is a semi-norm in X; that is bounded in 7, '(W) and since T, *(W) is a
neighborhood of the origin in X; it follows from Corollary 10.3 that py o T;
is continuous. Now, by Corollary 10.37, py is continuous and therefore
Py (]—00,1[) is a neighborhood of the origin in X; from (10.14), W (and
hence V) is a neighborhood of the origin in X. ([l

10.40. Corollary. Let (X;)ier be a family of locally convex topological vector
spaces over IK, X be a vector space over K and for eachi € I letT; : X; — X
be a linear map. Assume that X is endowed with the locally convex topology
co-induced by the family of maps (T;)ier and that:

X =Jn(x).
el
If V is a convex subset of X such that Ti_l(V) is a neighborhood of the origin
in X; for all i € I then V is a neighborhood of the origin in X.

Proof. By Lemma 10.39, it suffices to check that V is absorbent. Given
x € X then, by our assumptions, there exists ¢ € I and zg € X; such that
T;(xo) = 2. Since T; *(V) is a neighborhood of the origin in X;, it follows
from Lemma 10.21 that Tl-_l(V) is absorbent and therefore there exists o > 0
such that azg € T; ' (V). Hence ax = T;(axo) is in V. O

10.41. Remark. If X is endowed with the locally convex topology co-induced
by a family of maps T; : X; — X then every neighborhood V of the origin
in X contains a convex (and, by Lemma 10.21, automatically absorbent)
neighborhood of the origin Vj; since each T; is continuous, it follows that
T, (Vp) is a neighborhood of the origin in X, for all i € I. Hence, the
neighborhoods of the origin in X given in the statement of Lemma 10.39
(or in the statement of Corollary 10.40) actually constitute a fundamental
system of neighborhoods of the origin in X.

11. NORMED SPACES

11.1. Lemma. Let X be a separable normed vector space over K = R or
C. Let A denote the o-algebra induced by all continuous linear functionals
A: X = K, i.e., the smallest o-algebra which contains the sets \™'(B) for
every continuous linear functional A : X — K and every Borel set B C K.
Then A is the Borelian o-algebra of X, i.e., A is the smallest o-algebra
containing the topology of X.
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Proof. Obviously the Borelian o-algebra contains A. It suffices then to show
that A contains all open subsets of X. We observe first that A is invariant by
translations, i.e., if v € X then the translation map t, : X 3 x—z4+v e X
is measurable; namely, for every continuous linear functional A : X — K,
Aoty =ty o A is measurable, where ty(,) : IK — K denotes translation by
A(v) in K. This implies that t, is indeed measurable.

Since X is separable, every open subset is a countable union of open balls
and thus all we need to show is that open balls are in A; the invariance
by translations of A implies that it is sufficient to show that open balls
centered at the origin are in A. The proof of the latter statement will be

accomplished by showing that the norm function ||-|| : X — R is measurable.
Let {xy, : n € IN} be a countable dense subset of X and choose (by Hahn—
Banach’s theorem) a continuous linear functional A, : X — K with |[A,|| =1
and A\, (z,,) = ||zn||. Set:
p(x) = sup ’)\n(:n) , reX.
nelN

Obviously p is measurable. We will show that p(z) = ||z| for all z. Since
|Anll = 1 for all n we have p(xz) < ||z|| for all z. Moreover, the equality

p(z) = ||z|| obviously holds if z is in the dense set {x,, : n € IN}. The
conclusion will follow once we show that p is continuous. To this aim,
observe first that p is a semi-norm in X and therefore:

p(z) = p(y)| < plz —y),
for all z,y € X. Moreover, p(z—y) < || —y||, which implies that p : X — R
is Lipschitz. This concludes the proof. U

11.2. Remark. The result proved in Lemma 11.3 below also follows from
Corollary 10.18.

11.3. Lemma. Let (X, - ||) be a real normed space and let J : X — X
be a continuous complex structure. Then there exists a norm || - || in X,
equivalent to || - ||, which is compatible with J, i.e., || - || is a norm on the
complex vector space (X, J).

Proof. Let Lin(X, C) denote the space of all continuous R-linear maps « :
X — C endowed with the standard norm:
lall = sup |a(z)|.
llz]<1

Let Y denote the subspace of Lin(X, C) consisting of all linear functionals
a: (X, J) — C that are C-linear. We regard Y as a complex vector space by
setting (ia)(z) = i(a(z)) = a(J(z)), ® € Y,z € X. Observe that the norm
of Y is compatible with its complex structure, so that Y is indeed a complex
normed vector space. We denote by Y* the (complex) dual of Y, consisting
of complex continuous linear functionals on Y. Then Y™ is also a complex
normed vector space in the usual way. Consider the linear map ¢ : X — Y*
defined by ¢(z) = &, where Z(a) = a(z), @ € Y. The map ¢ is injective since
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given x € X, ¢ # 0, we can always find a continuous R-linear functional
ap : X — R with ag(x) # 0 and «y is the real part of « = ap—i(apoJ) €Y
(here we use that J is continuous!). Since ¢ : (X,J) — Y™ is C-linear, the

norm ||z||" = ||Z]] on X induced by the norm of Y* is compatible with .J.
We now show that || - ||" is equivalent to || - ||. To this aim, observe first that,
for every x € X:
)" = [l2]] = sup |a(e)| = sup. |a(@)] < ]l
llefl<1 lle<

We will now obtain k& > 0 such that ||z|" > k||z||, for all x € X. Let then
x € X,z # 0, be fixed. Choose an R-linear functional o : X — R with
ool = 1 and ap(z) = ||z||; then, as before, « = ag — i(ap o J) is in Y and:
|a(v)] < Jao()] + |ao (J()] < (1 + [T)IIvll, v e X,

so that ||a| <1+ |J||. We have also a # 0, since a(x) # 0, and therefore:
e o(z) ap(z) 1

“”()‘:‘ ’21 a1 = Tyl

[lex] el + I T+
which concludes the proof. ([

]l = 2] >

12. RI1ESZ REPRESENTATION THEOREM

12.1. Convention. In this section, X will always denote a locally compact
Hausdorff space, C.(X) will denote the real vector space of all continuous
maps [ : X — R having compact support and A will denote a positive linear
functional on C¢(X), i.e., a linear map A : C.(X) — R such that A(f) >0
for any nonnegative map f € C.(X).

12.2. Lemma. Given a compact set K C X and a closed set F' C X with
K NF =1 then there exists a continuous map f : X — [0,1] with f|x =1
and flp =0.

Proof. Let X =XU {w} denote the one-point compactification of X, i.e.,
the open subsets of X are the open subsets of X and the complements in X
of the compact subsets of X. Since X is locally compact and Hausdorft, it
follows that X is (compact and) Hausdorff. In particular, X is normal, so
that the Urisohn’s Lemma applies. Since X is Hausdorff, the compact set
K is closed in X. If F denotes the closure of F in X then, since F is closed
in X, FNX = F and thus F' N K = (. The conclusion is now obtained by
applying Urisohn’s Lemma to K and F in X and by taking the restriction
to X of the continuous map obtained. O

12.3. Corollary. Given a compact subset K C X contained in an open
subset U C X then there exists f € C.(X) such that flg =1,0< f <1
and such that the support of f is contained in U.

Proof. By Lemma 17.1, there exists a compact subset L of U whose interior
contains K. The map f is obtained by applying Lemma 12.2 to K and the
complement of the interior of L. O
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In what follows, if f and g are real valued maps defined on X, we write
f<gif f(z) < g(x), for all x € X. Clearly the positive linear functional
A is monotone, i.e., A(f) < A(g) if f,g € Ce(X) and f < g. We denote by
F(X) the set of all maps f: X — [0, +oo[ having the following property:

f:sup{<b€CC(X):0§¢§f}.

Obviously if f € Ce(X) and f > 0 then f € F(X); moreover:
A(f) =sup{A\(¢) : ¢ € Ce(X), 0< ¢ < f}.
We thus consider an extension of A to F(X) (also denoted by \) by setting:
A(f) =sup {A(¢) : ¢ € Ce(X), 0< ¢ < f} €[0,+00],

for all f € F(X). Clearly this extension of A is again monotone.

In what follows, if f is a real valued map on X and a € R, we denote by
[f > a] the set {z € X : f(z) > a}; the sets [f > a], [f < a] and [f < d] are
defined analogously.

12.4. Lemma. If f € §(X) then the set [f > a] is open in X, for all a € R.

Proof. If f € F(X) then [f > a] is equal to the union of all sets of the form
[¢ > a], with ¢ € Cc(X) and 0 < ¢ < f; since each ¢ is continuous, the set
[¢ > a] is open. The conclusion follows. O

12.5. Lemma. For every open subset U C X, the characteristic function
Xy X = R of U is in F(X).
Proof. Set:

f=sup{peCe(X):0<¢<xy}
Clearly 0 < f < xy;. It is therefore sufficient to show that f(x) > 1, for all
x € U. Given x € U then, by Corollary 12.3, there exists a map ¢ € C.(X)

with 0 < ¢ <1, ¢(x) = 1 and ¢(y) = 0, for all y € U°. Then 0 < ¢ < x;;
and hence f(z) > ¢(z) = 1. O

12.6. Lemma. If f,g € F(X) and ¢ > 0 then f+ g € F(X) and cf € F(X).
Proof. We have:
fHg=sup{peC(X):0<¢<fl+sup{veCe(X):0<¢ <g}

=sup{p+1¢: ¢, eC(X), 0<o<f, 0<9 <g}
<sup{€€C(X):0<E< f+g) < f+y,

proving that f + g € §F(X). Moreover:

ef =csup{p € Ce(X):0< < [t =sup{ch: g€ CuX), 0<6< [}
:sup{é’ECC(X):Ogggcf},

proving that cf € F(X). O
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In what follows, given maps f: X — R, ¢g: X — R, we set:

fvg=max{f g}, fAg=min{f g}
Clearly if f,g € Co(X) then fV g e Ce(X) and fAg € Co(X).
12.7. Lemma. Given f € §F(X) and g € Co(X) with f > g then f — g €
F(X).
Proof. If ¢ € C.(X) and 0 < ¢ < f then ¥ = (¢ Ag) — g € Ce(X),
0<y¢ < f—gand > ¢— g;it follows that:
f—g>sup{ypeCe(X):0<¢ < f—g}
>sup{p—g:9eC(X), 0<od< f}=f—g. O

A set S of real valued maps on X is said to be directed if for all f,g € S,
there exists h € § with h > fV g. We write:

sup S = sup ¢.
peS

12.8. Lemma. Given a directed set S C F(X) and f € §(X) with f =sup S
then:

A(f) = sup A(g).
geS

Proof. Obviously g < f for all g € § and thus:

sup A(g) < A(f)-
geS

We divide the proof of the reverse inequality into three steps.

Step 1. The result holds if S C Cc(X) and f € Co(X).

Given € > 0, we will find g € S with A(g) > A(f) —e. By Corol-
lary 12.3, there exists a nonnegative map fy € C.(X) that equals 1 on
the support of f. Choose ¢’ > 0 with ¢’\(fy) < e. For each g € S, we
have f — g € C.(X) and thus the set [f — g > €'] is compact. Clearly:

If—g=e1=0;
geS

since X is Hausdorff, there exists g1,..., g9, € S with:

n

N — g >e]=0.

i=1
Moreover, since S is directed, there exists g € S with g > g1 V-V gp
and thus [f — g > &'] =0, i.e., f — g < €’. Since the support of f — g is
contained in the support of f, we have f — g < &’ fy and hence:
A(f) = Ag) = Mf —9) <'Afo) <,
proving that A\(g) > A(f) —e.
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Step 2. The result holds if S C Co(X).
Let ¢ € Co(X) with 0 < ¢ < f be fixed. It suffices to show that
supyes A(g) > A(¢). The set:

Sy = {gA¢:g€S} C Ce(X)
is directed and sup Sy = ¢. By step 1, we have:

sup A(h) = A(9).
heSy

Since A(g) > A(g A @), for all g € S, we obtain:

sup A(g) = sup A(g A @) = sup A(h) = A(9),
geS geS heSy

completing the proof of Step 2.

Step 3. The result holds in general.
Clearly, the set:

§'=|J{¢eC(X):0<¢<g}CCe(X)
geS

is directed and sup S’ = f. Thus, by step 2, we have:
sup (@) = A(f).

peS’
The definition of A\ gives:
Ag) =sup {A(¢) : ¢ € Ce(X), 0< ¢ < g},
for all g € S; hence:

sup A(g) = sup A(6) = A(f). O
geS peS’

If (fn)n>1 is a sequence of real valued maps on X with f, < f,4 for all
n > 1 and with lim, o fn(x) = f(z) for all x € X, we write f, / f and
we say that (fn)n>1 converges monotonically to the map f: X — R.

12.9. Corollary. Let (fn)n>1 be a sequence in §(X) and assume that fp, /
f, with f € F(X). Then:

nlggo A(fn) = sup A(fn) = A(f).

n>1
Proof. Simply apply Lemma 12.8 to the directed set S = {fn in > 1}. O

12.10. Corollary. Given f,g € F(X) and ¢ > 0 then A(f +g) = M(f) +A(g)
and Xcf) = cA(f) (see also Lemma 12.6).

Proof. The set:
S={o+v:0YeC(X), 0<¢<f 0<9 <g}
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is directed and sup S = f + g. It follows from Lemma 12.8 that:
AMS+9) = supA(E) = sup {Mo) 19 €Ce(X), 00 < f}
—|—sup{)\(¢) e Ce(X), 0<y < g}
= A(f) + Alg).
The equality A(cf) = cA(f) follows simply by observing that:
{ep:peCe(X), 0<p < f}={€Cc(X):0<E < cf}. O
For each open subset U of X we define p(U) € [0,400] by setting (recall
Lemma 12.5):

n(U) = Mxy)-
We have the following:

12.11. Lemma. The map p has the following properties:

(a) p(0) =0;

(b) given open subsets U,V C X then p(UUV)+pu(UNV) = w(U)+u(V)
and, in particular, wW(UUV) < w(U) + u(V);

(¢) p is monotone, i.e., given open subsets U,V C X with U C V then
n(U) < pu(V);

(d) if (Un)n>1 is a sequence of open subsets of X with U, C Uy for
alln > 1 then u(Ufbozl Un) = limy, 00 1(Uy).

Proof. Ttem (a) follows by observing that A(0) = 0. Item (b) follows from
Corollary 12.10 by observing that x,, + X, = Xy + Xy ltem (c)
follows from the monotonicity of A, observing that x, < x,, if U C V.
Finally, item (d) follows from Corollary 12.9 by observing that x;; /" Xy,
where U = ;2| Up. O

We now define a map p* : p(X) — [0, +00] on the set p(X) of all subsets
of X by setting:

(12.1) p*(A) =inf {u(U): U > A, U open in X},

for all A C X. Clearly the monotonicity of p implies that p*(U) = p(U),
for every open subset U C X.

12.12. Lemma. The map p* is an outer measure on p(X), i.e., it satisfies
the following conditions:
b M*(Q) =0;
o *(A) < p*(B), for all A,B C X with A C B (monotonicity);
o W (Unti An) < 302y 1 (An), for any sequence (Ay)n>1 of subsets
of X (o-subadditivity).

Proof. The fact that p*(0) = 0 follows from item (a) of Lemma 12.11 and
from the observation that p* extends p. The monotonicity of u* is trivial.
Finally, let us prove the o-subadditivity of p*. Let (Ay)n>1 be a sequence
of subsets of X and let A = J;~, A,. If p*(A,) = +o0 for some n > 1 then
the inequality p*(A) < Y07, pn*(A,) is trivial. Suppose that p*(A,) < +o0o
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for all n > 1. Given € > 0 then for each n > 1 we can find an open subset U,,
of X containing A, with u(U,) < p*(An)+ 57. By item (b) of Lemma 12.11

we get:
k k
p(UJUn) <3 nn):
n=1 n=1

taking the limit as & — oo and using item (d) of Lemma 12.11 we obtain:

N( fj Un) < iu(Un)~
n=1 n=1

Since A C |, Up we have:

pt () < (U Un) < D 00) < 30 (" (An) £ 57) = (3 m7(4w) + <.
n=1 n=1 n=1 n=1
The conclusion follows by taking the limit as ¢ — 0. U

12.13. Lemma. Given an arbitrary subset A C X and a map f € F(X) with
[ 2 x4 then MJ) = 1*(A).
Proof. Given a € ]0,1[ then A C [f > a] and thus:
W (A) < 1 (If > a)).
Since U = [f > a] is open (see Lemma 12.4), we have pu*(U) = pu(U) =
A(xy); thus:
p(A) < Axy)-

Moreover, we have f > ay,, and therefore (see Corollary 12.10):

() = aA(xy) > a(4).
The conclusion is obtained by taking the limit as a — 1. ([

12.14. Corollary. The outer measure u* s finite on compact subsets of X.

Proof. Let K C X be a compact subset and let f € C.(X) be a nonnegative
map such that f[x = 1 (see Corollary 12.3). We have f > x, and thus
Lemma 12.13 gives:
+oo > A(f) > p*(K). O
12.15. Corollary. Given open subsets U,V C X with U C V then:
u(V) = u(U) + (v A U9,
Proof. Let ¢ € C.(X) with 0 < ¢ < x,; be fixed. Since x,, € §(X) and

since ¢ < xy,, by Lemma 12.7, we have x,, — ¢ € §(X); moreover (see
Corollary 12.10):

w(V) = Axy) = Axy — @) + A(9),
so that:
(12.2) Axy — @) = pu(V) = A(¢).
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Keeping in mind that x;, — ¢ > X, — Xy = Xynpe, Lemma 12.13 gives us:
(12.3) Aoy — ) = W' (V N Ue).
From (12.2) and (12.3), we obtain:
(V) = 1 (VO US) + A(9);
hence:
p(V) = sup {©* (VAU +X(9) : ¢ € Ce(X), 0< ¢ < Xy}
=p (VU +Axy) = (VNU®) +p(U). O
Recall that the elements of the collection:
M={E € pX): u*(4) =p (ANE)+p* (AN E°), for all A € p(X)}

are called p*-measurable sets. It is well-known that 9 is a o-algebra of
subsets of X and that the restriction of u* to 9 is a (o-additive) measure.

12.16. Lemma. Every open subset of X is in .

Proof. Let U C X be an open subset and let A C X be an arbitrary subset.
We have to show that:

pr(A) =p (ANU) + @~ (ANUS).

By the subadditivity of u*, it suffices to show the inequality:
p(A) Z2 p (ANU) + @ (ANUS).

In order to prove the inequality above, we show that:
p(V) 2w (AnU) +p*(ANT°),

for every open subset V' of X containing A. By applying Corollary 12.15 to
the open sets V and Uy =V NU, we obtain:

1(V) = p(Uo)+p*(VNUg) = (VU )+p*(VAUS) 2 " (ANU)+p" (ANU).
This concludes the proof. O
12.17. Corollary. All Borel subsets of X are in 9. U

In view of Corollary 12.17, the outer measure p* restricts to a Borel
measure on X; we denote such restriction just by p. The Borel measure u
and the positive functional \ are related by the following:

12.18. Lemma. Every f € §(X) is Borel measurable and [y fdu = A(f).

Proof. Let f € §F(X) be fixed. The Borel measurability of f follows from
Lemma 12.4. For each n > 1, we write:

n2m™ E_1
Fo=nX (g + > Ton XERl<r< AP
k=1
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this is just the standard way of providing a sequence of simple measurable

nonnegative maps f, : X — R with f,,  f. It is easy to check that:

n2"

1
o= 272)(”>2Ln]7

k=1

for all n > 1. By Lemma 12.4, the sets [f > 2%] are open and thus by

Lemmas 12.5 and 12.6, we have f,, € §(X); moreover, using Corollary 12.10,
we get:

n2m

fn _QnZM f>2n :/andﬂa

for all n > 1. Hence, using the Monotone Convergence Theorem and Corol-
lary 12.9, we obtain:

A(f) = lim A(fy) = lim / fodpy = / fdu,

n—oo

concluding the proof. ([l
12.19. Corollary. Given f € C.(X) then f is p-integrable and:

/fd,u A f

Proof. Write f = f* — f~, with f* = fVv 0 and f~ = —(f A0), so that
ft, f~ € F(X); by Lemma 12.18, we have:

/f*duzk(ﬁ% /fdu=A<f>.
X X

Note that A(fT) and A\(f™) are finite, since T, f~ € C.(X). Hence f is
p-integrable and:

D=2 A = [ [ au= [ pae O
X X X
12.20. Lemma. For every open set U C X we have:
p(U) = sup {pu(K) : K C U compact}.
Proof. By the monotonicity of the measure p it is sufficient to show that:
w(U) < sup {u(K) : K C U compact}.

Let S denote the collection of all maps f € C.(X) whose support is contained
in U and that satisfy 0 < f < 1. Clearly S is a directed subset of §(X) and
it follows easily from Corollary 12.3 that sup S = x;;. Thus, by Lemma 12.8,
we have:

sup A(f) = Axy) = w(U).
fes
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Given f € S then, denoting by K the support of f, we have that K is a
compact subset of U and, using Lemma 12.18 we get:

Z/deuﬁu(K

u(U) = sup A(f) < sup {u(K) : K C U compact}. O
fes

Hence:

Finally, we have the following:

12.21. Theorem (Riesz representation). Let X be a locally compact Haus-
dorff topological space and let \ be a positive linear functional on C.(X).
Then there exists a unique Borel measure p on X satisfying the following
conditions:

(a) u(K) < +oo, for every compact subset K C X;

(b) p(A) =inf {u(U) : U D A open in X}, for any Borel subset A C X ;

( ) w(U) = sup {M(K) K cCcU compact}, for any open subset U C X ;
(d)

Jx fdu=X(f), for every f € Ce(X).

Proof. Let u be the Borel measure on X that we have constructed from A.
Property (a) follows from Corollary 12.14. Property (b) follows from the
definition of p* and from the fact that u is just a restriction of p* (recall
(12.1)). Property (c) follows from Lemma 12.20 and property (d) follows
from Corollary 12.19. Now, we just have to prove the uniqueness of u. Let
i’ be a Borel measure on X satisfying properties (a), (b), (c) and (d). We
show that p = p/. Since both p and ' satisfy property (b), it suffices to
show that p and p/ agree on open subsets of X. Let U C X be open and let
S C C.(X) denote the set of all maps f € C.(X) whose support is contained
in U and that satisfy 0 < f < 1. We will show that:

(12.4) W (U) = sup A().
fes

Once (12.4) is proven, it will follow that u = p; namely, (12.4) clearly holds
with y/ replaced by p and thus u(U) = ¢/ (U) for every open subset U of X.
Let us prove (12.4). Given f € S then f < x; and thus, using (d):

Mﬁ=Afw%MW%

this proves:

sup A(f) < 4/ (U).
fes

Now, given a compact subset K of U, there exists f € S with f|x =1 (see
Corollary 12.3); thus f > x, and:

=/ fdu' >/ (K).
X
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Hence, by (c):

sup A(f) > sup {§/(K) : K C U compact} = 1/'(U). O
fes

13. QUOTIENTS OF MANIFOLDS

In this section, a smooth manifold means a set M endowed with a smooth
maximal atlas; no assumptions are made on the topology induced on M by
such atlas. Our goal is to prove the following:

13.1. Theorem. Let M be a smooth manifold and let R C M x M be an
equivalence relation on M. The following conditions are equivalent:
(a) there exists a smooth maximal atlas on the quotient set M /R such
that the quotient map q : M — M/R is a smooth submersion;
(b) R is a smooth submanifold of M x M and the restriction to R of the
first projection m : M x M — M is a submersion.

13.2. Remark. Since R is symmetric, condition (b) implies that the restric-
tion of the second projection mo : M x M — M to R is also a submersion.
Namely, the diffeomorphism o(z,y) = (y,z) of M x M maps R onto R and
g = T1 00.

13.3. Remark. Assume that G is a group acting on M by smooth maps
and that the equivalence relation R is the equivalence relation determined
by such action, i.e., (z,y) € R if and only if y = ¢ - z, for some g € G.
Observe that if R is a smooth submanifold of M x M then the restriction to
R of the first projection m : M x M — M is automatically a submersion.
Namely, given (z,y) € R, let ¢ € G be such that y = g - = and consider
the smooth map s : M — R defined by s(z) = (z,9 - 2), for all z € M.
Clearly s(z) = (z,y) and s is a right inverse for m|g : R — M, so that
ds(z) is a right inverse for dmi(z,y)|r, , & * T(zy) R — ToM, thus proving
that dmi (2, y)|r, , r 1 surjective.

Let us first prove that condition (a) implies condition (b). Since the
quotient map ¢ is a submersion, the map:
(13.1)  gxq:MxM> (z,y) — (q(x),q(y)) € (M/R) x (M/R)
is also a submersion. In particular, ¢ X ¢ is transverse to the diagonal
submanifold:

Anyr = {(z,2) : 2 € M/R} C (M/R) x (M/R).
Thus R = (¢ x q)""(Apyp) is a smooth submanifold of M x M and its
tangent space at a point (x,y) € R is given by:
-1
Tay)R = (A4 % D)) (Tlg@).aw)PDna/r)
= {(v,w) € T,M & T,M : dg,(v) = dgy(w)}.

To complete the proof of (b) we have to show that the restriction to T(, )R
of the projection T, M @& T,,M — T, M is surjective. Let v € T;; M be fixed;
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since dg(v) € Ty(z)(M/R) = Ty, (M/R) and since dgy is onto Ty, (M/R),
there exists w € T, M such that dg,(v) = dg,(w). Hence (v,w) € T(, )R
and condition (b) follows.

Let us now prove that condition (b) implies condition (a). For each x € M
consider the map i, : M — M x M defined by:

iz(y) = (2,y), ye€M.
We claim that i, is transversal to R. Namely, for y € M, the image of d (i),
equals {0} @ T}, M; we have to prove that:
(13.2) TR+ ({0} & T,M) = T,M & T,M.
Since mi|gr : R — M is a submersion, the restriction to 7|, , R of the
projection T, M & T,M — T, M is surjective. This implies equality (13.2)
and proves the claim. Now denote by C, C M the equivalence class of z
with respect to the equivalence relation R; we have:

Cp = Uy 1(R)7

and since i, is transversal to R, it follows that C, is a smooth submanifold
of M and that its tangent space at a point y € C,, is given by:

(133)  TyCp = (d(i)y) " (TwyyR) = {v € T,M : (0,v) € T(s ) R}
Set:

(13.4) D, = T,Cr = {v € T,M : (0,v) € T(, . R},

for each x € M. We have the following:

13.4. Lemma. The set D = {J,cp; Dz C T'M is a smooth distribution on
M, i.e., a smooth vector subbundle of the tangent bundle TM of M.

Proof. Consider the diagonal map d : M — M x M defined by d(z) = (z, x),
for all z € M. The pull-back d*(T'(M x M)) of the tangent bundle of M x M
by the map d equals the vector bundle TM & T'M over M. Since R is a
smooth submanifold of M x M containing the image of d, the pull-back:

d*(TR) = | J T(ow)R
xeM

is a smooth subbundle of TM @& T'M. Denote by P : d*(T'R) — TM the
restriction to d*(TR) of the first projection TM & TM — TM. Then P
is a smooth vector bundle morphism; moreover, P is surjective, because
mi|r : R — M is a submersion. By (13.4), we have:

Ker(P) = | ({0} & Dx).
zeM
But the kernel of a smooth surjective vector bundle morphism is a smooth
vector subbundle of its domain. The conclusion follows. O

We will say that a smooth submanifold S C M is complementary to D if
T.M =1T,5®D,, for all x € S.
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13.5. Corollary. Let S C M be a smooth submanifold of M and assume
that T,M = T,S & D, for some x € S. Then = has an open neighborhood
in S that is complementary to D.

Proof. Since S is a smooth submanifold of M and, by Lemma 13.4, D is a
smooth distribution on M, the set:

{yeS:TyM =T,S®Dy,}
is open in S. The conclusion follows. O

13.6. Corollary. Every point of M belongs to a smooth submanifold S C M
that is complementary to D.

Proof. Given © € M we can obviously find a smooth submanifold S C M
containing x such that T, M = T,S @ D,. The conclusion follows from
Corollary 13.5. O

13.7. Lemma. If S C M is a smooth submanifold that is complementary to
D then the inclusion map of M x S into M x M is transversal to R.

Proof. Let (z,y) € (M x S)N R be fixed. We have to show that:
T, M & TyM = (T, M & T,S) + Ty ) R.
Given v € T, M, w € TyM, since TyM = T,S & D,, we can find v’ € TS
with w —w’ € Dy. Since (z,y) € R we have C, = Cy and thus:
Dy, =1T,C, =T,Cy;

by (13.3), w — w' € Dy = T, C, implies (0,w —w') € T(,,)R. Hence:

(v,w) = (v,w') + (0,w —w') € (T.M ®T,S) + T(,,) R,
and the proof is completed. O

13.8. Corollary. If S C M is a smooth submanifold that is complementary
to D then (M x S)N R is a smooth submanifold of M x M. O

13.9. Lemma. Let S C M be a smooth submanifold that is complementary to
D. Then the restriction to (M x S)NR of the first projection M x M — M is
a local diffeomorphism (notice that (M x S)NR is indeed a smooth manifold,
by Corollary 13.8).

Proof. Let (z,y) € (M x S)N R be fixed and denote by P the restriction to:
Tiw) (M x S)NR) = (TuM & T,S) N T, )R

of the first projection T, M @ T,M — T, M. By the Inverse Function Theo-
rem, it suffices to prove that P is an isomorphism. Observe that an element
in the kernel of P is of the form (0,v), with v € T},S and (0,v) € T(, . R. But
(13.3) implies v € T,C, = T,,Cy = D,; since T,S N D, = {0}, we get v =0
and thus P is injective. Let us prove that P is surjective. Let v € T, M be
fixed. Since the restriction to 7\, )R of the projection T, M & T, M — T, M
is surjective, there exists w € T,M with (v,w) € T(,, R. Since T,M =
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T,S & Dy, we can find v’ € TS with w —v’' € D, = T,,Cy = T,C,. By
(13.3) we have:
(0, w — w') S T(%y)R
and thus:
(v,w') = (v,w) + (0,w — w) € Ty R.
Hence (v,w’) is in the domain of P and we are done. i

13.10. Lemma. Let S C M be a smooth submanifold that is complementary
to D. Then the restriction to (M x S)NR of the second projection M xS — S
is a submersion (notice that (M x S) N R is indeed a smooth manifold, by
Corollary 13.8).

Proof. Let (z,y) € (M x S)N R be fixed. We have to prove that the
restriction to:

T($7y) ((M X S) N R) = (TxM b TyS) N T(x,y)R

of the second projection T, M & T,,S — TS is surjective. But this follows
directly from the fact that the restriction to T{, ,) R of the second projection
TyM & TyM — T,M is surjective (see Remark 13.2). O

We will say that a smooth submanifold S C M is fundamental if S is
complementary to D and, in addition, S intercepts each equivalence class
determined by R at most once; more explicitly, S is fundamental if S is
complementary to D and (z,y) € R implies = y, for all z,y € S. We have
the following:

13.11. Lemma. If S C M is a smooth submanifold that is complementary
to D then any x € S has an open neighborhood S’ in S that is fundamental.

Proof. Since (z,z) € (M x S)N R, Lemma 13.9 implies that (z,x) has an
open neighborhood in (M x .S)NR on which the first projection M x M — M
is injective. Such neighborhood can be chosen in the form (U x V)N R, where
U is an open neighborhood of x in M and V is an open neighborhood of x
inS. Set " =UNV. Then S’ is an open neighborhood of x in S. Being an
open submanifold of S, the submanifold S’ is complementary to D. Let us
prove that S is fundamental. Choose z,y € S’ with (z,y) € R. Then (z,y)
and (z,x) are both in (U x V)N R and have the same image under the first
projection; hence (z,y) = (x,z) and we are done. O

13.12. Corollary. Fvery point of M belongs to a fundamental smooth sub-
manifold of M.

Proof. Follows from Corollary 13.6 and from Lemma 13.11. O

13.13. Lemma. Let S C M be a fundamental smooth submanifold of M.
Then the set:

A= {CL’ € M : there exists y € S with (x,y) € R}

is open in M. Moreover, for each x € M there exists precisely one y € S
with (z,y) € R and the map p: A >z — y € S is a smooth submersion.
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Proof. Denote by P the restriction to (M x S) N R of the first projection
M x M — M. By Lemma 13.9, P is a local diffeomorphism. The set A is
precisely the image of P and thus A is indeed open in M. Moreover, P is
injective; namely, if (z,y) and (z,9’) are in (M x S) N R then y and y’ are
in S and (y,y’) € R. Being an injective local diffeomorphism, P is actually
a global diffeomorphism onto the open set A. The fact that the map p is
a smooth submersion follows by observing that p is equal to the composite
of the diffeomorphism P~' : A — (M x S) N R with the restriction to
(M x S)N R of the second projection M x S — S (recall Lemma 13.10). O

13.14. Lemma. Let S1,Sy C M be fundamental smooth submanifolds. Con-
sider the sets:

S = {x € Sy : there ezists y € Sy with (z,y) € R},
Sy ={y € Sa : there ezists v € Sy with (z,y) € R}.

Then Sy is open in S1 and S} is open in Sy. Moreover, for each x € S|
there exists precisely one point y = a(xz) € S, with (z,y) € R and the map
a: Sy — Sh is a smooth diffeomorphism.

Proof. For i = 1,2, set:
A, = {m € M : there exists y € S; with (z,y) € R},

and denote by p; : A; — 5; the map that carries each x € A; to the unique
y € S; such that (z,y) € R. By Lemma 13.13, the set A; is open in M
and the map p; is smooth. To conclude the proof, simply observe that
Si = AN 81, Sy = A1 NSy, o =pofg; and ™! = pyg;. 0

In order to define a smooth maximal atlas on M /R we make use of the
following elementary result.

13.15. Lemma. Let N be a set and let (¢; : Uy — N;)ier be a family of
bijective maps, where each U; is a subset of N and each N; is a smooth
manifold. Assume that N = J,c; U; and that for any i,j € I the maps ¢;
and ¢; are smoothly compatible, i.e., the sets ¢;(U; NU;) and ¢;(U; N U;)
are open respectively in N; and in N; and the transition map:

gj0¢; " i(UiNU;) — ¢;(U; N U;)

is a smooth diffeomorphism. Then there exists a unique smooth mazximal
atlas on N such that all U; are open in N with respect to the topology induced
by such atlas and such that all maps ¢; are smooth diffeomorphisms.

Proof. A smooth atlas in N is defined by considering compositions of the
maps ¢; with local charts in the manifolds /V;. Details are left to the reader.
O

If S € M is a fundamental smooth submanifold then the restriction to S
of the quotient map ¢ is injective. Thus (g|s)™! : ¢(S) — S is a bijection
defined in the subset ¢(S) of M /R, taking values in the smooth manifold S.
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By Corollary 13.12, when S runs over all fundamental smooth submanifolds
of M, the sets ¢(S) cover M/R. Moreover, Lemma 13.14 says that the
bijections (q|s)~! : ¢(S) — S are pairwise smoothly compatible. Thus,
Lemma 13.15 gives us a smooth maximal atlas on M /R such that, for every
smooth fundamental submanifold S C M, the set ¢(S) is open in M/R
and the map ¢|s : S — ¢(S) is a smooth diffeomorphism. In order to
complete the proof of Theorem 13.1, we show that ¢ : M — M/R is a
smooth submersion. Let x € M be fixed and let S C M be a fundamental
smooth submanifold of M with x € S (see Corollary 13.12). Define A and
p as in the statement of Lemma 13.13. Then A is an open neighborhood of
x and:
qla = (qls) o p.

Since p is a smooth submersion and ¢|g : S — ¢(9) is a smooth diffeomor-
phism, it follows that ¢|4 is a smooth submersion. This concludes the proof
of Theorem 13.1.

Now we assume that M /R is endowed with a smooth maximal atlas such
that the quotient map ¢ : M — M/R is a smooth submersion and let us
study the topology of M/R. Since ¢ is a submersion, it follows that ¢ is
an open mapping; being continuous, surjective and open, the map ¢ is a
quotient map in the topological sense. Moreover, we have the following.

13.16. Lemma. If M is second countable then M /R is also second countable.

Proof. Simply observe that, since ¢ is continuous, open and surjective, it
maps a basis of open subsets of M onto a basis of open subsets of M/R. O

13.17. Lemma. The quotient M /R is Hausdorff if and only if R is closed
in M x M.

Proof. Recall that M/R is Hausdorff if and only if the diagonal Ay g is
closed in (M/R) x (M/R). The map ¢q x ¢ (recall (13.1)) is a surjective
submersion and thus it is continuous, open and surjective. It follows that
g X q is a quotient map in the topological sense. Since R = (g X q)_l(AM/R),
we have that Ay g is closed in (M/R) x (M/R) if and only if R is closed
in M x M. O

14. THE FROBENIUS THEOREM

Recall that a smooth distribution D on a smooth manifold M is a smooth
vector subbundle of the tangent bundle TM. For x € M we set D, =
T.M ND,ie., D, is the fiber of the vector bundle D over x. A vector field
X on M is called horizontal with respect to a distribution D (or simply
D-horizontal) if X takes values in D, i.e., if X(x) € D, for all z € M.

14.1. Definition. Let M be a smooth manifold and let D be a distribution
on M. The Levi form of D at a point x € M is the bilinear map:

¢P D, x D, — T,M/D,
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defined by £P(v,w) = [X,Y](z) + Dy € T,M/D,, where X and Y are D-
horizontal smooth vector fields defined in an open neighborhood of z in M
with X(z) = v and Y () = w. By [X,Y] we denote the Lie bracket of the
vector fields X and Y.

Below we show that the Levi form is well-defined, i.e., [X,Y](z) + D,
does not depend on the choice of the D-horizontal vector fields X and Y
with X (z) = v, Y(z) = w. Let 6 be a smooth R*-valued 1-form on an open
neighborhood U of z such that Ker(6,) = D, for all z € U. If X and Y
are vector fields on an open neighborhood of x then Cartan’s formula for
exterior differentiation gives:

d9(X,Y)=X(6(Y)) - Y (0(X)) — 0([X,Y]).
If X and Y are D-horizontal then the equality above reduces to:
dO(X,Y) = —0([X,Y]).
The formula above implies that if X', Y’ are D-horizontal vector fields with
X'(z) = X(z) and Y'(z) = Y(z) then 0([X,Y] — [ X, Y"])(z) = 0, ie,

[X,Y](z) — [X',Y'](x) € Dy. Hence the Levi form is well-defined. Setting
X(z) =v and Y (x) = w we obtain the following formula:

(14.1) éx(ﬁf(v,w)) = —df(v,w), v,w € Dy,

where 0, : T, M /Dy — R* denotes the linear map induced by 6, in the
quotient space.

14.2. Lemma. Let M be a smooth manifold, D be a smooth distribution on
M and let

U>s(ts)— H(t,s) e M
be a smooth map defined on an open subset U C R%2. Let I C R be an

interval and let sy € R be such that I x {so} C U and Sg(t,so) =0 for all

t € 1. Assume that %—?(t, s) € D for all (t,s) € U. If %—Z(to,so) € D for
some ty € I then %—Ij(t,so) €D forallt el

Proof. The set:
I'={tel: %t s)eD}

is obviously closed in I because the map I 3¢t — %—i](t, s0) € TM is contin-
uous and D is a closed subset of TM. Since I is connected and tg € I’, the
proof will be complete once we show that I’ is open in I. Let t; € I’ be fixed.
Let 6 be an R*-valued smooth 1-form defined in an open neighborhood V/
of H(t1,s0) in M such that the linear map 6, : T,M — RF is surjective
and Ker(6,) = D, for all z € V. Choose a distribution D’ on V such that
T.M = D, ® D, for all x € V. Then, for each x € V, 6, restricts to an
isomorphism from D/, onto R¥. Let J be a connected neighborhood of 1 in
I such that H(t,sg) € V for all t € J. We will show below that the map:

(14.2) J 3t Oprr,s0) (2L (¢, 50)) € RF
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is a solution of a homogeneous linear ODE; since 9H(t1750)(837{;[(t1a so)) =0,
it will follow that HH(t SO)( 95 (L, so)) =0forallte J, ie, JCI.

We denote by 2 5 and the canonical basis of R? and we apply Cartan’s
formula for exterior dlfferentlatlon to the 1-form H*# obtaining:

A 0) (5. 2) = & (%)) = & (W 0(5)) — (5 £])-
Since d(H*0) = H*(df) and [8— a—] = 0 we get:
(14.3) dOp(t,50) (GE(E 50), B2 (t, 50)) = %(911(@50)(%%(757 80)))

- %‘5:50 (%(t,@(%’(t, 8))>, ted

Observe that, since %—?(t, s) is in D, the last term on the righthand side of
(14.3) vanishes. We can write %—g(t, s0) = up(t) + ue(t) with ui(t) € D and
ug(t) € D'. Since the Levi form of D vanishes at points of the form H (¢, sp),
equation (14.1) implies that dfg (s s0)(v,w) = 0 for all v,w € Dy 5. We
may thus replace (t s0) by u2(t) in the lefthand side of (14.3). For ¢t € J
we consider the hnear map L(t) : R¥ — R* defined by:

L(t) -z = d0pr,50) (%L (L, 50), Orir.50)(2)), 2 € RF,

where, for x € V, o, : R¥ — D/, denotes the inverse of the isomorphism
0z|p; : D, — RF. Observe that:

A0r(t,0) (B7 (T, 50), G (1 50)) = A (r,00) (G (2, 50), ua(1))
= L(t) - Opr1,s0) (u2(t))
= L(t) - 011 (1,5) (B (¢, 50)).-

Equation (14.3) can now be rewritten as:

8 (9n10.00) (B (8,50)) ) = L) - O, (B (1. 50)), € .

Hence the map (14.2) is a solution of a homogeneous linear ODE and we
are done. g

Given smooth manifolds M and N we denote by Lin(TM,TN) the vector
bundle over M x N whose fiber at a point (z,y) € M x N is the space
Lin(T, M, T,N) of linear maps from T,,M to T,,N.

14.3. Theorem. Let M, N be smooth manifolds and F' be a smooth section
of the vector bundle Lin(TM,TN) defined in an open subset A C M x N.
Consider the distribution gr(F') on A whose fiber at a point (z,y) € A is the
graph of the linear map F(x,y) : TyM — TyN. Let

RxADZ>(t,AN)— d(t,\)eM, RxADZ>(t,\)— (t,\) €N,

be smooth maps, where A is a smooth manifold and Z C R x A is an open
subset. Let o : V — Z be a smooth map defined in an open subset V. C M
such that ¢(a(z)) =z for all x € V. Assume that:
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(1) (¢(t,N),¥(t,\)) € A and the Levi form of gr(F) vanishes at the
point (¢(t, N), (¢, N)) for all (¢,\) € Z;

(2) Z2(t, ) = F(o(t, \), ¥(t, \) - (¢, \), for all (t,)) € Z;

(3) for every (t1,\) € Z there exists tg € R such that I x {\} C Z and
9 (to, A) = F(¢(to, \), ¥(to, N)) 0 92 (tg, A), where I C R denotes the

closed interval whose endpoints aTe to and tq.
Then the map f =Y oa:V — N satisfies the PDE:

df(z) = F(, f(x)), weV.

Proof. We start by proving that:
(144) w(tla )‘) U= [F(¢(t1, )\)7 w(tlv )‘)) ¢(t17 )\)] v,
for all (t1,\) € Z and all v € T\A. Let (t1,A) € Z and v € T)\A be fixed; let
to € R be as in condition (3) above. Let 7 : |—¢,e[ — A be a smooth curve
with 4(0) = A and 7/(0) = v. We define amap H : U — A C M x N by
setting H (t,s) = (¢(t,7(s)),¥(t,7(s))), where U C R? is the open set:

U={(ts)eRx]—eel:(t,7(s)) € Z}.
Obviously I x {0} C U. Condition (2) above implies that aH :(t,s) € gr(F)

for all (¢,s) € U; moreover, since

%%(t()?()) = (%(t(h )\) * v, gig\)(t(h )‘) ' 'U),

condition (3) above implies that BH - (t0,0) € gr(F). Since the Levi form of
gr(F') vanishes at H(t,0) for all t E I, Lemma 14.2 gives %—Ij(t,()) € gr(F)
for all t € I. In particular %—Z(tl,O) € gr(F), i.e., (14.4) holds.

Condition (2) above and identity (14.4) imply that:

dip(t1,A) = F(o(t1, X), ¥ (t1, A)) o dé(t1, A),

for all (t1,\) € Z. Using this equality and recalling that qS(a(x)) =z, for
all x € V, we compute:

df (@) = d(a(@)) o da(w) = F(¢(a(@)), é(a(@))) o ds(a(2)) o da(a)

= F(z, f(z)) od(¢ 0 a)(z) = F(z, f(2)).

This concludes the proof. ([l

14.4. Corollary. Let A > (z,y) — F(z,y) € Lin(R™,R"™) be a smooth map
defined in an open subset A C R™ x R™. Assume that:

(14.5)
8Fk] OFy; _ OFy, —~ OFy;
T (@ +ZFM DY), (BY) = g ) ;F,,j(x,y) o @ Y);

forall (x,y) € A, i,5=1,...,m, k=1,...,n. Then, for every (xo,yo) € A
there exists a smooth map f :V — R™ defined in an open neighborhood V
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of zg in R™ such that f(xo) = yo, (:L',f($)) € A forallx eV and f is a
solution of the PDE:

df(x) :F(l‘,f(l‘)), reV.

14.5. Corollary. Let M, N be smooth manifolds, E be a finite-dimensional
real vector space and w™, w¥ be E-valued smooth 1-forms respectively on

M and on N. Assume that w™(y) : TyN — E is an isomorphism for all
ye N. Let

RxADZ>(t,\N)r—o(t,\)eM, RxADZ>3 (AN +—(t,\) €N,

be smooth maps, where A is a smooth manifold and Z C R x A is an open
subset. Let o :'V — Z be a smooth map defined in an open subset V. C M
such that ¢(a(z)) =z for all x € V. Assume that:

(1) for every (t,\) € Z,

F(o(t,2),9(t,2) " [dw™ (£, 1)] = dw™ ((t, 1),
where F(x,y) : T,M — TyN denotes the linear map defined by:

(14.6) F(z,y) =w(y) ' ow(2),

forallz e M, ye N;
(2) for every (t,\) € Z,

N 9 M ([ )
i (51 N) = w0l (5 (6 0):
(3) for every (t1,\) € Z there exists to € R such that I x {\} C Z and

N 0 M 0
Wit © 34 (F0: X) = Wiy x) © 55 (f0, V),
where I denotes the closed interval whose endpoints are ty and t;.
Then the map f =Y oa:V — N satisfies f*wy = warlv.

Proof. We just have to apply Theorem 14.3 to the section F' of Lin(T'M,TN)
defined by (14.6). Observe indeed that the condition f*w® = wM|y is
equivalent to the PDE df(x) = F(ac, f(x)), moreover, it is clear that condi-
tions (2) and (3) in the statement of this Corollary are equivalent respectively
to conditions (2) and (3) in the statement of Theorem 14.3. To complete
the proof, we will show that the Levi form of gr(F') vanishes at a point
(z,y) € M x N if and only if F(z,y)*[dw" (y)] = dw™(z). Considere the
E-valued 1-form § on M x N defined by 6 = mjw”" — 7ntwM where m; and
o denote the projections of the product M x N. We have:

H(x,y) (U7w) = nglv(w) - wi\/l(v),

for all (z,y) € M x N, (v,w) € T, M @ T,N; it is thus easy to see that the
linear map 6, ) : T.M @& T, N — FE is surjective and that its kernel equals
the graph of F(z,y), for all (z,y) € M x N. In particular, the linear map

é(x:y) : (TIM ® TyN)/gr(F)(x,y) — F
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induced on the quotient space is an isomorphism. It follows from (14.1) that
the Levi form of gr(F') vanishes at (z,y) if and only if df, ,y annihilates

gr(F). We have df = 73 (dw? ) — 7} (dwM), i.e.:
de(:ﬁ,y)((“l»“’l)? (va, wz)) = dWN(wl,wz) - de(Uh v2),

for all (z,y) € M x N, (vi,w1), (v2,ws) € TyM®T,N. It follows that df, ,
annihilates gr(F) if and only if F(z,y)*[dw® (y)] = dw™ (). O

15. GLOBAL FROBENIUS

In what follows M denotes a smooth manifold (i.e., a set endowed with a
smooth maximal atlas; no topological assumptions are made) and D denotes
a smooth distribution on M (i.e., a smooth vector subbundle of the tangent
bundle TM). By an integral submanifold of D we mean an immersed smooth
submanifold S of M such that 7,5 = D,, for all x € S. We have the
following:

15.1. Lemma. Let S be an integral submanifold of D and let f : N — M
be a smooth map defined in a smooth manifold N. Assume that the image
of dfy is contained in Dy,), for allp € N. Then f71(S) is an open subset
of N.

p)’

Proof. Let p € f~1(S) be fixed. Let ¢ : U — U be a local chart in M
such that f(p) € U, U = U x 172, with U; an open subset of R™, Us
an open subset of R" and such that dyg)(Dyp)) = R™ x {0}"2. We
write ¢ = (¢!, ©?), where ¢' : U — U;, i = 1,2. Since dgo}(p) maps Dy,
isomorphically onto R™!, we may assume (possibly taking a smaller U) that
dpl maps D, isomorphically onto R™, for all # € U. Consider the smooth
map F : Uy x Uy — Lin(R™,R"2) defined by:

F(u1,u2) = d¢3 o (dey|p,) ",

for all uq € ﬁl, Ug € (,72, where x = o~ (u, us).
Since d(¢!|snr) o) = (dgp} (p)) } Do is an isomorphism, the Inverse Func-
p

tion Theorem gives us an open neighborhood Sy of f(p) in S N U that is
mapped diffeomorphically by o' onto an open subset A of R™ contained
in Uy. The set f~'((¢')"'(A)) is an open neighborhood of p in N; let V
be an open neighborhood of p in N contained in f~!((¢')"1(A)) that is
diffeomorphic to some open ball in Euclidean space. We will now complete
the proof by showing that V is contained in f~1(S5).

Let p’ € V be fixed. Since V is diffeomorphic to an open ball, there exists
a smooth curve \ : [0,1] — V with A(0) = pand A(1) = p’. Set v = plofol
and p = p? o f o \. For every t € [0, 1], we have:

(foN)'(t) =dfawy (N (1) € Driawy;
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since p/'(t) = dgo?c()\(t)) ((foX)(t)) and +/(t) = dgo}(/\(t)) ((foX)(t)), we have:

T4\ 2 1 -1 /
1(1) = (4 © (WFoapln, ) ) (/).
By the definition of F', this means:
(15.1) p(t) = F(y(t), u(t) - +'(8),
for all ¢ € [0,1]. Since the image of 7 is contained in A and ¢!|g, : Sop — A

is a diffeomorphism, we can consider the curve o : [0,1] — Sy C U defined
by o = (pl|s,) "L o; set i = p? oo. For t € [0,1], we have:
o'(t) = (b s, 5) (V) = (A0hpp, )~ (F (1)
thus:
() = (a2 (Aeblp,, ) ) ((1):
By the definition of F', this means:

(15.2) fl(t) = F(y(t), (1) -+'(¢),

for all ¢ € [0,1]. Now (15.1) and (15.2) imply that p : [0,1] — R"™ and
@ [0,1] — R™ are both solutions of the same ODE. Since u(0) = f1(0), we
conclude that p = fi. Thus:

pofol=(y,u)=(v,) =poo;
since ¢ is injective, we get f o A = o. In particular:

f)=f(M1) =0(1) €S CS.
This concludes the proof. 0

15.2. Corollary. Under the hypotheses of Lemma 15.1, assume in addition
that f(N) C S. Then the map f: N — S is smooth.

Proof. Since S is an immersed submanifold of M, it suffices to prove that
the map f : N — S is continuous when S is endowed with the topology
induced by its own atlas (which maybe finer than the topology induced by
M on S). If S’ is an open subset of S then S’ is also an integral submanifold
of D; thus Lemma 15.1 implies that f~!(S’) is open in N. The conclusion
follows. O

15.3. Corollary. Let S1,Sy C M be integral submanifolds of D. Then S1NSs
is open in Sy and in Sy (relative to the topology induced by the atlases of Sy
and Sz). Moreover, S1 N Sy inherits the same manifold structure from S
and from Ss.

Proof. Let i1 : S1 — M, is : So — M denote the inclusion maps. It
follows from Lemma 15.1 that z'l_l(Sg) = §1 NSy is open in S and that
i;l(Sl) = 51 NSy is open in Sy. Let A; denote the manifold structure
induced on S1 NSy by S;, ¢ = 1,2; it follows from Corollary 15.2 that the
identity map Id : (S; NSz, A1) — (S1 NS, A2) is a smooth diffeomorphism.
Hence A; = Ay and the proof is completed. O
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Let Smax € M denote the union of all integral submanifolds of D. We
have the following:

15.4. Lemma. The set Spax admits a unique maximal smooth atlas such
that every integral submanifold of D is an open submanifold of Smax-

Proof. This is an application of Lemma 13.15. Let (S;);es denote the family
of all integral submanifolds of D. By definition, we have Spax = Uz‘e 7 Si.
Moreover, for each i € I, the identity map Id : S; — S; is a bijection
between the subset .S; of Siax and the smooth manifold S;. To complete the
proof, observe that the smooth compatibility requirement of Lemma 13.15
is a consequence of Corollary 15.3. (]

The manifold Spax is called the global integral submanifold of D. We
already know that every integral submanifold of D is an open submanifold
of Smax; moreover, we have the following:

15.5. Lemma. The manifold Smax is an integral submanifold of D.

Proof. Denote by i : Sppax — M the inclusion map. We first prove that 4 is
a smooth immersion, so that Spax is a smooth immersed submanifold of M.
Let © € Shax be fixed. Since Spax is the union of the integral submanifolds
of D, there exists an integral submanifold S of D with x € S C Spax. Since
S is an open submanifold of Syax, i|s : S — M is a smooth immersion and
T € Smax is arbitrary, it follows that 7 is a smooth immersion. Moreover, we
have:

TpSmax = TS = Dy.

Hence Syax is indeed an integral submanifold of D. O

Since the topology of Spax is in general finer than the topology induced by
M, it follows that if M is Hausdorff then also Sy is Hausdorff. It is not in
general true that Shyax is second countable, even if M is. For instance, if D is
integrable then Syax equals M as a set (but not as a manifold); the connected
components of Sy are the mazimal connected integral submanifolds of D.
In the integrable case it is known that, if M is second countable, then each
connected component of Syax is second countable; however, if the rank of D
is smaller than the dimension of M then Sp.x has an uncountable number
of connected components.

16. CoMPACT-OPEN TOPOLOGY

Let X, Y be topological spaces. Denote by €(X,Y") the set of continuous
maps f : X — Y. Given a compact subset K C X and an open subset
U C Y we denote by V(K;U) the subset of €(X,Y) consisting of those
maps f : X — Y such that f(K) C U. The smallest topology on €(X,Y")
containing the sets V(K;U) is called the compact-open topology on €(X,Y).
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The sets V(K;U) with K C X compact and U C Y open form a subbasis
for the compact-open topology and the finite intersections:

T
V(K Ui),
i=1
with K1, ..., K, C X compact, Uq,...,U, C Y open and r a positive integer,
form a basis for the compact-open topology on €(X,Y) (observe that if
K = U = {) then V(K;U) = ¢(X,Y)).

16.1. Lemma. Let A, X, Y be topological spaces and let f : A x X —Y
be a continuous map. Then, if €(X,Y) is endowed with the compact-open
topology, the map:

f:A—¢X,Y),
defined by f(\)(x) = f(\z), A€ A, x € X, is continuous.

Proof. 1t is sufficient to prove that f—! (V(K U )) is open in A for every
compact set K C X and every open set U C Y. Let A € f1 (V(K; U)) be
fixed. The set f~!(U) is open in the product A x X and it contains {\} x K;
since K is compact, f~(U) also contains V x K for some neighborhood V'
of Ain A. Hence V C f_l(V(K; U)) and we are done. O

16.2. Lemma. Let A, X, Y be topological spaces and let f : A — €(X,Y) be
a continuous map, where €(X,Y) is endowed with the compact-open topol-
ogy. Assume that X is locally compact®. Then the map f : Ax X =Y
defined by f(\,z) = f(\)(z), A\ € A, z € X is continuous.

Proof. Let A € A, x € X be fixed and let U be an open neighborhood of
f(A,z) in Y. Since the map f(\) : X — Y is continuous, the set f(A\)~}(U)
is an open neighborhood of z in X. Let K be a compact neighborhood of
z contained in f(A\)"}(U). Then f()) is in V(K;U) and therefore we can

find a neighborhood V of A in A with f(V) C V(K;U). Hence V x K is a
neighborhood of (A,z) in A x X and f(V x K) C U. O

We now focus on the space Qf([a, b, X ) of continuous curves v : [a,b] — X
on a fixed topological space X. By a partition of the interval [a, b] we mean a

finite subset P of [a, b] containing a and b; we write P = {{o, ..., t,} meaning
that a = tp < t1 < --- < t, = b. Given a partition P = {tg,...,t.} of [a,b]
and a sequence Uy, Us, ..., U, of open subsets of X, we write:

(16.1)

QT(P; Ul,...,UT) = {’y S Q([a,b},X) Z’y([tz‘_l,ti]) cU;, i=1,.. .,7‘}.

Obviously U(P;Uy,...,U,) is an open subset of Q([a, b], X) with respect to
the compact-open topology. Moreover, we have the following:

8This means that any neighborhood of an arbitrary point * € X contains a compact
neighborhood of z.
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16.3. Lemma. Let X be a topological space and B be a basis of open sub-
sets for X. The sets U(P;Uy,...,U,), where P runs over the partitions of
[a,b] and Uy,...,U, € B, form a basis of open subsets for the compact-open
topology on Q([a, b],X).

Proof. Let Z be an open subset of Qﬁ([a, bl, X ) with respect to the compact-
open topology and let v € Z be fixed. We'll find a partition P = {¢¢,...,t,}
of [a,b] and basic open sets Uy, ..., U, € B such that:

(16.2) v € U(P;Uy,...,U,) C Z.
By the definition of the compact-open topology, we can find compact subsets
Ky, ..., Ks C [a,b] and open subsets Vi, ..., Vi C X such that:

ye[V(E; Vi) € 2.
i=1
Let u € [a, b] be fixed. The set:

is an open neighborhood of 7(u) in X and therefore it contains a basic open
set By, € B such that y(u) € B,,. Set:

(16.3) Li=v"'BJ)n (] (lab\K).

i=1,...,s

uZK;
Then u € [, and I,, is open in [a,b]. Let 6 > 0 be a Lebesgue number for
the open cover Uue[a’b] I,, of the compact metric space [a, b]; this means that
every subset of [a, b] having diameter less than ¢ is contained in some I,,. Let
P = {to,...,t,} beapartition of [a, b] with t;—t;_1 < d,forj=1,...,r. For
each j =1,...,7 we can find u; € [a,b] with [t; 1,t;] C L; set U;j = By;.
We claim that (16.2) holds.

Since for j = 1,...,7, [tj—1,tj] C L, and y(I,;) C By; = U;, we have

v € B(P;Uy,...,U;). To complete the proof, choose p € B(P;Uy,...,U,)
and let us prove that p € (_; V(Ki;V;). Let i = 1,...,s and t € K; be
fixed. We have t € [t;_1,t;], for some j =1,...,7. We claim that u; € Kj;
namely, otherwise I,,, would be contained in [a,b] \ K; (recall (16.3)), but
tis in I, N K;. But u; € K; implies U; = By, C Vi Finally, since
pw € B(P;Uy,...,U), we have u(t) € U; C V. This proves that u(K;) C V;
fori=1,...,s and completes the prove of the lemma. O

17. THE GROUP OF HOMEOMORPHISMS OF A TOPOLOGICAL SPACE

Recall that given topological spaces X, Y then €(X,Y’) denotes the set of
all continuous maps f : X — Y in what follows, we consider €(X,Y) to be
endowed with the compact-open topology (recall Section 16). Given a topo-
logical space X, denote by Homeo(X) the subset of €(X, X') consisting of all
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homeomorphisms f : X — X. Obviously Homeo(X) is a group under com-
position. In what follows, we investigate under which conditions Homeo(X)
is a topological group (when endowed with the topology inherited from the
compact-open topology of €(X, X)).

17.1. Lemma. LetY be a locally compact topological space. Given a compact
subset K of Y and an open subset U of Y containing K then there exists a
compact subset L of U whose interior contains K.

Proof. For each x € K, there exists a compact neighborhood L, of x
contained in U. The interiors int(L;) of the sets L, constitute an open
cover of the compact set K, from which we can extract a finite subcover
K c U int(Lg,). Now define L by setting L = (J;"_; La,. O

17.2. Lemma. Let X, Y, Z be topological spaces with Y locally compact.
Then the composition map:

(17.1) C(X,Y) x €Y, Z) 3 (f,9) — go [ € €(X, 2)
18 continuous.

Proof. Let fo € €(X,Y), go € €(Y, Z) be fixed. It suffices to show that given
a compact subset K of X and an open subset U of Z with (ggo fo)(K) C U
then there exists a neighborhood of (fy,g0) in €(X,Y) x €(Y,Z) that is
mapped by (17.1) into V(K,U). We have fo(K) C gy (U), with fo(K)
a compact subset of Y and g, L(U) an open subset of Y; by Lemma 17.1,
there exists a compact subset L of gy '(U) whose interior int(L) contains
fo(K). Clearly V(K,int(L)) x V(L,U) is a neighborhood of (fo, go) having
the desired property. O

17.3. Lemma. Let G be a group endowed with a topology for which the
multiplication map G X G — G s continuous. Then the inversion map
G > — x7' € G is continuous if and only if it is continuous at the
identity element 1 € G.

Proof. For each g € G, denote by [, : G — G and vy : G — G the maps
defined by l4(x) = gx and vy(x) = xg respectively. Clearly, [, and t, are
continuous for all g € G. The conclusion follows from the commutativity of
the diagram below:

inversion aQ
>

G
S

-
inversion

O

17.4. Lemma. Let X be a Hausdorff, locally compact and locally connected
topological space. Given a compact subset K contained in an open subset U
n

of X then there exists a finite sequence (K;)? | of compact subsets of X and
a finite sequence (U;)?_; of open subsets of X such that:



SOME GOOD LEMMAS 63

o K, CU,;, foralli=1,...,n;

e the interior of K; is nonempty, for alli=1,...,n;

o K, is connected and U; is compact, for alli=1,...,n;
[ ]

Nizy V(K;,Us) C V(K,U).

Proof. For each z € K, let V; be a compact neighborhood of x contained in
U, VI be a compact neighborhood of = contained in the interior of V, and
let W, be a connected neighborhood of = contained in V. The open cover
U,ex int(W,) of K has a finite subcover |J;_; int(W,). Now take K; to be
the closure of W, and U; to be the interior of V,,. Since W, C Vx’i C U; and
Véi is closed, it follows that K; C U;. Clearly, z; belongs to the interior of K,
so that int(K;) # (). The connectedness of K; follows from the connectedness
of Wy, and the compactness of U; follows from the compactness of V-
Finally, the inclusion (., V(K;,U;) C V(K,U) follows by observing that
KcU.,Kiand J.,U; CU. O

17.5. Lemma. Let X be a Hausdorff, locally compact and locally connected
topological space. Then Homeo(X) is a topological group, i.e., both its mul-
tiplication map and its inversion map are continuous.

Proof. By Lemma 17.2, the multiplication map of the group Homeo(X) is
continuous and by Lemma 17.3, in order to complete the proof, it suffices to
show that the inversion map of Homeo(X) is continuous at the identity map
Id : X — X. The continuity of the inversion map of Homeo(X) at the point
Id is equivalent to the following condition: given a compact subset K of X
contained in an open subset U of X then for every f in some neighborhood
of Id in Homeo(X) we have f~1(K) C U. By Lemma 17.4, in order to
prove this condition, it suffices to consider the case in which K is connected,
int(K) # () and U is compact. Let z be an arbitrary point in the interior of
K. Then:

(17.2) V(0U, K°) NV ({z},int(K)) N Homeo(X)

is a neighborhood of the point Id in Homeo(X), where OU denotes the
boundary of U. Given f in (17.2), we prove that f~1(K) C U. Since
f: X — X is a homeomorphism, we have that f(U) is open in X and f(U)
is closed in X; moreover, since f(OU) N K = (), we have:

fFO)NK = (f(U)UfOU)) NK = fU)N K.

It follows that f(U)N K is both open and closed relatively to K. Moreover,
f(z) € f(U)N K and, since K is connected, we get f(U) N K = K. Hence
K C f(U)and f~}(K) C U. O

17.6. Example. Let X be the subspace of the real line R defined by:
X={0,1,2,3,..yu{i. 3 4.... }.

Then X is locally compact (obviously Hausdorff), but not locally con-
nected. It follows from Lemma 17.2 that the multiplication map of the group
Homeo(X) is continuous. We claim that the inversion map of Homeo(X) is
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not continuous. For each n > 2, let f, : X — X be the homeomorphism
defined by:

e fn(0) =0;

d fn(%) = Til, for k > n;

o fu(}) =4 and fu(k) =k, for k=1,....n —1;
hd fn(k):k—l,fork>n

e fu(n) = %
It is easy to see that (f,)n>2 converges to the identity of X in Homeo(X)
but (f;!)n>2 does not.

18. LIFTINGS

We start with the following;:

18.1. Lemma. Let X, X and Y be topological spaces, with X Hausdorff
and Y connected. Let m: X — X be a locally injective map (i.e., every
pomt ofX has a neighborhood in which m is m]ectwe) and let f1 Y — )Nf

f Y — X be continuous maps with o fl =7o fg If fl and f2 agree on
some point of Y then f1 = fa.

Proof. Since X is Hausdorff, the set:

(18.1) {yeY:f) =hy}

is closed in Y. It is also nonempty, by our hypotheses. We claim that (18.1)
is open in Y. Namely, Let y € V" be fixed with fily) = faly). If Ais an open
neighborhood of fi(y) in X such that 7|4 in injective then f7(A)N f5(A)
is an open neighborhood of y in Y contained in (18.1). This proves the claim
and concludes the proof. O

In what follows X and X are topological spaces and 7 : X 5 Xisa
local homeomorphism, i.e., for every T € X there exists an open subset
A C X such that Z € A, 7(A) is open in X and 7|4 : A — w(A) is a
homeomorphism. By a lifting of a continuous map f : ¥ — X defined in
a topological space ¥ we mean a continuous map f : Y — X such that
mo f = f. Lemma 18.1 implies that, if X is Hausdorff and Y is connected, a
continuous map f :Y — X admits at most one lifting f Y 5 X satisfying
a prescribed condition of the form f(yo) = Zo.

We are now concerned with liftings of curves v : [a,b] — X. Let £ denote
the subset of X X (’Z([a, b, X ) consisting of pairs (Zo,y) such that v admits
a unique lifting 7 : [a, b] — X satisfying the initial condition (a) = Zg. We
endow the sets Q([a, b], X) and Q([a, b], )~() with the compact-open topology
(see Section 16). Obviously if (Zg,7) is in £ then v(a) = 7(Z¢); observe also
that if X is Hausdorff then the uniqueness of the lifting of v satisfying the
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prescribed initial condition §(a) = Z( is automatic; its existence, however,
is not. Consider the map:

L:L— C([a,b],f()

defined by L(Zo,7) = 4, where 7 : [a,b] — X is the unique lifting of v such
that ¥(a) = Zo. We have the following:

18.2. Lemma. The map L is continuous.

Proof. Let B denote the collection of all open subsets A of X such that m(A)
is open in X and 7|4 : A — 7(A) is a homeomorphism. Since 7 is a local
homeomorphism, the set B is a basis of open subsets of X. Let (Zo,y) € L
be fixed and set ¥ = L(Zo,7). Let P = {to,...,t,} be a partition of [a, b]
and let Ay, ..., A, € B be such that (recall (16.1)):

5 EeW(P; A, ..., Ay).

By Lemma 16.3, in order to complete the proof, it suffices to find a neigh-
borhood of (Zg,7) in £ that is mapped by L into U(P; Ay,...,A;). Let Z
denote the set of pairs (g, ) in £ such that:

® Yo € Ay;

o p([ti—1,ti]) C w(A), fori=1,...,7;

o u(t;) em(AiNAjq), fori=1,...,r—1.
Keeping in mind the definition of the compact-open topology in € ([a, b, X ),
it is immediate that Z is open in £. Moreover, (Zo,7) is in Z. We will show
that L(Z) C B(P; Ay,...,A). Let (o, ) € Z be fixed. Fori=1,...,r,
we consider the continuous curve fi; : [t;—1,t;] — A; C X defined by:

fi = (W‘Ai)_l © M|[ti—17ti]'

We claim that f;(¢;) = fi1(t;), for i = 1,...,r — 1. Namely, since u(t;) is
in 7m(A; N Ait1), there exists p € A; N A1 with u(t;) = w(p). Since 7|4, is
injective, fi;(t;) and p are in A; and 7 (f;(¢;)) = p(t;) = 7(p), it follows that
fii(ti) = p. Similarly, since 7|4,,, is injective, fi;41(f;) and p are in A;q
and 7 (fii41(t;)) = p(t;) = 7(p), it follows that ;41 (t;) = p. This proves the
claim.

Since fi;(t;) = fiit1(ti), for ¢ = 1,...,r — 1, we can consider the curve
i la,b] — X such that i1 4] = fi, for i = 1,...,r. The curve fi is a
lifting of p. Moreover, since 7|4, is injective, gp and fi(a) are in A; and
7(90) = p(a) = w(fi(a)), it follows that fi(a) = go. Therefore L(go, ) = fi.
The proof is completed by observing that g € U(P; Ay,...,A;). O
18.3. Corollary. Let Y be a topological space and let f :Y X [a,b] — X
and fo: Y — X be continuous maps such that for every y € Y, the curve
Yyt la,b] 3t — f(y,t) € X has a unique lifting 7, : [a,b] — X such that
Fy(a) = fo(y). Then f has a unique lifting f : Y x [a,b] — X such that
f(y,a) = fo(y), for ally €Y.
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Proof. By Lemma 16.1, the map F : Y — €([a,b], X) defined by F(y) = 7,
y € Y, is continuous. By our hypotheses, the continuous map:

(fo, F) 1Y — X x €([a,b], X)

takes values in £. Tt is clear that there exists a unique map f : Y x [a,b] — X
such that 7o f = f and f(y,a) = fo(y), for all y € Y; such map is given
by f(y,t) = L(fo(y), F(y))(t), for all y € Y, ¢ € [a,b]. It follows from
Lemmas 18.2 and 16.2 that f is indeed continuous. O

18.4. Definition. We say that 7w has the unique lifting property for paths if
for any continuous map v : [a,b] — X and any &y € 7 !(y(a)) there exists

a unique lifting 7 : [a,b] — X of v with 5(a) = Zo.

18.5. Definition. By a loop in a topological space Y we mean a continuous
map 7 : [a,b] — Y with v(a) = v(b). We say that the loop ~ is contractible
in Y if there exists a continuous map H : [0, 1] X [a,b] — Y such that:

e H(0,t) =~(t), for all ¢ € [a, b];

e H(s,a) = H(s,b), for all s € [0, 1];

e the map [a,b] >t — H(1,t) € Y is constant.
We say that Y is semi-locally simply-connected if every point of Y has a
neighborhood V' such that any loop in V' is contractible in Y.

18.6. Lemma. Assume that 7 has the unique lifting property for paths. Let
A be an arc-connected subset of X such that every loop in 7w(A) is contractible
in X. Then |4 is injective.

Proof. Assume that Z;,Z2 € A and that n(Z1) = 7w(Z2). Since A is arc-
connected, there exists a continuous map 7 : [a,b] — A with §(a) = Z; and
A(b) = Zo. Then v = mo7 is a loop in 7w(A); therefore v is contractible in X,
i.e., there exists a continuous map H : [0, 1] x [a, b] — X as in Definition 18.5.
Since 7 has the unique lifting property for paths, Corollary 18.3 gives us a
lifting H : [0,1] x [a,b] — X of H such that H(0,t) = 7(t), for all ¢ € [a, b]
(notice that [a, b] plays the role of Y and [0, 1] plays the role of the interval
[a, b] in the statement of Corollary 18.3).

Since the map [a,b] > t — H(1,t) € X is constant, the unique lifting
property for paths implies that its lifting [a,b] > ¢ — H (1,t) € X is also
constant. In particular, H (1, a) = I:T(l, b); therefore, the paths:

0,1 >s— H1—s,a) € X, [0,1]3>s— H(1—s,b) € X,

are liftings of the same path in X and they agree on s = 0. Again, by the
unique lifting property for paths, it follows that H(1 — s,a) = H(1 — s,b),
for all s € [0,1]. In particular:

71 =4(a) = H(0,a) = H(0,b) = 3(b) = Z».
This concludes the proof. O
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18.7. Corollary. Under the hypotheses of Lemma 18.6, if in addition the
set A is open in X then w(A) is open in X and mw|g : A — 7w(A) is a
homeomorphism.

Proof. Simply observe that, being a local homeomorphism, 7 is an open
mapping; moreover, if A is open in X and the restriction of m to A is
injective then 7|4 : A — w(A) is a continuous, bijective open mapping. [

18.8. Definition. An open subset U C X is called a fundamental open
subset of X if 771(U) equals a disjoint union |J,; U; of open subsets U; of

X such that 7|y, : Ui — U is a homeomorphism for all ¢ € I. We say that
m is a covering map if X can be covered by fundamental open subsets.

Obviously every covering map is a local homeomorphism.

18.9. Corollary. Assume that m has the unique lifting property for paths
and that X is locally arc-connected (recall Definition 6.1). Let U be an arc-
connected open subset of X such that every loop in U is contractible in X.
Then U is a fundamental open subset of X.

Proof. Let (U;)ier denote the arc-connected components of 7—1(U). Since
7 1(U) is open in )Z', each U; is open in )A(;, by Lemma 6.2. Obviously
71 (U) = U,¢; Ui is a disjoint union. Let i € I be fixed and let us show
that 7|y, : Uy — U is a homeomorphism. Obviously 7(U;) C U. We claim
that 7(U;) = U. Given x € U, choose an arbitrary point Zo € U; and let
v : [a,b] — U be a continuous map with v(a) = 7(Zo) and v(b) = =. By the
unique lifting property for paths, we can find a lifting 7 : [a,b] — X of v
such that §(a) = Zg. Since 7 is a continuous curve in 7! (U) starting at a
point of U; and since Uj; is an arc-connected component of 71 (U), it follows
that 7 takes values in U;. In particular 5(b) € U; and 7(5(b)) = v(b) = z.
Finally, Corollary 18.7 implies that 7|y, : U; — U is a homeomorphism. [J

18.10. Corollary. Assume that ™ has the unique lifting property for paths
and that X is locally arc-connected and semi-locally simply-connected. Then
T 1S a Covering map.

Proof. Observe that, since 7 is a local homeomorphism and X is locally arc-
connected, it follows that also X is locally arc-connected. The conclusion
follows from Corollary 18.9 (recall also Corollary 6.3). O

Assume now that X is Hausdorff, so that Lemma 18.1 guarantees the
uniqueness of the liftings of curves (with prescribed initial conditions). Now
let 7 : [a,b] — X be a continuous curve and let Zg € 7! (vy(a)) be such that

~ does not admit a lifting 7 : [a,b] — X with (a) = #. Consider the set:
(18.2)  {t €]a,b] : ¥|[q, admits a lifting 7 : [a,t] — X with §(a) = To}.

The set (18.2) is not empty; namely, if A is an open neighborhood of Z( such
that m(A) is open in X and 7|4 : A — 7(A) is a homeomorphism then there
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exists & > 0 with 7([a,a 4 ¢]) C 7(A) and therefore ¥ = (7]4) ™" 0 V[j4 ate]
is a lifting of v[(4 a4 With 7(a) = Zo.

Obviously if ¢ is in (18.2) and ¢’ is in ]a, t] then also ¢’ is in (18.2). Therefore
(18.2) is an interval. Let to € ]a,b] be the supremum of (18.2). Then |a, to]
is contained in (18.2). For each ¢ € |a, to[, let 7 : [a,t] — X be a lifting of
V[a,) With F¢(a) = Zo. Given t,t' € Ja, to[, with t' < t then Jy and [}, 4] are
both liftings of the same curve having the same initial condition; therefore
Y = Ftlja,- We can thus define a curve 7 : [a, o[ — X by setting:

:Y’[a,t] =Vt
for all t € Ja,to[. The curve ¥ is continuous, since its restriction to ]a, ]
is continuous for all ¢ € Ja,to[. Moreover, ¥ is a lifting of 7|44, satisfying
the initial condition (a) = Zo. We call 4 the maximal partial lifting of ~
starting at zg.
We have the following:

18.11. Lemma. Assume that X is Hausdorff. Let v : [a,b] — X be a
continuous curve and let Tg € W_l('y(a)) be such that v does not admit a
lifting starting at To. Let 7 : [a,to[ — X be the mazximal partial lifting of ~
starting at To, where to € Ja,b]. Then v|[4 4, does not admit a lifting starting
at To (i.e., to is not in (18.2)).

Proof. If tg = b then 7|(, 4, = 7 and, by our hypotheses, v does not admit a
lifting starting at £o. Assume that ty < b and assume by contradiction that
Vl[a,o) admits a lifting 5 : [a,to] — X with A(a) = Zog. Let A be an open
neighborhood of 5 (to) in X such that m(A) is open in X and 7|4 : A — 7(A)
is a homeomorphism. Then ~([to, to-+¢]) is contained in 7(A) for some € > 0.
Consider the curve fi : [tg,to + ¢] — A defined by i = (7|4)" ' o Vit to+e]-
Then ji is a lifting of 7|}, ¢+, 1<) starting at §(tg). Therefore the concatenation
of ¥ with fi is a lifting of 7|(, 44 starting at Zp. This contradicts the
maximality of 4 and concludes the proof. ([

Recall that a point p in a topological space Y is called a limit value of a
map f : [a,b] — Y at the point b if for any neighborhood V of p and any
e > 0 there exists t € |b — e,b] with f(t) € V. We have the following:

18.12. Lemma. Assume that X and X are Hausdorff. Let v : [a,b] — X be
a continuous curve and let To € Wﬁl('y(a)) be such that v does not admit a
lifting starting at To. Let 7 : [a, to[ — X be the mazimal partial lifting of ~
starting at To, where ty € Ja,b]. Then the map 4 has no limit values at the
point tg.

Proof. Assume by contradiction that p € X is a limit value of 7 at the point
Zo. We claim that m(p) = v(tp). Otherwise, we could find disjoint open sets
Ui,Us C X with 7(p) € Uy and ~(tyg) € Us; then ’y(]to —E,to]) C Us for
some € > 0 and there exists t € Jto — ¢, to[ with 7(t) € 7~ *(Uy). This implies
v(t) = m(3(t)) € Ui, contradicting Uy N Uz = @. The claim is proved.
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Let now A be an open neighborhood of p in X such that m(A) is open in X
and 7|4 : A — m(A) is a homeomorphism. Since v(t9) = 7(p) is in 7(A), we
can find € > 0 with v(]to — &,t] ) C m(A). Now there exists ¢ € Jtg — ¢, to]
with 7(t) € A. define fi : [t,t0] — A by setting:

= (7)™ o Vljg)-
Then fi is a lifting of ||, 4] starting at §(t); the concatenation of ¥|(, ) with /i

is therefore a lifting of 7|(, 4, starting at Zo. This contradicts Lemma 18.11.
O

18.13. Corollary. Under the assumptions of Lemma 18.12, we have:

(a) if (tn)n>1 is a sequence in [a,to| converging to to then (ﬁ(tn))n>1

has no converging subsequence in )Z';
(b) if K is a compact subset of X then there exists ¢ > 0 such that
Y(Jto — €, o)) is disjoint from K.

Proof. 1f (’y(tn))n>1 had a converging subsequence to a point p € X then P
would be a limit value of 4 at the point t5. Thus (a) is proven. Let us prove
(b). For each point p € K, since p is not a limit value of 4 at the point ¢y, we
can find an open neighborhood U, of p in X and a positive number ¢, > 0
such that ﬁ(]to — &p, to[) is disjoint from U,. The open cover UpeK Up of K
has a finite subcover | J]_; Up,. Let € = min]_, €, > 0. Then 5(]to — &, to[ )
is disjoint from K.

([
18.14. Definition. We will say that a continuous curve 7 : [a,b] — X
admits liftings with arbitrary initial conditions if for every Zg € Wﬁl(v(a))
there exists a continuous lifting ¥ : [a,b] — X of v with ¥(a) = Zo.

18.15. Lemma. Assume that X is Hausdorff and that the following property
holds; for any point p € X there exists a neighborhood U of p in X, a point
po € X and a continuous map H : [0,1] x U — X such that:

e H(0,z) =pg and H(1,z) =z, for allx € U;

e for any x € U, the curves:

(18.3) 0,1]2t+— H(t,x) € X, [0,1]3t— H(1—t,x) € X,
admit liftings with arbitrary initial conditions.

Then 7 has the unique lifting property for paths.

Proof. Let v : [a,b] = X be a continuous curve and let &y € 771 (v(a)) be
fixed. Assume by contradiction that v does not admit a lifting starting at
Zo. Let 4 : [a,to] — X be the maximal partial lifting of ~ starting at Zo,
where tg € ]a,b]. Set p = y(to) and let U, po and H be as in the statement
of the lemma. Let ¢ > 0 be such that v([to — &, %)) C U. Let ji: [0,1] — X
be a lifting of the curve [0,1] 3 ¢ — H(1 — ¢,7(to — €)) € X such that

fi(0) = F(to — £). Then fo = fi(1) is a point in X such that (o) = po.
Since for every x € U the curve [0,1] 3 ¢ — H(t,z) € X admits a lifting
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starting at o, Corollary 18.3 gives us a lifting H : 0,1 xU — X of H such
that H(0,z) = po, for all z € U. The curves [0,1] 3 ¢ — (1 —t) € X and
[0,1] 5t ﬁ[(t, Y(to—¢)) € X are liftings of the same curve in X and they
both start at the point pg; therefore they are equal. In particular:

f1(0) = 3(to — ) = H(1,7(to — €))-
Therefore [ty — &,t9] 2 t — I:i’(l,’y(t)) € X is a lifting of Ytg—e,to) Starting

at J(to — ); setting J(to) = H(1,7(to)) we thus obtain a lifting of Yia,to]
starting at Zo. This contradicts Lemma 18.11. O

18.16. Definition. If X is a manifold of class C¥ (1 < k < oo or k = w)
then a curve 7 : [a,b] — X is called an embedding of class C* if the following
conditions hold:

e v extends to a curve of class C* defined in an open interval containing
the interval [a, b];
e 7/ (t) #0 for all ¢ € [a,b];

e v is injective.

18.17. Corollary. Assume that the space X is a manifold of class CF (1 <
k < oo ork =w) and that X is Hausdorff. Assume also that every em-
bedding v : [a,b] — X of class C* admits liftings with arbitrary initial con-
ditions. Then w has the unique lifting property for paths. In particular, by
Corollary 18.10, 7 is a covering map.

Proof. Let p € X be fixed and let ¢ : U — U C R" be a local chart of class
C* on X with p € U and U a convex open subset of R"”. Set py = p and
define H : [0,1] x U — X by setting:

H(t,2) = ¢~ (1= t)e(p) + te(z)),
for all t € [0,1], z € U. For any x € U, x # p, the curves (18.3) are em-
beddings of class C* and therefore they admit liftings with arbitrary initial
conditions. For x = p the curves (18.3) are constant and therefore they
obviously admit liftings with arbitrary initial conditions. The conclusion
follows from Lemma 18.15. ([

18.18. Corollary. Assume that X is a Riemannian manifold and that X
is Hausdorff. Assume also that every minimizing geodesic v : [a,b] — X
admits liftings with arbitrary initial conditions. Then w has the unique lifting
property for paths. In particular, by Corollary 18.10, w is a covering map.

Proof. Let p € X be fixed and let » > 0 be such that the exponential map
exp,, carries the open ball B(0;7) on T,X diffeomorphically onto an open
subset U of X. Set py = p and define H : [0,1] x U — X by setting:

H(t, ) = exp, [t (exp, lpom) (@) ],

9Recall that “class C*” means real-analytic.
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for all t € [0,1], « € U. Then for every z € U, the curves (18.3) are
minimizing geodesics and therefore they admit liftings with arbitrary initial
conditions. The conclusion follows from Lemma 18.15. O

In the next lemma we show that uniqueness of liftings works for covering
maps even if the space X is not Hausdorff (compare with Lemma 18.1).

18.19. Lemma. Assume that w is a covering map. Let Y be a connected
topological space and let f1 Y — X f2 Y — X be continuous maps with
wofi=mofo. If f1 and fo agree on some point of Y then fi = fo.

Proof. We proceed as in the proof of Lemma 18.1. We consider the set
(18.1); since 7 is locally injective, (18.1) is open. Again, (18.1) is nonempty,
by our hypotheses. We complete the proof by showing that (18.1) is closed
(without using that X is Hausdorff). Let y € Y be a point not in (18.1), i.c

fi(y) # faly). We have w(fl(y)) = ﬂ(fg(y)); let U C X be a fundamental
open set containing W(fl(y)). Then 7= Y(U) = U,¢; Ui, where (Uj)ics is a
family of disjoint open subsets of X and 7 maps U; homeomorphically onto
U, for all i € I. We have fi(y) € U; and fa(y) EUj,forsomezJ eI
Since m|y, is injective, it must be ¢ # j. Set V = f1 YU N fy1(U;). Then
V is an open neighborhood of 4 in Y. Moreover, fi(V) C U, fg( V) cU;
and U; N U; = 0; therefore V is disjoint from (18.1). This completes the
proof. O

18.20. Lemma. If 7 is a covering map then m has the unique lifting property
for paths.

Proof. Let 7 : [a,b] — X be a continuous map and let 7o € 71 (’y(a)) be
fixed. We will show that v has a lifting 7 : [a,b] — X with 5(a) = Zo; by
Lemma 18.19, such lifting is unique.

Let us start with the case where the image of « is contained in a funda-
mental open subset U of X. Write 7= H(U) = [J,;c; Us, where (U)er is a

family of disjoint open subsets of X and m maps U; homeomorphically onto
U for all i € I. Since &g € 7~ 1(U), we have %o € Uj;, for some i € I. Then
¥ = (n|y,) "t oy is a lifting of v with ¥(a) = Zo.

Let us now go to the general case. Since the fundamental open subsets
of X form an open cover of X, its inverse images by -~ form an open cover
of the compact metric space [a,b]; let § > 0 be a Lebesgue number for
this open cover, i.e., every subset of [a,b] having diameter less than § is
contained in the inverse image by v of some fundamental open subset of X.
Let P = {to,.. ,tr} be a partition of [a,b] with t; —t;_1 < 0,i=1,...,7
Then ’y([ i1, ]) is contained in a fundamental open subset of X; by the
first part of the proof, the curve 7|, ;) admits liftings with arbitrary
initial conditions, for all i = 1,...,7. We construct a lifting 7; of v|y, | ¢,
by induction on i as follows. Let 41 be a lifting of 7|, ¢,] with 41(a) = 0.
Assuming that 4; is constructed for some i < r, we consider the lifting ;11
of V|1, t:41) With Yiy1(t:) = Fi(t)-
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Since the continuous curves 71, ..., 4, satisfy 7;(t;) = Fi+1(¢;), for all
i=1,...,7r — 1, we can define a continuous curve 7 : [a,b] — X by setting
it;_1 8 = Vi» for i = 1,..., 7. Then 7 is a lifting of v and 7(a) = Zo. This
concludes the proof. O

18.21. Corollary. Assume that 7 is a covering map and that X is locally
arc-connected. If U is an arc-connected open subset of X such that every
loop in U is contractible in X (in particular, if U is simply-connected) then
U is a fundamental open subset of X.

Proof. Follows from Lemma 18.20 and Corollary 18.9. O
18.22. Lemma. If 7 is a covering map then the image of w is closed in X.

Proof. Let x € X be a point outside the image of 7. Let U be a fundamental
open subset of X containing z. Then 7~ !(U) = J;c; Ui, where (U;)ics is a
family of disjoint open subsets of X and 7 maps U; homeomorphically onto
U for all i € I. We claim that I = (; namely, otherwise there would exist
some ¢ € I and U = 7(U;) would be contained in the image of 7. Since
I =0, it follows that 7= 1(U) = 0, i.e., U is disjoint from the image of 7. O

18.23. Corollary. If 7 is a covering map, X is nonempty and X s connected
then m is surjective.

Proof. The image of m is nonempty (because X is nonempty), open in X
(because 7 is a local homeomorphism) and closed in X (by Lemma 18.22).
O

Recall that a topological space X is said to be simply-connected if every
loop in X is contractible in X.

18.24. Lemma. Assume that 7 is a covering map, X is nonempty and arc-
connected and X is connected and simply-connected. Then 7 is a homeo-
morphism.

Proof. By Corollary 18.23, 7 is surjective and by Lemma 18.20, m has the
unique lifting property for paths. It follows from Lemma 18.6 (with A = X)
that 7 is injective. Hence 7 is a homeomorphism. ([

19. MORE ON COVERING MAPS

In what follows X and X are topological spaces and 7 : X 5> Xisa
local homeomorphism, i.e., given T € X , there exists an open subset A of
X containing & such that 7(A) is open in X and 7|4 : A — 7(A4) is a
homeomorphism.

19.1. Definition. A section of 7 is a continuous map s : U — X defined on
an open subset U of X such that 7 o s equals the identity map of U.
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19.2. Lemma. If s : U = X, s’ : U — X are sections of © such that
s(x) = §'(x) for some x € UNU' then there exists an open neighborhood V
of © contained in U NU' such that s|ly = §'|v.

Proof. Let A be an open neighborhood of s(z) = §/(z) in X such that w(A)
is open and 7|4 : A — 7(A) is a homeomorphism. Set V = s71(A)Ns'~1(A).
Then V is open in X, z € V and V C UNU’. Moreover, for y € V we have
m(s(y)) = 7(s'(y)) = y and s(y),s'(y) € A; since 7|4 is injective, we get
s(y) = s'(y). O

19.3. Corollary. Assume that X is Hausdorff. Let s : U — )Af, U= X
be sections of m with U connected. If s(x) = s'(x) for some x € U then
s=5¢.

Proof. The set E = {y eU:s(y) = s’(y)} is nonempty and it is closed in
U, since X is Hausdorff. By Lemma 19.2, Fisopenin U. Thus E=U. O

19.4. Lemma. If s : U — X is a section of w then s(U) is open in X and
s:U — s(U) is a homeomorphism.

Proof. The map s : U — s(U) is continuous, bijective and its inverse, which
is equal to 7|y @ s(U) — U, is also continuous; thus s : U — s(U) is a
homeomorphism. To complete the proof we show that s(U) is open in X.
Given z € U, we will find a neighborhood of s(z) in X contained in s(U).
Let A C X be an open subset such that s(x) € A, m(A) is open in X and
7|4 : A = w(A) is a homeomorphism. Then s' = (r]4)"! : 7(4) — X
is a section of 7 and s'(z) = s(z). By Lemma 19.2, there exists an open
subset V of X with z € V, V C UnNn(A) and s|y = §'|y. Since ¢ is a

homeomorphism onto an open subset of X , it follows that §'(V') is open in
X; moreover, s(z) € s'(V) = s(V) C s(U). Hence s'(V) is a neighborhood
of s(x) contained in s(U). O

19.5. Lemma. Assume that X is Hausdorff. Let U be a connected open
subset of X satisfying the following property:

(%) for everyx € U and every & € X with n(Z) = x there ewists a section
s:U— X of m with s(z) = .
Then U is a fundamental open subset of X (recall Definition 18.8).

Proof. Let S be the set of all sections of 7 defined in U. We claim that:
= H(U) = | s(0).
sES

Indeed, if s € S then obviously s(U) C 7~ (U); moreover, given & € 7~ 1(U)
then x = w(Z) € U and by property (x) there exists s € S with s(z) = .
Thus Z € s(U). This proves the claim. Now observe that, by Lemma 19.4,
s(U) is open in X for all s € S; moreover, 7|5y : s(U) — U is a homeomor-
phism, being the inverse of s : U — s(U). To complete the proof, we show
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that the union (J ¢ s(U) is disjoint. Pick s,s" € S with s(U) N s'(U) # 0.
Then there exists 2,y € U with s(x) = s'(y). Observe that:

v=m(s(z)) =7(s W) =v,

and thus s(z) = §/(x). Since U is connected and X is Hausdorff, Corol-
lary 19.3 implies that s = s’ O

19.6. Remark. The converse of Lemma 19.5 holds. In fact, if U is a funda-
mental open subset of X then U has property (). Namely, write 771 (U) =
Uicr Ui, where (U;)icr is a family of pairwise disjoint open subsets of X such
that 7 maps U; homeomorphically onto U for all ¢ € I. Given z € U and
T € 77 1(z) then ¥ € U; for some i € I. Let s = (m|y,)"! : U — X. Then s
is a section of 7 and s(z) = Z.

19.7. Corollary. Assume that X is Hausdorff and that X is locally con-
nected. If X can be covered by open sets satisfying condition (%) above then
T 1S a covering map.

Proof. Given z € X, there exists an open subset U of X containing x and
satisfying condition (x). Since X is locally connected, U contains an open
connected neighborhood U’ of z. Obviously U’ also satisfies condition (x).
Thus U’ is a fundamental open subset of X, by Lemma 19.5. ([

19.8. Lemma. If U C X is a fundamental open subset then every open
subset V' of U is also fundamental.

Proof. Write 7 1(U) = J;e; Ui, where (Us)ier is a family of disjoint open
subset of X and 7 maps U; homeomorphically onto U, for every ¢ € I. Ob-
serve that 7= 1(V) = U;c; (7~1(V)) N U;); moreover, (7= 1(V) N Ui)iel is a
family of disjoint open subsets of X and 7 maps 7~ (V) NU; homeomorphi-
cally onto V', for every ¢ € I. O
19.9. Lemma. LetY be a subset of X. The map:
7 =Ty oY) —Y

s a local homeomorphism; moreover, if U C X is a fundamental open subset
for m the UNY is a fundamental open subset (of Y) for x'.

Proof. Since 7 is a local homeomorphism, given & € 77'(Y") we can find an
open subset A of X with 7(A) open in X and 7|4 : A — 7(A) a homeo-
morphism. Now A N7~ 1(Y) is an open subset of 7~!(Y") containing # and
T(ANn7 Y (Y)) = 7(A) NY is open in Y; moreover, m maps A N7~ (Y)
homeomorphically onto m(A)NY. Thus 7’ is a local homeomorphism. Now
let us prove that U NY is fundamental for «’. Write 7= 1(U) = U, Ui,

where (U;);er is a family of disjoint open subsets of X and 7 maps U; home-
omorphically onto U, for all ¢ € I. We have:

AN UNY) = (U) na (Y) = UnaH(Y),
el
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and (U; N ﬂ_l(Y))iel
over, " maps U; N7~ 1(Y) homeomorphically onto U NY, for alli € I. [

is a family of disjoint open subsets of 771(Y"). More-

19.10. Corollary. If m is a covering map and Y is a subset of X then
a1y : 7 1Y) =Y is also a covering map. O

19.11. Lemma. If 7 is a covering map, X s locally arc-connected and Y is
an arc-connected component of X then |y : Y — X is also a covering map.

Proof. Let U be a fundamental arc-connected open subset of X (relatively
to m). We will show that U is also fundamental relatively to m|g:. Write
7Y (U) = U;e; Ui, where (U;)ier is a family of disjoint open subsets of X
and m maps U; homeomorphically onto U, for every ¢ € I. Since U; is
homeomorphic to U, we have that U; is arc-connected for every ¢ € I; since
Y is an arc-connected component of X, we have either U; C Y or U;NY = (),
for all i € I. Set: B
I'={iel:U;CcY}.

Then (7]3) "1 (U) = =~ 1(U) N Y = Uier Ui- This proves that U is funda-
mental for 7|g. Since 7 is a covering map and X is locally arc-connected,
Lemma 19.8 implies that the fundamental arc-connected open subsets of X
form a covering of X. This concludes the proof. O

19.12. Corollary. Assume that w is a covering map. Let Y be a connected,
locally arc-connected and simply-connected subset of X and let'Y be an arc-
connected component of 7 *(Y). Then n|y : Y — Y is a homeomorphism.

Proof. By Corollary 19.10, 7|1y : 7 1Y) = Y is a covering map. Since
Y is locally arc-connected and Y is an arc-connected component of 7~1(Y),

Lemma 19.11 implies that | : Y — Y isalso a covering map. The conclu-
sion follows from Lemma 18.24. ([

19.13. Corollary. Assume that 7 is a covering map and that X is simply-
connected and locally arc-connected. Assume also that the image of ™ inter-
sects every connected component of X. Then m admits a global section, i.e.,
a sections s : X — X whose domain is X.

Proof. Write X = |J,c; X;, where each X; is a connected component of
X. Since X is locally arc-connected (and, in particular, locally connected),
each X; is open in X; thus each X; is also locally arc-connected. The fact
that X is simply-connected implies that each X; is also simply-connected.
Let X; be an arc-connected component of 7~ 1(X;); observe that, since the
image of 7 intersects X;, the set 771(X;) is nonempty and thus such an
arc-connected component does exist. It follows from Corollary 19.12 that
™ maps X; homeomorphicallg onto X;. Let s; : X; — X, be the inverse of
the homeomorphism 7| %, X; — X;. Then each s; is a section of w. The

desired global section s : X — X is obtained by setting s|x, = s;, for every
1€ 1. O
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20. SHEAVES AND PRE-SHEAVES

Let X be a topological space. A pre-sheaf on X is a map P that assigns
to each open subset U C X a set P(U) and to each pair of open subsets
U,V C X with V. C U amap Byy : P(U) = P(V) such that the following
properties hold:

e for every open subset U C X the map Py, is the identity map of
the set P(U);
e given open sets, U, VW C X with W C V C U then:

Bv,w o Buyv = Puw.

20.1. Remark. A pre-sheaf on X is simply a contravariant functor from
the category of open subsets of X to the category of sets and maps. The
morphisms in the category of open subsets of X are defined as follows; if
U,V C X are open then the set of morphisms from V to U has a single
element if V' C U and it is empty otherwise.

A sheaf over a topological space X is a pair (S, 7), where S is a topological
space and m : § — X is a local homeomorphism (see the beginning of
Section 19).

20.2. Example. If (S, 7) is a sheaf over the topological space X then the
following pre-sheaf 3 is naturally associated to (S, 7); for every open subset
U C X let P(U) be the set of sections of m whose domain is U (recall
Definition 19.1). Given open subsets U,V C X with V' C U then the map
Bu,v is defined by:

Puv(s) = slv,
for all s € P(U).

Let P be a pre-sheaf over a topological space X. Given a point x € X,
consider the disjoint union of all sets 3(U'), where U is an open neighborhood
of z in X. We define an equivalence relation ~ on such disjoint union as
follows; given f1 € PB(U1), fo € P(Usz), where Uy, Uy are open neighborhoods
of x in X then f; ~ fo if and only if there exists an open neighborhood V'
of = contained in Uy N Uz such that Py, v(fi) = Pu,,v(f2). If U is an
open neighborhood of z in X and f € P(U) then the equivalence class of f
corresponding to the equivalence relation ~ will be denote by [f], and will
be called the germ of f at the point x. We set:

Sy = {[f]z : f € B(U), for some open neighborhood U of z in X }.

20.3. Remark. The set S; is simply the direct limit of the net U — B(U),
where U runs over the set of open neighborhoods of x ordered by reverse
inclusion.

Let S denote the disjoint union of all S;, with x € X. Let 7 : § = X
denote the map that carries S, to the point x. Our goal now is to define a
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topology on S. Given an open subset U C X and an element f € P(U) we
set:

V(f) = {[f}x ‘x € U} c S.
Observe that if V' is an open subset of U then:

V(@Buv(f) ={lfle 1z €V}
namely, we have [Bu,v(f)] = [flz, forallz e V.
We claim that the set:
(20.1) {V(f): f€PBU), U an open subset of X }

is a basis for a topology on S. First, it is obvious that (20.1) is a covering
of §. Second, we have to prove the following property; given open subsets
U, Uy C X, f1 € B(U1), f2 € B(Usz) and g € V(f1) N V(f2), there exists an
element of (20.1) containing g and contained in V(f1) N V(f2). Let us find
such element of (20.1). Since g € V(f1)NV(f2) we have g = [f1]z = [f2]s, for
some x € UyNUs. Since [f1]; = [f2]s, there must exist an open neighborhood
V of x contained in Uy NU; such that Py, v (f1) = Pu,,v(f2). Now it is easy
to see that V(PBy,,v(f1)) is an element of (20.1) containing g and contained
in V(f1) NV(f2).

In what follows we consider the set S endowed with the topology having
(20.1) as a basis. Our goal is to show that (S, 7) is a sheaf over X. We start
with the following:

20.4. Lemma. Let U C X be an open subset. Given x € U and f € B(U)
then the set:

(20.2)  {V(Buv(f)) : V an open neighborhood of x contained in U}

is a fundamental system of open neighborhoods of [f], in' S (i.e., every neigh-
borhood of [f]z in S contains an element of (20.2)).

Proof. Let W be a neighborhood of [f]; in S; since (20.1) is a basis of open
subsets for S, we can find an open subset Uy C X and f; € B(U;) with
[flz € V(f1) € W. Since [f]z € V(f1), it must be z € Uy and [f]z = [f1]s;
thus there exists an open neighborhood V' of x contained in U N U; such

that Pu,v(f) = Bu,,v(f1). Then V(Py, v(f1)) belongs to (20.2) and is
contained in W. (]

Given an open subset U C X and an element f € PB(U) we define a map
f:U — S by setting:

forallz € U.

20.5. Lemma. If U C X is an open subset and f € B(U) then the map f
maps U homeomorphically onto V(f).
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Proof. 1t is clear hat f : U — V(f) is a bijection. Moreover, if V' is open
in U (and hence in X), we have f(V) = V(Bu,v(f)); thus f is an open
mapping. To complete the proof, we show that f is continuous. Let x € U
be fixed and let V(Py,v(f)) be an element of the fundamental system of
neighborhoods (20.2) of f(x) = [f]s; by V we denote an open neighborhood
of & contained in U. Then f(V) = V(Bu,v(f)); this proves the continuity
of f and completes the proof of the lemma. O

20.6. Corollary. The map w : S — X is a local homeomorphism. Thus
(S,m) is a sheaf over X.

Proof. If U C X is an open subset and f € PB(U) then m maps the open
set V(f) homeomorphically onto the open subset U of X; namely, the map
mly(sy : V(f) — U is the inverse of the map f:U = V(f). The conclusion
follows by observing that the sets V(f) cover S. O

We call (S, ) the sheaf of germs associated to the pre-sheaf 3. Observe
that if U is an open subset of X and f € P(U) then f is a section of the
sheaf of germs defined in U.

20.7. Definition. We say that the pre-sheaf 3 has the localization property
if, given a family (U;);es of open subsets of X and setting U = (J;c; U; then
the map:

(20.3) BW) > f— (Buw, (), € [[BW)

i€l
is injective and its image consists of the families (f;)ier in [[;c; B(Us) such
that ;’BUi,UiﬁUj(fi) = mUj,UiﬁUj (f])? for all 27.7 el

20.8. Remark. Observe that if P8 has the localization property then the set
PB(0) has exactly one element. Namely, consider the empty family (U;);er,
i.e., I is the empty set. Then U = |J;c; U; is the empty set and the image
of the map (20.3) has exactly one element (the empty family (f;);cr). Thus
P(0) has exactly one element as well.

20.9. Definition. Given pre-sheafs B and B’ over a topological space X
then an isomorphism from P to P’ is a map A that associates to each open
subset U C X a bijection Ay : B(U) — P'(U) such that, given open subsets
U,V C X with V C U then the diagram:

Au

(20.4) BU) B(U)
%uvi l (A%
BV) = F(V)

comimutes.
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20.10. Lemma. If the pre-sheaf P has the localization property then, for
every open subset U C X, the map f — f gives a bijection between the
set B(U) and the set of sections of the sheaf of germs defined in U. More
precisely, such bijections give an isomorphism between the pre-sheaf B and
the pre-sheaf naturally associated to the sheaf of germs (S, ) (recall Exam-
ple 20.2).

Proof. We start by observing that, once we prove that the maps f +— f are
bijections, it will follow easily that they give an isomorphism of pre-sheaves
(i.e., diagram (20.4) commutes). Namely, given open subsets U,V C X
with V' C U and given f € P(U), the commutativity of diagram (20.4) is
equivalent to § = f|V, where g = By v (f).

Let U C X be an open subset. Let us prove that the map B(U) > f — f
is injective. Let fi, fo € P(U) be fixed and assume that fl = J?g For every
x € U we have [f1]; = [f2] and thus there exists an open neighborhood U,
of  contained in U such that Py v, (f1) = Buv,(f2). Now U = U,y Uz
and thus the localization property implies that f; = fo. This proves the
injectivity of f — f.

Now let s : U — S be a section of w and let us find f € PB(U) with
s = f For every x € U, s(z) is an element of S;; thus there exists an open
neighborhood U, of x and an element f; € P(U,) such that s(x) = [fz]s-
Since s and f; are both sections of the local homeomorphism 7 and since
s(z) = fz(x), there exists an open neighborhood V,, of  contained in U, NU
such that s|y, = J/';’Vz (recall Lemma 19.2). Set g, = Py, v, (fz), for all
x € U; we claim that there exists f € P(U) with By, (f) = gz, for all
x € U. Since |J,¢;; Vi is an open cover of U, by the localization property, in
order to prove the claim it suffices to show that for every x,y € U we have:

By, vonv, (92) = By, vanv, (9y)-

Let z,y € U be fixed and set h1 = Py, v,nv, (92), he = By, vonv, (gy). We
have:

hy = Golverw, = falvaew, = shinv, = fylvaav, = Golvany, = ha.
By the first part of the proof, we get hy = ho. This proves the claim, i.e.,
there exists f € P(U) with Py v, (f) = g, for all x € U. This implies
[fle = [9e]e = [fele = s(x), for all z € U. Hence f = s. O

20.11. Remark. 1t is easily seen that the pre-sheaf naturally associated to a
sheaf (recall Example 20.2) always satisfy the localization property. Thus
the localization property is indeed an essential hypothesis in Lemma 20.10.

20.12. Definition. We say that the pre-sheaf 3 has the uniqueness property
if for every connected open subset U C X and every nonempty open subset
V C U the map Py, is injective.

20.13. Lemma. If the pre-sheaf P has the uniqueness property and if X is
locally connected and Hausdorff then the space S is Hausdorff.
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Proof. Let Uy, Uy C X be open sets, f1 € PB(Uy), fa € B(Uz), x € Uy, y € Uy
be fixed with [fi], # [f2]y. We have to find disjoint open neighborhoods of
[fi]z and [fo]y in S. If « # y, we can find disjoint open subsets Vi,V C X
with € V4 and y € Vo. Then 7= %(V4) and 7~ 1(V5) are disjoint open
neighborhoods of [fi], and [fa]y, respectively. Assume now that z = y.
Let U be a connected open neighborhood of x contained in U; N Us. Then
V(Bu,v(f1)) is an open neighborhood of [f1], and V (P, v (f2)) is an open
neighborhood of [fa],. We claim that V(By,,v(f1)) and V(Bu,v(f2)) are
disjoint. Otherwise, there would exist z € U with [f1], = [f2]. and thus
there would exist an open neighborhood V' of z contained in U such that

PBu,.v(f1) = Pu,,v(f2). This implies:
(‘BU,V © mULU)(fl) = (mU,V © mUz,U)(fZ)Q

by the uniqueness property, ‘By,v is injective and so Py, v (f1) = Pu,,v (f2)-
In particular, [fi]z = [f2]z, contradicting our hypothesis. O

20.14. Definition. We say that an open subset U C X has the extension
property with respect to the pre-sheaf P if for every connected nonempty
open subset V' of U the map Py v is surjective. We say that the pre-sheaf
B has the extension property if X can be covered by open sets having the
extension property with respect to 3.

20.15. Lemma. Assume that X is locally connected. If U is an open subset
of X having the extension property with respect to the pre-sheaf B then U
has the property (x) in the statement of Lemma 19.5 with respect to the local
homeomorphism m: S — X.

Proof. Let x € U and T € S be fixed, with 7(Z) = . We have to find a
section s : U — S of 7 with s(z) = Z. Since T € S,, there exists an open
neighborhood W of z and f € P(W) with & = [f],. Let V be a connected
open neighborhood of x contained in U N W. Since U has the extension

property with respect to 3, we can find g € P(U) with By v (9) = PBw.v (f).
Hence s = g is a section of 7 defined in U and s(z) = [g], = [fl. =2. O

20.16. Corollary. Assume that X is Hausdorff and locally connected and
that the pre-sheaf P has the uniqueness property. If U is a connected open
subset of X having the extension property with respect to the pre-sheaf
then U is a fundamental open subset of X with respect to the map 7.

Proof. By Lemma 20.15, U has the property (%) and by Lemma 20.13 the
space S is Hausdorff. The conclusion follows from Lemma 19.5. O

20.17. Corollary. Assume that X is Hausdorff and locally connected and
that the pre-sheaf B has the uniqueness property and the extension property.
Then the map 7 : S — X is a covering map.

Proof. By Lemma 20.13, S is Hausdorff. The conclusion follows from Corol-
lary 19.7. O
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The following is a converse of Lemma 20.15.

20.18. Lemma. Assume that the pre-sheaf B has the localization property
and the uniqueness property. If an open subset U C X has the property (x)
in the statement of Lemma 19.5 with respect to the local homeomorphism
m: S — X then U has the extension property with respect to the pre-sheaf

L.

Proof. Let V be a connected nonempty open subset of U. Let f € P(V) be
fixed. We have to find an element g € P(U) with Py v (g) = f. Choose an
arbitrary point « € V. The germ [f], is an element of S with 7 ([f]) = =.
Since x € U and U has the property (x), it follows that there exists a
section s : U — S of 7w with s(z) = [f]z. Since P has the localization
property, Lemma 20.10 gives us an element g € B(U) with s = §g. Then
[9]z = s(z) = [f]s and therefore there exists an open neighborhood W of z
contained in V' such that Py w (g9) = Pvw (f); thus:

Bvw (Bo,v (9) = Bvw (f).

Since B has the uniqueness property and W is a nonempty open subset
of the connected open set V, we have By v (g9) = f. This concludes the
proof. O

Finally, we prove our main results.

20.19. Lemma. Assume that X is Hausdorff, locally arc-connected and that
the pre-sheaf B has the localization property, the uniqueness property and
the extension property. If U is an arc-connected open subset of X such that
every loop in U is contractible in X (in particular, if U is simply-connected)
then U has the extension property.

Proof. By Corollary 20.17, the map 7 : § — X is a covering map. Observe
that, since X is locally arc-connected and 7 : § — X is a local homeomor-
phism then § is also locally arc-connected; thus, by Corollary 18.21, U is a
fundamental open subset of X. By Remark 19.6, U has property () and
hence Lemma 20.18 implies that U has the extension property. [l

20.20. Corollary. Assume that X is Hausdorff, locally arc-connected, arc-
connected, simply-connected and that the pre-sheaf P has the localization
property, the uniqueness property and the extension property. Then for every
connected nonempty open subset V. C X and every f € P(V) there exists

g € P(X) with Bx v(g) = f-

Proof. Tt follows from Lemma 20.19 that X itself is an open subset of X hav-
ing the extension property. Thus, since V is open, connected and nonempty,
it follows that the map Px v : P(X) — P(V) is surjective. O

20.21. Lemma. Assume that X is Hausdorff, locally arc-connected and
simply-connected and that the pre-sheaf B has the localization property, the
uniqueness property and the extension property. Assume also that every



SOME GOOD LEMMAS 82

connected component of X contains a nonempty open set U such that P(U)
is nonempty. Then the set P(X) is nonempty.

Proof. By Corollary 20.17, the map 7 : § — X is a covering map. Since
every connected component of X contains a nonempty set U such that B(U)
is nonempty, it follows that the image of 7 intersects every connected com-
ponent of X. It follows from Corollary 19.13 that m admits a global section
s: X — S§. By Lemma 20.10, there exists f € B(X) with s = f. Hence
PB(X) is nonempty. O

20.22. Example. Let X be a Hausdorff, simply-connected smooth manifold
and let 6 be a smooth closed 1-form on X. Let us prove that 6 is exact. For
every open subset U C X let B(U) be the set of smooth maps f: U — R
with df = 0|y. If U,V C X are open subsets with V' C U, define:

Buv(f) = flv,

for all f € P(U). It is immediate that P is a pre-sheaf over X satisfying
the localization property. If U is a connected open subset of X and if
f1, f2 € P(U) are equal at one point of U then f; = fo; this implies that
B satisfies the uniqueness property. Assuming the well-known fact that
every smooth closed 1-form on an open ball in Euclidean space is exact,
we conclude that for every open subset U of X that is diffeomorphic to an
open ball in Euclidean space the set B(U) is nonempty; in particular, every
connected component of X contains a nonempty open subset U such that
PB(U) is nonempty. Finally, let us prove that 9 has the extension property.
To this aim, we prove that if U is an open subset of X that is diffeomorphic
to an open ball in Euclidean space then U has the extension property with
respect to B. Namely, let V be a connected nonempty open subset of U
and let f € P(V) be fixed. Since U is diffeomorphic to an open ball in
Euclidean space, there exists a smooth map f; : U — R with df; = 0|y.
Since V is connected, fi|y — f is constant and equal to some ¢ € R. Hence
fi—cePU) and (f1 —c¢)|v = f. This concludes the proof of the extension
property. Now Lemma 20.21 implies that B(X) is nonempty, i.e., there
exists a smooth map f: X — R with df = 6. Hence 6 is exact.

21. Two-COLORING OF ABELIAN GROUPS
In what follows we identify abelian groups with Z-modules.

21.1. Definition. Let G be an abelian group. A subset S C G is said
to be admissible if given x1,...,x; € S and integers nq,...,n; € Z with
S niz; = 0 then S n; is even.

In the definition above we do not require the elements z1,...,zp € S to
be distinct; nevertheless, it is easy to see that S C G is admissible if and
only if given distinct elements x1,...,z; € S and integers ny,...,ny € Z

with Zle n;x; = 0 then Zle n; is even.
The following statements concerning admissible subsets are trivial:
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e the empty set is admissible;

e a subset of an admissible subset is admissible;

e a subset S C G is admissible if and only if every finite subset of S is
admissible;

e if H is a subgroup of G and S is a subset of H then S is admissible
in H if and only if S is admissible in G}

e if S C GG is admissible then 0 & S.

21.2. Definition. Let G be an abelian group and S C G be a subset. A
two-coloring of (G,S) is a map a : G — {0,1} such that, for all z,y € G
with x —y € S we have a(z) # a(y).

In what follows, if S is a subset of an abelian group G we denote by (S)
the subgroup of G spanned by 9, i.e.:

k
<S>= {Znixi:xl,...,xkes, nl,...,nkEZ}.
=1

We set Zo = 7./27, = {0,1}.
21.3. Lemma. Let G be an abelian group and S C G be a subset. The
following statements are equivalent:

(a) S is admissible;

(b) there exists a homomorphism f : (S) — Zs that carries S to 1;

(c) there exists a two-coloring of (G, S).

Proof.
(a)=-(b). Set:

k k
f(;n:c) = (Xoni) +2z e,

=1

for all z1,...,2p, € S, n1,...,np, € Z. If Zlenimi = Zizlmiyi with
Tiy. s ThyY1,---,y €S and ny,...,ng,mi,...,m; € Z then:

k I
D nimi =Y miy; =0,
i—1 i=1

and, since S is admissible, Zle ni—ZLl m; is even. Thus f is well-defined.
It is easy to see that f is a homomorphism that carries S to 1.

(b)=(c). Denote by q : G — G/(S) the quotient map and let s : G/(S) — G

be a right inverse for ¢, i.e., s choses an element for each class on G/(S).
Observe that for any = € G we have z — s(q(x)) € (S); set:

a(@) = f (2 - s(a(a))),

for all z € G. We claim that o : G — Zy = {0,1} is a two-coloring of
(G,S). Let z,y € G be fixed with z —y € S. Then gq(z) = ¢(y); set
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z=5(q(z)) =s(q(y)). We have:
fla—y)=f((z—2)—(y—2) = flz—2) - fly—2) = a(z) — aly).
Since z — y € S, we have f(z —y) =1 and thus a(z) # a(y).
(c)=(a). Given z € G and y € S we have:
o(z) # alo+y) and afz) # alz—y);
it follows easily by induction on Zle Ini| that a(z) = a(z + Zle niy;) if

and only if Zle n; is even, forall z € G, y1,...,ys € S, n1,...,ni € Z. In
particular, setting z = 0, we get that S is admissible. U

21.4. Lemma. Let G be an abelian group and S C G be a nonempty subset.
Then S is admissible if and only if there exists a subgroup H C G and an
element x € G, x € H, such that 2x € H and S is contained in the coset
rx+ H.

Proof. Assume that S is admissible. By Lemma 21.3, there exists a ho-
momorphism f : (S) — Zy that carries S to 1. Set H = Ker(f) and
choose x € S. Then f(z) =1 and f(2z) = 0, i.e., z € H but 2z € H.
Moreover, given y € S we have f(y —x) = 0 and thus y — x € H; hence
y = z+(y—x) € x+H. Assume now that H is asubgroupof G,z € G,z ¢ H
and 2x € H. We show that x4+ H (and thus any subset of x 4+ H) is admissi-
ble. Let y1,...,yr € H and ny,...,n; € Z be fixed with Zle ni(x+y;) = 0.

Then:
k k
(an)w = —Zmyi € H,
i=1 i=1
since 2x € H, if Zle n; where odd, it would follow that z € H, contradict-
ing our hypothesis. (]

22. INDUCTIVE LIMITS OF LocALLY CONVEX SPACES

Let IK denote either the field R of real numbers or the field C of complex
numbers.

23. NON SEPARABLE METRIC SPACES

23.1. Lemma. Let (M,d) be a metric space. Then M is non separable if
and only if there exists an € > 0 and a uncountable subset A of M such that
d(z,y) > ¢, for all z,y € A with x # y.

Proof. Clearly the existence of A and ¢ an in the statement imply that M
is non separable, since the open balls of radius § centered at the points of A
constitute an uncountable family of non empty pairwise disjoint open subsets
(and every dense subset must intersect all such open subsets and therefore
must be uncountable). Conversely, assume that M is not separable. We use
transfinite recursion to construct a family (x4 )aen, of points of M indexed
in the first uncountable ordinal R; as follows: given a € Ny, if the points
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xg € M are defined for § < a then {ZL‘B B < a} is a countable subset of
M and therefore cannot be dense. We can thus choose a point x, € M not
in the closure of {:1:5 1B < a}. Once the family (x4 )aex, is constructed, let
€q denote the (positive) distance between z, and the set {z5: 8 < a}, for
each o € Ny. Given distinct ordinals «, 8 € Ny, we have:

d(Ta, T8) > Emax{a,s}-
For each n > 1, set:
In:{a€N1:6a>%}.
Since Ry = J,,;>1 In, there must exist n > 1 such that I, is uncountable.
The proof is concluded by setting:

A:{xa:aeln}
1

and € = ;. Notice that the map o — z, is injective, so that A is uncountable

like I,,. Moreover, d(zq,2g) > L, for all a, 8 € I,, with o # S. O

24. FIBERED IMPLICIT FUNCTION THEOREM

24.1. Theorem. Let E, F, M, N be differentiable manifolds, p : E — M,
q: F — N be smooth submersions and ¢ : E — F, f : M — N be smooth
maps such that the diagram:

E-".F

p q

commutes. Let ey € E be such that the differential dg(eo) maps Ker(dp(eo))
isomorphically onto Ker [dq(gb(eo))]. Given a smooth map g : M — F such

that the diagram:
7
q

M ——N
f

commutes and ¢(ey) = g(p(eo)), then there exists an open neighborhood U
of ey in E such that the set:

{ecU: o) = g(p(e))}
equals the image of a smooth map s : p(U) — U such that pos is the identity
map of p(U).
Proof. Using the local form of submersions, the general case is easily reduced
to the case in which £ = M x Ey, FF = N x Fy, with Ey, Fy open subsets
of Euclidean spaces, and p, ¢ are the first projection maps of such cartesian
products. In that case, the map ¢ is of the form:

¢(ma y) = (f(m)vw(mvy))’ (mvy) € M x Ep,
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with ¢ : M x Ey — Fy a smooth map. Set (mg,yo) = €. The assumption

that d¢(ep) maps Ker(dp(eg)) isomorphically onto Ker[dg(¢(eo))] means
2]

that %(mo,yo) : TyoEO — Tw(

the form:

mo,yo)F0 18 an isomorphism. The map g is of

g(m) = (f(m),h(m)), m € M,
with h : M — Fy a smooth map. Apply the standard implicit function
theorem to the equation:

to find an open neighborhood V' of mg in M, an open neighborhood W of
Yo in Ey and a smooth map o : V — W such that the set:

{(m, y) €V X W ip(m,y) = h(m)}
equals the graph of o. The proof is concluded by setting U = V' x W and
by defining s : V. — U C M x Ey by s(m) = (m,o(m)), m € V. O

24.2. Remark. If p : E — M, q : F — N are smooth submersions and
¢ : E — F is a smooth map then, for ¢y € F, the assumption that de¢(ep)
maps Ker (dp(eo)) isomorphically onto Ker [dq ((;5(60))] holds if ¢ restricts to
a smooth diffeomorphism from p_l(p(eg)) to ¢! [q(qﬁ(eo))}.

24.1. Application to groupoids. Consider a small category G with set of
objects M and set of morphisms G; denote by s : G — M, t: G — M,
respectively, the source and target maps. The composition of morphisms
operation is a map G * G — G defined in the set:

G+xG={(9,h) € GxG:s(g)=t(h)}.

If every morphism of G is an isomorphism we say that G is a groupoid.
Denote by 1: M — G the map z — 1, that associates to each object z € M
the identity morphism 1, of z. Assume that both M and G are endowed
with the structure of a differentiable manifold and that the maps t and s
are smooth submersions. In this case, the map s xt: G x G — M x M is a
smooth submersion as well and in particular it is transverse to the diagonal
of M x M; it follows that G * G is an embedded submanifold of G x G.
If both the multiplication map G x G — G and the map 1 : M — G are
smooth, we say that G is a Lie groupoid. Given (g,h) € G * G, the tangent
space T{4 ) (G'*G) is equal to the inverse image by dsg x dty, of the diagonal
of T,M x T, M, where z = s(g) = t(h); in other words:

(24.1) Ty (G G) = {(v,w) € T,G x TG : dsg(v) = dtp(w)},
(g,h) € G*G.

It follows from (24.1) and from the fact that s and ¢ are smooth submersions
that the projection maps:

GxG>(g,h)—geG, GxG>(g,h)—heG

are smooth submersions as well.
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24.3. Lemma. The inversion map G > g — g~ ' € G of a Lie groupoid is
smooth.

Proof. Apply Theorem 24.1 to the following set up:

GxG—2o G G
l
P S S
G M G M

where ¢ is the multiplication map, p is the projection (g, h) + h and s is the
source map. The validity of the assumption about the map ¢ appearing in
the statement of Theorem 24.1 is checked by keeping in mind Remark 24.2:
notice that, for a fixed h € G, the restriction of ¢ to p~*(h) = s~ (t(h)) x{h}
is a diffeomorphism onto s~! (s(h)) Namely, the inverse of such restriction
is given by k + (kh~!, h) and it is therefore smooth. O

25. TUBULAR NEIGHBORHOOD TRICK IMPROVED

Given topological spaces X, Y, we say that a map f: X — Y is a quasi-
local homeomorphism if every x € X has an open neighborhood U in X
such that f|y : U — f(U) is a homeomorphism (it is not assumed that
f(U) be open in Y, so f might not be a local homeomorphism). Obviously,
a quasi-local homeomorphism is continuous and locally injective. Moreover,
if X is locally compact and Y is Hausdorff then any continuous locally
injective map f : X — Y is a quasi-local homeomorphism. Namely, if
x € X and Uy is an open neighborhood of z in which f is injective and
if U is an open neighborhood of x contained in a compact subset K of U
then f|x : K — f(K) is a homeomorphism and thus f|y : U — f(U) is a
homeomorphism.

25.1. Lemma (tubular neighborhood trick improved). Let X, Y be topologi-
cal spaces, with Y hereditarily paracompact and Hausdorff. Let f : X — Y be
a quasi-local homeomorphism; if S C X is a subset such that f|g: S — f(S)
is a homeomorphism then there exists an open subset Z C X containing S
such that f|z is injective.

We need a preparatory lemma.

25.2. Lemma. Let X, Y be topological spaces, f: X — Y be a continuous
map and S C X be a subset such that flg : S — f(S) is an open map.
Given x € S and an open neighborhood U of x in X then we can find an
open neighborhood U’ of x contained in U and an open subset V' of Y such
that f(U'NS) =V N f(S) and f(U') C V.

Proof. The set U N S is open in S and thus f(U N S) is open in f(S5); let
V C Y be an open set with f(UNS) =V N f(S). Then U' =UN f~1(V)
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is an open neighborhood of z contained in U. Obviously f(U’) C V and
f(U'NnS)cvVn f(S); moreover:

VNnfS)=fUNS)=fU'NSI).

The last equality above follows by observing that UN.S C f~*(V) and hence
unsS=0'nSs. O

Proof of Lemma 25.1. For each x € S, let U, be an open neighborhood of
x in X such that fly, : U, — f(U,) is a homeomorphism. By Lemma 25.2,
we can replace U, with a smaller open neighborhood of z (so that the map
flur - U, — f(U;) remains a homeomorphism) and obtain an open subset
V) of Y such that f(U,) C V, and:

(25.1) fLns)=v,nf(S).
The set:
o=V
z€eS

is open in Y and it contains f(.S). Moreover, Y is Hausdorff and paracom-
pact; therefore, by Lemma 8.10, Y is also T4. Let Yy = J;c; Vi be a locally
finite open refinement of the open cover Yy = U,cqVy of Yy (the family
(Vi)ier is locally finite in Yp). For each i € I, choose x € S with V; C V
and set:

U= fHV;)nU..
Then U; C U, is open in X, fly, : Ui — f(U;) is a homeomorphism and
from (25.1) we get:
(25.2) fUinS) =Vin f(9),
for all i € I. By Lemma 7.1, there exists a shrinking Yy = (J;c; Wi of the
open cover Yy = [J;c; Vi of Yo, ie., W; C V; for all i € I (the closure on W;
will always be taken with respect to the space Yy). For each i € I set:

Z; = fﬁl(Wi) NnU;.

Then Z; C U; is open in X, f|z, : Z; — f(Z;) is a homeomorphism and
from (25.2) we get:

(25.3) f(Z;nS)=W;n f(9),
for all 2 € I. We claim that:
(25.4) scl]z.

i€l

Namely, given x € S, there exists ¢ € I with f(x) € W;. Then f(z)
W;N f(S) and therefore, by (25.3), we can find y € Z; NS with f(z) = f(y).
Since f|g is injective, we obtain x = y € Z;, proving the claim.

Now for z € S, we set:

L ={icl: f(z) e W;};
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since the cover Yy = J;c; Wi is locally finite, the set I, is finite and
nonempty. Observe that for ¢ € I, we have, using (25.2):
flx) e Win f(S) cVin f(S) = f(UiNS)
and thus the injectivity of f|g implies € U;. We have just shown that:
(25.5) ze (U,
i€l

for all x € S.

Now, given x € S, 7 € I, the intersection ﬂjelw Uj is open in U; and thus

f( ﬂjelz Uj) is open in f(U;); we can therefore find an open subset Hy; of
Yo with:

(25.6) 1N U3) = Hei 0 £(U).
jels
Then:
(25.7) (f( N l&) c ) He
i€ly i€ly

Our next goal is to find for each x € S an open neighborhood G, of f(x)
in Yy with the following properties:
(i) for each i € I, G, intersects W; if and only if i € I,;;
(11) Gm C ﬂiGIz Hm,i-
The desired set G, can be defined by:

Go= () i) 0 (Yo U ™).
i€ly 1€I\I,
It follows from (25.5) and (25.7) that f(z) € G,. The fact that G, is open
follows using Lemma 8.2. Property (ii) is obvious. For property (i), observe
that i € I, implies f(z) € G, N W; and thus G, N W; # (); moreover, for
i € I\ I, we obviously have G, N W; = {).
Now set G = |J,cg G, and finally:

Z=fenlJz.
i€l
Obviously Z is open in X and S C Z, by (25.4). We complete the proof by
showing that f|z is injective. Let z,y € Z be chosen with f(z) = f(y). We
can find ¢,j € I with € Z; and y € Z;. Moreover, f(z) = f(y) € G, for
some z € S. We have f(z) € G, NW; and f(y) € G.NWj, so that i,j € I,
by property (i). Property (ii) implies G, C H,;. Now z € Z; C U;, and
f(z) € H,; N f(U;), so (25.6) implies:

fa)e £ Ux).

kel

We can thus find p € (¢, Ux C U; N U; with f(p) = f(z) = f(y). Since f
is injective in U; and in Uj, we conclude that x = p = y. (|
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26. PERTURBATION OF OPERATORS
The following lemma is well-known.

26.1. Lemma. Let X be a normed space and Y be a nondense subspace of X .
Then, for every e > 0, there exists x € X with ||z|| =1 and d(z,Y) > 1—¢.

Proof. Choose z € X not in the closure of Y, so that d(z,Y) > 0. Let
(yn)n>1 be a sequence in Y such that lim,—, ||z — yn|| = d(2,Y). Setting

Tp = 72 then:
Tz—ynll
1
d(xp,Y)= ———d(z—yn,Y) = ——d(z,Y),
[z =l [z = ynll
so that lim, o d(z,,Y) = 1. O

The following immediate corollary is rarely mentioned.
26.2. Corollary. Let X be a normed space and Y be a subspace of X. If:
sup {d(z,Y):z € X, |z| =1} <1
then'Y 1s dense in X. O
Given Banach spaces X, Y and a bounded operator T': X — Y, we set:
p(T) = inf {||T(z)] : v € X, ||z]| = 1}.

Clearly, p(T) is the largest ¢ > 0 with ||[T'(z)|| > ¢|lz|, for all z € X.
Moreover, p(T) > 0 if and only if T is a homeomorphism onto its range, if
and only if T is injective with closed range.

26.3. Lemma. Let X, Y be Banach spaces andT : X — Y, S: X =Y be
bounded operators. Then:
o(T) = p(9) < |IT = 5.
Proof. Given x € X with ||z|| = 1 we have:
IS = [T ()] = T (x) = S(@)|| = p(T) = | T = 5],
yielding p(S) = p(T) — ||T — S|l Thus p(T) — p(S) < |IT — S| O
We obtain now the following interesting proof of a well-known result.

26.4. Proposition. Let X be a Banach space and H : X — X be a bounded
operator with ||H|| < 1. IfId denotes the identity operator of X then Id+ H
is an isomorphism of X.

Proof. Lemma 26.3 yields:
lp(Id + H) — p(Id)| < [[H|| < 1,

and, since p(Id) = 1, we have p(Id + H) > 0. This proves that Id + H is
injective with closed range. Now we use Corollary 26.2 to establish that the
range of Id + H is dense in X. Namely, simply note that, for x € X with
|z|| = 1 we have:

d(z,(Id+ H)[X]) < |z — (z+ H))|| = |H ()| < [|H| < 1. O



SOME GOOD LEMMAS 91

26.5. Lemma. Let X be a Banach space. If Y is a closed subspace of X
and V is a finite-dimensional subspace of X then'Y +V is closed in X.

Proof. Consider the quotient map ¢ : X — X/Y. Since ¢[V] is a finite-
dimensional subspace of the Banach space X/Y, it is closed. Hence:

Y +V=q"[qlV]]
is closed in X. O

26.6. Lemma. Let X be a finite-dimensional normed space. Given ¢ > 0,
there exists a finite subset F' of the open unit ball of X such that d(z, F) < €,
for all x € X with ||z|| < 1.

Proof. Follows by observing that that the open unit ball of X is totally
bounded and dense in the unit closed ball of X. O

26.7. Corollary. Let X be a Banach space and'Y be a finite-codimensional
closed subspace of X. Then, for any € > 0, there exists a finite subset F
of the open unit ball of X such that d(x,FF +Y) < e, for all x € X with
Jall < 1.

Proof. The lemma yields a finite subset F} of the open unit ball of X/Y such
that d(z, F1) < ¢, for all z € X/Y with ||z|| < 1. Let F be a finite subset of
the open unit ball of X with ¢[F] = Fj, where ¢ : X — X/Y denotes the
quotient map. The conclusion follows. O

26.8. Lemma. Let X, Y be Banach spaces and T : X — Y be a bounded
operator with p(T) = ¢ > 0. Assume that the range of T has finite codimen-
sion in Y. Then, for any bounded operator S : X — Y with ||S —T| < £,
we have that S is injective with closed range and that the range of S has
finite codimension in'Y .

Proof. From Lemma 26.3 we obtain:
c
p(S) 2 p(T) = |S =TI > 5 >0,

so that S is injective with closed range. Let us prove that the range of S has
finite codimension. Let ¢ > 0 be fixed (to be specified later). Since the range
of T is closed with finite codimension, Corollary 26.7 yields a finite subset
F of the open unit ball of Y such that d(y, F + T[X]) < ¢, for all y € Y
with |ly|]| < 1. Let V be the linear span of F. By Lemma 26.5, S[X]+ V is
closed in Y. Let us prove that (for an adequate choice of €), S[X]+V is also
dense in Y. For this purpose we use Corollary 26.2. Let y € Y with |y|| =1
be fixed and let us estimate d(y, S[X] + V). From d(y, F + T[X]) < € we
obtain € X and z € F with ||y — (2 + T(2))|| < e. Note that ||z < 1 and
therefore:

IT@)] < [ly = (z+ T@)|[| + Iyl + Izl < 2 +e.

Using p(T') = c this yields:
2+¢

]| <
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and therefore:
24¢

Cc

1T (2) = S(@)]| <

1T = 5]

Moreover:

d(y, SIX1+V) < |ly— (2 +5@))|| < ly = (z + T(@)) || + |1 T(z) = S(=)||
2+

C

£
<e+ T —5|.

Since ||T'— S| < §, we could have chosen £ > 0 (depending only on S, not
on y) with:
2+¢€
c

e+ 1T - S|| < 1.

This concludes the proof. ([l

26.9. Corollary. Let X, Y be Banach spaces and T : X —'Y be a bounded
operator with p(T) = ¢ > 0. Assume that the range of T has infinite codi-
mension inY . Then, for any bounded operator S : X — Y with ||S-T| < §,
we have that S is injective with closed range and that the range of S has in-
finite codimension in'Y .

Proof. Set p(S) = ¢’. From Lemma 26.3 we obtain:

2
c’Zp(T)—||T—S|]>§c>O,

and therefore S is injective with closed range. Now [T — S| < § < %/
Assuming by contradiction that the range of S has finite codimension, the
lemma yields that the range of T also has finite codimension, contradicting

our assumptions. [l

27. ORDERED SETS

Recall that a topological space X is called Lindeldf if every open cover
of X admits a countable subcover and that X is called hereditarily Lindelof
if every subspace of X is Lindelof. (For example, second countable spaces
are hereditarily Lindelof.) Observe that if X is hereditarily Lindel6f then X
satisfies the countable chain condition, i.e., every family of nonempty disjoint
open subsets of X is countable. Namely, if (U;);er is a family of nonempty
disjoint open subsets of X then Y = J;.; U; is Lindeldf and therefore there
exists a countable subset I” of I such that Y = (J;cp U;. But then I = I".
27.1. Lemma. Let X be a linearly ordered set endowed with the order topol-
ogy. Assume that X is hereditarily Lindeldf. Let S be an uncountable subset
of X and ¢ : S — X be a map such that ¢(x) > x and |z, d(x)[ # O, for all
x € S. Then there exists x € S such that S N ]z, ¢(x)[ is uncountable.
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Proof. Set Y = UxES}:E ¢(x)[. Note that the intervals |z, ¢(z)[, with z
varying in S\ Y, are pairwise disjoint. Namely, if 21,29 € S\ Y, 1 # x2
(so that, for instance, x1 < x2) and z € |1, ¢(x1)[ N ]z2, ¢(x2)[ then:

T < x3 < 2 < P(11),
yielding z2 € Y. Since X satisfies the countable chain condition, it follows

that S\ 'Y is countable and therefore SNY is uncountable. Now, since Y is
Lindelof, there exists a countable subset S’ of S such that:

Y = U lx
xeS’
If SNz, ¢(x)] were countable for all x € S’ then SNY would also be
countable. Hence, there exists € S’ such that SN]z, #(x)[ is uncountable.

27.2. Corollary. Under the assumptions of Lemma 27.1, there exists a se-
quence (zp)np>1 in S such that x, < Tpe1 < @(xy), for alln > 1.

Proof. By Lemma 27.1, there exists x1 € S such that S1 = SN ]z, ¢(x1)[ is
uncountable. Assuming that we are given x,, € S such that:

Sn =S5 ﬂ]l‘n, ¢($n)[

is uncountable, apply Lemma 27.1 to ¢|g, obtaining x,1 € S, such that
Sp N ]Tp+1, d(xpy1)[ is uncountable. Then x, 41 € S, xp < Tpt1 < d(xy)
and S N |xp41, ¢(Tn41)[ is uncountable. O

27.3. Lemma. Let X be a linearly ordered set endowed with the order topol-
ogy. Assume that X satisfies the countable chain condition. Let € > 0 and
f: X — R be a map. Denote by S the set of those x € X such that there
exists y € X with y > x, |z, y[ # 0 and |f(2) — f(x)] > ¢, for all z € |z, y].
Then S is countable.

Proof. For each n € Z, set S, = SN f~ ([ ,(n+ 1)2]) For each x € S,
choose ¢(x) € X with ¢(z) > z, |z, p(x)[ # (Z) and |f(z) — f(z)| > e, for all
z € |z, ¢(x)[. We claim that the mtervals |z, ¢(x)[, with = varying in S,
are pairwise disjoint. Namely, if x1,x2 € S,,, 1 # x2 (so that, for instance,
x1 < xg) and 2z € w1, ¢(x1)[ N ]x2, P(22)[ then:

xr1 < X9 <z<¢(x1):>x2€]$1;¢($1)[:> ‘f(@) f(z1)] >
But f(z1), f(z2) € [n5,(n+ 1)§], so that |f(z2) — f(z1)] < 5. Since X

satisfies the countable chain condition, it follows that S, is countable and
hence S = J,,cz Sn is countable. O

27.4. Corollary. Let X be a linearly ordered set endowed with the order
topology. Assume that X satisfies the countable chain condition and let
f: X = R be a map. Denote by S the set of those x € X such that there
erists y € X with y > x, |x,y[ # 0 and:

inf {|f(z) = f(z)| : z € ], y[ } > 0.
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Then S is countable.

Proof. For each € > 0, the set S° of those z € X such that there exists
y € X with y > z, Jz,y[ # 0 and |f(2) — f(z)| > € for all z € |a,y[ is
countable, by Lemma 27.3. Then S = [J;2, S % is countable. O

28. WEAK-STAR TOPOLOGY AND FRECHET-URISOHN SPACES

A topological space X is called a Fréchet—Urysohn space if given a subset
A of X and a point x € X in the closure of A, there exists a sequence (zy,)n>1
in A converging to x. Obviously, every first-countable (in particular, every
metrizable) topological space is Frechét—Urysohn.

28.1. Lemma. Let X, Q) be topological spaces and q : X — ) be a continuous,
surjective closed map. If X is Frechét—Urysohn then so is ).

Proof. Let A be a subset of ) and y € 2 be in the closure of A. Let B
denote the closure of ¢~ [A]. Then ¢[B] is closed and contains A, so that
y = q(z) for some = € B. Since X is Fréchet—Urisohn, z is the limit of a
sequence (Z,)p>1 in ¢ 1[A]. Hence (g(xy))n>1 is a sequence in A converging
to y. ([

Given a Banach space X, we denote by Bx = {z € X : [|z| < 1} its
closed unit ball.

28.2. Lemma. Let (X, -||) be a Banach space such that the dual ball Bx~
is Fréchet—Urysohn in its weak-star topology. Let V be a norm-closed finite-
codimensional subspace of X*. If V is weak-star dense in X* then V is
weak-star sequentially dense in X*, i.e., every point of X* is the weak-star
limit of a sequence in V.

Proof. Define a semi-norm p on X by setting:

p(z) = sup {|a(z)| : a € V, [laf| < 1}.
Clearly:
(28.1) p(z) < |zl

for all x € X. The fact that V is weak-star dense in X* implies that V'
separates the points of X; thus, if x € X is nonzero, there exists o € V' with
laf] <1 and a(z) # 0. So p is in fact a norm in X. From (28.1) it follows
that every p-bounded linear functional on X is also || - [|-bounded, i.e., the
dual space of (X, p) is a vector'” subspace W of X*. If « € V and ||a <1
then, obviously:
|az)] < p(a),

for all x € X, so that « € W. Then V C W. Since V is norm-closed in X*
and has finite codimension, it follows that W is also norm-closed in X* (being
the inverse image by the quotient map X* — X*/V of W/V). Denote by

100f course, the topology of (X,p)* defined by the norm associated to p might not
coincide with the induced topology from X*.
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()?,]5) the completion of the normed space (X, p) and by i : (X,p) — ()A(,ﬁ)
the corresponding inclusion map. From (28.1), it follows that the operator
T : (X,|-|) = (X,p) defined by T(z) = i(x) is bounded. Since every
bounded linear functional on (X, p) has a (unique) bounded linear extension
to ()? ,D), it follows that the range of the adjoint T* is precisely W. The
fact that 7™ has closed range implies that 7" has closed range. But, since the
range of T is dense, it follows that T is surjective: this means that X=X ,
i.e., that the norm p was complete to begin with. It also means that the
norms p and || - || are equivalent, so that there exists a constant ¢ > 0 such
that:
p(x) > clje]|

for all x € X. We claim that the weak-star closure in X* of the unit ball
By = VN Bx» of V contains the ball ¢Bx+« of radius ¢. Namely, assume that
a € X* is not in the weak-star closure of By and let us show that ||a| > c.
Since By is convex, applying the Hahn—Banach separation theorem to the
(locally convex topological vector space) X*, endowed with the weak-star
topology, we obtain a weak-star continuous linear functional v : X* — K
(K = R or C) whose real part v separates a from By, i.e.:

[v(@)] = Ry(a) > sup Ry(8) = sup [y(B)].
BEBy BEBy

The weak*-continuity of v means that v is given by evaluation at a vector
z in X. Then:
la(z)| > sup |B(x)] = p(z) > ||,
BEBy
which yields ||| > ¢. Since By~ is Fréchet—Urysohn in its weak-star topol-
ogy, it follows that every point of cBx« is the weak-star limit of a sequence
in By . The conclusion follows. [l

28.3. Lemma. Let X be a Banach space such that the dual ball Bx+ is
Fréchet—Urysohn in its weak-star topology. Let T' be a finite-dimensional
subspace of the bidual X** such that T N X = {0} (where X is identified
with a subspace of X** in the usual way). Let (y1,...,7vm) be a basis of
I'. Given scalars ci,...,cm € K (K = R or C), there exists a sequence
(an)n>1 in X*, weak-star convergent to zero, such that (o) = ¢;, for all
i=1,....,mandalln > 1.

Proof. Let P : X* — K" be the bounded linear operator defined by:

P(a) = (n1(),...,ym(®)), ae€X*

The fact that 1, ..., v are linearly independent implies that P is onto
(because the annihilator of the range of P is the kernel of the adjoint of
P, which maps the i-th vector of the canonical basis of (IK")* to 7;). Let
V = Ker(P) C X* be the subspace annihilated by I". The annihilator V°
of V in X™** is equal to the range of the adjoint of P and therefore equal
to I'. Clearly, V' is norm-closed in X* and finite-codimensional. We claim
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that V' is weak-star dense in X*. Otherwise, we obtain a nonzero weak-star
continuous linear functional v : X* — IK that annihilates V, i.e., y € I'N X,
contradicting the assumption that I'N X is zero. By Lemma 28.2, V' is weak-
star sequentially dense in X*. Pick § € X* with P(8) = (¢1,...,¢n) and let
(Bn)n>1 be a sequence in V' weak-star convergent to 3. Setting ay, = 8 — [,
then (amp)n>1 is weak-star convergent to zero and:

P(ayp) =P(B) =(c1,---,Cm)s
for all n. This concludes the proof. O

28.4. Lemma. Let X be a Banach space such that the dual ball Bx+ is
Fréchet—Urysohn in its weak-star topology. Let I' be a finite-dimensional
subspace of the bidual X** such that T N X = {0} (where X is identified
with a subspace of X** in the usual way). Then, for every bounded operator
M :T = by = c* there exists a bounded operator T : X — c¢o such that M
is the restriction of T** to I.

Proof. Let (71, ...,7vm) be a basis of T" and set u’ = (u},)p>1 = M (i) € loo,
for i = 1,...,m. By Lemma 28.3, for each ¢ = 1,...,m, there exists a
sequence (af)),>1 in X*, weak-star convergent to zero, such that v;(al) = 1
and ;(al) =0, for j # 4 and all n > 1. Set:

m
_ i i N
oy = U,y 1> 1.
i=1

Since the sequence (uf),>1 is bounded for all i, the sequence (ay)p>1 is
weak-star convergent to zero. Therefore, we obtain a bounded operator
T : X — cg by setting:

T(z) = (an($))n21, z e X.

Also, it is easily checked that T**(v;) = (vi(aw)), ~,- But 7i(an) = ul, and
therefore T**(vy;) = M (i), i.e., T**|r = M. - O

29. INVERSES OF PERTURBATIONS OF IDENTITY

Consider a category such that, for each pair of objects X, Y, the set
of morphisms Hom(X,Y) is endowed with an abelian group structure (de-
noted additively) such that the composition of morphisms (denoted multi-
plicatively) is distributive with respect to addition. Given an object X, we
denote its identity morphism by Ix.

29.1. Lemma. Let X, Y be objects and T : X — Y, L :'Y — X be
morphisms. If A: X — X is a left inverse (resp., right inverse) for I1x + LT
then:

B=1y —-TAL:Y —Y
is a left inverse (resp., right inverse) for Iy + TL.
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Proof. Assuming that A is a left inverse for Ix + LT, we compute:

B(ly +TL) = (Iy — TAL)(ly + TL) =1y + TL — TA(Ix + LT)L
=Iy +TL—TL =1y.

Similarly, assuming that A is a right inverse for Ix + LT, we compute:

(Iy + TL)B = (Iy + TL)(Iy — TAL) =1y + TL — T(Ix + LT)AL
=y +TL-TL=1y. O

30. ASSOCIATIVE ALGEBRAS WITHOUT DIVISORS OF ZERO

Let K be a field. By an algebra over K we mean a vector space A over
K endowed with a bilinear binary operation:

A> (al,ag) — ajag € A,

called the multiplication of the algebra. The algebra is called associative if
its multiplication is associative. In what follows, all algebras are assumed
to be associative. An algebra is called commutative if its multiplication is
commutative. A unit for an algebra A is a (necessarily unique) element 1 of
A that is a bilateral neutral element for the multiplication; we have 1 # 0,
unless A = {0}. If A has a unit 1, then an element a € A is called invertible
if it admits a (necessarily unique) bilateral multiplicative inverse. We say
that an algebra A has mo divisors of zero if ajas = 0 implies a; = 0 or
as = 0, for all a1,as € A. We call an algebra A a division algebra if A has
a unit 1 and if every nonzero element of A is invertible. A division algebra
has no divisors of zero. A subalgebra of A is a vector subspace of A that is
closed under multiplication and an ideal of A is a vector subspace I of A
such that ajas € I for all a1, as € A, provided that either a; € I or as € 1.
The subalgebra of A spanned by a subset S of A is the smallest subalgebra
of A containing S; it is equal to the vector subspace of A spanned by the
set:
{alag'--ak:al,...,ak es, k> 1}

of all (nonvacuous) finite products of elements of S. Notice that the sub-
algebra spanned by S is commutative if and only if ajas = asaq, for all
aj,az € S. If A and B are algebras (over the same field K), then an algebra
homomorphism from A to B is a linear map ¢ : A — B such that:

(30.1) p(araz) = ¢p(a1)p(az),

for all a1,as € A. Notice that a linear map ¢ : A — B is an algebra homo-
morphism if and only if (30.1) holds for all a;, as belonging to a subset of A
that spans A as a vector space. A bijective algebra homomorphism is called
an algebra isomorphism and its inverse is automatically an algebra homo-
morphism as well. The kernel of an algebra homomorphism is an ideal in the
domain of the homomorphism and the range of an algebra homomorphism
is a subalgebra of its counterdomain.
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A field K is itself a commutative division algebra over K and also a
commutative division algebra over any subfield of K. In particular, the field
of real numbers R is a commutative division algebra over R and the field C
of complex numbers is a commutative division algebra over R and over C.
Set H = R* and denote the canonical basis of H by {1,4, j, k}. The space H
becomes a division algebra over R by endowing H with the unique bilinear
multiplication such that 1 is the neutral element and:

ij=—jgi=k, jk=-kj=1, ki=—ik=].

We call H the algebra of quaternions. If V' is a vector space over K, then the
space Lin(V) of all linear endomorphisms of V', endowed with the operation
of composition, is an algebra over K whose unit is the identity map of V.
The space K[X] of polynomials with coefficients in K, endowed with the
standard operations, is a commutative algebra over K with unit and no
divisors of zero. It is well-known that every ideal of K[X] is principal, i.e.,
it is of the form:

(p(X)) = {p(X)q(X) : ¢(X) € K[X]},

for some p(X) € K[X]. If I is a nonzero ideal of K[X], then the unique
monic polynomial p(X) in K[X] with I = (p(X)) is called the generator of
the ideal I. The generator of I is the unique monic element of I having the
least degree among nonzero elements of I. Let A be an algebra over K with
a unit 1. The map:

(30.2) K>Ar—XleA

is an algebra homomorphism and its range (which is the subalgebra of A
spanned by {1}) is called the subalgebra of scalars of A. If 1 # 0, then (30.2)
is an algebra isomorphism from K to the subalgebra of scalars of A. If K
is a subfield of a field K’ and if ¢ : K/ — A is a homomorphism of algebras
(over K) that extends (30.2), then we can extend the operation K x A — A
of multiplication by scalars of the vector space A to K’ x A, turning A into
a vector space over K’, by defining:

(30.3) Aa=od(Na, AeK' acA.

If every element in the range of ¢ commutes with every element of A, then
the multiplication of A is bilinear over K’, i.e., A becomes an algebra over
K’ endowed with the multiplication by scalars defined in (30.3).

For p(X) € K[X] and a € A we define:

p(a) = ¢l + Z cia’ € A,
=1
ifp(X)=co+>r X, i€ K,i=0,1,...,n. The evaluation map:
(30.4) K[X]2p(X)—pla) € A
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is then an algebra homomorphism whose range is a commutative subalgebra
of A. The range of (30.4) is the subalgebra of A spanned by {1, a}. If (30.4)
is not injective, then the kernel of (30.4) is a nonzero ideal of K[X] and its
generator mq(X) € K[X] is called the minimal polynomial of a. Notice that,
since K [X] is infinite dimensional, the map (30.4) is never injective if A is
finite dimensional. If A has no divisors of zero and A # {0}, then clearly
the minimal polynomial of an element of A (if it exists) is an irreducible
polynomial.

30.1. Lemma. Let A be a finite dimensional algebra with a unit 1 over a
field K. If a € A is invertible, then 1 belongs to the subalgebra of A spanned

by {aj.

Proof. Let mq(X) = co + Y g ;X" be the minimal polynomial of a. If
cp = 0, then my(X) = Xp(X) for some p(X) € K[X]; then ap(a) = 0 and
the invertibility of a implies p(a) = 0, contradicting the fact that mg(X) is
the minimal polynomial of a. So ¢y # 0. It then follows that:

n
1 i
1:—0—5 ca,
0 =1

concluding the proof. O

30.2. Lemma. If A is a finite dimensional algebra with no divisors of zero
over a field K then A (has a unit and) is a division algebra.

Proof. Assume A # {0}, otherwise the result is trivial. For each a € A,
consider the linear maps:

Ly:A>x+——ar € A, R,:A>z+—— xa € A

The fact that A has no divisors of zero implies that L, and R, are injective,
for all nonzero a € A. Thus, since A is finite dimensional, L, and R, are
linear isomorphisms, for all nonzero a € A. The sets:

{La:aeA}, {Ra:aeA}
are subalgebras of Lin(A) containing an invertible element of Lin(A). It
follows from Lemma 30.1 that they contain the unit of Lin(A), i.e., there
exist a,b € A such that L, and R; are equal to the identity map of A. Then:
a = Rp(a) = ab= L4(b) = b,

so that 1 = a is a unit for A. For nonzero x € A, the surjectivity of L, and
R, yield y,z € A with zy = 1 and zz = 1. Then:

y=1y = (zx)y = z(zy) = 21 = z,
so that z is invertible. O

30.3. Lemma. Let A be a finite dimensional algebra over an algebraically
closed field K. If A has no divisors of zero, then A (has a unit and) is equal
to its subalgebra of scalars. In particular, if A # {0}, then A is isomorphic
(as an algebra) to K.
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Proof. By Lemma 30.2, A has a unit 1. Assume A # {0}, otherwise the
result is trivial. Given a € A, then m,(X) € K[X] is a monic irreducible
polynomial. Since K is algebraically closed, we have m,(X) = X — A\, for
some X\ € K. Then a = A\1. O

30.4. Lemma. Let A be a nonzero finite dimensional commutative algebra
over R. If A has no divisors of zero, then A is isomorphic (as an algebra)
to either R or C.

Proof. By Lemma 30.2, A has a unit 1. If A is equal to its subalgebra of
scalars, then A is isomorphic to R. Otherwise, let a € A be an element
that does not belong to the subalgebra of scalars of A. Then the minimal
polynomial m,(X) € R[X] cannot have degree 1. Since m,(X) is irreducible,
it must be a degree 2 polynomial with no real roots, i.e., it must be of the
form mq(X) = (X + \)2 + pu, for some A, u € R with p > 0. Set:

1
= — 1) € A.
b Vi (a+ A1) €
Then > = —1. This implies that 1 and b are linearly independent. Let
¢ : C — A be the linear map such that ¢(1) = 1 and ¢(i) = b. We have
that ¢ : C — ¢|[C] is an algebra isomorphism. We can extend the operation
R x A — A of multiplication by scalars of the vector space A to C x A,
turning A into a complex vector space, by defining:

(30.5) wr = ¢p(w)x, weC, re A

The fact that A is commutative implies that A becomes an algebra over C
when endowed with (30.5). Obviously, A remains finite dimensional over
C (since it is finitely generated as a real vector space) and the property of
having no divisors of zero does not depend on the scalar field. It then follows
from Lemma 30.3 that A = ¢[C]. O

30.5. Lemma. Let A be a nonzero finite dimensional algebra over R. If A
has no divisors of zero, then A is isomorphic (as an algebra) to either R, C
or H.

Proof. By Lemma 30.2, A has a unit 1. If A is equal to its subalgebra
of scalars, then A is isomorphic to R. Otherwise, we can pick an element
of A not in the subalgebra of scalars; such element and the unit 1 span a
commutative subalgebra of A which, by Lemma 30.4, must be isomorphic
to C. Then there exists an element a € A with a®> = —1. The subspace of
A spanned by {1,a} is a subalgebra C' of A isomorphic to C. If C' = A, we
are done. Assume C # A. Consider the linear map T : A — A defined by:

T(z) = [a, ] oz — za, x€A.

The kernel of T' consists of those elements of A that commute with a. Since
C' is commutative, we have C' C Ker(T"). Moreover, if x € Ker(7"), then the
subalgebra of A spanned by {1, a,z} is commutative and hence isomorphic
to C, by Lemma 30.4. This shows that x € C' and therefore Ker(T") = C.
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A straightforward computation using a®> = —1 shows that every element in
the range of T" anticommutes with a, i.e.,

ay +ya =0,

for every y € Im(T'). Since only zero can both commute and anticommute
with a, we have Ker(7) N Im(7) = {0}. By a dimension argument, we
obtain:

A=Ker(T)®Im(T) =C & Im(T).
Since C' # A, there exists a nonzero element y € Im(7"). Using Lemma 30.4
we obtain that the subalgebra of A spanned by {1,y} is isomorphic to C,
and therefore there exist o, 8 € R such that (a1 + By)? = —1. Then:

a?1 + 208y + %% = —1;

since y anticommutes with a, it follows that y? commutes with a and the
equality above implies then that 2af8y commutes with a. But 2a8y also

anticommutes with a, so a8 = 0. Since 8 = 0 implies a® = —1, the only
possibility is o = 0, i.e., 8?y?> = —1. Set b = By and ¢ = ab. We have that
both b and ¢ anticommute with a and that b> = —1 and ¢? = —1. Moreover,

b anticommutes with ¢, bc = a and ca = b. Hence the unique linear map
¢ : H — A such that:

¢(1) =1, ¢(7’) =a, ¢(]) =1, ¢(k) =6
is an algebra homomorphism. The kernel of ¢ is an ideal of H; being a
division algebra, H has only the trivial ideals {0} and H, so ¢ must be
injective and ¢[H] is a subalgebra of A isomorphic to H. To conclude the
proof, we have to show that ¢[H] = A. Since C' C ¢[H], it suffices to check
that Im(7) C ¢[H]. Let z € Im(7T"). Then z anticommutes with a, so bz
commutes with a, and thus bz = y1 + da, for some 7,8 € R. Using b? = —1,
we obtain:
z = —vb+dc,

proving that z € ¢[H]. O

31. DISJOINT REFINEMENT OF A FAMILY OF SETS

In what follows, | X| denotes the cardinality of a set X.

31.1. Lemma. Let k be a cardinal and let (Ay)ack be a family of sets with
|Aa| > K, for all a € k. Then there exists an injective function f with
domain k such that f(a) € Aq, for all a € k.

Proof. Define f by transfinite recursion choosing f(c) in A\ {f(B) : 8 € a},
for all « € k. O

31.2. Lemma. Let k be an infinite cardinal and let (Aq)ack be a family of
sets with |Ay| > K, for all a € k. Then there exists an injective function f
with domain k X k such that f(«, 8) € Aq, for all a, € k.

Proof. Let us define by transfinite recursion a family (fy)aex such that:
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(a) fo is an injective function with domain a x «, for all « € k;
(b) fa(B,7) € Ag, for all 8,7 € a and all « € k;
(c) fa extends fg, for B < a € k.

Let fo = 0 and, for @ € k a limit ordinal, set f, = U,/J’Eoc fs. Now, given
a € K, let us define fo41 in terms of f,. Set Bg = Ag \ Im(fy), for all
B € K, so that |Bg| > k. By Lemma 31.1, there exists an injective map g
with domain s and g(8) € Bg, for all 8 € k. Let h be an injective map with
domain o and with image contained in

Ao\ (Im(fa) U {g(B) : B < a})

and let fo41 be the extension of f, such that foi1(a, ) = h(B), for all
B € a, and such that fo41(8, ) = g(B), for all § < a. It is easily seen that

the family (fao)aer satisfies conditions (a), (b) and (c) above. To conclude
the proof, set f = J,c, fa- O

31.3. Corollary (disjoint refinement). Let k be an infinite cardinal and let
(An)ack be a family of sets with |Ay| > K, for all a € k. Then there exists
a family (By)acr of pairwise disjoint sets such that B, C Aq and |By| = K,
for all o € k.

Proof. Take f as in Lemma 31.2 and set B, = {f(a,ﬁ) NS n}, for all
o € K. ([l

31.4. Corollary. Let k be an infinite cardinal and let (Ay)ack be a family
of sets with |Ay| > K, for all a € k. Then there exists a family (Bg)ack Of
patrwise disjoint sets such that:

e B, C U,Ben Ag, for all o € K;
o |B,| =k, for all « € Kk;
e BoNAg#0, for all o, B € k.

Proof. Take f as in Lemma 31.2 and set B, = {f(ﬁ,a) NS R}, for all
a € K. ([

31.5. Corollary. Denote by ¢ the cardinal of the continuum. There exists a
family (By)ace of pairwise disjoint subsets of [0,1] such that |Bs| = ¢ and
the outer Lebesque measure of B, is equal to 1, for all o € c.

Proof. The collection of all closed subsets of [0,1] has cardinality ¢ and
therefore there exists a family (Fy,)qe. such that {Fa o€ c} is the collection
of all closed subsets of [0, 1] with positive Lebesgue measure. We have that
|Fo| = ¢, for all a € ¢, since every uncountable closed subset of R has
cardinality ¢. Applying Corollary 31.4 to the family (Fj,)acc, We obtain a
family (Bq)ae. of pairwise disjoint subsets of [0, 1] such that:

o |By| =c¢, forall a € c;
o for all a € ¢, B, intersects every closed subset of [0, 1] with positive
Lebesgue measure.
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To conclude the proof, let us show that B, has outer Lebesgue measure
equal to 1, for all @ € ¢. If the outer Lebesgue measure of B, were less
than 1, there would exist a Lebesgue measurable subset M of R containing
B, with measure less than 1. Then [0,1] \ M would have positive Lebesgue
measure and hence would contain a closed subset F' with positive Lebesgue
measure. But this implies B, N F = () and yields a contradiction. O

32. GENERALIZED CAYLEY—HAMILTON THEOREM

In this section, rings are assumed to have a unity element and homomor-
phisms of rings are assumed to send the unity of the domain to the unity
of the counterdomain. The zeroth power 70 of an element r of a ring is
defined as being equal to the unity of the ring. If R is a commutative ring,
we denote by M, (R) the ring of n X n matrices with entries in R and by
R[X] the ring of polynomials in the indeterminate X with coefficients in R.
We regard R as a subring of R[X] and M, (R) as a subring of M, (R[X]).
The ring M,,(R) carries the structure of an R-module and it is an associa-
tive R-algebra. Since the ring R[X] is commutative as well, we have that
the ring M, (R[X]) carries the structure of an R[X]-module and it is an
associative R[X]-algebra. The unity of the ring M, (R) is denoted by I. For
p(X) € R[X] and A € M, (R[X]), we write

p(A) = rpAF,
k=0

where p(X) = 1 7 X* and ro,71, ..., 7 € R.
A family (g;)ier in an abelian group is said to be almost null if the set

{i€I:g;+0} is finite. For an almost null family (g;)ics, the sum Y,/ g;
is defined in the obvious way.

32.1. Lemma. If R is a commutative ring, then for every A € M, (R[X]),
there exists a unique almost null sequence (Ay)r>0 in My(R) such that:

o0
(32.1) A=) "Xx*A,.

k=0
Proof. Equality (32.1) is equivalent to the statement that the (i, j)-entry of
Ay equals the coefficient of X* in the (i, j)-entry of A, for alli,j =1,...,n

and all £ > 0. The conclusion follows by observing that the sequence (Ag)k>0
in M, (R) defined by the latter requirement is almost null. O

32.2. Lemma. Let R and S be rings and h : R — S be a homomorphism
of the underlying additive abelian groups. If A C R spans R as an additive
abelian group and if

(32.2) h(ab) = h(a)h(b),
for all a,b € A, then (32.2) holds for all a,b € R.
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Proof. If b € A, then the set
{a € R: h(ab) = h(a)h(b)}

is a subgroup of R containing A and thus it is equal to R. It follows that,
for all a € R, the set

(32.3) {b€ R: h(ab) = h(a)h(b)}
is a subgroup of R containing 4. Hence (32.3) is equal to R for all a € R
and the conclusion follows. O

32.3. Lemma. Let R be a commutative ring, S be a ring and h : My, (R) — S
be a ring homomorphism. If s € S commutes with every element in the image
of h, then there exists a unique extension h : My (R[X]) — S of h such that

h is a ring homomorphism and h(XI) = s.

Proof. By Lemma 32.1, every A € M, (R[X]) can be written uniquely as

oo [ee)
A=) XFA =) (XD)F A,
k=0 k=0

with (Ag)r>0 an almost null sequence in M, (R). It follows that h(A) is
necessarily given by:

(32.4) h(A) = sFh(Ap).
k=0
Defining h by (32.4), it is readily seen that h is a homomorphism of the
underlying additive abelian groups and it follows from Lemma 32.2 with
A={X"B:k>0, Be M,(R)}

that h is a homomorphism of rings. ([l

32.4. Corollary. Let R be a commutative ring and M be a left M,(R)-
module. If f : M — M is My, (R)-linear, then the operation of multiplication
by elements of My(R) of M extends in a unique way to an operation of
multiplication by elements of M, (R[X]) in such a way that M becomes a
left My, (R[X])-module and (XI)m = f(m), for all m € M.

Proof. The left M, (R)-module structure of M is the same thing as a struc-
ture of abelian group in M together with a homomorphism of rings

h: M,(R) — End(M),

where End(M) is the ring of homomorphisms of the abelian group M to
itself. The assumption that f is M,(R)-linear means that f € End(M)

commutes with every element in the image of h. By Lemma 32.3, h extends
to a unique homomorphism of rings

h: My, (R[X]) — End(M)
with a(XT) = f. O
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32.5. Corollary. Let R be a commutative ring and consider the ring M, (R)
as a left My (R)-module in the canonical way. Given U € M, (R), then the
operation of multiplication by elements of M,(R) extends in a unique way
to an operation * of multiplication by elements of M, (R[X]) m such a way
that My(R) becomes a left M, (R[X])-module and (XI)x A = AU, for all
A€ M,(R).

Proof. Note that f : M,(R) > A— AU € M,(R) is (left) M, (R)-linear and
apply Corollary 32.4. O

32.6. Lemma. Let R be a commutative ring and U € M, (R). If M,(R) is
regarded as a left M, (R[X])-module as in Corollary 32.5, then

(P(X)I) % A = Ap(U),
for every p(X) € R[X] and every A € M,(R).

Proof. If p(X) = 1L reXF, with r, € R, k=0,1,...,m, then:

(PO x A= (D)(XDF % A=> " rAU* = A " U* = Ap(U). O
k=0 k=0 k=0

32.7. Lemma (generalized Cayley—Hamilton). Let R be a commutative ring,
U € M,(R) and let Ay, Ay,..., A € M,(R) satisfy

Em: A UR = 0.
k=0

If we set A =31 X"Ap € My, (R[X]) and p(X) = det(A) € R[X], then
p(U) = 0.

Proof. Let My, (R) be endowed with the struture of left M, (R[X])-module
defined in Corollary 32.5. We have:

m

AxT = (XDFx (A x1) = > AU* =0.
k=0 k=0

Let B € M, (R[X]) be the classical adjoint of A, so that BA = p(X)IL. Using
Lemma 32.6, we compute:

0=Bx*(AxI)=(BA)xI= (p(X)I)«I=p(U). O

32.8. Corollary (Cayley-Hamilton). Let R be a commutative ring. Given
U e My(R), if p(X) = det(XI — U) is the characteristic polynomial of U,
then p(U) = 0.

Proof. Use Lemma 32.7 with Ag = —-U, Ay =1 and m = 1. O
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33. NICE CRITERIA FOR A MAP TO BE A HOMEOMORPHISM

33.1. Lemma. Let K and Y be topological spaces, X be a dense subset of
K and f: K =Y be a continuous map. Consider the following conditions:

(a) flx : X — f[X] is a homeomorphism;

(b) forallp € K and all xz € X, if f(p) = f(z), then p = x.
If K is Hausdorff, then condition (a) implies condition (b). If Y is Hausdorff
and K is compact, then condition (b) implies condition (a).

Proof. Assume that K is Hausdorff and that condition (a) holds. Pick p € K
and = € X with p # x and let us show that f(p) # f(x). Let U and V be
disjoint open subsets of K with p € U and x € V. Since X is dense in K and
U is open in K, it follow that X NU is dense in U; in particular, p belongs
to the closure of X NU. Thus, f(p) belongs to the closure of f[X NU]. From
(a), we obtain that f[X NU] and f[X NV] are disjoint open subsets in f[X]
and, since f(z) € f[X N V], we conclude that f(z) is not in the closure of
FIX N U] in f1X]. Hence f(x) # f(p).

Now assume that K is compact, Y is Hausdorff and that condition (b)
holds. It follows immediately from (b) that f|x is injective and therefore
flx : X — f[X] is a continuous bijection. Let us show that f|x : X — f[X]
is a closed map. Let F' be a closed subset of K. It follows easily from (b)
that

fIFNX] = fIFIN0 fIX].

Since f[F] is compact and Y is Hausdorff, we obtain that f[F] is closed in
Y and hence that f[F]N f[X] is closed in f[X]. O

34. CONDITIONS IN WHICH FIP IMPLIES NONEMPTY INTERSECTION

A nonempty collection of sets has the finite intersection property (FIP) if
every nonempty finite subcollection has a nonempty intersection. It is a basic
fact that a topological space X is compact if and only if every nonempty
collection of closed subsets of X with FIP has nonempty intersection. It
follows that for an arbitrary topological space X, if a collection of closed
subsets of X has a compact member and has FIP, then the intersection of
the collection is nonempty. We will now generalize this result.

34.1. Lemma. Let (X;)ier be a family of topological spaces and let F be
a nonempty collection of closed subsets of the product space X = [];c; Xy
with FIP. Assume that for each i € I, there exists F € F such that m;[F]
s contained in a compact subset of X;, where m; : X — X; denotes the i-th
projection. Then the collection F has a nonempty intersection.

Proof. Since the collection F has FIP, it is contained in a ultrafilter U of
subsets of X. Let i € I be given and consider the ultrafilter (m; ). U of subsets
of X; having

{mi[F]: F eU}
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as a filter basis. Our assumptions imply that (7;). U has a compact member
K; and thus (m;). U N p(K;) is an ultrafilter of subsets of the compact space
K;. Then (m; ) U N p(K;) converges to a point z; € K; and this implies that
also (m;)« U converges to z;. Hence U converges to the point x = (x;);c; and
x belongs to the intersection of the family F. U

34.2. Corollary. Let (X;)icr be a family of topological spaces and let F be
a nonempty collection of closed subsets of the product space X = [[;c; Xi.
Assume that for each i € I, there exists F € F such that m;[F] is contained
in a compact subset of X;, where m; : X — X, denotes the i-th projection. If
the intersection of the collection F is contained in an open subset U of X,
then the intersection of some nonempty finite subcollection of F is contained

inU.
Proof. Apply Lemma 34.1 to the collection F U {X \ U}. O

34.3. Corollary. Let (X;)icr be a family of Hausdorff topological spaces and
for each i € I let K; be a compact subset of X;. Let U be an open subset of
the product space X = [[;c; Xi such that [[,c; K; C U. Then there exists a
finite subset J of I such that U contains the set:

Kj;= {(mi)ig eX x €K, fO’I” all v € J}
Proof. Apply Corollary 34.2 to the collection:
f:{KJ:Jaﬁnite subset ofI}. O

35. PROPER MAPS AND REGULAR MEASURES

Let X and Y be topological spaces. A map f: X — Y is called proper
if f~1[K] is compact, for every compact subset K of Y. A subset F of
a topological space Y is called sequentially closed if every limit!' in Y of
every sequence in F'is in F. We say that Y is a sequential space if every
sequentially closed subset of Y is closed in Y. This happens, for instance, if
Y is a first countable space.

35.1. Lemma. Let X andY be topological spaces with Y Hausdorff. Assume
that'Y is either locally compact or sequential. Then every continuous proper
map f: X =Y is closed.

Proof. Let F be a closed subset of X and let us show that f[F] is closed
in Y. If Y is sequential, it suffices to check that f[F] is sequentially closed
in Y. Let (z,)n>1 be a sequence in F' such that (f(xn))n>1 converges to
apoint y € Y. Then K = {y} U {f(zy) : n > 1} is a compact subset of
Y and hence (z,,),>1 is a sequence in the compact subset f~1[K]. Thus
(xn)n>1 has a cluster point # € K which is also in F, since F' is closed. It

Hgince we are not assuming that Y is Hausdorff, a sequence could have more than one
limit.
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follows that f(z) is a cluster point of the sequence ( f (mn))n>1 and since Y
is Haussdorff this implies that f(z) = y. -

Now assume that Y is locally compact. Given y € Y\ f[F], we show that
y has a neighborhood disjoint from f[F]. Let V be a compact neighborhood
of y. Then FNf~![V] is a compact subset of X and thus H = f [Fﬂf‘l [V]]
is a compact subset of Y. Since Y is Hausdorff, it follows that H is closed
in Y. Moreover, since y ¢ f[F], we have y ¢ H and thus V \ H is a

neighborhood of y. It is easily seen that V' \ H is disjoint from f[F]. O

35.2. Definition. Let X be a locally compact Hausdorff topological space.
By a regular measure on X we mean a nonnegative countably additive mea-
sure p on the Borel g-algebra of X satisfying the following conditions:
(i) u(B) = inf {u(U) : U D B open in X}, for every Borel subset B of
the space X;
(ii) w(U) = sup {u(K) : K C U compact}, for every open subset U of
the space X;
(i) u(K) < +oo, for every compact subset K of the space X.

Note that condition (i) is trivially satisfied when pu(B) = +o0.
If X and Y are topological spaces, i is a nonnegative countably additive
measure on the Borel g-algebra of X and f: X — Y is a continuous map,

we denote by f,u the nonnegative countably additive measure on the Borel
o-algebra of Y defined by

(35.1) (fe)(B) = p(f~1[B]),
for every Borel subset B of Y.

35.3. Lemma. Let X andY be locally compact Hausdorff topological spaces,
f: X =Y be a continuous proper map and p be a reqular measure on X.
Then f.u is a reqular measure on Y .

Proof. Let B be a Borel subset of Y with (f.u)(B) < +oc0. Given € > 0,
there exists an open subset U of X containing f~1[B] such that:
w(U) < u(f_l[B]) +e.
It follows from Lemma 35.1 that V =Y \ f[X \ U] is open in Y. Moreover,
one readily checks that B C V and that f~![V] C U, so that:
(fer) (V) < u(U) < (fup)(B) + e

Now let U be an open subset of Y and fix M < (f.u)(U). Since f~1[U] is
open in X and M < u(ffl[U]), there must exist a compact subset K of
f7[U] with u(K) > M. Then f[K] is a compact subset of U and:

(fer) (FIK]) = n(fHSIK]]) = w(K) > M.

Finally, note that for every compact subset K of Y we have that (f.u)(K)
is finite, since f~![K] is a compact subset of X. O
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35.4. Lemma. Let X be a locally compact Hausdorff topological space and let
u and v be nonnegative countably additive measures on the Borel o-algebra
of X. Assume that v(B) < u(B) and that

v(B) < +00 = u(B) < 400,
for every Borel subset B of X. If u is reqular, then also v is reqular.

Proof. Let B be a Borel subset of X with v(B) < 400 and let € > 0 be
given. Since u(B) < 400, there exists an open subset U of X containing B
with p(U) < p(B) 4 . But since p(B) is finite this implies:

v(U) = v(B) = v(U\ B) < u(U\ B) = u(U) — p(B) < <,

which proves that v(U) < v(B) +e. Now let U be an open subset of X and
let us prove that:

(35.2) v(U) =sup {v(K) : K C U compact}.

Assume first that v(U) < +oo and let € > 0 be given. Since u(U) < 400,
there exists a compact subset K of U such that pu(K) > p(U) —e. Then:

v(U) =v(K) =v(U\ K) <pU\ K) = pU) - p(K) <e,

which proves that v(K) > v(U) —e and establishes (35.2). Now assume that
v(U) = +oo. Then p(U) = +o0 and, for each positive integer n, there exists
a compact subset K, of U with u(K;,) > n. Replacing K,, with ;" ; K;, we
may assume that the sequence of compact sets (K, )p>1 is increasing. Then
p(Upe; Kn) = 400, so that

supv(Ky,) = lim v(K,) = V( G Kn) = +00,
n=1

n>1 n—-+0o

which again establishes (35.2). Finally, it is obvious that
v(K) < p(K) < +oo,
for every compact subset K of X. O

Recall that if p is a signed countably additive measure on a o-algebra A,
then there exists a decomposition © = pu; — pe with p; and pe nonnegative
countably additive measures on A and either pq or us finite; moreover, there
is a unique such decomposition y = p4 — p— which is minimal in the sense
that py < pp and p— < pg for every other decomposition p = 3 — pg. The
decomposition p = p4 — p— is called the Jordan decomposition of .

35.5. Definition. Let X be a locally compact Hausdorff topological space.
A signed countably additive measure p on the Borel o-algebra of X is called
reqular if both p4 and p_ are regular.

35.6. Lemma. Let X be a locally compact Hausdorff topological space and
1 be a signed countably additive measure on the Borel o-algebra of X. As-
sume that p = p1 — po, where py and po are nonnegative countably additive



SOME GOOD LEMMAS 110

measures on the Borel o-algebra of X and either uy or ps finite. If both uq
and pa are regular, then so is p.

Proof. We have uy < py, p— < ug and
p4(B) < 400 = p(B) < 400 = 1 (B) < 400,
p—(B) < 400 = p(B) > —o00 = pa(B) < 400,
for every Borel subset B of X. The conclusion follows from Lemma 35.4. [

Clearly definition (35.1) for f.u also makes sense when p is a signed
measure. Though obviously fiu = fi(u4) — fe(u—), it is not true in general
that this is the Jordan decomposition for f.u. Nevertheless, we have the
following result.

35.7. Corollary. Let X and Y be locally compact Hausdorff topological
spaces, f : X — Y be a continuous proper map and p be a signed requ-
lar measure on X. Then f.u is a signed™? regular measure on Y .

Proof. Simply note that fiu = fi(us) — fe(u—) and apply the results of
Lemmas 35.3 and 35.6. ([
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12We are assuming the convention according to which the set of signed measures in-
cludes the set of nonnegative measures. It may happen that p(B) < 0 for some B but
that f.u is nonnegative. This is the case, for instance, if X = {z1,22} has two points,
Y has a unique point, u({z1}) > 0, p({z2}) < 0 and p(X) > 0. Note also that in this
example (f.p)— =0, while f,(p—) is not zero.



