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29. Inverses of perturbations of identity 96
30. Associative algebras without divisors of zero 97
31. Disjoint refinement of a family of sets 101

Date: December 2001.

1



SOME GOOD LEMMAS 2

32. Generalized Cayley–Hamilton theorem 103
33. Nice criteria for a map to be a homeomorphism 106
34. Conditions in which FIP implies nonempty intersection 106
35. Proper maps and regular measures 107

1. Some Simple Uniformity Lemmas

1.1. Notation. On an arbitrary metric space we denote by B[x; r] the closed
ball of center x and radious r > 0 and by B(x; r) the open ball of center x
and radious r > 0.

1.2. Lemma. Let X be a topological space, (M,d) be a metric space, U be
an open subset of X×M and K ⊂ U be a compact subset. Then there exists
ε > 0 such that for every (x, y) ∈ K, {x} × B(y; ε) is contained in U .

Proof. For every (x, y) ∈ K, choose an open neighborhood V(x,y) of x in X
and r(x,y) > 0 such that V(x,y) × B(y; r(x,y)) ⊂ U . We have an open cover:

K ⊂
⋃

(x,y)∈K

V(x,y) × B
(
y; 1

2 r(x,y)

)
,

from which we can take a finite subcover:

K ⊂
n⋃
i=1

V(xi,yi) × B
(
yi;

1
2 r(xi,yi)

)
.

Now take ε = 1
2 min{r(xi,yi)}ni=1. For every (x, y) ∈ K we can find i =

1, . . . , n with x ∈ V(xi,yi) and d(y, yi) <
1
2 r(xi,yi); then B(y; ε) ⊂ B(yi, r(xi,yi))

and therefore:

{x} × B(y; ε) ⊂ V(xi,yi) × B(yi, r(xi,yi)) ⊂ U. �

1.3. Lemma. Let (M,d), (N, d′) be metric spaces, K ⊂M be compact subset
and f : M → N a continuous function. Then given ε > 0, there exists δ > 0
such that for all x ∈ K, y ∈M , d(x, y) < δ implies d′

(
f(x), f(y)

)
< ε.

Proof. Otherwise, we would be able to find ε > 0 such that for every in-
teger n ≥ 1, there would exist xn ∈ K, yn ∈ M with d(xn, yn) < 1

n but

d′
(
f(xn), f(yn)

)
≥ ε. Some subsequence (xnk)k∈N converges to x ∈ K and

then also (ynk)k∈N converges to x. By the continuity of f , we have:

lim
k→+∞

d′
(
f(xnk), f(ynk)

)
= 0,

which yields a contradiction. �
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2. Sections of Quotient Topological Spaces

2.1. Lemma. Let X, Y be topological spaces and q : X → Y be a continuous
map. Assume that X is Hausdorff and that there exists a continuous right
inverse s : Y → X of q. Then the image of s is closed.

Proof. Let u ∈ X \ s(Y ) be given and set v = s
(
q(u)

)
. Then u 6= v and

therefore there exist disjoint open sets U , V in X with u ∈ U and v ∈ V .
Define:

W = U ∩ (s ◦ q)−1(V ).

Obviously, W is open and u ∈ W . We claim that W ∩ s(Y ) = ∅. Namely,
if we had w ∈ W ∩ s(Y ) then (s ◦ q)(w) = w, so that w ∈ V , contradicting
w ∈ U . �

3. Uniform Dominated Convergence Theorem

Let Λ be a topological space, A be a subset of Λ, λ0 ∈ Λ be a limit point
of A, (M,d) be a metric space and I be an arbitrary set. Let (pλi )i∈I,λ∈A
and (pi)i∈I be families of points of M . We say that pλi tends to pi as λ→ λ0

uniformly in I if for every ε > 0 there exists a neighborhood V of λ0 in Λ
such that d(pλi , pi) < ε, for all i ∈ I and for all λ ∈ V ∩A with λ 6= λ0.

3.1. Lemma. Let Λ be a first countable topological space (i.e., every point
of Λ has a countable fundamental system of neighborhoods), A be a subset
of Λ, λ0 ∈ Λ be a limit point of A, (M,d) be a metric space1 and I be
an arbitrary set. Let (pλi )i∈I,λ∈A and (pi)i∈I be families of points of M . If

for every countable subset I0 of I we have that pλi tends to pi as λ → λ0

uniformly in I0 then pλi tends to pi as λ→ λ0 uniformly in I.

Proof. Assume that it is not the case that pλi tends to pi as λ→ λ0 uniformly
in I. Then, there exists ε > 0 such that for every neighborhood V of λ0

in Λ, there exists i ∈ I and λ ∈ V ∩ A with λ 6= λ0 and d(pλi , pi) ≥ ε; let
such an ε > 0 be fixed. Let (Vn)n≥1 be a countable fundamental system of
neighborhoods of λ0 in Λ and for each n ≥ 1 choose in ∈ I and λn ∈ Vn ∩A
with λn 6= λ0 and d(pλ

n

in
, pin) ≥ ε. Set I0 =

{
in : n ≥ 1

}
. Clearly, it is not

the case that pλi tends to pi as λ→ λ0 uniformly in I0. This contradicts our
hypothesis. �

Recall that a measure space is a triple (Ω,A, µ), where Ω is a set, A is
a σ-algebra of subsets of Ω and µ : A → [0,+∞] is a countable additive
measure on A. We have the following “uniform version” of the Lebesgue’s
Dominated Convergence Theorem.

3.2. Lemma. Let (Ω,A, µ) be a measure space, Λ be a topological space, A
be a subset of Λ, λ0 ∈ Λ be a limit point of A, and I be an arbitrary set. Let
(fλi )i∈I,λ∈A, (fi)i∈I be families of maps fλi : Ω → R, fi : Ω → R. Assume
that:

1In fact, we could consider an arbitrary uniform space.
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• fλi is measurable, for all i ∈ I, λ ∈ A \ {λ0};
• fλi (ω) tends to fi(ω) as λ→ λ0 uniformly in I, for every ω ∈ Ω;
• there exists an integrable map φ : Ω→ [0,+∞] such that∣∣fλi (ω)

∣∣ ≤ φ(ω),

for all ω ∈ Ω, i ∈ I and λ ∈ A \ {λ0}.
Then, for all i ∈ I, λ ∈ A \ {λ0}, the maps fλi and fi are integrable and∫

Ω f
λ
i dµ tends to

∫
Ω fi dµ as λ→ λ0 uniformly in I.

Proof. Since λ0 is a limit point of A and Λ is first countable, there exists a
sequence (λn)n≥1 in A with λn 6= λ0 for all n ≥ 1 and λn → λ0. Then, for all

i ∈ I, we have that fλni → fi pointwise in Ω. It follows that fi is measurable

and that |fi(ω)| ≤ φ(ω), for all i ∈ I, ω ∈ Ω. Thus, the maps fλi and fi are
integrable, for all i ∈ I, λ ∈ A \ {λ0}. Let us prove that

∫
Ω f

λ
i dµ tends to∫

Ω fi dµ as λ → λ0 uniformly in I; by Lemma 3.1, it suffices to show that∫
Ω f

λ
i dµ tends to

∫
Ω fi dµ as λ→ λ0 uniformly in I0, for any fixed countable

subset I0 of I. For each λ ∈ A, we define a map gλ : Ω→ [0,+∞] by setting:

gλ(ω) = sup
i∈I0

∣∣fλi (ω)− fi(ω)
∣∣,

for all ω ∈ Ω. Since I0 is countable, it follows that gλ is measurable for
all λ ∈ A \ {λ0}. Clearly |gλ(ω)| ≤ 2φ(ω), for all ω ∈ Ω, λ ∈ A \ {λ0}.
Moreover, the fact that fλi (ω) tends to fi(ω) as λ→ λ0 uniformly in I0 for
all ω ∈ Ω implies that limλ→λ0 g

λ(ω) = 0, for all ω ∈ Ω. If (λn)n≥1 is an
arbitrary sequence in A with λn 6= λ0 for all n ≥ 1 and with λn → λ0 then,
by the standard version of Lebesgue Dominated Convergence Theorem, we
get:

lim
n→∞

∫
Ω
gλn dµ = 0.

Since the sequence (λn)n≥1 is arbitrary and Λ is first countable, it follows
that:

lim
λ→λ0

∫
Ω
gλ dµ = 0.

From the inequality:∣∣∣ ∫
Ω
fλi dµ−

∫
Ω
fi dµ

∣∣∣ ≤ ∫
Ω
gλ dµ, i ∈ I, λ ∈ A \ {λ0},

it follows that
∫

Ω f
λ
i dµ tends to

∫
Ω fi dµ as λ → λ0 uniformly in I0. This

concludes the proof. �

4. A Nice Lemma that Implies Tychonoff’s Theorem

4.1. Lemma. Let (X, τ) be a topological space and let S ⊂ τ be a subbasis
for τ , i.e., every U ∈ τ is a union of finite intersections of elements of S.
If every open cover of X by elements of S has a finite subcover then X is
compact.
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Proof. Let σ denote the set of all open covers C ⊂ τ which does not have a
finite subcover, i.e.:

σ =
{
C ⊂ τ :

⋃
C = X and

⋃
C′ 6= X if C′ ⊂ C is finite

}
.

If one considers σ to be ordered by inclusion then it is easy to see that every
non empty chain in σ has an upper bound; if X were not compact, then
σ would be non empty and by Zorn’s Lemma we would be able to find a
maximal element C ∈ σ. We will show that C ∩ S is a cover of X, which
will yield a contradiction, since C ∩ S does not have a finite subcover. Let
x ∈ X be fixed and choose U ∈ C with x ∈ U . Since S is a subbasis, we can
find S1, . . . , Sn ∈ S with x ∈

⋂n
i=1 Si ⊂ U . We will show that some Si is in

C; this will yield x ∈ Si ∈ C ∩ S and will complete the proof. Assume that
Si 6∈ C for every i = 1, . . . , n; then, for each i, C ∪ {Si} has a finite subcover
and therefore we can find Vij ∈ C, j = 1, . . . , ni, with Si ∪

⋃ni
j=1 Vij = X. It

is easy to see that the latter implies:

X =
( n⋂
i=1

Si

)
∪

n⋃
i=1

ni⋃
j=1

Vij ⊂ U ∪
n⋃
i=1

ni⋃
j=1

Vij ;

thus C has a finite subcover, which is a contradiction. �

5. Topology for Sets of Maps

5.1. Notation. We denote by ℘(X) the power set of X, i.e., the set of all
subsets of X.

If X is a topological space then the set:{
℘(U) : U ⊂ X open

}
is a covering of ℘(X) which is closed under finite intersections; therefore,
such set is the basis of a topology for ℘(X) which we call the power set
topology on ℘(X) induced from the topology of X.

If X and Y are topological spaces and F(X,Y ) = Y X denotes the set of
all maps f : X → Y then we consider the graphing map:

F(X,Y ) 3 f 7−→ gr(f) ∈ ℘(X × Y )

which assigns to every map f : X → Y its graph. The strong map topology
on F(X,Y ) is the topology induced by the graph map, where ℘(X × Y ) has
the power set topology induced from the product topology on X×Y . If S is
any set of maps from X to Y (for instance, if S is the set of continuous maps
from X to Y ) then the strong map topology on S is the topology induced
from the strong map topology on F(X,Y ); the strong map topology on S
coincides with the topology induced by the restriction to S of the graph
map.

A basis of neighborhoods for f ∈ F(X,Y ) in the strong map topology is
given by: {

G(U) : U ⊂ X × Y open and gr(f) ⊂ U
}
,
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where:
G(U) =

{
g ∈ F(X,Y ) : gr(g) ⊂ U

}
.

Recall that a family (Ai)i∈I of subsets of a topological space X is called
locally finite in X if every point of X has a neighborhood which intersects
Ai for at most a finite number of indices i.

5.2. Lemma. Let (Fi)i∈I be a locally finite family of closed subsets of X and
let for each i ∈ I, Ui be an open subset in Fi × Y . Then the set:

G
(
(Fi)i∈I , (Ui)i∈I

)
=
{
f ∈ F(X,Y ) : gr(f |Fi) ⊂ Ui, for all i ∈ I

}
is open in F(X,Y ) with respect to the strong map topology.

Proof. Set:

V =
{

(x, y) ∈ X × Y : for all i ∈ I, x 6∈ Fi or (x, y) ∈ Ui
}

;

obviously G
(
(Fi)i∈I , (Ui)i∈I

)
= G(V ), so it suffices to show that V is open

in X × Y . The complement of V is X × Y is given by:

V c =
{

(x, y) ∈ X × Y : for some i ∈ I, x ∈ Fi and (x, y) 6∈ Ui
}

=
⋃
i∈I

(
(Fi × Y ) \ Ui

)
.

The set (Fi×Y )\Ui is closed in Fi×Y and hence closed in X×Y . Moreover,
the family

(
(Fi × Y ) \ Ui

)
i∈I is locally finite in X × Y because (Fi × Y )i∈I

is locally finite. Since the union of a locally finite family of closed subsets is
again closed, the conclusion follows. �

Below we describe the strong map topology of F(X,Y ) when Y is (at least
locally) metrizable.

5.3. Corollary. Let (Fi)i∈I be a locally finite family of closed subsets of X
and (Zi)i∈I an arbitrary family of open subsets of Y . For each i ∈ I let di
be a metric for Zi (compatible with its topology) and choose ki ∈ ]0,+∞]. If
f : X → Y is a continuous map such that f(Fi) ⊂ Zi for all i ∈ I then the
set:

V
(
f ; (Fi, Zi, di, ki)i∈I

)
=
{
g ∈ F(X,Y ) : for all i ∈ I, g(Fi) ⊂ Zi and

di
(
f(x), g(x)

)
< ki, for all x ∈ Fi

}
is an open neighborhood of f in F(X,Y ) with respect to the strong map
topology.

Proof. Observe that the set:

Ui =
{

(x, y) ∈ Fi × Zi : di
(
f(x), y

)
< ki

}
is open in Fi × Y for all i ∈ I; moreover:

V
(
f ; (Fi, Zi, di, ki)i∈I

)
= G

(
(Fi)i∈I , (Ui)i∈I

)
,

and the conclusion follows from Lemma 5.2. �
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6. The Smallest Locally Arc-Connected Refinement of a
Topology

Let X be a topological space. We say that X is arc-connected if for
every x, y ∈ X there exists a continuous map γ : [0, 1] → X with γ(0) = x
and γ(1) = y. A subset A of X is called arc-connected if A is an arc-
connected topological space, endowed with the topology induced from X;
this is obviously the same as saying that for every x, y ∈ A there exists a
continuous map γ : [0, 1]→ X with γ(0) = x, γ(1) = y and Im(γ) ⊂ A. For
an arbitrary topological space, the relation:

x ∼ y ⇐⇒ there exists a continuous map γ : [0, 1]→ X with

γ(0) = x, γ(1) = y

is an equivalence relation on X. For every p ∈ X, the equivalence class C
containing p is the largest arc-connected subset of X containing p, i.e., C
is arc-connected and C contains any arc-connected subset of X containing
p. The equivalence classes are called the arc-connected components of the
topological space X. If A ⊂ X is a subset then the arc-connected components
of A are defined to be the arc-connected components of the topological space
A, endowed with the topology induced from X; obviously, the arc-connected
component of A containing p ∈ A is the largest arc-connected subset of X
which contains p and is contained in A.

6.1. Definition. We say that X is locally arc-connected if every point p ∈ X
has a fundamental system of arc-connected neighborhoods, i.e., if every
neighborhood of p contains a (not necessarily open) arc-connected neigh-
borhood of p.

Obviously if X is locally arc-connected then every open subset of X is
also locally arc-connected, when endowed with the topology induced from
X.

6.2. Lemma. If X is locally arc-connected then the arc-connected compo-
nents of an open subset of X are open.

Proof. Let U ⊂ X be open and let C be an arc-connected component of U .
Given p ∈ C, we can find an arc-connected neighborhood V of p contained
in U . Then p ∈ V ⊂ C and thus p is an interior point of C. �

6.3. Corollary. If X is locally arc-connected then every point of X has
a fundamental system of open arc-connected neighborhoods, i.e., for every
p ∈ X and every neighborhood V of p, there exists an arc-connected open
set C with p ∈ C ⊂ V .

Proof. Take C to be the arc-connected component of the interior of V con-
taining p. �



SOME GOOD LEMMAS 8

Let (X, τ) be a topological space and consider the set B ⊂ ℘(X) defined
by:

B =
{
C ⊂ X : C is an arc-connected component of some

open subset of (X, τ)
}
.

We claim that B is a basis for a topology on X. To prove that we have to
check that:

(i) every point of X belongs to some C ∈ B;
(ii) given C1, C2 ∈ B and p ∈ C1 ∩ C2 there exists C ∈ B with p ∈ C ⊂

C1 ∩ C2.

To prove (i), observe that the arc-connected components of X are in B and
they obviously form a covering of X. To prove (ii), we argue as follows; let
Ui be an open subset of X such that Ci is an arc-connected component of
Ui, i = 1, 2. Then p ∈ U1∩U2 and U1∩U2 is open in X, so the arc-connected
component C of U1 ∩ U2 containing p is in B. Moreover, C ⊂ Ui and the
arc-connectedness of C imply that C ⊂ Ci, i = 1, 2; thus C ⊂ C1 ∩ C2.

We denote by τac the (unique) topology on X having B as a basis. By
definition, the arc-connected components in (X, τ) of an open subset of
(X, τ) are open in (X, τac). Since every open subset of (X, τ) is the union
of its arc-connected components in (X, τ), it follows that:

τ ⊂ τac,

i.e., τac is a refinement of τ . We have the following basic lemma.

6.4. Lemma. Let Y be a locally arc-connected topological space and let f :
Y → X be a map. Then f : Y → (X, τ) is continuous if and only if
f : Y → (X, τac) is continuous.

Proof. Obviously the continuity of f with respect to τac implies the con-
tinuity of f with respect to τ , because τac refines τ . Now assume that f
is continuous with respect to τ and let us prove that f is continuous with
respect to τac at an arbitrary point p ∈ Y . Let C be a neighborhood of
f(p) in (X, τac); we can assume that C is a basic open set, i.e., that C is an
arc-connected component in (X, τ) of some open subset U of (X, τ). Then
f−1(U) is a neighborhood of p in Y ; since Y is locally arc-connected, we
can find an arc-connected neighborhood V of p in Y with V ⊂ f−1(U).
Then f(p) ∈ f(V ) ⊂ U and the continuity of f : Y → (X, τ) implies that
f(V ) is arc-connected in (X, τ). Hence V is a neighborhood of p in Y with
f(V ) ⊂ C and f is continuous at the point p. �

6.5. Corollary. A map γ : [0, 1]→ X is continuous with respect to τ if and
only if it is continuous with respect to τac. �

6.6. Corollary. A subset of X is arc-connected with respect to τ if and only
if it is arc-connected with respect to τac. �

6.7. Corollary. The space (X, τac) is locally arc-connected.
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Proof. Observe that τac admits a basis of open sets that are arc-connected
with respect to τ and thus also arc-connected with respect to τac. �

6.8. Corollary. The topology τac is the smallest refinement of τ which is lo-
cally arc-connected, i.e., every locally arc-connected topology in X containing
τ contains τac.

Proof. Let τ ′ be a locally arc-connected topology on X that contains τ .
Then the identity map Id : (X, τ ′) → (X, τ) is continuous and hence also
the map Id : (X, τ ′) → (X, τac) is continuous, because (X, τ ′) is locally
arc-connected. �

From now on we refer to τac as the smallest locally arc-connected refine-
ment of τ .

6.9. Lemma. Let (X, τ) be a topological space and let τac be the smallest
locally arc-connected refinement of τ . Let U ⊂ X be an open subset of
(X, τac) and denote by τU and (τac)U respectively the topology induced in U
by τ and by τac. Then (τac)U is the smallest locally arc-connected refinement
of τU .

Proof. Denote by (τU )ac the smallest locally arc-connected refinement of τU .
Since U is open in (X, τac), the topology (τac)U is locally arc-connected;
since obviously τU ⊂ (τac)U , we have also (τU )ac ⊂ (τac)U . We know that
the inclusion map:

(U, (τU )ac) −→ (X, τ)

is continuous. Since (U, (τU )ac) is locally arc-connected, also the inclusion
map:

(U, (τU )ac) −→ (X, τac)

is continuous and hence the identity map:

(U, (τU )ac) −→
(
U, (τac)U

)
is continuous, i.e., (τac)U ⊂ (τU )ac. �

In what follows we will use the following simple lemma.

6.10. Lemma. Let M be a topological space and let M =
⋃
i∈I Ui be an open

cover of M . Assume that each Ui is endowed with a maximal differentiable
atlas Ai, compatible with the topology that Ui inherits from M , such that
for all i, j ∈ I, Ui ∩ Uj inherits the same maximal differentiable atlas from
(Ui,Ai) and from (Uj ,Aj). Then there exists a unique maximal differen-
tiable atlas A on M that induces the atlas Ai on Ui for all i ∈ I. �

Now we prove the main the result.

6.11. Proposition. Let M be a differentiable manifold and let N be a subset
of M . Denote by τ the topology of M , by τN the topology induced by τ
on N and by (τN )ac the smallest locally arc-connected refinement of τN .
Assume that every point of N belongs to an open subset of (τN )ac which is
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an embedded submanifold of M . Then there exists a maximal differentiable
atlas A on N , compatible with the topology (tauN )ac, such that the inclusion
(N,A)→M is an immersion.

Proof. If U ⊂ N is an open subset with respect to (τN )ac that is embedded
in M , then we may endow U with the maximal differentiable atlas that
makes the inclusion U → M an embedding. Denote by τU the topology
induced on U by (N, τN ); observe that τU is also the topology induced on U
by (M, τ). Since U is open with respect to (τN )ac, Lemma 6.9 implies that
the topology induced on U by (τN )ac is the smallest locally arc-connected
refinement of τU . Since (U, τU ) is already locally arc-connected, we conclude
that τU is equal to the topology induced on U by (τN )ac.

Now let U , V be open subsets of
(
N, (τN )ac

)
that are embedded in M .

Then U ∩V is open in
(
N, (τN )ac

)
and contained in U ; hence U ∩V is open

in (U, τU ). Similarly, U ∩V is open in (V, τV ). Then U ∩V inherits the same
maximal differentiable atlas from U and from V : that is the unique maximal
differentiable atlas for which the inclusion U ∩ V → M is an embedding.
Finally, Lemma 6.10 gives us a maximal differentiable atlas A on N such
that every open subset of

(
N, (τN )ac

)
that is embedded on M is an open

submanifold of (N,A). This implies that the inclusion map (N,A)→M is
locally an embedding and hence an immersion. �

7. Shrinking

Recall that a topological space X is called normal if given disjoint closed
subsets F1, F2 ⊂ X we can find disjoint open sets U1, U2 ⊂ X with Fi ⊂ Ui,
i = 1, 2. The space X is called T4 if X is T1 (i.e., the points of X are
closed) and X is normal.

A family (Ui)i∈I of subsets of X is called pointwise finite if for every
x ∈ X there exists at most a finite number of indices i ∈ I with x ∈ Ui. We
say that (Ui)i∈I is a covering of X if X =

⋃
i∈I Ui; we say that (Ui)i∈I is an

open covering of X if in addition each Ui is open in X. Let (Ui)i∈I be an
open covering of X. A shrinking of (Ui)i∈I is an open covering (Vi)i∈I of X
such that Vi ⊂ Ui for all i ∈ I.

Our main result is the following:

7.1. Lemma. A topological space X is normal if and only if every pointwise
finite open covering of X has a shrinking.

Proof. We start with the easier part. Assume that every pointwise finite
open cover of X has a shrinking and let us prove that X is normal. Given
disjoint closed subsets F1, F2 ⊂ X then their complements X \ F1, X \ F2

form a (obviously pointwise finite) open cover of X. We can thus find open
sets V1, V2 ⊂ X such that X = V1 ∪ V2 and Vi ⊂ X \ Fi, i = 1, 2. Then
X \ V1 and X \ V2 are disjoint open sets containing F1 and F2 respectively.

Now we go for the harder part. Assume that X is normal and let X =⋃
i∈I Ui be a pointwise finite open cover of X. We will use Zorn’s Lemma.
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Let A denote the set of all families of open sets (Vj)j∈J , J ⊂ I, such that

Vj ⊂ Uj for all j ∈ J and:

(7.1) X =
( ⋃
j∈J

Vj

)
∪
( ⋃
i∈I\J

Ui

)
.

The proof will be completed once we show that there exists a family (Vj)j∈J
in A with J = I. We define a partial order � on A by requiring that
(Vj)j∈J � (V ′j )j∈J ′ if and only if J ⊂ J ′ and Vj = V ′j for all j ∈ J . Let{

(V λ
j )j∈Jλ : λ ∈ Λ

}
be an arbitrary linearly ordered subset of A. We set

J =
⋃
λ∈Λ Jλ ⊂ I and for all j ∈ J , Vj = V λ

j , where λ ∈ Λ is chosen with

j ∈ Jλ. We obviously have a well-defined family of open sets (Vj)j∈J and

V j ⊂ Uj for all j ∈ J . We show that (7.1) holds. Let x ∈ X be fixed and
consider the set F =

{
i ∈ I : x ∈ Ui

}
. Since F is finite, there exists λ ∈ Λ

with F ∩ J ⊂ Jλ. We know that:

X =
( ⋃
j∈Jλ

Vj

)
∪
( ⋃
i∈I\Jλ

Ui

)
.

If x ∈
⋃
j∈Jλ Vj then x ∈

⋃
j∈J Vj and then (7.1) is proved; otherwise, there

exists i ∈ I \Jλ with x ∈ Ui, i.e., there exists i ∈ (I \Jλ)∩F . But F ∩J ⊂ Jλ
implies (I \ Jλ) ∩ F ⊂ I \ J and thus again (7.1) is proved.

We are now under the hypothesis of the Zorn Lemma. Let (Vj)j∈J be
a maximal element of A and assume by contradiction that J  I. Choose
i0 ∈ I \ J . We will obtain a contradiction if we can find an open set V with
V ⊂ Ui0 and:

X =
( ⋃
j∈J

Vj

)
∪ V ∪

( ⋃
i∈I\J
i 6=i0

Ui

)
.

Denote by F the complement of the open set:( ⋃
j∈J

Vj

)
∪
( ⋃
i∈I\J
i 6=i0

Ui

)
,

so that F and X \ Ui0 are disjoint closed subsets of X. Since X is normal,
we can find disjoint open sets V , W containing F and X \ Ui0 respectively.
Then V ⊂ X \W ⊂ Ui0 and X = (X \F )∪V . This concludes the proof. �

7.2. Corollary. Let X be a normal topological space, F ⊂ X be a closed
subset and (Ui)i∈I be a pointwise finite family of open subsets of X such
that F ⊂

⋃
i∈I Ui. Then there exists a family (Vi)i∈I of open subsets of X

such that Vi ⊂ Ui for all i ∈ I and F ⊂
⋃
i∈I Vi.

Proof. Take a shrinking of the pointwise finite open cover:

X = (X \ F ) ∪
⋃
i∈I

Ui
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of X; we then obtain a family (Vi)i∈I of open sets and an open set A ⊂ X
with A ⊂ X \ F , X = A ∪

⋃
i∈I Vi and Vi ⊂ Ui for all i ∈ I. Obviously

F ⊂
⋃
i∈I Vi. �

8. Paracompactness

Let (Ui)i∈I be a family of subsets of a topological space X. We say that
(Ui)i∈I is locally finite (in X) if every point of x has a neighborhood that
intersects Ui for at most a finite number of indices i ∈ I. Given coverings
(Ui)i∈I , (Vj)j∈J of X, we say that (Vj)j∈J is a refinement of (Ui)i∈I if for
every j ∈ J there exists i ∈ I with Vj ⊂ Ui; we say that (Vj)j∈J is a strict
refinement of (Ui)i∈I if J = I and Vi ⊂ Ui for all i ∈ I.

8.1. Lemma. If a family (Ui)i∈I is locally finite in a topological space X
then the family (Ui)i∈I is also locally finite in X.

Proof. Observe that if V is an open neighborhood of x ∈ X then V intersects
Ui if and only if V intersects Ui. �

8.2. Lemma. If (Fi)i∈I is a locally finite family of closed subsets of a topo-
logical space X then the union F =

⋃
i∈I Fi is closed.

Proof. Choose x ∈ X with x 6∈ F . Let V be a neighborhood of x such that
the set J =

{
i ∈ I : Fi ∩ V 6= ∅

}
is finite. Then:

W =
(⋂
i∈J

(X \ Fi)
)
∩ V

is a neighborhood of x that is disjoint from F . �

8.3. Corollary. If X is a topological space and (Ui)i∈I is a locally finite
family in X then: ⋃

i∈I
Ui =

⋃
i∈I

Ui.

Proof. The inclusion: ⋃
i∈I

Ui ⊃
⋃
i∈I

Ui

holds in general. The reverse inclusion is proven by observing that
⋃
i∈I Ui

is closed, by Lemmas 8.1 and 8.2. �

A topological space X is called paracompact if every open cover of X
admits a locally finite open refinement. We say that X is hereditarily para-
compact if every subspace of X is paracompact. We have the following basic
lemmas.

8.4. Lemma. If X is paracompact then every open cover of X admits a
strict locally finite open refinement.
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Proof. Let (Ui)i∈I be an open cover of X and let (Vj)j∈J be a locally finite
open refinement. Define a map φ : J → I by choosing for every j ∈ J an
index φ(j) ∈ I with Vj ⊂ Uφ(j). Set:

Wi =
⋃
j∈J
φ(j)=i

Vj ,

for all i ∈ I. Then it is easy to see that (Wi)i∈I is a strict locally finite open
refinement of (Ui)i∈I . �

8.5. Lemma. If every open subspace of X is paracompact then X is hered-
itarily paracompact.

Proof. Let Y ⊂ X be an arbitrary subspace and let (Ui)i∈I be an open cover
of Y . For each i ∈ I choose an open subset Vi ⊂ X with Ui = Vi ∩ Y . By
hypothesis, the open set V =

⋃
i∈I Vi is paracompact; thus, there exists a

locally finite open refinement (Wj)j∈J of the open cover (Vi)i∈I of V . Now
it is easy to see that (Wj ∩ Y )j∈J is a locally finite open refinement of the
open cover (Ui)i∈I of Y . �

8.6. Lemma. Let X be a paracompact space and F ⊂ X be a closed subset.
Let (Ui)i∈I be a family of open sets with F ⊂

⋃
i∈I Ui. Then there exists a

family of open sets (Vi)i∈I which is locally finite in X, Vi ⊂ Ui for all i ∈ I
and F ⊂

⋃
i∈I Vi.

Proof. The open cover X = (X \ F ) ∪
⋃
i∈I Ui of X admits a strict locally

finite open refinement, i.e., we can find a family of open sets (Vi)i∈I which
is locally finite in X, an open subset A ⊂ X with Vi ⊂ Ui for all i ∈ I,
A ⊂ X \ F and X = A ∪

⋃
i∈I Vi. Obviously F ⊂

⋃
i∈I Vi. �

8.7. Corollary. If X is paracompact and F ⊂ X is a closed subspace then
F is paracompact.

Proof. let (Wi)i∈I be an open cover of F and for each i ∈ I choose an
open set Ui ⊂ X with Wi = Ui ∩ F . Choose (Vi)i∈I as in Lemma 8.6.
Then (Vi∩F )i∈I is a (strict) locally finite open refinement of the open cover
(Wi)i∈I of F . �

8.8. Lemma. Every compact space is paracompact. �

Recall that a topological space X is called regular if given x ∈ X and
a closed subset F ⊂ X with x 6∈ F then we can find disjoint open sets
V,W ⊂ X with x ∈ V and F ⊂ W . The space X is called T3 if X is T1
and regular. In view of Lemma 8.8, we know that paracompact spaces may
not be Hausdorff. On the other hand, Hausdorff paracompact spaces are
automatically T3 and T4, as we show in the following:

8.9. Lemma. A paracompact Hausdorff space is T3.

Proof. Let X be a paracompact Hausdorff space, x ∈ X be a point and
F ⊂ X be a closed subset with x 6∈ F . For every y ∈ F we can find an
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open neighborhood Uy of y with x 6∈ Uy. Then X = (X \ F ) ∪
⋃
y∈F Uy

is an open cover of X, from which we can find a strict locally finite open
refinement, i.e., a locally finite family of open sets (Vy)y∈F and an open
subset W ⊂ X \F with Vy ⊂ Uy for all y ∈ Y and X = W ∪

⋃
y∈F Vy. Then⋃

y∈F Vy is an open set containing F and, by Corollary 8.3:

x 6∈
⋃
y∈F

Vy =
⋃
y∈Y

Vy. �

8.10. Lemma. A paracompact Hausdorff space is T4.

Proof. Let X be a paracompact Hausdorff space and let F1, F2 ⊂ X be
disjoint closed subspaces. We already know by Lemma 8.9 that X is T3, so
for each x ∈ F1 we can find an open neighborhood Ux of x with:

Ux ∩ F2 = ∅.
Then X =

⋃
x∈F1

Ux∪ (X \F1) is an open cover of X, from which we obtain
a strict locally finite open refinement, i.e., a locally finite family of open sets
(Vx)x∈F1 and an open set W ⊂ X \ F1 with Vx ⊂ Ux for all x ∈ F1 and
X =

⋃
x∈X Vx ∪W . Then

⋃
x∈F1

Vx is an open set containing F1 and its

closure
⋃
x∈F1

Vx (Corollary 8.3) is disjoint from F2. �

Recall that, given topological spaces X, Y then a map f : X → Y is called
a local homeomorphism if for every x ∈ X there exists an open set U in X
such that x ∈ U , f(U) is open in Y and f |U : U → f(U) is a homeomor-
phism. Observe that a local homeomorphism is continuous and open (i.e.,
takes open sets to open sets); moreover, a bijective local homeomorphism is
a homeomorphism. Our main result is the following:

8.11. Lemma (the tubular neighborhood trick). Let X, Y be topological
spaces, with Y hereditarily paracompact and Hausdorff. Let f : X → Y be
a local homeomorphism; if S ⊂ X is a subset such that f |S : S → f(S) is a
homeomorphism then there exists an open subset Z ⊂ X containing S such
that f |Z : Z → f(Z) is a homeomorphism.

We need a preparatory lemma.

8.12. Lemma. Let X, Y be topological spaces, f : X → Y be a continuous
map and S ⊂ X be a subset such that f |S : S → f(S) is an open map.
Given x ∈ S and an open neighborhood U of x in X then we can find an
open neighborhood V of x contained in U such that f(V ∩S) = f(V )∩f(S).

Proof. The set U ∩ S is open in S and thus f(U ∩ S) is open in f(S); let
A ⊂ Y be an open set with f(U∩S) = A∩f(S). Then V = U∩f−1(A) is an
open neighborhood of x contained in U . Obviously f(V ∩S) ⊂ f(V )∩f(S);
moreover:

f(V ) ∩ f(S) ⊂ A ∩ f(S) = f(U ∩ S) = f(V ∩ S).

The last equality above follows by observing that U ∩S ⊂ f−1(A) and hence
U ∩ S = V ∩ S. �
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Proof of Lemma 8.11. It suffices to find an open set Z ⊂ X containing S
such that f |Z is injective. For each x ∈ S let U ′x be an open neighborhood
of x in X such that f(U ′x) = V ′x is open in Y and f |U ′x : U ′x → V ′x is a
homeomorphism. By Lemma 8.12, we can assume that:

(8.1) f(U ′x ∩ S) = V ′x ∩ f(S).

The set:
Y0 =

⋃
x∈S

V ′x

is open in Y and it contains f(S). Moreover, Y0 is Hausdorff and paracom-
pact; therefore, by Lemma 8.10, Y0 is also T4. Let Y0 =

⋃
i∈I Vi be a locally

finite open refinement of the open cover Y0 =
⋃
x∈S V

′
x of Y0 (the family

(Vi)i∈I is locally finite in Y0). For each i ∈ I, choose x ∈ S with Vi ⊂ V ′x
and set:

Ui = (f |U ′x)−1(Vi).

Then Ui ⊂ U ′x is open in X, f |Ui : Ui → Vi is a homeomorphism and from
(8.1) we get:

(8.2) f(Ui ∩ S) = Vi ∩ f(S),

for all i ∈ I. By Lemma 7.1, there exists a shrinking Y0 =
⋃
i∈IWi of the

open cover Y0 =
⋃
i∈I Vi of Y0, i.e., Wi ⊂ Vi for all i ∈ I (the closure on Wi

will always be taken with respect to the space Y0). For each i ∈ I set:

Zi = (f |Ui)−1(Wi).

Then Zi ⊂ Ui is open in X, f |Zi : Zi → Wi is a homeomorphism and from
(8.2) we get:

(8.3) f(Zi ∩ S) = Wi ∩ f(S),

for all i ∈ I. We claim that:

(8.4) S ⊂
⋃
i∈I

Zi.

Namely, given x ∈ S, there exists i ∈ I with f(x) ∈ Wi. Then f(x) ∈
Wi ∩ f(S) and therefore, by (8.3), we can find y ∈ Zi ∩ S with f(x) = f(y).
Since f |S is injective, we obtain x = y ∈ Zi, proving the claim.

Now for x ∈ S, we set:

Ix =
{
i ∈ I : f(x) ∈Wi

}
;

since the cover Y0 =
⋃
i∈IWi is locally finite, the set Ix is finite and

nonempty. Observe that for i ∈ Ix we have, using (8.2):

f(x) ∈Wi ∩ f(S) ⊂ Vi ∩ f(S) = f(Ui ∩ S)

and thus the injectivity of f |S implies x ∈ Ui. We have just shown that:

(8.5) x ∈
⋂
i∈Ix

Ui,

for all x ∈ S.
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Our next goal is to find for each x ∈ S an open neighborhood Gx of f(x)
in Y0 with the following properties:

(i) for each i ∈ I, Gx intersects Wi if and only if i ∈ Ix;
(ii) Gx ⊂ f

(⋂
i∈Ix Ui

)
.

The desired set Gx can be defined by:

Gx = f
( ⋂
i∈Ix

Ui

)
∩
(
Y0 \

⋃
i∈I\Ix

Wi

)
.

The fact that f(x) ∈ Gx follows from (8.5) and property (ii) is obvious.
For property (i), observe that i ∈ Ix implies f(x) ∈ Gx ∩ Wi and thus
Gx ∩Wi 6= ∅; moreover, for i ∈ I \ Ix we obviously have Gx ∩Wi = ∅. The
fact that Gx is open follows from the fact that f is an open map and from
Lemma 8.2.

Now set G =
⋃
x∈S Gx and finally:

Z = f−1(G) ∩
⋃
i∈I

Zi.

Obviously Z is open in X and S ⊂ Z, by (8.4). We complete the proof by
showing that f |Z is injective. Let x, y ∈ Z be chosen with f(x) = f(y). We
can find i, j ∈ I with x ∈ Zi and y ∈ Zj . Moreover, f(x) = f(y) ∈ Gz for
some z ∈ S. We have f(x) ∈ Gz ∩Wi and f(y) ∈ Gz ∩Wj , so that i, j ∈ Iz,
by property (i). Now property (ii) implies Gz ⊂ f(Ui ∩ Uj); we can thus
find p ∈ Ui ∩ Uj with f(x) = f(p) = f(y). Since f is injective in Ui and in
Uj , we conclude that x = p = y. �

8.13. Remark. In Lemma 8.11, if we add the hypothesis that f(S) be closed in
Y then we may replace the hypothesis that Y be hereditarily paracompact
by the hypothesis that Y be paracompact. To this aim, the proof of the
lemma has to be adapted as follows. When we take the locally finite open
refinement (Vi)i∈I of (V ′x)x∈S , we use Lemma 8.6 and obtain a family of
open sets (Vi)i∈I which is locally finite in Y , f(S) ⊂

⋃
i∈I Vi and each Vi

contained in some V ′x (actually Lemma 8.6 allows us to take I = S and
Vx ⊂ V ′x, but we don’t need that). Similarly, when we take the shrinking
(Wi)i∈I of (Vi)i∈I we may use Corollary 7.2 to obtain a family of open sets
(Wi)i∈I with Wi ⊂ Vi for all i ∈ I and f(S) ⊂

⋃
i∈IWi (in this case we may

even take the closure of Wi in Y , rather than in Y0).

8.14. Corollary. Let X be a Hausdorff topological space and D ⊂ X be a
discrete subspace. If either X is paracompact and D is closed or X is hered-
itarily paracompact then for each p ∈ D we can find an open neighborhood
Up of p in D with Up ∩ Uq = ∅ for all p, q ∈ D, p 6= q.

Proof. Denote by π : D×X → X the projection onto the second coordinate
and by ∆ ⊂ D × X the diagonal of D × D. Then π is a local homeomor-
phism and π|∆ : ∆ → D is a homeomorphism. By Lemma 8.11 (see also
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Remark 8.13) there exists an open subset U ⊂ D × X containing ∆ such
that π|U is injective. The proof is now completed by setting:

Up =
{
x ∈ X : (p, x) ∈ U

}
,

for all p ∈ D. �

8.15. Remark. If X is metrizable then there exists a much simpler proof of
Corollary 8.14. Namely, for each p ∈ D let rp > 0 be such that the open
ball B(p; rp) intersects D only at p. The desired set Up can be taken equal
to B

(
p;

rp
2

)
.

If X is a topological space then a sheaf over X is a pair (S, π), where S
is a topological space and π : S → X is a local homeomorphism. If A ⊂ X
then a section of the sheaf (S, π) over A is a map s : A→ S with π◦s = IdA.

8.16. Corollary. Let X be a Hausdorff space and A ⊂ X a subset. As-
sume that either X is paracompact and A is closed or that X is hereditarily
paracompact. Given a sheaf (S, π) over X then every continuous section
s : A → S of (S, π) over A extends to a continuous section defined on an
open subset U ⊂ X containing A.

Proof. We have that π : S → X is a local homeomorphism (by definition)
and that π|s(A) : s(A) → A is a homeomorphism (whose inverse is s). By
Lemma 8.11 (see also Remark 8.13), there exists an open subset Z ⊂ S
containing s(A) such that π|Z : Z → π(Z) is a homeomorphism. Now
simply set U = π(Z) and observe that (π|Z)−1 : U → S extends s. �

8.17. Definition. A topological space X is called strongly paracompact if
for every basis B of open subsets of X there exists a locally finite open cover
(Ui)i∈I of X with Ui ∈ B for all i ∈ I.

8.18. Lemma. If X is strongly paracompact then for every basis of open sets
B and for every open cover (Ui)i∈I of X, there exists an open locally finite
refinement (Vj)j∈J of (Ui)i∈I with Vj ∈ B for all j ∈ J . In particular, every
strongly paracompact space is paracompact.

Proof. The set:

B′ =
{
B ∈ B : B ⊂ Ui, for some i ∈ I

}
,

is a basis of open sets for X. Then simply take (Vj)j∈J to be a locally finite
open cover of X with Vj ∈ B′ for every j ∈ J . �

Observe that in general one is not supposed to find strict locally finite
open refinements of an open cover (Ui)i∈I consisting of elements of B.

Recall that a topological space X is called σ-compact if X is a countable
union of compact subspaces. Every second countable locally compact space
is σ-compact.

We have the following important result concerning strong paracompact-
ness:
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8.19. Lemma. Every locally compact Hausdorff σ-compact topological space
is strongly paracompact.

Proof. We can write X =
⋃+∞
n=1Kn as a union of compact subsets Kn ⊂ X

with Kn contained in the interior of Kn+1 for all n. This is a standard
construction whose proof we recall. Write X =

⋃+∞
n=1 Ln as a union of

compact subsets Ln. We construct the sequence Kn inductively. Take K1 =
L1. If Kn has been constructed, cover Kn with a finite number of open sets
with compact closure; now define Kn+1 to be equal to the union of Ln+1

and the closure of the finite union of such open sets. This completes the
construction. For the rest of the proof we set Kn = ∅ for n ≤ 0.

Now let B be a basis of open subsets of X and let us construct a locally
finite open cover of X consisting of elements of B. For each n ≥ 1 we set:

Cn = Kn \Kn−1 = Kn \ int(Kn−1);

observe that X =
⋃+∞
n=1Cn. Let n ≥ 1 be fixed. For each x in the compact

set Cn, we choose V n
x ∈ B with x ∈ V n

x ⊂ int(Kn+1) \ Kn−2. Consider a
finite subcover:

Cn ⊂
rn⋃
j=1

V n
xnj
,

of the open cover Cn ⊂
⋃
x∈Cn V

n
x . Now the family:

V =
(
V n
xnj

)
1≤j≤rn, n≥1

is an open cover of X consisting of elements of B. We now show that V
is locally finite. Let x ∈ X be fixed and let n ≥ 1 be the smallest integer
with x ∈ Kn. Then A = int(Kn+1) \ Kn−1 is an open neighborhood of x.
Moreover, A does not intersect V m

xmj
if m ≤ n − 2 or m ≥ n + 3. Thus A

intersects at most
∑n+2

k=n−1 rk < +∞ elements of V. �

9. Topological Vector Spaces

Let X be a vector space over K (K = R or K = C) and let τ be a topology
on X. We say that (X, τ) is a topological vector space if the maps:

(9.1) X ×X 3 (x, y) 7−→ x+ y ∈ X, K×X 3 (λ, x) 7−→ λx ∈ X,

are continuous, where the products X × X and K × X are endowed with
the usual product topologies and K is endowed with the usual Euclidean
topology.

9.1. Lemma. Let (X, τ) be a topological vector space and let T : Kn → X be
a linear map. If Kn is endowed with the standard Euclidean topology then
T is continuous.

Proof. Let (ei)
n
i=1 denote the canonical basis of Kn and set T (ei) = bi,

i = 1, . . . , n. If πi : Kn → K denotes the projection onto the first coordinate
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then:

T (v) =

n∑
i=1

πi(v)bi.

Since the projections of Kn are continuous and the vector space operations
of X are continuous, it follows that T is continuous. �

9.2. Lemma. Let X be a topological vector space. If U ⊂ X is a neigh-
borhood of the origin then there exists an open neighborhood of the origin
V ⊂ X such that every segment with endpoints in V is contained in U , i.e.,
(1− t)x+ ty ∈ U for all x, y ∈ V , t ∈ [0, 1].

Proof. We may assume without loss of generality that U is open. The map
S : [0, 1] ×X ×X → X defined by S(t, x, y) = (1 − t)x + ty is continuous,
because the vector space operations of X are continuous. Thus, S−1(U) is
an open subset of the product [0, 1]×X ×X containing [0, 1]× {0} × {0}.
Since [0, 1] is compact, there exists a neighborhood A of (0, 0) in X × X
such that [0, 1]× A ⊂ S−1(U). We may thus find an open neighborhood V
of 0 in X such that V × V ⊂ A. Hence every segment with endpoints in V
is contained in U . �

9.3. Definition. A topology in a vector space X is said to be translation
invariant if for every v ∈ X the translation map:

tv : X 3 x 7−→ x+ v ∈ X
is continuous.

Since the inverse of the translation tv is the translation t−v, it follows that
if X is endowed with a translation invariant topology then all translation
maps are actually homeomorphisms of X. Obviously the topology of a
topological vector space is translation invariant.

9.4. Lemma. Let X, Y be vector spaces over K endowed with translation in-
variant topologies (this is the case if X and Y are topological vector spaces).
Then a linear map T : X → Y is continuous if and only if it is continuous
at the origin.

Proof. Obviously if T is continuous then T is continuous at the origin. As-
sume now that T is continuous at the origin. Since T is linear, for every
v ∈ X, we have:

(9.2) T = tT (v) ◦ T ◦ t−v.
Since translations are continuous, the continuity of T at the origin implies
the continuity of the righthand side of (9.2) at the point v. Thus, T is
continuous at the point v. �

9.5. Lemma. Let X be a topological vector space. If U ⊂ X is open and
λ ∈ K is not zero then the set:

(9.3) λU =
{
λx : x ∈ U

}
,

is open in X.
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Proof. Simply observe that the homotety x 7→ λx is a homeomorphism of
X onto itself. �

9.6. Lemma. let τ be a topology on Kn for which (Kn, τ) is a Hausdorff topo-
logical vector space. Then τ coincides with the standard Euclidean topology
of Kn (in particular, all norms on a finite-dimensional vector space define
the same topology).

Proof. Denote by τe the Euclidean topology of Kn. By Lemma 9.1, the
identity map:

(9.4) Id : (Kn, τe) −→ (Kn, τ)

is continuous. We will show now that the identity map:

(9.5) Id : (Kn, τ) −→ (Kn, τe)

is also continuous. By Lemma 9.4, it suffices to show that (9.5) is continuous
at the origin. We claim that such continuity will follow from the existence of
a neighborhood of the origin in (Kn, τ) which is bounded with respect to the
Euclidean metric. Namely, assume that there exists an open neighborhood
V of 0 in (Kn, τ) which is bounded with respect to the Euclidean metric.
Given an Euclidean ball B(0, r), r > 0, we may then find λ > 0 such that
λV ⊂ B(0, r); thus, by Lemma 9.5, λV is a neighborhood of the origin in
(Kn, τ) which is carried by (9.5) to a subset of B(0, r). This proves the
claim.

Let us now show the existence of a neighborhood V of the origin in (Kn, τ)
which is bounded in the Euclidean metric. Let Sn−1 denote the Euclidean
unit sphere of Kn. Since Sn−1 is compact in (Kn, τe) and (9.4) is continuous,
it follows that Sn−1 is also compact in (Kn, τ). Since τ is Hausdorff, Sn−1 is
closed (and hence Kn \Sn−1 is open) in (Kn, τ). By Lemma 9.2, there exists
an open neighborhood of the origin V in (Kn, τ) such that every segment
with endpoints in V is contained in U = Kn \ Sn−1. But this implies that
V is contained in the open unit ball (because a segment with one endpoint
outside the open unit ball and the other endpoint at the origin crosses the
sphere Sn−1). Hence V is bounded. �

We recall a couple of basic definitions and a few facts from general topol-
ogy.

9.7. Definition. Let
(
(Yi, τi)

)
i∈I be a family of topological spaces, X be a

set and for each i ∈ I let fi : X → Yi be a map; the topology on X induced
by the family of maps (fi)i∈I is the smallest topology on X for which all
the maps fi are continuous (it is the intersection of all topologies on X
containing the sets f−1

i (U), U ∈ τi, i ∈ I).
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A basis of open sets for the topology induced by the maps fi consists of
the sets of the form2:

(9.6) f−1
i1

(U1) ∩ . . . ∩ f−1
ik

(Uk),

with i1, . . . , ik ∈ I, U1 ∈ τi1 , . . . , Uk ∈ τik . Given a map g defined in some
topological space and taking values in X , then g is continuous at a given
point with respect to the topology induced by the maps fi if and only if
fi ◦ g is continuous at that point, for all i ∈ I.

9.8. Definition. Given a family (τi)i∈I of topologies in a set X then the
supremum

sup
i∈I

τi

is the smallest topology in X that contains τi for all i ∈ I, i.e., it is the
topology induced by the identity maps:

Id : X −→ (X , τi), i ∈ I.

A basis of open sets for the topology supi∈I τi consists of the sets of the
form:

U1 ∩ . . . ∩ Uk,
with U1 ∈ τi1 , . . . , Uk ∈ τik , i1, . . . , ik ∈ I. Given a map g defined in some
topological space and taking values in X , then g is continuous at a given
point with respect to the topology supi∈I τi if and only if g is continuous at
that point with respect to τi, for all i ∈ I.

9.9. Lemma. Let (Xi)i∈I be a family of topological vector spaces over K, X
be a vector space over K and for each i ∈ I let Ti : X → Xi be a linear map.
The topology on X induced by the maps Ti makes it into a topological vector
space.

Proof. To prove the continuity of the maps (9.1), we have to prove the
continuity of the maps:

X ×X 3 (x, y) 7−→ Ti(x+ y) = Ti(x) + Ti(y) ∈ Xi,(9.7)

K×X 3 (λ, x) 7−→ Ti(λx) = λTi(x) ∈ Xi,(9.8)

for all i ∈ I. The map (9.7) is the composite of the map:

Ti × Ti : X ×X 3 (x, y) 7−→
(
Ti(x), Ti(y)

)
∈ Xi ×Xi,

with the map:
Xi ×Xi 3 (z, w) 7−→ z + w ∈ Xi,

and therefore it is continuous. Similarly, the map (9.8) is the composite of
the map:

Id× Ti : K×X 3 (λ, x) 7−→
(
λ, Ti(x)

)
∈ K×Xi,

2When I is empty, the induced topology is the chaotic topology {∅,X}. In this case,
the only possibility in (9.6) is k = 0 and the intersection in (9.6) is understood to be equal
to X .
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with the map:
K×Xi 3 (λ, z) 7−→ λz ∈ Xi,

and therefore it is also continuous. �

9.10. Corollary. Let X be a vector space over K and let (τi)i∈I be a family
of topologies on X such that, for all i ∈ I, (X, τi) is a topological vector
space over K. If τ = supi∈I τi then (X, τ) is a topological vector space over
K.

Proof. In Lemma 9.9 let Xi be X endowed with τi and let Ti be the identity
map of X. �

9.11. Lemma. Let X be a complex vector space endowed with a topology. If
the maps:

(9.9)

X ×X 3 (x, y) 7−→ x+ y ∈ X,
R×X 3 (λ, x) 7−→ λx ∈ X,

X 3 x 7−→ ix ∈ X
are continuous then also the map:

(9.10) C×X 3 (λ, x) 7−→ λx ∈ X
is continuous.

Proof. By identifying C with R × R, the map (9.10) is identified with the
map:

R×R×X 3 (a, b, x) 7−→ ax+ bix ∈ X,
which can be easily written as a composition involving the maps (9.9). �

10. Locally convex topologies

Let X be a vector space over K, where K = R or K = C. A semi-norm on
X is a non negative real valued function p : X → R satisfying the triangle
inequality:

p(x+ y) ≤ p(x) + p(y), x, y ∈ X,
and the condition:

(10.1) p(λx) = |λ|p(x), λ ∈ K, x ∈ X.
Condition (10.1) implies p(0) = 0 (set x = 0 and λ = 0). Observe that
condition (10.1) depends on the field K; we shall sometimes speak of a real
semi-norm (resp., a complex semi-norm) when condition (10.1) is satisfied3

with K = R (resp., with K = C).

10.1. Lemma. Let X be a vector space over K.

(a) given semi-norms p, p′ on X then p+ p′ is a semi-norm on X;

3When we speak just of a “semi-norm” on a vector space X we mean that K in (10.1)
is the scalar field of the space X; however, when X is complex, it is more convenient to
speak of a “real semi-norm” on X than to speak of a “semi-norm in the real vector space
obtained from X by restricting to R×X the operation of multiplication by scalars”.
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(b) given a non empty family of semi-norms (pi)i∈I on X, if the supre-
mum:

p(x)
def
= sup

i∈I
pi(x)

is finite for all x ∈ X then p is a semi-norm on X (in particular, if
I is finite then p(x) = maxi∈I pi(x) defines a semi-norm on X);

(c) given another vector space Y over K, a linear map T : X → Y and
a semi-norm p on Y then p ◦ T is a semi-norm on X.

Proof. Straightforward. �

10.2. Lemma. Let X be a vector space endowed with a translation invariant
topology (see Definition 9.3; that is the case if X is a topological vector space)
and let p : X → R be a semi-norm in X. Then p is continuous if and only if
it is continuous at the origin (where R is endowed with the usual Euclidean
topology).

Proof. Obviously if p is continuous then p is continuous at the origin. Con-
versely, assume that p is continuous at the origin and let x ∈ X and ε > 0
be given. We have to show that for y in some neighborhood of x we have
|p(y)− p(x)| < ε. The triangle inequality for p easily implies:

|p(y)− p(x)| ≤ p(y − x),

so that |p(y)− p(x)| < ε for all y in the set:

(10.2)
{
y ∈ X : p(y − x) < ε

}
.

But the set (10.2) is the image under the translation tx : y 7→ y+x of the set
p−1
(

]−∞, ε[
)
, which is a neighborhood of the origin, by the continuity of p

at the origin. Since the translation tx is a homeomorphism, the set (10.2) is
a neighborhood of x. �

10.3. Corollary. Let X be a topological vector space and let p : X → R be a
semi-norm in X. Then p is continuous if and only if p is bounded in some
neighborhood of the origin.

Proof. If p is continuous then p−1
(

]−∞, 1[
)

is a neighborhood of the origin
in which p is bounded. Conversely, if there exists a neighborhood of the
origin V and a constant c > 0 such that p(x) < c for all x ∈ V then for all
ε > 0 the set (recall (9.3)):

W = ε
cV

is a neighborhood of the origin such that p(y) < ε, for all y ∈ W , so that p
is continuous at the origin and hence continuous. �

A semi-norm p on X defines a pseudo-metric4:

X ×X 3 (x, y) 7−→ p(x− y) ∈ R

4A pseudo-metric satisfies the same axioms of a metric, except for the fact that the
distance between distinct points is allowed to be zero.
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on X which defines a topology τ(p) on X. By definition, a subset U of X is
in τ(p) if and only if for every x ∈ U there exists r > 0 such that the open
ball of center x and radius r:

(10.3)
{
y ∈ X : p(y − x) < r

}
is contained in U .

10.4. Lemma. If p is a semi-norm on a vector space X then X endowed with
the topology τ(p) is a topological vector space. Moreover, if X is endowed
with τ(p) then the map p : X → R is continuous.

Proof. We have to prove the continuity of the maps:

X ×X 3 (x, y) 7−→ x+ y ∈ X,(10.4)

K×X 3 (λ, x) 7−→ λx ∈ X.(10.5)

The continuity of the sum map (10.4) follows easily from the inequality:

p
(
(x′ + y′)− (x+ y)

)
≤ p(x′ − x) + p(y′ − y), x, y, x′, y′ ∈ X.

More explicitly, given x, y ∈ X and ε > 0 then it follows from such inequality
that:

p
(
(x′ + y′)− (x+ y)

)
< ε,

for all x′, y′ ∈ X with p(x′ − x) < ε
2 and p(y′ − y) < ε

2 . For the continuity
of the multiplication map (10.5), observe that for x, x′ ∈ X, λ, λ′ ∈ K, we
have:

p(λ′x′ − λx) ≤ p
(
λ′(x′ − x)

)
+ p
(
(λ′ − λ)x

)
= |λ′|p(x′ − x) + |λ′ − λ|p(x),

so that, if |λ− λ′| ≤ 1, then:

p(λ′x′ − λx) ≤
(
|λ|+ 1

)
p(x′ − x) + |λ′ − λ|p(x).

Thus, given x ∈ X, λ ∈ K, ε > 0, we have:

p(λ′x′ − λx) < ε

provided that x′ ∈ X, λ′ ∈ K satisfy:

p(x′ − x) <
ε

2
(
|λ|+ 1

) , |λ′ − λ| < min
{ ε

2
(
p(x) + 1

) , 1}.
Finally, for the continuity of the map p, simply observe that the open ball
p−1
(

]−∞, 1[
)

is a neighborhood of the origin on which p is bounded, so that
p is continuous, by Corollary 10.3. �

10.5. Lemma. Let X be a vector space and p be a semi-norm on X. The
topology τ(p) is the smallest translation invariant topology on X (see Defi-
nition 9.3) for which the map p : X → R is continuous, i.e., τ(p) is a trans-
lation invariant topology on X for which p is continuous and it is contained
in every translation invariant topology τ on X for which p is continuous.
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Proof. It follows from Lemma 10.4 that τ(p) is a translation invariant topol-
ogy for which p is continuous. Let τ be a translation invariant topology on
X for which p is continuous. The open ball (10.3) is the image under the
translation tx : y 7→ y + x of the set p−1

(
]−∞, r[

)
and therefore it belongs

to τ . Since every element of τ(p) is a union of open balls, it follows that
τ(p) ⊂ τ . �

Let X be a vector space over K and let P be a set of semi-norms in X.
We set (recall Definition 9.8):

τ(P) = sup
p∈P

τ(p).

A fundamental system of (open) neighborhoods of the origin with respect
to the topology τ(P) consists of all sets of the form5:

(10.6)
{
x ∈ X : pi(x) < ε, i = 1, . . . , k

}
,

with p1, . . . , pk ∈ P and ε > 0. A map defined in some topological space
and taking values in X is continuous at a given point with respect to τ(P) if
and only if it is continuous at that point with respect to τ(p), for all p ∈ P.

10.6. Lemma. Let P be a set of semi-norms in a vector space X. Then
X is a topological vector space endowed with the topology τ(P). Moreover,
every p ∈ P is continuous with respect to τ(P).

Proof. The fact that X endowed with τ(P) is a topological vector space
follows from Lemma 10.4 and Corollary 9.10. The fact that each p ∈ P is
continuous with respect to τ(P) follows from Lemma 10.4 and from the fact
that τ(p) ⊂ τ(P). �

10.7. Lemma. Let P be a set of semi-norms in a vector space X. Then
τ(P) is the smallest translation invariant topology on X that makes each
p ∈ P continuous.

Proof. It follows from Lemma 10.6 that τ(P) is a translation invariant
topology for which each p ∈ P is continuous. Moreover, if τ is a trans-
lation invariant topology on X for which each p ∈ P is continuous then,
by Lemma 10.5, τ contains τ(p) for each p ∈ P and therefore τ contains
τ(P) = supp∈P τ(p). �

10.8. Corollary. Let P be a set of semi-norms in a vector space X and let
Pmax denote the set of all semi-norms in X that are continuous with respect
to τ(P). Then τ(P) = τ(Pmax) and every set of semi-norms P ′ in X such
that τ(P) = τ(P ′) is contained in Pmax.

Proof. Since P ⊂ Pmax, we have τ(P) ⊂ τ(Pmax). Moreover, since τ(P) is
a translation invariant topology that makes each p ∈ Pmax continuous, it
follows that τ(Pmax) ⊂ τ(P). Finally, if τ(P) = τ(P ′) then each p ∈ P ′ is
continuous with respect to τ(P ′) = τ(P), so that P ′ ⊂ Pmax. �

5When P is empty, τ(P) is the chaotic topology {∅, X}. In this case, in (10.6) one
must take k = 0 and the set (10.6) is X.
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10.9. Lemma. Let Y be a topological space, X be a vector space and P be
a set of semi-norms in X; assume X to be endowed with the topology τ(P).
Let f : Y → X be a map and y ∈ Y be a point with f(y) = 0. Then f is
continuous at the point y if and only if p ◦ f is continuous at the point y,
for all p ∈ P.

Proof. If f is continuous at y then p◦f is continuous at y, for all p ∈ P, since
p : X → R is continuous. Conversely, in order to check that f : Y → X is
continuous at y it suffices to show that, for each p ∈ P, the map f : Y → X
is continuous at y when X is endowed with τ(p). In order to establish such
continuity, observe that a neighborhood of 0 = f(y) in

(
X, τ(p)

)
contains a

set of the form p−1
(

]−∞, r[
)
, for some r > 0 and that:

f−1
(
p−1
(

]−∞, r[
))

= (p ◦ f)−1
(

]−∞, r[
)

is a neighborhood of y in Y, by the continuity of p ◦ f at y. �

10.10. Corollary. Let X, Y be vector spaces over K. Assume that P is
a set of semi-norms in X, that X is endowed with the topology τ(P) and
that Y is endowed with a translation invariant topology (that is the case if
Y is a topological vector space). Given a linear map T : Y → X, then T is
continuous if and only if p ◦ T is continuous for all p ∈ P.

Proof. Since every p ∈ P is continuous, the continuity of T implies the
continuity of p ◦ T . Conversely, if p ◦ T is continuous for all p ∈ P then,
since T (0) = 0, Lemma 10.9 implies that T is continuous at the origin and
then the continuity of T follows from Lemma 9.4. �

10.11. Lemma. Let (Xi)i∈I be a family of vector spaces over K and let X
be a vector space over K. For each i ∈ I let Pi be a set of semi-norms
in Xi and let Ti : X → Xi be a linear map. If each Xi is endowed with
the topology τ(Pi) then the topology τ on X induced by the maps Ti (recall
Definition 9.7) coincides with the topology τ(P), where:

P =
⋃
i∈I

{
p ◦ Ti : p ∈ Pi

}
.

Proof. By Lemma 10.6, each Xi is a topological vector space and therefore,
by Lemma 9.9, (X, τ) is a topological vector space; in particular, the topol-
ogy τ is translation invariant6. Since every element of P is continuous with
respect to τ , it follows from Lemma 10.7 that τ contains τ(P). Moreover,
it follows from Corollary 10.10 that all the maps Ti are continuous with
respect to τ(P) and therefore τ(P) contains τ . �

10.12. Definition. Given semi-norms p, q in a vector space X, we say that
p is dominated by q and we write:

p 4 q

6Alternatively, one can check directly that τ is translation invariant by observing that
for every v ∈ X the translation map tv : x 7→ x + v is continuous with respect to τ .
Namely, observe that for every i ∈ I the map Ti ◦ tv = tTi(v) ◦ Ti is continuous.
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if there exists a non negative constant c such that p(x) ≤ cq(x), for all
x ∈ X. Given a semi-norm p and a set of semi-norms P in X, we say that
p is dominated by P and we write

p 4 P
if there exist p1, . . . , pk ∈ P with7:

(10.7) p 4 p1 + · · ·+ pk.

Given two sets of semi-norms P, P ′ in X, we say that P ′ is dominated by
P and we write:

P ′ 4 P
if p 4 P, for all p ∈ P ′.

Clearly the binary relation 4 in the set of semi-norms in X is both reflex-
ive and transitive. Moreover, given semi-norms p, q, p′, q′ in X then p 4 q
and p′ 4 q′ imply p + q 4 p′ + q′ and given semi-norms p, q in X and a
positive constant c > 0 then:

p 4 q ⇐⇒ p 4 cq ⇐⇒ cp 4 q.

It is also easy to see that given a semi-norm p in X and sets of semi-norms P,
P ′ in X, then p 4 P and P 4 P ′ imply p 4 P ′; moreover, the binary relation
4 in the set of sets of semi-norms in X is also reflexive and transitive. Notice
also that given semi-norms p, q in X then:

{p} 4 {q} ⇐⇒ p 4 {q} ⇐⇒ p 4 q.

10.13. Remark. For k ≥ 1, given semi-norms p1, . . . , pk in X then:

max
{
p1(x), . . . , pk(x)

}
≤ p1(x) + · · ·+ pk(x) ≤ kmax

{
p1(x), . . . , pk(x)

}
,

for all x ∈ X, so that:

max{p1, . . . , pk} 4 p1 + · · ·+ pk 4 max{p1, . . . , pk}.
Thus, for k ≥ 1, one can replace p1 + · · ·+pk with max{p1, . . . , pk} in (10.7).

10.14. Lemma. Let X be a vector space, P be a set of semi-norms in X
and p be a semi-norm in X. Then p is continuous with respect to τ(P) if
and only if p 4 P.

Proof. If p 4 P then there exist p1, . . . , pk ∈ P and a constant c ≥ 0 such
that:

p(x) ≤ c
(
p1(x) + · · ·+ pk(x)

)
,

for all x ∈ X. The continuity of the map x 7→ c
(
p1(x) + · · · + pk(x)

)
with

respect to τ(P) implies that the set:{
x ∈ X : c

(
p1(x) + · · ·+ pk(x)

)
< 1
}

is a neighborhood of the origin with respect to τ(P); since p is bounded in
that set, it follows from Corollary 10.3 (and from Lemma 10.6) that p is

7If P is empty then k must be zero and the sum p1 + · · ·+pk is understood to be equal
to zero. Thus, if P is empty, p 4 P if and only if p is the zero semi-norm.
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continuous with respect to τ(P). Conversely, assume that p is continuous
with respect to τ(P). Then:{

x ∈ X : p(x) < 1
}

is a neighborhood of the origin with respect to τ(P) and therefore it contains
a fundamental neighborhood of the form (10.6), with p1, . . . , pk ∈ P and
ε > 0. We claim that:

(10.8) p(x) ≤ 2
ε

(
p1(x) + · · ·+ pk(x)

)
,

for all x ∈ X, so that p 4 P. Given x ∈ X, if pi(x) = 0 for all i = 1, . . . , k
then tx is in (10.6) for all t > 0 and therefore:

p(tx) = tp(x) < 1,

for all t > 0, so that p(x) = 0 and (10.8) is satisfied. If, on the other hand,
pi(x) > 0 for some i, set:

t =
ε

2
(
p1(x) + · · ·+ pk(x)

) > 0,

so that:

pi(tx) = tpi(x) =
ε

2

pi(x)

p1(x) + · · ·+ pk(x)
< ε,

for all i = 1, . . . , k, which implies tx in (10.6). Thus p(tx) < 1 and hence:

p(x) < 1
t = 2

ε

(
p1(x) + · · ·+ pk(x)

)
. �

10.15. Corollary. Let X, Y be vector spaces over K, P be a set of semi-
norms in X, Q be a set of semi-norms in Y and T : X → Y be a linear
map. If X is endowed with τ(P) and Y is endowed with τ(Q) then T is
continuous if and only if: {

q ◦ T : q ∈ Q
}
4 P.

Proof. Follows directly from Corollary 10.10 and Lemma 10.14. �

10.16. Corollary. Let X be a vector space over K and P, P ′ be sets of
semi-norms in X. Then τ(P) ⊂ τ(P ′) if and only if P 4 P ′.

Proof. Apply Corollary 10.15 with T the identity map from
(
X, τ(P ′)

)
to(

X, τ(P)
)
. �

10.17. Lemma. Let X be a complex vector space and let p : X → R be a
real semi-norm. Then:

(10.9) p̃(x) = sup
{
p(λx) : λ ∈ C, |λ| = 1

}
defines a complex semi-norm p̃ : X → R and:

(10.10) p(x) ≤ p̃(x) ≤ p(x) + p(ix),

for all x ∈ X.
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Proof. Since p(x) belongs to the set in the righthand side of (10.9), it follows
that p(x) ≤ p̃(x), for all x ∈ X. Moreover, given λ = a + bi ∈ C, with
a, b ∈ R, |λ| = 1, then |a| ≤ 1, |b| ≤ 1 and:

p(λx) = p(ax+ bix) ≤ |a|p(x) + |b|p(ix) ≤ p(x) + p(ix),

so that p̃(x) is finite and inequalities (10.10) hold. Since for each λ ∈ C,
the map x 7→ λx is linear and since p is a real semi-norm, it follows that
x 7→ p(λx) is a real semi-norm and therefore p̃, being the (finite) supremum
of a family of real semi-norms, is a real semi-norm (see Lemma 10.1). It
follows directly from the definition of p̃ that:

p̃(µx) = p̃(x),

for all x ∈ X and and all µ ∈ C with |µ| = 1. Therefore, for any non zero
complex number λ, we have:

p̃(λx) = p̃
(
|λ|µx) = |λ|p̃(µx) = |λ|p̃(x),

where µ = λ
|λ| . Hence p̃ is a complex semi-norm. �

10.18. Corollary. Let X be a complex vector space and let P be a set of
real semi-norms in X. Assume that the complex structure x 7→ ix of X is
continuous with respect to the topology τ(P). Then:

P̃ =
{
p̃ : p ∈ P

}
,

with p̃ defined as in (10.9) is a set of complex semi-norms in X such that:

τ(P) = τ(P̃).

Proof. The first inequality in (10.10) implies that P 4 P̃. The continuity
of the map x 7→ ix with respect to τ(P) implies that for all p ∈ P the
semi-norm x 7→ p(x) + p(ix) is continuous with respect to τ(P) and thus,
by Lemma 10.14, it is dominated by P. It then follows from the second

inequality in (10.10) that P̃ 4 P. Hence, by Corollary 10.16, τ(P) = τ(P̃).
�

10.19. Definition. Let X be a vector space and let V be a subset of X.
Given a point x ∈ X, we say that V absorbs x if there exists α > 0 such
that αx ∈ V . We say that V is absorbent if V absorbs every x in X.

Clearly, V absorbs the origin if and only if the origin is in V ; thus, every
absorbent set contains the origin.

10.20. Lemma. Given vector spaces X, Y , if T : X → Y is a surjective
linear map and V is an absorbent subset of X then T (V ) is an absorbent
subset of Y . In particular, if V is an absorbent subset of X and λ is a
nonzero scalar then λV =

{
λx : x ∈ V

}
is an absorbent subset of X.

Proof. Given y ∈ Y then y = T (x) for some x ∈ X; then αx ∈ V for some
α > 0 and therefore αy = T (αx) is in T (V ). �
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10.21. Lemma. If X is a topological vector space then every neighborhood
V of the origin is absorbent.

Proof. Since the map (α, x) 7→ αx is continuous and it carries (0, x) to 0, it
follows that αx is in V for all α in some neighborhood of zero; in particular,
αx is in V for some α > 0. �

10.22. Definition. Given an absorbent subset V of a vector space X, we
set:

(10.11) pV (x) = inf
{
α > 0 : xα ∈ V

}
.

The map pV is called the gauge of V .

Notice that the hypothesis that V be absorbent guarantees that the set
in (10.11) is nonempty; clearly such set is bounded from below by zero, so
that pV (x) ≥ 0, for all x ∈ X.

10.23. Lemma. Let V be an absorbent subset of a vector space X. Then:

(10.12) pV (λx) = λpV (x),

for every x ∈ X and every non negative scalar λ ∈ R.

Proof. If x = 0 then x
α = 0 ∈ V for all α > 0, so that pV (x) = 0 and (10.12)

holds with λ = 0. If λ > 0 then, setting:

(10.13) Ax =
{
α > 0 : xα ∈ V

}
,

it is easy to see that:

Aλx = λAx
def
=
{
λα : α ∈ Ax

}
,

so that:
pV (λx) = inf Aλx = λ inf Ax = λpV (x). �

Recall that a subset V of a vector space X is called convex if for every
x, y ∈ V , the line segment [x, y] =

{
(1− t)x+ ty : t ∈ [0, 1]

}
is contained in

the set V . The direct and the inverse image of a convex set under a linear
map is again convex and the intersection of a family of convex sets is convex.

10.24. Lemma. Let V be a convex absorbent subset of a vector space X.
Given x ∈ X then x

α ∈ V for all α > pV (x).

Proof. Since α > pV (x) there exists β ∈ ]0, α[ with x
β ∈ V . But x

α = β
α
x
β

and 0 < β
α < 1, so that x

α is in the line segment connecting x
β ∈ V and the

origin (which is in V ). �

10.25. Corollary. If V is a convex absorbent subset of a vector space X
then:

(10.14) p−1
V

(
]−∞, 1[

)
⊂ V ⊂ p−1

V

(
]−∞, 1]

)
.

Proof. If pV (x) < 1 then, by Lemma 10.24, x = x
1 is in V . Moreover, it is

obvious that if x is in V then pV (x) ≤ 1. �
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10.26. Corollary. If V , W are convex absorbent subsets of a vector space
X then V ∩W is also (convex and) absorbent.

Proof. Given x ∈ X then, by Lemma 10.24, we have x
α ∈ V ∩ W if α is

bigger than both pV (x) and pW (x). �

10.27. Lemma. If a subset V of a vector space X is absorbent and convex
then its gauge pV satisfies the triangle inequality, i.e.:

pV (x+ y) ≤ pV (x) + pV (y),

for all x, y ∈ X.

Proof. Let ε > 0 be given. By Lemma 10.24, we have:

x

pV (x) + ε
∈ V, y

pV (y) + ε
∈ V,

so that, by the convexity of V :

x+ y

pV (x) + pV (y) + 2ε
=

pV (x) + ε

pV (x) + pV (y) + 2ε

x

pV (x) + ε

+
pV (y) + ε

pV (x) + pV (y) + 2ε

y

pV (y) + ε

is in V . This implies:

pV (x+ y) ≤ pV (x) + pV (y) + 2ε,

and since ε > 0 is arbitrary the conclusion follows. �

10.28. Definition. A subset V of a vector space X over K is called balanced
(with respect to the field K) if λx ∈ V for all x ∈ V and all λ ∈ K with
|λ| ≤ 1.

10.29. Lemma. Let V be a convex subset of a vector space X over K con-
taining the origin (this is the case if V is convex and absorbent). Then V is
balanced if and only if λx is in V for all x ∈ V and all λ ∈ K with |λ| = 1.
In particular, if K = R, then a convex subset V of X containing the origin
is balanced if and only if −x is in V for all x ∈ V .

Proof. Obviously if V is balanced then λx ∈ V for all x ∈ V and all λ ∈ K
with |λ| = 1. Conversely, assume that λx ∈ V for all x ∈ V and all λ ∈ K
with |λ| = 1 and let x ∈ V and λ ∈ K with |λ| ≤ 1 be given. If λ = 0 then
λx = 0 is in V . If λ 6= 0, we set:

µ =
λ

|λ|
,

so that |µ| = 1 and µx is in V . Then λx = |λ|µx is in the line segment
connecting µx and the origin and therefore it is also in V . Hence V is
balanced. �
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10.30. Corollary. If V is a convex absorbent subset of a real vector space
X then:

V ∩ (−V )

is convex, absorbent and balanced, where −V =
{
−x : x ∈ V

}
.

Proof. The set −V is convex and it is absorbent by Lemma 10.20. Therefore
V ∩ (−V ) is convex and absorbent, by Corollary 10.26. Since:

−
(
V ∩ (−V )

)
= V ∩ (−V ),

and the field of scalars is R, it follows from Lemma 10.29 that V ∩ (−V ) is
balanced. �

10.31. Lemma. If V is an absorbent balanced subset of a vector space X
over K then its gauge pV satisfies:

(10.15) pV (λx) = |λ|pV (x),

for all x ∈ X, λ ∈ K.

Proof. Since the set of those λ ∈ K for which (10.15) holds for all x ∈ X
is closed under multiplication, it follows from Lemma 10.23 that we only
have to check (10.15) in case |λ| = 1. Defining Ax as in (10.13), it is readily
checked using the fact that V is balanced that:

Ax = Aλx,

if |λ| = 1. Thus:

pV (λx) = inf Aλx = inf Ax = pV (x) = |λ|pV (x). �

10.32. Corollary. If V is an absorbent, balanced, convex subset of a vector
space X over K then its gauge pV is a semi-norm in X.

Proof. It follows directly from Lemmas 10.27 and 10.31. �

10.33. Definition. A topology τ on a vector space X over K is called lo-
cally convex (with respect to the field K) if it turns X into a topological
vector space over K and if the origin of X has a fundamental system of con-
vex neighborhoods (i.e., every neighborhood of the origin contains a convex
neighborhood of the origin). If X is endowed with a locally convex topology
τ then we say that (X, τ) is a locally convex topological vector space.

Observe that, since the topology of a topological vector space is trans-
lation invariant, it follows that every point of a locally convex topological
vector space has a fundamental system of convex neighborhoods.

10.34. Lemma. Let X be a vector space over K. A topology τ for X is
locally convex if and only if there exists a set of semi-norms P in X such
that τ = τ(P).
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Proof. If τ = τ(P) for some set of semi-norms P then (X, τ) is a topolog-
ical vector space (Lemma 10.6) and, since the fundamental neighborhood
(10.6) of the origin is convex, it follows that τ is a locally convex topology.
Conversely, assume that the topology τ is locally convex. First, we observe
that it suffices to consider the case K = R. Namely, assume that the lemma
has been proven for K = R. If (X, τ) is a complex locally convex topolog-
ical vector space, we restrict the operation of multiplication by scalars of
X to R×X, obtaining a real locally convex topological vector space; then
τ = τ(P) for some set of real semi-norms P in X. Since (X, τ) is a com-
plex topological vector space, the map x 7→ ix is continuous with respect to

τ = τ(P) and then it follows from Corollary 10.18 that there exists a set P̃
of complex semi-norms in X such that τ(P) = τ(P̃).

Now let us prove the lemma for K = R. Let P denote the set of all
semi-norms p : X → R that are continuous with respect to τ . Let us show
that τ = τ(P). Since τ is a translation invariant topology and each p ∈ P
is continuous with respect to τ , it follows from Lemma 10.7 that τ contains
τ(P). Proving that τ(P) contains τ is the same as proving the continuity
of the identity map from

(
X, τ(P)

)
to (X, τ) and, by Lemma 9.4, it suffices

to establish such continuity at the origin. We have thus to show that every
neighborhood U of the origin with respect to τ is a neighborhood of the origin
with respect to τ(P). Since τ is locally convex we can assume without loss
of generality that U is convex; U is also absorbent, by Lemma 10.21. Setting
−U =

{
−x : x ∈ U

}
and:

V = U ∩ (−U)

then, by Corollary 10.30, V is convex, absorbent and balanced (here we
use the fact that K = R). Since the map x 7→ −x is a homeomorphism
with respect to τ it follows that −U (and thus V ) is a neighborhood of the
origin with respect to τ . By Corollary 10.32, the gauge pV is a semi-norm.
Since pV is bounded in V (recall (10.14)) and V is a neighborhood of the
origin with respect to τ , it follows from Corollary 10.3 that pV is continuous
with respect to τ , i.e., pV ∈ P. Hence the open ball p−1

V

(
]−∞, 1[

)
is a

neighborhood of the origin with respect to τ(P) and it follows from (10.14)
that V (and hence U) is also a neighborhood of the origin with respect to
τ(P). �

10.1. The locally convex topology co-induced by a family of maps.

10.35. Lemma. Let (Xi)i∈I be a family of locally convex topological vector
spaces over K, X be a vector space over K and for each i ∈ I let Ti : Xi → X
be a linear map. There exists a unique topology τ on X such that:

(i) (X, τ) is a locally convex topological vector space over K;
(ii) the map Ti : Xi → (X, τ) is continuous, for all i ∈ I;
(iii) given a locally convex topological vector space Y over K and a linear

map S : X → Y such that S ◦ Ti is continuous for all i ∈ I then
S : (X, τ)→ Y is continuous.
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The topology τ coincides with the topology τ(P), where P is the set of all
semi-norms p : X → R such that p ◦ Ti is continuous, for all i ∈ I.

Proof. First, let us show the uniqueness of τ . Let τ , τ ′ be topologies in X
satisfying (i), (ii) and (iii). If S is the identity map from (X, τ) to (X, τ ′)
then S ◦ Ti is continuous for all i ∈ I (because τ ′ satisfies (ii)) and therefore
(since τ satisfies (iii) and τ ′ satisfies (i)), S is continuous, i.e., τ ′ ⊂ τ . An
analogous argument shows that τ ⊂ τ ′. In order to complete the proof,
it suffices to show that the topology τ = τ(P) satisfies (i), (ii) and (iii).
Clearly τ = τ(P) satisfies (i) (Lemma 10.34). Since p ◦ Ti is continuous
for all i ∈ I and all p ∈ P, it follows from Corollary 10.10 that τ = τ(P)
satisfies (ii). Let Y be a locally convex topological vector space over K and
let S : X → Y be a linear map such that S ◦ Ti is continuous, for all i ∈ I.
Let Q be a set of semi-norms in Y such that the topology of Y is τ(Q).
For every q ∈ Q, the semi-norm q ◦ S is in P; namely, for all i ∈ I the
map (q ◦ S) ◦ Ti = q ◦ (S ◦ Ti) is continuous. Thus, q ◦ S is continuous with
respect to τ(P) for all q ∈ Q and it follows from Corollary 10.10 that T is
continuous, proving that τ = τ(P) satisfies (iii). �

10.36. Definition. The topology on X whose existence and uniqueness is
guaranteed by Lemma 10.35 is called the locally convex topology on X co-
induced by the family of linear maps (Ti)i∈I .

10.37. Corollary (of Lemma 10.35). Let (Xi)i∈I be a family of locally convex
topological vector spaces over K, X be a vector space over K and for each
i ∈ I let Ti : Xi → X be a linear map. If X is endowed with the locally
convex topology co-induced by the family of maps (Ti)i∈I then a semi-norm
p : X → R is continuous if and only if p ◦ Ti is continuous, for all i ∈ I.

Proof. If p is continuous then p ◦ Ti is continuous for all i ∈ I, because
the topology of X satisfies property (ii) in the statement of the lemma.
Conversely, if p ◦ Ti is continuous for all i ∈ I then p is in the set P defined
in the statement of the lemma and since the topology of X is τ(P), it follows
that p is continuous. �

Given a complex vector space X, we denote by XR its realification, i.e.,
the real vector space obtained from X by restricting to R×X its operation
of multiplication by scalars. We now analyze the relationship between the
locally convex topology co-induced by a family of maps and the operation
of realification.

10.38. Lemma. Let (Xi)i∈I be a family of complex locally convex topological
vector spaces, X be a complex vector space and for each i ∈ I let Ti : Xi → X
be a complex linear map; denote by τC the topology on X co-induced by the
family of linear maps Ti : Xi → X, i ∈ I. Now, consider the realification
XR of the vector space X and for each i ∈ I consider the realification XRi
of the vector space Xi; denote by τR the topology on X co-induced by the
family of linear maps Ti : XRi → XR. Then τR = τC.
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Proof. The topology τC is characterized by the following properties:

(i) (X, τC) is a complex locally convex topological vector space;
(ii) the map Ti : Xi → (X, τC) is continuous, for all i ∈ I;
(iii) given a complex locally convex topological vector space Y and a

complex linear map S : X → Y such that S ◦Ti is continuous for all
i ∈ I then S : (X, τC)→ Y is continuous;

the topology τR is characterized by the following properties:

(i’) (X, τR) is a real locally convex topological vector space;
(ii’) the map Ti : Xi → (X, τR) is continuous, for all i ∈ I;
(iii’) given a real locally convex topological vector space Y and a real

linear map S : X → Y such that S ◦ Ti is continuous for all i ∈ I
then S : (X, τR)→ Y is continuous.

We prove that the topology τR satisfies properties (i), (ii) and (iii); since
such properties characterize τC, it will follow that τR = τC. Property
(ii) is the same as (ii’) and thus τR satisfies (ii). To prove that τR satisfies
property (iii), let Y be a complex locally convex topological vector space and
let S : X → Y be a complex linear map such that S ◦Ti is continuous for all
i ∈ I. Then the realification Y R is a real locally convex topological vector
space and, since S ◦ Ti is continuous for all i ∈ I, it follows from property
(iii’) that S is continuous with respect to τR. Let us check now that τR

satisfies property (i). Denote by J : X → X the complex structure of X
(i.e., J(x) is the product of x by the imaginary unit) and by Ji : Xi → Xi

the complex structure of Xi, for all i ∈ I. By Lemma 9.11 and property
(i’), in order to prove that (X, τR) is a complex locally convex topological
vector space, it suffices to prove that the map J is continuous with respect
to τR. Since τR satisfies (iii’), we have to prove that J ◦ Ti : Xi → (X, τR)
is continuous, for all i ∈ I; but, since each Ti is complex linear, we have
J ◦ Ti = Ti ◦ Ji. Since Xi is a complex topological vector space, the map
Ji is continuous and the map Ti : Xi → (X, τR) is continuous by (ii’). This
concludes the proof. �

10.39. Lemma. Let (Xi)i∈I be a family of locally convex topological vector
spaces over K, X be a vector space over K and for each i ∈ I let Ti : Xi → X
be a linear map. Assume that X is endowed with the locally convex topology
co-induced by the family of maps (Ti)i∈I . If V is an absorbent convex subset
of X such that T−1

i (V ) is a neighborhood of the origin in Xi for all i ∈ I
then V is a neighborhood of the origin in X.

Proof. By Lemma 10.38, we can replace the spaces Xi and X by their re-
alifications (so that the co-induced topology on X does not change), and
therefore we can assume without loss of generality that K = R. Since V is
absorbent and convex (and K = R), by Corollary 10.30, the set:

W = V ∩ (−V ),
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is absorbent, convex and balanced, where −V =
{
−x : x ∈ V

}
. Clearly:

T−1
i (W ) = T−1

i (V ) ∩ T−1
i (−V ) = T−1

i (V ) ∩
(
−T−1

i (V )
)
,

for all i ∈ I; since the map x 7→ −x is a homeomorphism of Xi and T−1
i (V )

is a neighborhood of the origin in Xi, it follows that also T−1
i (W ) is a

neighborhood of the origin in Xi. By Corollary 10.32, the gauge pW of W
is a semi-norm in X and by (10.14) pW is bounded in W ; thus pW ◦ Ti
is a semi-norm in Xi that is bounded in T−1

i (W ) and since T−1
i (W ) is a

neighborhood of the origin in Xi it follows from Corollary 10.3 that pW ◦ Ti
is continuous. Now, by Corollary 10.37, pW is continuous and therefore
p−1
W

(
]−∞, 1[

)
is a neighborhood of the origin in X; from (10.14), W (and

hence V ) is a neighborhood of the origin in X. �

10.40. Corollary. Let (Xi)i∈I be a family of locally convex topological vector
spaces over K, X be a vector space over K and for each i ∈ I let Ti : Xi → X
be a linear map. Assume that X is endowed with the locally convex topology
co-induced by the family of maps (Ti)i∈I and that:

X =
⋃
i∈I

Ti(Xi).

If V is a convex subset of X such that T−1
i (V ) is a neighborhood of the origin

in Xi for all i ∈ I then V is a neighborhood of the origin in X.

Proof. By Lemma 10.39, it suffices to check that V is absorbent. Given
x ∈ X then, by our assumptions, there exists i ∈ I and x0 ∈ Xi such that
Ti(x0) = x. Since T−1

i (V ) is a neighborhood of the origin in Xi, it follows

from Lemma 10.21 that T−1
i (V ) is absorbent and therefore there exists α > 0

such that αx0 ∈ T−1
i (V ). Hence αx = Ti(αx0) is in V . �

10.41. Remark. If X is endowed with the locally convex topology co-induced
by a family of maps Ti : Xi → X then every neighborhood V of the origin
in X contains a convex (and, by Lemma 10.21, automatically absorbent)
neighborhood of the origin V0; since each Ti is continuous, it follows that
T−1
i (V0) is a neighborhood of the origin in Xi, for all i ∈ I. Hence, the

neighborhoods of the origin in X given in the statement of Lemma 10.39
(or in the statement of Corollary 10.40) actually constitute a fundamental
system of neighborhoods of the origin in X.

11. Normed Spaces

11.1. Lemma. Let X be a separable normed vector space over K = R or
C. Let A denote the σ-algebra induced by all continuous linear functionals
λ : X → K, i.e., the smallest σ-algebra which contains the sets λ−1(B) for
every continuous linear functional λ : X → K and every Borel set B ⊂ K.
Then A is the Borelian σ-algebra of X, i.e., A is the smallest σ-algebra
containing the topology of X.
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Proof. Obviously the Borelian σ-algebra contains A. It suffices then to show
that A contains all open subsets of X. We observe first that A is invariant by
translations, i.e., if v ∈ X then the translation map tv : X 3 x 7→ x+ v ∈ X
is measurable; namely, for every continuous linear functional λ : X → K,
λ ◦ tv = tλ(v) ◦ λ is measurable, where tλ(v) : K→ K denotes translation by
λ(v) in K. This implies that tv is indeed measurable.

Since X is separable, every open subset is a countable union of open balls
and thus all we need to show is that open balls are in A; the invariance
by translations of A implies that it is sufficient to show that open balls
centered at the origin are in A. The proof of the latter statement will be
accomplished by showing that the norm function ‖·‖ : X → R is measurable.
Let {xn : n ∈ N} be a countable dense subset of X and choose (by Hahn–
Banach’s theorem) a continuous linear functional λn : X → K with ‖λn‖ = 1
and λn(xn) = ‖xn‖. Set:

p(x) = sup
n∈N

∣∣λn(x)
∣∣, x ∈ X.

Obviously p is measurable. We will show that p(x) = ‖x‖ for all x. Since
‖λn‖ = 1 for all n we have p(x) ≤ ‖x‖ for all x. Moreover, the equality
p(x) = ‖x‖ obviously holds if x is in the dense set {xn : n ∈ N}. The
conclusion will follow once we show that p is continuous. To this aim,
observe first that p is a semi-norm in X and therefore:∣∣p(x)− p(y)

∣∣ ≤ p(x− y),

for all x, y ∈ X. Moreover, p(x−y) ≤ ‖x−y‖, which implies that p : X → R

is Lipschitz. This concludes the proof. �

11.2. Remark. The result proved in Lemma 11.3 below also follows from
Corollary 10.18.

11.3. Lemma. Let
(
X, ‖ · ‖

)
be a real normed space and let J : X → X

be a continuous complex structure. Then there exists a norm ‖ · ‖′ in X,
equivalent to ‖ · ‖, which is compatible with J , i.e., ‖ · ‖′ is a norm on the
complex vector space (X, J).

Proof. Let Lin(X,C) denote the space of all continuous R-linear maps α :
X → C endowed with the standard norm:

‖α‖ = sup
‖x‖≤1

∣∣α(x)
∣∣.

Let Y denote the subspace of Lin(X,C) consisting of all linear functionals
α : (X, J)→ C that are C-linear. We regard Y as a complex vector space by
setting (iα)(x) = i

(
α(x)

)
= α

(
J(x)

)
, α ∈ Y , x ∈ X. Observe that the norm

of Y is compatible with its complex structure, so that Y is indeed a complex
normed vector space. We denote by Y ∗ the (complex) dual of Y , consisting
of complex continuous linear functionals on Y . Then Y ∗ is also a complex
normed vector space in the usual way. Consider the linear map φ : X → Y ∗

defined by φ(x) = x̂, where x̂(α) = α(x), α ∈ Y . The map φ is injective since
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given x ∈ X, x 6= 0, we can always find a continuous R-linear functional
α0 : X → R with α0(x) 6= 0 and α0 is the real part of α = α0− i(α0 ◦J) ∈ Y
(here we use that J is continuous!). Since φ : (X, J) → Y ∗ is C-linear, the
norm ‖x‖′ = ‖x̂‖ on X induced by the norm of Y ∗ is compatible with J .
We now show that ‖ · ‖′ is equivalent to ‖ · ‖. To this aim, observe first that,
for every x ∈ X:

‖x‖′ = ‖x̂‖ = sup
‖α‖≤1

∣∣x̂(α)
∣∣ = sup

‖α‖≤1

∣∣α(x)
∣∣ ≤ ‖x‖.

We will now obtain k > 0 such that ‖x‖′ ≥ k‖x‖, for all x ∈ X. Let then
x ∈ X, x 6= 0, be fixed. Choose an R-linear functional α0 : X → R with
‖α0‖ = 1 and α0(x) = ‖x‖; then, as before, α = α0 − i(α0 ◦ J) is in Y and:∣∣α(v)

∣∣ ≤ ∣∣α0(v)
∣∣+
∣∣α0

(
J(v)

)∣∣ ≤ (1 + ‖J‖
)
‖v‖, v ∈ X,

so that ‖α‖ ≤ 1 + ‖J‖. We have also α 6= 0, since α(x) 6= 0, and therefore:

‖x‖′ = ‖x̂‖ ≥
∣∣∣x̂( α

‖α‖

)∣∣∣ =

∣∣α(x)
∣∣

‖α‖
≥ α0(x)

1 + ‖J‖
=

1

1 + ‖J‖
‖x‖,

which concludes the proof. �

12. Riesz Representation Theorem

12.1. Convention. In this section, X will always denote a locally compact
Hausdorff space, Cc(X) will denote the real vector space of all continuous
maps f : X → R having compact support and λ will denote a positive linear
functional on Cc(X), i.e., a linear map λ : Cc(X)→ R such that λ(f) ≥ 0,
for any nonnegative map f ∈ Cc(X).

12.2. Lemma. Given a compact set K ⊂ X and a closed set F ⊂ X with
K ∩ F = ∅ then there exists a continuous map f : X → [0, 1] with f |K ≡ 1
and f |F ≡ 0.

Proof. Let X̂ = X ∪ {ω} denote the one-point compactification of X, i.e.,

the open subsets of X̂ are the open subsets of X and the complements in X̂
of the compact subsets of X. Since X is locally compact and Hausdorff, it

follows that X̂ is (compact and) Hausdorff. In particular, X̂ is normal, so

that the Urisohn’s Lemma applies. Since X̂ is Hausdorff, the compact set

K is closed in X̂. If F denotes the closure of F in X̂ then, since F is closed
in X, F ∩X = F and thus F ∩K = ∅. The conclusion is now obtained by

applying Urisohn’s Lemma to K and F in X̂ and by taking the restriction
to X of the continuous map obtained. �

12.3. Corollary. Given a compact subset K ⊂ X contained in an open
subset U ⊂ X then there exists f ∈ Cc(X) such that f |K ≡ 1, 0 ≤ f ≤ 1
and such that the support of f is contained in U .

Proof. By Lemma 17.1, there exists a compact subset L of U whose interior
contains K. The map f is obtained by applying Lemma 12.2 to K and the
complement of the interior of L. �
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In what follows, if f and g are real valued maps defined on X, we write
f ≤ g if f(x) ≤ g(x), for all x ∈ X. Clearly the positive linear functional
λ is monotone, i.e., λ(f) ≤ λ(g) if f, g ∈ Cc(X) and f ≤ g. We denote by
F(X) the set of all maps f : X → [0,+∞[ having the following property:

f = sup
{
φ ∈ Cc(X) : 0 ≤ φ ≤ f

}
.

Obviously if f ∈ Cc(X) and f ≥ 0 then f ∈ F(X); moreover:

λ(f) = sup
{
λ(φ) : φ ∈ Cc(X), 0 ≤ φ ≤ f

}
.

We thus consider an extension of λ to F(X) (also denoted by λ) by setting:

λ(f) = sup
{
λ(φ) : φ ∈ Cc(X), 0 ≤ φ ≤ f

}
∈ [0,+∞],

for all f ∈ F(X). Clearly this extension of λ is again monotone.
In what follows, if f is a real valued map on X and a ∈ R, we denote by

[f > a] the set
{
x ∈ X : f(x) > a

}
; the sets [f ≥ a], [f < a] and [f ≤ a] are

defined analogously.

12.4. Lemma. If f ∈ F(X) then the set [f > a] is open in X, for all a ∈ R.

Proof. If f ∈ F(X) then [f > a] is equal to the union of all sets of the form
[φ > a], with φ ∈ Cc(X) and 0 ≤ φ ≤ f ; since each φ is continuous, the set
[φ > a] is open. The conclusion follows. �

12.5. Lemma. For every open subset U ⊂ X, the characteristic function
χU : X → R of U is in F(X).

Proof. Set:

f = sup
{
φ ∈ Cc(X) : 0 ≤ φ ≤ χU

}
.

Clearly 0 ≤ f ≤ χU . It is therefore sufficient to show that f(x) ≥ 1, for all
x ∈ U . Given x ∈ U then, by Corollary 12.3, there exists a map φ ∈ Cc(X)
with 0 ≤ φ ≤ 1, φ(x) = 1 and φ(y) = 0, for all y ∈ U c. Then 0 ≤ φ ≤ χU
and hence f(x) ≥ φ(x) = 1. �

12.6. Lemma. If f, g ∈ F(X) and c ≥ 0 then f + g ∈ F(X) and cf ∈ F(X).

Proof. We have:

f + g = sup
{
φ ∈ Cc(X) : 0 ≤ φ ≤ f

}
+ sup

{
ψ ∈ Cc(X) : 0 ≤ ψ ≤ g

}
= sup

{
φ+ ψ : φ, ψ ∈ Cc(X), 0 ≤ φ ≤ f, 0 ≤ ψ ≤ g

}
≤ sup

{
ξ ∈ Cc(X) : 0 ≤ ξ ≤ f + g

}
≤ f + g,

proving that f + g ∈ F(X). Moreover:

cf = c sup
{
φ ∈ Cc(X) : 0 ≤ φ ≤ f

}
= sup

{
cφ : φ ∈ Cc(X), 0 ≤ φ ≤ f

}
= sup

{
ξ ∈ Cc(X) : 0 ≤ ξ ≤ cf

}
,

proving that cf ∈ F(X). �
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In what follows, given maps f : X → R, g : X → R, we set:

f ∨ g = max{f, g}, f ∧ g = min{f, g}.

Clearly if f, g ∈ Cc(X) then f ∨ g ∈ Cc(X) and f ∧ g ∈ Cc(X).

12.7. Lemma. Given f ∈ F(X) and g ∈ Cc(X) with f ≥ g then f − g ∈
F(X).

Proof. If φ ∈ Cc(X) and 0 ≤ φ ≤ f then ψ = (φ ∧ g) − g ∈ Cc(X),
0 ≤ ψ ≤ f − g and ψ ≥ φ− g; it follows that:

f − g ≥ sup
{
ψ ∈ Cc(X) : 0 ≤ ψ ≤ f − g

}
≥ sup

{
φ− g : φ ∈ Cc(X), 0 ≤ φ ≤ f

}
= f − g. �

A set S of real valued maps on X is said to be directed if for all f, g ∈ S,
there exists h ∈ S with h ≥ f ∨ g. We write:

supS = sup
φ∈S

φ.

12.8. Lemma. Given a directed set S ⊂ F(X) and f ∈ F(X) with f = supS
then:

λ(f) = sup
g∈S

λ(g).

Proof. Obviously g ≤ f for all g ∈ S and thus:

sup
g∈S

λ(g) ≤ λ(f).

We divide the proof of the reverse inequality into three steps.

Step 1. The result holds if S ⊂ Cc(X) and f ∈ Cc(X).
Given ε > 0, we will find g ∈ S with λ(g) ≥ λ(f) − ε. By Corol-

lary 12.3, there exists a nonnegative map f0 ∈ Cc(X) that equals 1 on
the support of f . Choose ε′ > 0 with ε′λ(f0) ≤ ε. For each g ∈ S, we
have f − g ∈ Cc(X) and thus the set [f − g ≥ ε′] is compact. Clearly:⋂

g∈S
[f − g ≥ ε′] = ∅;

since X is Hausdorff, there exists g1, . . . , gn ∈ S with:

n⋂
i=1

[f − gi ≥ ε′] = ∅.

Moreover, since S is directed, there exists g ∈ S with g ≥ g1 ∨ · · · ∨ gn
and thus [f − g ≥ ε′] = ∅, i.e., f − g < ε′. Since the support of f − g is
contained in the support of f , we have f − g ≤ ε′f0 and hence:

λ(f)− λ(g) = λ(f − g) ≤ ε′λ(f0) ≤ ε,

proving that λ(g) ≥ λ(f)− ε.
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Step 2. The result holds if S ⊂ Cc(X).
Let φ ∈ Cc(X) with 0 ≤ φ ≤ f be fixed. It suffices to show that

supg∈S λ(g) ≥ λ(φ). The set:

Sφ =
{
g ∧ φ : g ∈ S

}
⊂ Cc(X)

is directed and supSφ = φ. By step 1, we have:

sup
h∈Sφ

λ(h) = λ(φ).

Since λ(g) ≥ λ(g ∧ φ), for all g ∈ S, we obtain:

sup
g∈S

λ(g) ≥ sup
g∈S

λ(g ∧ φ) = sup
h∈Sφ

λ(h) = λ(φ),

completing the proof of Step 2.

Step 3. The result holds in general.
Clearly, the set:

S ′ =
⋃
g∈S

{
φ ∈ Cc(X) : 0 ≤ φ ≤ g

}
⊂ Cc(X)

is directed and supS ′ = f . Thus, by step 2, we have:

sup
φ∈S′

λ(φ) = λ(f).

The definition of λ gives:

λ(g) = sup
{
λ(φ) : φ ∈ Cc(X), 0 ≤ φ ≤ g

}
,

for all g ∈ S; hence:

sup
g∈S

λ(g) = sup
φ∈S′

λ(φ) = λ(f). �

If (fn)n≥1 is a sequence of real valued maps on X with fn ≤ fn+1 for all
n ≥ 1 and with limn→∞ fn(x) = f(x) for all x ∈ X, we write fn ↗ f and
we say that (fn)n≥1 converges monotonically to the map f : X → R.

12.9. Corollary. Let (fn)n≥1 be a sequence in F(X) and assume that fn ↗
f , with f ∈ F(X). Then:

lim
n→∞

λ(fn) = sup
n≥1

λ(fn) = λ(f).

Proof. Simply apply Lemma 12.8 to the directed set S =
{
fn : n ≥ 1

}
. �

12.10. Corollary. Given f, g ∈ F(X) and c ≥ 0 then λ(f +g) = λ(f) +λ(g)
and λ(cf) = cλ(f) (see also Lemma 12.6).

Proof. The set:

S =
{
φ+ ψ : φ, ψ ∈ Cc(X), 0 ≤ φ ≤ f, 0 ≤ ψ ≤ g

}
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is directed and supS = f + g. It follows from Lemma 12.8 that:

λ(f + g) = sup
ξ∈S

λ(ξ) = sup
{
λ(φ) : φ ∈ Cc(X), 0 ≤ φ ≤ f

}
+ sup

{
λ(ψ) : ψ ∈ Cc(X), 0 ≤ ψ ≤ g

}
= λ(f) + λ(g).

The equality λ(cf) = cλ(f) follows simply by observing that:{
cφ : φ ∈ Cc(X), 0 ≤ φ ≤ f

}
=
{
ξ ∈ Cc(X) : 0 ≤ ξ ≤ cf

}
. �

For each open subset U of X we define µ(U) ∈ [0,+∞] by setting (recall
Lemma 12.5):

µ(U) = λ(χU ).

We have the following:

12.11. Lemma. The map µ has the following properties:

(a) µ(∅) = 0;
(b) given open subsets U, V ⊂ X then µ(U∪V )+µ(U∩V ) = µ(U)+µ(V )

and, in particular, µ(U ∪ V ) ≤ µ(U) + µ(V );
(c) µ is monotone, i.e., given open subsets U, V ⊂ X with U ⊂ V then

µ(U) ≤ µ(V );
(d) if (Un)n≥1 is a sequence of open subsets of X with Un ⊂ Un+1 for

all n ≥ 1 then µ
(⋃∞

n=1 Un
)

= limn→∞ µ(Un).

Proof. Item (a) follows by observing that λ(0) = 0. Item (b) follows from
Corollary 12.10 by observing that χU + χV = χU∪V + χU∩V . Item (c)
follows from the monotonicity of λ, observing that χU ≤ χV if U ⊂ V .
Finally, item (d) follows from Corollary 12.9 by observing that χUn ↗ χU ,

where U =
⋃∞
n=1 Un. �

We now define a map µ∗ : ℘(X)→ [0,+∞] on the set ℘(X) of all subsets
of X by setting:

(12.1) µ∗(A) = inf
{
µ(U) : U ⊃ A, U open in X

}
,

for all A ⊂ X. Clearly the monotonicity of µ implies that µ∗(U) = µ(U),
for every open subset U ⊂ X.

12.12. Lemma. The map µ∗ is an outer measure on ℘(X), i.e., it satisfies
the following conditions:

• µ∗(∅) = 0;
• µ∗(A) ≤ µ∗(B), for all A,B ⊂ X with A ⊂ B (monotonicity);
• µ∗

(⋃∞
n=1An

)
≤
∑∞

n=1 µ
∗(An), for any sequence (An)n≥1 of subsets

of X (σ-subadditivity).

Proof. The fact that µ∗(∅) = 0 follows from item (a) of Lemma 12.11 and
from the observation that µ∗ extends µ. The monotonicity of µ∗ is trivial.
Finally, let us prove the σ-subadditivity of µ∗. Let (An)n≥1 be a sequence
of subsets of X and let A =

⋃∞
n=1An. If µ∗(An) = +∞ for some n ≥ 1 then

the inequality µ∗(A) ≤
∑∞

n=1 µ
∗(An) is trivial. Suppose that µ∗(An) < +∞
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for all n ≥ 1. Given ε > 0 then for each n ≥ 1 we can find an open subset Un
of X containing An with µ(Un) < µ∗(An)+ ε

2n . By item (b) of Lemma 12.11
we get:

µ
( k⋃
n=1

Un

)
≤

k∑
n=1

µ(Un);

taking the limit as k →∞ and using item (d) of Lemma 12.11 we obtain:

µ
( ∞⋃
n=1

Un

)
≤
∞∑
n=1

µ(Un).

Since A ⊂
⋃∞
n=1 Un we have:

µ∗(A) ≤ µ
( ∞⋃
n=1

Un

)
≤
∞∑
n=1

µ(Un) <
∞∑
n=1

(
µ∗(An) + ε

2n

)
=
( ∞∑
n=1

µ∗(An)
)

+ ε.

The conclusion follows by taking the limit as ε→ 0. �

12.13. Lemma. Given an arbitrary subset A ⊂ X and a map f ∈ F(X) with
f ≥ χA then λ(f) ≥ µ∗(A).

Proof. Given a ∈ ]0, 1[ then A ⊂ [f > a] and thus:

µ∗(A) ≤ µ∗
(
[f > a]

)
.

Since U = [f > a] is open (see Lemma 12.4), we have µ∗(U) = µ(U) =
λ(χU ); thus:

µ∗(A) ≤ λ(χU ).

Moreover, we have f ≥ aχU and therefore (see Corollary 12.10):

λ(f) ≥ aλ(χU ) ≥ aµ∗(A).

The conclusion is obtained by taking the limit as a→ 1. �

12.14. Corollary. The outer measure µ∗ is finite on compact subsets of X.

Proof. Let K ⊂ X be a compact subset and let f ∈ Cc(X) be a nonnegative
map such that f |K ≡ 1 (see Corollary 12.3). We have f ≥ χK and thus
Lemma 12.13 gives:

+∞ > λ(f) ≥ µ∗(K). �

12.15. Corollary. Given open subsets U, V ⊂ X with U ⊂ V then:

µ(V ) ≥ µ(U) + µ∗(V ∩ U c).

Proof. Let φ ∈ Cc(X) with 0 ≤ φ ≤ χU be fixed. Since χV ∈ F(X) and
since φ ≤ χV , by Lemma 12.7, we have χV − φ ∈ F(X); moreover (see
Corollary 12.10):

µ(V ) = λ(χV ) = λ(χV − φ) + λ(φ),

so that:

(12.2) λ(χV − φ) = µ(V )− λ(φ).



SOME GOOD LEMMAS 44

Keeping in mind that χV − φ ≥ χV − χU = χV ∩Uc , Lemma 12.13 gives us:

(12.3) λ(χV − φ) ≥ µ∗(V ∩ U c).

From (12.2) and (12.3), we obtain:

µ(V ) ≥ µ∗(V ∩ U c) + λ(φ);

hence:

µ(V ) ≥ sup
{
µ∗(V ∩ U c) + λ(φ) : φ ∈ Cc(X), 0 ≤ φ ≤ χU

}
= µ∗(V ∩ U c) + λ(χU ) = µ∗(V ∩ U c) + µ(U). �

Recall that the elements of the collection:

M =
{
E ∈ ℘(X) : µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec), for all A ∈ ℘(X)

}
are called µ∗-measurable sets. It is well-known that M is a σ-algebra of
subsets of X and that the restriction of µ∗ to M is a (σ-additive) measure.

12.16. Lemma. Every open subset of X is in M.

Proof. Let U ⊂ X be an open subset and let A ⊂ X be an arbitrary subset.
We have to show that:

µ∗(A) = µ∗(A ∩ U) + µ∗(A ∩ U c).

By the subadditivity of µ∗, it suffices to show the inequality:

µ∗(A) ≥ µ∗(A ∩ U) + µ∗(A ∩ U c).

In order to prove the inequality above, we show that:

µ(V ) ≥ µ∗(A ∩ U) + µ∗(A ∩ U c),

for every open subset V of X containing A. By applying Corollary 12.15 to
the open sets V and U0 = V ∩ U , we obtain:

µ(V ) ≥ µ(U0)+µ∗(V ∩U c
0) = µ(V ∩U)+µ∗(V ∩U c) ≥ µ∗(A∩U)+µ∗(A∩U c).

This concludes the proof. �

12.17. Corollary. All Borel subsets of X are in M. �

In view of Corollary 12.17, the outer measure µ∗ restricts to a Borel
measure on X; we denote such restriction just by µ. The Borel measure µ
and the positive functional λ are related by the following:

12.18. Lemma. Every f ∈ F(X) is Borel measurable and
∫
X f dµ = λ(f).

Proof. Let f ∈ F(X) be fixed. The Borel measurability of f follows from
Lemma 12.4. For each n ≥ 1, we write:

fn = nχ[f>n] +

n2n∑
k=1

k − 1

2n
χ[ k−1

2n
<f≤ k

2n
];
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this is just the standard way of providing a sequence of simple measurable
nonnegative maps fn : X → R with fn ↗ f . It is easy to check that:

fn =
1

2n

n2n∑
k=1

χ[f> k
2n

],

for all n ≥ 1. By Lemma 12.4, the sets
[
f > k

2n

]
are open and thus by

Lemmas 12.5 and 12.6, we have fn ∈ F(X); moreover, using Corollary 12.10,
we get:

λ(fn) =
1

2n

n2n∑
k=1

µ
([
f > k

2n

])
=

∫
X
fn dµ,

for all n ≥ 1. Hence, using the Monotone Convergence Theorem and Corol-
lary 12.9, we obtain:

λ(f) = lim
n→∞

λ(fn) = lim
n→∞

∫
X
fn dµ =

∫
X
f dµ,

concluding the proof. �

12.19. Corollary. Given f ∈ Cc(X) then f is µ-integrable and:∫
X
f dµ = λ(f).

Proof. Write f = f+ − f−, with f+ = f ∨ 0 and f− = −(f ∧ 0), so that
f+, f− ∈ F(X); by Lemma 12.18, we have:∫

X
f+ dµ = λ(f+),

∫
X
f− dµ = λ(f−).

Note that λ(f+) and λ(f−) are finite, since f+, f− ∈ Cc(X). Hence f is
µ-integrable and:

λ(f) = λ(f+)− λ(f−) =

∫
X
f+ dµ−

∫
X
f− dµ =

∫
X
f dµ. �

12.20. Lemma. For every open set U ⊂ X we have:

µ(U) = sup
{
µ(K) : K ⊂ U compact

}
.

Proof. By the monotonicity of the measure µ it is sufficient to show that:

µ(U) ≤ sup
{
µ(K) : K ⊂ U compact

}
.

Let S denote the collection of all maps f ∈ Cc(X) whose support is contained
in U and that satisfy 0 ≤ f ≤ 1. Clearly S is a directed subset of F(X) and
it follows easily from Corollary 12.3 that supS = χU . Thus, by Lemma 12.8,
we have:

sup
f∈S

λ(f) = λ(χU ) = µ(U).
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Given f ∈ S then, denoting by K the support of f , we have that K is a
compact subset of U and, using Lemma 12.18 we get:

λ(f) =

∫
X
f dµ ≤ µ(K).

Hence:

µ(U) = sup
f∈S

λ(f) ≤ sup
{
µ(K) : K ⊂ U compact

}
. �

Finally, we have the following:

12.21. Theorem (Riesz representation). Let X be a locally compact Haus-
dorff topological space and let λ be a positive linear functional on Cc(X).
Then there exists a unique Borel measure µ on X satisfying the following
conditions:

(a) µ(K) < +∞, for every compact subset K ⊂ X;
(b) µ(A) = inf

{
µ(U) : U ⊃ A open in X

}
, for any Borel subset A ⊂ X;

(c) µ(U) = sup
{
µ(K) : K ⊂ U compact

}
, for any open subset U ⊂ X;

(d)
∫
X f dµ = λ(f), for every f ∈ Cc(X).

Proof. Let µ be the Borel measure on X that we have constructed from λ.
Property (a) follows from Corollary 12.14. Property (b) follows from the
definition of µ∗ and from the fact that µ is just a restriction of µ∗ (recall
(12.1)). Property (c) follows from Lemma 12.20 and property (d) follows
from Corollary 12.19. Now, we just have to prove the uniqueness of µ. Let
µ′ be a Borel measure on X satisfying properties (a), (b), (c) and (d). We
show that µ = µ′. Since both µ and µ′ satisfy property (b), it suffices to
show that µ and µ′ agree on open subsets of X. Let U ⊂ X be open and let
S ⊂ Cc(X) denote the set of all maps f ∈ Cc(X) whose support is contained
in U and that satisfy 0 ≤ f ≤ 1. We will show that:

(12.4) µ′(U) = sup
f∈S

λ(f).

Once (12.4) is proven, it will follow that µ = µ′; namely, (12.4) clearly holds
with µ′ replaced by µ and thus µ(U) = µ′(U) for every open subset U of X.
Let us prove (12.4). Given f ∈ S then f ≤ χU and thus, using (d):

λ(f) =

∫
X
f dµ′ ≤ µ′(U);

this proves:

sup
f∈S

λ(f) ≤ µ′(U).

Now, given a compact subset K of U , there exists f ∈ S with f |K ≡ 1 (see
Corollary 12.3); thus f ≥ χK and:

λ(f) =

∫
X
f dµ′ ≥ µ′(K).
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Hence, by (c):

sup
f∈S

λ(f) ≥ sup
{
µ′(K) : K ⊂ U compact

}
= µ′(U). �

13. Quotients of Manifolds

In this section, a smooth manifold means a set M endowed with a smooth
maximal atlas; no assumptions are made on the topology induced on M by
such atlas. Our goal is to prove the following:

13.1. Theorem. Let M be a smooth manifold and let R ⊂ M ×M be an
equivalence relation on M . The following conditions are equivalent:

(a) there exists a smooth maximal atlas on the quotient set M/R such
that the quotient map q : M →M/R is a smooth submersion;

(b) R is a smooth submanifold of M ×M and the restriction to R of the
first projection π1 : M ×M →M is a submersion.

13.2. Remark. Since R is symmetric, condition (b) implies that the restric-
tion of the second projection π2 : M ×M → M to R is also a submersion.
Namely, the diffeomorphism σ(x, y) = (y, x) of M ×M maps R onto R and
π2 = π1 ◦ σ.

13.3. Remark. Assume that G is a group acting on M by smooth maps
and that the equivalence relation R is the equivalence relation determined
by such action, i.e., (x, y) ∈ R if and only if y = g · x, for some g ∈ G.
Observe that if R is a smooth submanifold of M ×M then the restriction to
R of the first projection π1 : M ×M → M is automatically a submersion.
Namely, given (x, y) ∈ R, let g ∈ G be such that y = g · x and consider
the smooth map s : M → R defined by s(z) = (z, g · z), for all z ∈ M .
Clearly s(x) = (x, y) and s is a right inverse for π1|R : R → M , so that
ds(x) is a right inverse for dπ1(x, y)|T(x,y)R : T(x,y)R → TxM , thus proving

that dπ1(x, y)|T(x,y)R is surjective.

Let us first prove that condition (a) implies condition (b). Since the
quotient map q is a submersion, the map:

(13.1) q × q : M ×M 3 (x, y) 7−→
(
q(x), q(y)

)
∈ (M/R)× (M/R)

is also a submersion. In particular, q × q is transverse to the diagonal
submanifold:

∆M/R =
{

(x, x) : x ∈M/R
}
⊂ (M/R)× (M/R).

Thus R = (q × q)−1(∆M/R) is a smooth submanifold of M × M and its
tangent space at a point (x, y) ∈ R is given by:

T(x,y)R =
(
d(q × q)(x,y)

)−1(
T(q(x),q(y))∆M/R

)
=
{

(v, w) ∈ TxM ⊕ TyM : dqx(v) = dqy(w)
}
.

To complete the proof of (b) we have to show that the restriction to T(x,y)R
of the projection TxM ⊕ TyM → TxM is surjective. Let v ∈ TxM be fixed;
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since dqx(v) ∈ Tq(x)(M/R) = Tq(y)(M/R) and since dqy is onto Tq(y)(M/R),
there exists w ∈ TyM such that dqx(v) = dqy(w). Hence (v, w) ∈ T(x,y)R
and condition (b) follows.

Let us now prove that condition (b) implies condition (a). For each x ∈M
consider the map ix : M →M ×M defined by:

ix(y) = (x, y), y ∈M.

We claim that ix is transversal to R. Namely, for y ∈M , the image of d(ix)y
equals {0} ⊕ TyM ; we have to prove that:

(13.2) T(x,y)R+
(
{0} ⊕ TyM

)
= TxM ⊕ TyM.

Since π1|R : R → M is a submersion, the restriction to T(x,y)R of the
projection TxM ⊕ TyM → TxM is surjective. This implies equality (13.2)
and proves the claim. Now denote by Cx ⊂ M the equivalence class of x
with respect to the equivalence relation R; we have:

Cx = i−1
x (R),

and since ix is transversal to R, it follows that Cx is a smooth submanifold
of M and that its tangent space at a point y ∈ Cx is given by:

(13.3) TyCx =
(
d(ix)y

)−1
(T(x,y)R) =

{
v ∈ TyM : (0, v) ∈ T(x,y)R

}
.

Set:

(13.4) Dx = TxCx =
{
v ∈ TxM : (0, v) ∈ T(x,x)R

}
,

for each x ∈M . We have the following:

13.4. Lemma. The set D =
⋃
x∈M Dx ⊂ TM is a smooth distribution on

M , i.e., a smooth vector subbundle of the tangent bundle TM of M .

Proof. Consider the diagonal map d : M →M×M defined by d(x) = (x, x),
for all x ∈M . The pull-back d∗

(
T (M×M)

)
of the tangent bundle of M×M

by the map d equals the vector bundle TM ⊕ TM over M . Since R is a
smooth submanifold of M ×M containing the image of d, the pull-back:

d∗(TR) =
⋃
x∈M

T(x,x)R

is a smooth subbundle of TM ⊕ TM . Denote by P : d∗(TR) → TM the
restriction to d∗(TR) of the first projection TM ⊕ TM → TM . Then P
is a smooth vector bundle morphism; moreover, P is surjective, because
π1|R : R→M is a submersion. By (13.4), we have:

Ker(P ) =
⋃
x∈M

(
{0} ⊕ Dx

)
.

But the kernel of a smooth surjective vector bundle morphism is a smooth
vector subbundle of its domain. The conclusion follows. �

We will say that a smooth submanifold S ⊂M is complementary to D if
TxM = TxS ⊕Dx, for all x ∈ S.



SOME GOOD LEMMAS 49

13.5. Corollary. Let S ⊂ M be a smooth submanifold of M and assume
that TxM = TxS ⊕ Dx for some x ∈ S. Then x has an open neighborhood
in S that is complementary to D.

Proof. Since S is a smooth submanifold of M and, by Lemma 13.4, D is a
smooth distribution on M , the set:{

y ∈ S : TyM = TyS ⊕Dy
}

is open in S. The conclusion follows. �

13.6. Corollary. Every point of M belongs to a smooth submanifold S ⊂M
that is complementary to D.

Proof. Given x ∈ M we can obviously find a smooth submanifold S ⊂ M
containing x such that TxM = TxS ⊕ Dx. The conclusion follows from
Corollary 13.5. �

13.7. Lemma. If S ⊂M is a smooth submanifold that is complementary to
D then the inclusion map of M × S into M ×M is transversal to R.

Proof. Let (x, y) ∈ (M × S) ∩R be fixed. We have to show that:

TxM ⊕ TyM = (TxM ⊕ TyS) + T(x,y)R.

Given v ∈ TxM , w ∈ TyM , since TyM = TyS ⊕ Dy, we can find w′ ∈ TyS
with w − w′ ∈ Dy. Since (x, y) ∈ R we have Cx = Cy and thus:

Dy = TyCy = TyCx;

by (13.3), w − w′ ∈ Dy = TyCx implies (0, w − w′) ∈ T(x,y)R. Hence:

(v, w) = (v, w′) + (0, w − w′) ∈ (TxM ⊕ TyS) + T(x,y)R,

and the proof is completed. �

13.8. Corollary. If S ⊂M is a smooth submanifold that is complementary
to D then (M × S) ∩R is a smooth submanifold of M ×M . �

13.9. Lemma. Let S ⊂M be a smooth submanifold that is complementary to
D. Then the restriction to (M×S)∩R of the first projection M×M →M is
a local diffeomorphism (notice that (M×S)∩R is indeed a smooth manifold,
by Corollary 13.8).

Proof. Let (x, y) ∈ (M ×S)∩R be fixed and denote by P the restriction to:

T(x,y)

(
(M × S) ∩R

)
= (TxM ⊕ TyS) ∩ T(x,y)R

of the first projection TxM ⊕ TyM → TxM . By the Inverse Function Theo-
rem, it suffices to prove that P is an isomorphism. Observe that an element
in the kernel of P is of the form (0, v), with v ∈ TyS and (0, v) ∈ T(x,y)R. But
(13.3) implies v ∈ TyCx = TyCy = Dy; since TyS ∩ Dy = {0}, we get v = 0
and thus P is injective. Let us prove that P is surjective. Let v ∈ TxM be
fixed. Since the restriction to T(x,y)R of the projection TxM ⊕TyM → TxM
is surjective, there exists w ∈ TyM with (v, w) ∈ T(x,y)R. Since TyM =
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TyS ⊕ Dy, we can find w′ ∈ TyS with w − w′ ∈ Dy = TyCy = TyCx. By
(13.3) we have:

(0, w − w′) ∈ T(x,y)R

and thus:
(v, w′) = (v, w) + (0, w′ − w) ∈ T(x,y)R.

Hence (v, w′) is in the domain of P and we are done. �

13.10. Lemma. Let S ⊂M be a smooth submanifold that is complementary
to D. Then the restriction to (M×S)∩R of the second projection M×S → S
is a submersion (notice that (M × S) ∩ R is indeed a smooth manifold, by
Corollary 13.8).

Proof. Let (x, y) ∈ (M × S) ∩ R be fixed. We have to prove that the
restriction to:

T(x,y)

(
(M × S) ∩R

)
= (TxM ⊕ TyS) ∩ T(x,y)R

of the second projection TxM ⊕ TyS → TyS is surjective. But this follows
directly from the fact that the restriction to T(x,y)R of the second projection
TxM ⊕ TyM → TyM is surjective (see Remark 13.2). �

We will say that a smooth submanifold S ⊂ M is fundamental if S is
complementary to D and, in addition, S intercepts each equivalence class
determined by R at most once; more explicitly, S is fundamental if S is
complementary to D and (x, y) ∈ R implies x = y, for all x, y ∈ S. We have
the following:

13.11. Lemma. If S ⊂ M is a smooth submanifold that is complementary
to D then any x ∈ S has an open neighborhood S′ in S that is fundamental.

Proof. Since (x, x) ∈ (M × S) ∩ R, Lemma 13.9 implies that (x, x) has an
open neighborhood in (M×S)∩R on which the first projection M×M →M
is injective. Such neighborhood can be chosen in the form (U×V )∩R, where
U is an open neighborhood of x in M and V is an open neighborhood of x
in S. Set S′ = U ∩V . Then S′ is an open neighborhood of x in S. Being an
open submanifold of S, the submanifold S′ is complementary to D. Let us
prove that S′ is fundamental. Choose x, y ∈ S′ with (x, y) ∈ R. Then (x, y)
and (x, x) are both in (U × V )∩R and have the same image under the first
projection; hence (x, y) = (x, x) and we are done. �

13.12. Corollary. Every point of M belongs to a fundamental smooth sub-
manifold of M .

Proof. Follows from Corollary 13.6 and from Lemma 13.11. �

13.13. Lemma. Let S ⊂ M be a fundamental smooth submanifold of M .
Then the set:

A =
{
x ∈M : there exists y ∈ S with (x, y) ∈ R

}
is open in M . Moreover, for each x ∈ M there exists precisely one y ∈ S
with (x, y) ∈ R and the map p : A 3 x 7→ y ∈ S is a smooth submersion.
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Proof. Denote by P the restriction to (M × S) ∩ R of the first projection
M ×M → M . By Lemma 13.9, P is a local diffeomorphism. The set A is
precisely the image of P and thus A is indeed open in M . Moreover, P is
injective; namely, if (x, y) and (x, y′) are in (M × S) ∩ R then y and y′ are
in S and (y, y′) ∈ R. Being an injective local diffeomorphism, P is actually
a global diffeomorphism onto the open set A. The fact that the map p is
a smooth submersion follows by observing that p is equal to the composite
of the diffeomorphism P−1 : A → (M × S) ∩ R with the restriction to
(M ×S)∩R of the second projection M ×S → S (recall Lemma 13.10). �

13.14. Lemma. Let S1, S2 ⊂M be fundamental smooth submanifolds. Con-
sider the sets:

S′1 =
{
x ∈ S1 : there exists y ∈ S2 with (x, y) ∈ R

}
,

S′2 =
{
y ∈ S2 : there exists x ∈ S1 with (x, y) ∈ R

}
.

Then S′1 is open in S1 and S′2 is open in S2. Moreover, for each x ∈ S′1
there exists precisely one point y = α(x) ∈ S′2 with (x, y) ∈ R and the map
α : S′1 → S′2 is a smooth diffeomorphism.

Proof. For i = 1, 2, set:

Ai =
{
x ∈M : there exists y ∈ Si with (x, y) ∈ R

}
,

and denote by pi : Ai → Si the map that carries each x ∈ Ai to the unique
y ∈ Si such that (x, y) ∈ R. By Lemma 13.13, the set Ai is open in M
and the map pi is smooth. To conclude the proof, simply observe that
S′1 = A2 ∩ S1, S′2 = A1 ∩ S2, α = p2|S′1 and α−1 = p1|S′2 . �

In order to define a smooth maximal atlas on M/R we make use of the
following elementary result.

13.15. Lemma. Let N be a set and let (φi : Ui → Ni)i∈I be a family of
bijective maps, where each Ui is a subset of N and each Ni is a smooth
manifold. Assume that N =

⋃
i∈I Ui and that for any i, j ∈ I the maps φi

and φj are smoothly compatible, i.e., the sets φi(Ui ∩ Uj) and φj(Ui ∩ Uj)
are open respectively in Ni and in Nj and the transition map:

φj ◦ φ−1
i : φi(Ui ∩ Uj) −→ φj(Ui ∩ Uj)

is a smooth diffeomorphism. Then there exists a unique smooth maximal
atlas on N such that all Ui are open in N with respect to the topology induced
by such atlas and such that all maps φi are smooth diffeomorphisms.

Proof. A smooth atlas in N is defined by considering compositions of the
maps φi with local charts in the manifolds Ni. Details are left to the reader.

�

If S ⊂M is a fundamental smooth submanifold then the restriction to S
of the quotient map q is injective. Thus (q|S)−1 : q(S) → S is a bijection
defined in the subset q(S) of M/R, taking values in the smooth manifold S.
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By Corollary 13.12, when S runs over all fundamental smooth submanifolds
of M , the sets q(S) cover M/R. Moreover, Lemma 13.14 says that the
bijections (q|S)−1 : q(S) → S are pairwise smoothly compatible. Thus,
Lemma 13.15 gives us a smooth maximal atlas on M/R such that, for every
smooth fundamental submanifold S ⊂ M , the set q(S) is open in M/R
and the map q|S : S → q(S) is a smooth diffeomorphism. In order to
complete the proof of Theorem 13.1, we show that q : M → M/R is a
smooth submersion. Let x ∈ M be fixed and let S ⊂ M be a fundamental
smooth submanifold of M with x ∈ S (see Corollary 13.12). Define A and
p as in the statement of Lemma 13.13. Then A is an open neighborhood of
x and:

q|A = (q|S) ◦ p.
Since p is a smooth submersion and q|S : S → q(S) is a smooth diffeomor-
phism, it follows that q|A is a smooth submersion. This concludes the proof
of Theorem 13.1.

Now we assume that M/R is endowed with a smooth maximal atlas such
that the quotient map q : M → M/R is a smooth submersion and let us
study the topology of M/R. Since q is a submersion, it follows that q is
an open mapping; being continuous, surjective and open, the map q is a
quotient map in the topological sense. Moreover, we have the following.

13.16. Lemma. If M is second countable then M/R is also second countable.

Proof. Simply observe that, since q is continuous, open and surjective, it
maps a basis of open subsets of M onto a basis of open subsets of M/R. �

13.17. Lemma. The quotient M/R is Hausdorff if and only if R is closed
in M ×M .

Proof. Recall that M/R is Hausdorff if and only if the diagonal ∆M/R is
closed in (M/R) × (M/R). The map q × q (recall (13.1)) is a surjective
submersion and thus it is continuous, open and surjective. It follows that
q×q is a quotient map in the topological sense. Since R = (q×q)−1(∆M/R),
we have that ∆M/R is closed in (M/R) × (M/R) if and only if R is closed
in M ×M . �

14. The Frobenius Theorem

Recall that a smooth distribution D on a smooth manifold M is a smooth
vector subbundle of the tangent bundle TM . For x ∈ M we set Dx =
TxM ∩ D, i.e., Dx is the fiber of the vector bundle D over x. A vector field
X on M is called horizontal with respect to a distribution D (or simply
D-horizontal) if X takes values in D, i.e., if X(x) ∈ Dx for all x ∈M .

14.1. Definition. Let M be a smooth manifold and let D be a distribution
on M . The Levi form of D at a point x ∈M is the bilinear map:

LDx : Dx ×Dx −→ TxM/Dx
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defined by LDx (v, w) = [X,Y ](x) + Dx ∈ TxM/Dx, where X and Y are D-
horizontal smooth vector fields defined in an open neighborhood of x in M
with X(x) = v and Y (x) = w. By [X,Y ] we denote the Lie bracket of the
vector fields X and Y .

Below we show that the Levi form is well-defined, i.e., [X,Y ](x) + Dx
does not depend on the choice of the D-horizontal vector fields X and Y
with X(x) = v, Y (x) = w. Let θ be a smooth Rk-valued 1-form on an open
neighborhood U of x such that Ker(θx) = Dx for all x ∈ U . If X and Y
are vector fields on an open neighborhood of x then Cartan’s formula for
exterior differentiation gives:

dθ(X,Y ) = X
(
θ(Y )

)
− Y

(
θ(X)

)
− θ
(
[X,Y ]

)
.

If X and Y are D-horizontal then the equality above reduces to:

dθ(X,Y ) = −θ
(
[X,Y ]

)
.

The formula above implies that if X ′, Y ′ are D-horizontal vector fields with
X ′(x) = X(x) and Y ′(x) = Y (x) then θ

(
[X,Y ] − [X ′, Y ′]

)
(x) = 0, i.e.,

[X,Y ](x) − [X ′, Y ′](x) ∈ Dx. Hence the Levi form is well-defined. Setting
X(x) = v and Y (x) = w we obtain the following formula:

(14.1) θ̄x
(
LDx (v, w)

)
= −dθ(v, w), v, w ∈ Dx,

where θ̄x : TxM/Dx → Rk denotes the linear map induced by θx in the
quotient space.

14.2. Lemma. Let M be a smooth manifold, D be a smooth distribution on
M and let

U 3 (t, s) 7−→ H(t, s) ∈M
be a smooth map defined on an open subset U ⊂ R2. Let I ⊂ R be an
interval and let s0 ∈ R be such that I × {s0} ⊂ U and LDH(t,s0) = 0 for all

t ∈ I. Assume that ∂H
∂t (t, s) ∈ D for all (t, s) ∈ U . If ∂H

∂s (t0, s0) ∈ D for

some t0 ∈ I then ∂H
∂s (t, s0) ∈ D for all t ∈ I.

Proof. The set:

I ′ =
{
t ∈ I : ∂H∂s (t, s0) ∈ D

}
is obviously closed in I because the map I 3 t 7→ ∂H

∂s (t, s0) ∈ TM is contin-
uous and D is a closed subset of TM . Since I is connected and t0 ∈ I ′, the
proof will be complete once we show that I ′ is open in I. Let t1 ∈ I ′ be fixed.
Let θ be an Rk-valued smooth 1-form defined in an open neighborhood V
of H(t1, s0) in M such that the linear map θx : TxM → Rk is surjective
and Ker(θx) = Dx for all x ∈ V . Choose a distribution D′ on V such that
TxM = Dx ⊕ D′x for all x ∈ V . Then, for each x ∈ V , θx restricts to an
isomorphism from D′x onto Rk. Let J be a connected neighborhood of t1 in
I such that H(t, s0) ∈ V for all t ∈ J . We will show below that the map:

(14.2) J 3 t 7−→ θH(t,s0)

(
∂H
∂s (t, s0)

)
∈ Rk
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is a solution of a homogeneous linear ODE; since θH(t1,s0)

(
∂H
∂s (t1, s0)

)
= 0,

it will follow that θH(t,s0)

(
∂H
∂s (t, s0)

)
= 0 for all t ∈ J , i.e., J ⊂ I ′.

We denote by ∂
∂t and ∂

∂s the canonical basis of R2 and we apply Cartan’s
formula for exterior differentiation to the 1-form H∗θ obtaining:

d(H∗θ)
(
∂
∂t ,

∂
∂s

)
= ∂

∂t

(
(H∗θ)

(
∂
∂s

))
− ∂

∂s

(
(H∗θ)

(
∂
∂t

))
− (H∗θ)

([
∂
∂t ,

∂
∂s

])
.

Since d(H∗θ) = H∗(dθ) and
[
∂
∂t ,

∂
∂s

]
= 0 we get:

dθH(t,s0)

(
∂H
∂t (t, s0), ∂H∂s (t, s0)

)
= ∂

∂t

(
θH(t,s0)

(
∂H
∂s (t, s0)

))
(14.3)

− ∂
∂s

∣∣
s=s0

(
θH(t,s)

(
∂H
∂t (t, s)

))
, t ∈ J.

Observe that, since ∂H
∂t (t, s) is in D, the last term on the righthand side of

(14.3) vanishes. We can write ∂H
∂s (t, s0) = u1(t) + u2(t) with u1(t) ∈ D and

u2(t) ∈ D′. Since the Levi form of D vanishes at points of the form H(t, s0),
equation (14.1) implies that dθH(t,s0)(v, w) = 0 for all v, w ∈ DH(t,s0). We

may thus replace ∂H
∂s (t, s0) by u2(t) in the lefthand side of (14.3). For t ∈ J

we consider the linear map L(t) : Rk → Rk defined by:

L(t) · z = dθH(t,s0)

(
∂H
∂t (t, s0), σH(t,s0)(z)

)
, z ∈ Rk,

where, for x ∈ V , σx : Rk → D′x denotes the inverse of the isomorphism
θx|D′x : D′x → Rk. Observe that:

dθH(t,s0)

(
∂H
∂t (t, s0), ∂H∂s (t, s0)

)
= dθH(t,s0)

(
∂H
∂t (t, s0), u2(t)

)
= L(t) · θH(t,s0)

(
u2(t)

)
= L(t) · θH(t,s0)

(
∂H
∂s (t, s0)

)
.

Equation (14.3) can now be rewritten as:

∂
∂t

(
θH(t,s0)

(
∂H
∂s (t, s0)

))
= L(t) · θH(t,s0)

(
∂H
∂s (t, s0)

)
, t ∈ J.

Hence the map (14.2) is a solution of a homogeneous linear ODE and we
are done. �

Given smooth manifolds M and N we denote by Lin(TM, TN) the vector
bundle over M × N whose fiber at a point (x, y) ∈ M × N is the space
Lin(TxM,TyN) of linear maps from TxM to TyN .

14.3. Theorem. Let M , N be smooth manifolds and F be a smooth section
of the vector bundle Lin(TM, TN) defined in an open subset A ⊂ M × N .
Consider the distribution gr(F ) on A whose fiber at a point (x, y) ∈ A is the
graph of the linear map F (x, y) : TxM → TyN . Let

R× Λ ⊃ Z 3 (t, λ) 7−→ φ(t, λ) ∈M, R× Λ ⊃ Z 3 (t, λ) 7−→ ψ(t, λ) ∈ N,
be smooth maps, where Λ is a smooth manifold and Z ⊂ R × Λ is an open
subset. Let α : V → Z be a smooth map defined in an open subset V ⊂ M
such that φ

(
α(x)

)
= x for all x ∈ V . Assume that:
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(1)
(
φ(t, λ), ψ(t, λ)

)
∈ A and the Levi form of gr(F ) vanishes at the

point
(
φ(t, λ), ψ(t, λ)

)
for all (t, λ) ∈ Z;

(2) ∂ψ
∂t (t, λ) = F

(
φ(t, λ), ψ(t, λ)

)
· ∂φ∂t (t, λ), for all (t, λ) ∈ Z;

(3) for every (t1, λ) ∈ Z there exists t0 ∈ R such that I × {λ} ⊂ Z and
∂ψ
∂λ (t0, λ) = F

(
φ(t0, λ), ψ(t0, λ)

)
◦ ∂φ∂λ(t0, λ), where I ⊂ R denotes the

closed interval whose endpoints are t0 and t1.

Then the map f = ψ ◦ α : V → N satisfies the PDE:

df(x) = F
(
x, f(x)

)
, x ∈ V.

Proof. We start by proving that:

(14.4) ∂ψ
∂λ (t1, λ) · v =

[
F
(
φ(t1, λ), ψ(t1, λ)

)
◦ ∂φ∂λ(t1, λ)

]
· v,

for all (t1, λ) ∈ Z and all v ∈ TλΛ. Let (t1, λ) ∈ Z and v ∈ TλΛ be fixed; let
t0 ∈ R be as in condition (3) above. Let γ : ]−ε, ε[→ Λ be a smooth curve
with γ(0) = λ and γ′(0) = v. We define a map H : U → A ⊂ M × N by
setting H(t, s) =

(
φ(t, γ(s)), ψ(t, γ(s))

)
, where U ⊂ R2 is the open set:

U =
{

(t, s) ∈ R× ]−ε, ε[ :
(
t, γ(s)

)
∈ Z

}
.

Obviously I × {0} ⊂ U . Condition (2) above implies that ∂H
∂t (t, s) ∈ gr(F )

for all (t, s) ∈ U ; moreover, since

∂H
∂s (t0, 0) =

(∂φ
∂λ(t0, λ) · v, ∂ψ∂λ (t0, λ) · v

)
,

condition (3) above implies that ∂H
∂s (t0, 0) ∈ gr(F ). Since the Levi form of

gr(F ) vanishes at H(t, 0) for all t ∈ I, Lemma 14.2 gives ∂H
∂s (t, 0) ∈ gr(F )

for all t ∈ I. In particular ∂H
∂s (t1, 0) ∈ gr(F ), i.e., (14.4) holds.

Condition (2) above and identity (14.4) imply that:

dψ(t1, λ) = F
(
φ(t1, λ), ψ(t1, λ)

)
◦ dφ(t1, λ),

for all (t1, λ) ∈ Z. Using this equality and recalling that φ
(
α(x)

)
= x, for

all x ∈ V , we compute:

df(x) = dψ
(
α(x)

)
◦ dα(x) = F

(
φ(α(x)), ψ(α(x))

)
◦ dφ

(
α(x)

)
◦ dα(x)

= F
(
x, f(x)

)
◦ d(φ ◦ α)(x) = F

(
x, f(x)

)
.

This concludes the proof. �

14.4. Corollary. Let A 3 (x, y) 7→ F (x, y) ∈ Lin(Rm,Rn) be a smooth map
defined in an open subset A ⊂ Rm ×Rn. Assume that:
(14.5)

∂Fkj
∂xi

(x, y) +

n∑
r=1

Fri(x, y)
∂Fkj
∂yr

(x, y) =
∂Fki
∂xj

(x, y) +

n∑
r=1

Frj(x, y)
∂Fki
∂yr

(x, y),

for all (x, y) ∈ A, i, j = 1, . . . ,m, k = 1, . . . , n. Then, for every (x0, y0) ∈ A
there exists a smooth map f : V → Rn defined in an open neighborhood V
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of x0 in Rm such that f(x0) = y0,
(
x, f(x)

)
∈ A for all x ∈ V and f is a

solution of the PDE:

df(x) = F
(
x, f(x)

)
, x ∈ V.

14.5. Corollary. Let M , N be smooth manifolds, E be a finite-dimensional
real vector space and ωM , ωN be E-valued smooth 1-forms respectively on
M and on N . Assume that ωN (y) : TyN → E is an isomorphism for all
y ∈ N . Let

R× Λ ⊃ Z 3 (t, λ) 7−→ φ(t, λ) ∈M, R× Λ ⊃ Z 3 (t, λ) 7−→ ψ(t, λ) ∈ N,

be smooth maps, where Λ is a smooth manifold and Z ⊂ R × Λ is an open
subset. Let α : V → Z be a smooth map defined in an open subset V ⊂ M
such that φ

(
α(x)

)
= x for all x ∈ V . Assume that:

(1) for every (t, λ) ∈ Z,

F
(
φ(t, λ), ψ(t, λ)

)∗[
dωN

(
ψ(t, λ)

)]
= dωM

(
φ(t, λ)

)
,

where F (x, y) : TxM → TyN denotes the linear map defined by:

(14.6) F (x, y) = ωN (y)−1 ◦ ωM (x),

for all x ∈M , y ∈ N ;
(2) for every (t, λ) ∈ Z,

ωNψ(t,λ)

(∂ψ
∂t (t, λ)

)
= ωMφ(t,λ)

(∂φ
∂t (t, λ)

)
;

(3) for every (t1, λ) ∈ Z there exists t0 ∈ R such that I × {λ} ⊂ Z and

ωNψ(t0,λ) ◦
∂ψ
∂λ (t0, λ) = ωMφ(t0,λ) ◦

∂φ
∂λ(t0, λ),

where I denotes the closed interval whose endpoints are t0 and t1.

Then the map f = ψ ◦ α : V → N satisfies f∗ωN = ωM |V .

Proof. We just have to apply Theorem 14.3 to the section F of Lin(TM, TN)
defined by (14.6). Observe indeed that the condition f∗ωN = ωM |V is
equivalent to the PDE df(x) = F

(
x, f(x)

)
; moreover, it is clear that condi-

tions (2) and (3) in the statement of this Corollary are equivalent respectively
to conditions (2) and (3) in the statement of Theorem 14.3. To complete
the proof, we will show that the Levi form of gr(F ) vanishes at a point
(x, y) ∈ M × N if and only if F (x, y)∗

[
dωN (y)

]
= dωM (x). Considere the

E-valued 1-form θ on M ×N defined by θ = π∗2ω
N − π∗1ωM , where π1 and

π2 denote the projections of the product M ×N . We have:

θ(x,y)(v, w) = ωNy (w)− ωMx (v),

for all (x, y) ∈M ×N , (v, w) ∈ TxM ⊕ TyN ; it is thus easy to see that the
linear map θ(x,y) : TxM ⊕ TyN → E is surjective and that its kernel equals
the graph of F (x, y), for all (x, y) ∈M ×N . In particular, the linear map

θ̄(x,y) : (TxM ⊕ TyN)/gr(F )(x,y) −→ E
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induced on the quotient space is an isomorphism. It follows from (14.1) that
the Levi form of gr(F ) vanishes at (x, y) if and only if dθ(x,y) annihilates

gr(F ). We have dθ = π∗2(dωN )− π∗1(dωM ), i.e.:

dθ(x,y)

(
(v1, w1), (v2, w2)

)
= dωN (w1, w2)− dωM (v1, v2),

for all (x, y) ∈M×N , (v1, w1), (v2, w2) ∈ TxM⊕TyN . It follows that dθ(x,y)

annihilates gr(F ) if and only if F (x, y)∗
[
dωN (y)

]
= dωM (x). �

15. Global Frobenius

In what follows M denotes a smooth manifold (i.e., a set endowed with a
smooth maximal atlas; no topological assumptions are made) and D denotes
a smooth distribution on M (i.e., a smooth vector subbundle of the tangent
bundle TM). By an integral submanifold of D we mean an immersed smooth
submanifold S of M such that TxS = Dx, for all x ∈ S. We have the
following:

15.1. Lemma. Let S be an integral submanifold of D and let f : N → M
be a smooth map defined in a smooth manifold N . Assume that the image
of dfp is contained in Df(p), for all p ∈ N . Then f−1(S) is an open subset
of N .

Proof. Let p ∈ f−1(S) be fixed. Let ϕ : U → Ũ be a local chart in M

such that f(p) ∈ U , Ũ = Ũ1 × Ũ2, with Ũ1 an open subset of Rn1 , Ũ2

an open subset of Rn2 and such that dϕf(p)(Df(p)) = Rn1 × {0}n2 . We

write ϕ = (ϕ1, ϕ2), where ϕi : U → Ũi, i = 1, 2. Since dϕ1
f(p) maps Df(p)

isomorphically onto Rn1 , we may assume (possibly taking a smaller U) that
dϕ1

x maps Dx isomorphically onto Rn1 , for all x ∈ U . Consider the smooth

map F : Ũ1 × Ũ2 → Lin(Rn1 ,Rn2) defined by:

F (u1, u2) = dϕ2
x ◦ (dϕ1

x|Dx)−1,

for all u1 ∈ Ũ1, u2 ∈ Ũ2, where x = ϕ−1(u1, u2).
Since d(ϕ1|S∩U )f(p) =

(
dϕ1

f(p)

)∣∣
Df(p)

is an isomorphism, the Inverse Func-

tion Theorem gives us an open neighborhood S0 of f(p) in S ∩ U that is
mapped diffeomorphically by ϕ1 onto an open subset A of Rn1 contained

in Ũ1. The set f−1
(
(ϕ1)−1(A)

)
is an open neighborhood of p in N ; let V

be an open neighborhood of p in N contained in f−1
(
(ϕ1)−1(A)

)
that is

diffeomorphic to some open ball in Euclidean space. We will now complete
the proof by showing that V is contained in f−1(S).

Let p′ ∈ V be fixed. Since V is diffeomorphic to an open ball, there exists
a smooth curve λ : [0, 1]→ V with λ(0) = p and λ(1) = p′. Set γ = ϕ1◦f ◦λ
and µ = ϕ2 ◦ f ◦ λ. For every t ∈ [0, 1], we have:

(f ◦ λ)′(t) = dfλ(t)

(
λ′(t)

)
∈ Df(λ(t));
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since µ′(t) = dϕ2
f(λ(t))

(
(f ◦λ)′(t)

)
and γ′(t) = dϕ1

f(λ(t))

(
(f ◦λ)′(t)

)
, we have:

µ′(t) =
(

dϕ2
f(λ(t)) ◦

(
dϕ1

f(λ(t))

∣∣
Df(λ(t))

)−1
)(
γ′(t)

)
.

By the definition of F , this means:

(15.1) µ′(t) = F
(
γ(t), µ(t)

)
· γ′(t),

for all t ∈ [0, 1]. Since the image of γ is contained in A and ϕ1|S0 : S0 → A
is a diffeomorphism, we can consider the curve σ : [0, 1] → S0 ⊂ U defined
by σ = (ϕ1|S0)−1 ◦ γ; set µ̄ = ϕ2 ◦ σ. For t ∈ [0, 1], we have:

σ′(t) =
(
dϕ1

σ(t)

∣∣
Tσ(t)S0

)−1(
γ′(t)

)
=
(
dϕ1

σ(t)

∣∣
Dσ(t)

)−1(
γ′(t)

)
;

thus:

µ̄′(t) =
(

dϕ2
σ(t) ◦

(
dϕ1

σ(t)

∣∣
Dσ(t)

)−1
)(
γ′(t)

)
.

By the definition of F , this means:

(15.2) µ̄′(t) = F
(
γ(t), µ̄(t)

)
· γ′(t),

for all t ∈ [0, 1]. Now (15.1) and (15.2) imply that µ : [0, 1] → Rn2 and
µ̄ : [0, 1]→ Rn2 are both solutions of the same ODE. Since µ(0) = µ̄(0), we
conclude that µ = µ̄. Thus:

ϕ ◦ f ◦ λ = (γ, µ) = (γ, µ̄) = ϕ ◦ σ;

since ϕ is injective, we get f ◦ λ = σ. In particular:

f(p′) = f
(
λ(1)

)
= σ(1) ∈ S0 ⊂ S.

This concludes the proof. �

15.2. Corollary. Under the hypotheses of Lemma 15.1, assume in addition
that f(N) ⊂ S. Then the map f : N → S is smooth.

Proof. Since S is an immersed submanifold of M , it suffices to prove that
the map f : N → S is continuous when S is endowed with the topology
induced by its own atlas (which maybe finer than the topology induced by
M on S). If S′ is an open subset of S then S′ is also an integral submanifold
of D; thus Lemma 15.1 implies that f−1(S′) is open in N . The conclusion
follows. �

15.3. Corollary. Let S1, S2 ⊂M be integral submanifolds of D. Then S1∩S2

is open in S1 and in S2 (relative to the topology induced by the atlases of S1

and S2). Moreover, S1 ∩ S2 inherits the same manifold structure from S1

and from S2.

Proof. Let i1 : S1 → M , i2 : S2 → M denote the inclusion maps. It
follows from Lemma 15.1 that i−1

1 (S2) = S1 ∩ S2 is open in S1 and that

i−1
2 (S1) = S1 ∩ S2 is open in S2. Let Ai denote the manifold structure

induced on S1 ∩ S2 by Si, i = 1, 2; it follows from Corollary 15.2 that the
identity map Id : (S1 ∩S2,A1)→ (S1 ∩S2,A2) is a smooth diffeomorphism.
Hence A1 = A2 and the proof is completed. �
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Let Smax ⊂ M denote the union of all integral submanifolds of D. We
have the following:

15.4. Lemma. The set Smax admits a unique maximal smooth atlas such
that every integral submanifold of D is an open submanifold of Smax.

Proof. This is an application of Lemma 13.15. Let (Si)i∈I denote the family
of all integral submanifolds of D. By definition, we have Smax =

⋃
i∈I Si.

Moreover, for each i ∈ I, the identity map Id : Si → Si is a bijection
between the subset Si of Smax and the smooth manifold Si. To complete the
proof, observe that the smooth compatibility requirement of Lemma 13.15
is a consequence of Corollary 15.3. �

The manifold Smax is called the global integral submanifold of D. We
already know that every integral submanifold of D is an open submanifold
of Smax; moreover, we have the following:

15.5. Lemma. The manifold Smax is an integral submanifold of D.

Proof. Denote by i : Smax → M the inclusion map. We first prove that i is
a smooth immersion, so that Smax is a smooth immersed submanifold of M .
Let x ∈ Smax be fixed. Since Smax is the union of the integral submanifolds
of D, there exists an integral submanifold S of D with x ∈ S ⊂ Smax. Since
S is an open submanifold of Smax, i|S : S →M is a smooth immersion and
x ∈ Smax is arbitrary, it follows that i is a smooth immersion. Moreover, we
have:

TxSmax = TxS = Dx.

Hence Smax is indeed an integral submanifold of D. �

Since the topology of Smax is in general finer than the topology induced by
M , it follows that if M is Hausdorff then also Smax is Hausdorff. It is not in
general true that Smax is second countable, even if M is. For instance, if D is
integrable then Smax equalsM as a set (but not as a manifold); the connected
components of Smax are the maximal connected integral submanifolds of D.
In the integrable case it is known that, if M is second countable, then each
connected component of Smax is second countable; however, if the rank of D
is smaller than the dimension of M then Smax has an uncountable number
of connected components.

16. Compact-Open Topology

Let X, Y be topological spaces. Denote by C(X,Y ) the set of continuous
maps f : X → Y . Given a compact subset K ⊂ X and an open subset
U ⊂ Y we denote by V(K;U) the subset of C(X,Y ) consisting of those
maps f : X → Y such that f(K) ⊂ U . The smallest topology on C(X,Y )
containing the sets V(K;U) is called the compact-open topology on C(X,Y ).
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The sets V(K;U) with K ⊂ X compact and U ⊂ Y open form a subbasis
for the compact-open topology and the finite intersections:

r⋂
i=1

V(Ki;Ui),

withK1, . . . ,Kr ⊂ X compact, U1, . . . , Ur ⊂ Y open and r a positive integer,
form a basis for the compact-open topology on C(X,Y ) (observe that if
K = U = ∅ then V(K;U) = C(X,Y )).

16.1. Lemma. Let Λ, X, Y be topological spaces and let f : Λ × X → Y
be a continuous map. Then, if C(X,Y ) is endowed with the compact-open
topology, the map:

f̃ : Λ −→ C(X,Y ),

defined by f̃(λ)(x) = f(λ, x), λ ∈ Λ, x ∈ X, is continuous.

Proof. It is sufficient to prove that f̃−1
(
V(K;U)

)
is open in Λ for every

compact set K ⊂ X and every open set U ⊂ Y . Let λ ∈ f̃−1
(
V(K;U)

)
be

fixed. The set f−1(U) is open in the product Λ×X and it contains {λ}×K;
since K is compact, f−1(U) also contains V ×K for some neighborhood V

of λ in Λ. Hence V ⊂ f̃−1
(
V(K;U)

)
and we are done. �

16.2. Lemma. Let Λ, X, Y be topological spaces and let f̃ : Λ→ C(X,Y ) be
a continuous map, where C(X,Y ) is endowed with the compact-open topol-
ogy. Assume that X is locally compact8. Then the map f : Λ × X → Y
defined by f(λ, x) = f̃(λ)(x), λ ∈ Λ, x ∈ X is continuous.

Proof. Let λ ∈ Λ, x ∈ X be fixed and let U be an open neighborhood of
f(λ, x) in Y . Since the map f̃(λ) : X → Y is continuous, the set f̃(λ)−1(U)
is an open neighborhood of x in X. Let K be a compact neighborhood of
x contained in f̃(λ)−1(U). Then f̃(λ) is in V(K;U) and therefore we can

find a neighborhood V of λ in Λ with f̃(V ) ⊂ V(K;U). Hence V ×K is a
neighborhood of (λ, x) in Λ×X and f(V ×K) ⊂ U . �

We now focus on the space C
(
[a, b], X

)
of continuous curves γ : [a, b]→ X

on a fixed topological space X. By a partition of the interval [a, b] we mean a
finite subset P of [a, b] containing a and b; we write P = {t0, . . . , tr} meaning
that a = t0 < t1 < · · · < tr = b. Given a partition P = {t0, . . . , tr} of [a, b]
and a sequence U1, U2, . . . , Ur of open subsets of X, we write:
(16.1)

V(P ;U1, . . . , Ur) =
{
γ ∈ C

(
[a, b], X

)
: γ
(
[ti−1, ti]

)
⊂ Ui, i = 1, . . . , r

}
.

Obviously V(P ;U1, . . . , Ur) is an open subset of C
(
[a, b], X

)
with respect to

the compact-open topology. Moreover, we have the following:

8This means that any neighborhood of an arbitrary point x ∈ X contains a compact
neighborhood of x.
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16.3. Lemma. Let X be a topological space and B be a basis of open sub-
sets for X. The sets V(P ;U1, . . . , Ur), where P runs over the partitions of
[a, b] and U1, . . . , Ur ∈ B, form a basis of open subsets for the compact-open
topology on C

(
[a, b], X

)
.

Proof. Let Z be an open subset of C
(
[a, b], X

)
with respect to the compact-

open topology and let γ ∈ Z be fixed. We’ll find a partition P = {t0, . . . , tr}
of [a, b] and basic open sets U1, . . . , Ur ∈ B such that:

(16.2) γ ∈ V(P ;U1, . . . , Ur) ⊂ Z.
By the definition of the compact-open topology, we can find compact subsets
K1, . . . , Ks ⊂ [a, b] and open subsets V1, . . . , Vs ⊂ X such that:

γ ∈
s⋂
i=1

V(Ki;Vi) ⊂ Z.

Let u ∈ [a, b] be fixed. The set: ⋂
i=1,...,s
u∈Ki

Vi

is an open neighborhood of γ(u) in X and therefore it contains a basic open
set Bu ∈ B such that γ(u) ∈ Bu. Set:

(16.3) Iu = γ−1(Bu) ∩
⋂

i=1,...,s
u6∈Ki

(
[a, b] \Ki

)
.

Then u ∈ Iu and Iu is open in [a, b]. Let δ > 0 be a Lebesgue number for
the open cover

⋃
u∈[a,b] Iu of the compact metric space [a, b]; this means that

every subset of [a, b] having diameter less than δ is contained in some Iu. Let
P = {t0, . . . , tr} be a partition of [a, b] with tj−tj−1 < δ, for j = 1, . . . , r. For
each j = 1, . . . , r we can find uj ∈ [a, b] with [tj−1, tj ] ⊂ Iuj ; set Uj = Buj .
We claim that (16.2) holds.

Since for j = 1, . . . , r, [tj−1, tj ] ⊂ Iuj and γ(Iuj ) ⊂ Buj = Uj , we have
γ ∈ V(P ;U1, . . . , Ur). To complete the proof, choose µ ∈ V(P ;U1, . . . , Ur)
and let us prove that µ ∈

⋂s
i=1 V(Ki;Vi). Let i = 1, . . . , s and t ∈ Ki be

fixed. We have t ∈ [tj−1, tj ], for some j = 1, . . . , r. We claim that uj ∈ Ki;
namely, otherwise Iuj would be contained in [a, b] \ Ki (recall (16.3)), but
t is in Iuj ∩ Ki. But uj ∈ Ki implies Uj = Buj ⊂ Vi. Finally, since
µ ∈ V(P ;U1, . . . , Ur), we have µ(t) ∈ Uj ⊂ Vi. This proves that µ(Ki) ⊂ Vi
for i = 1, . . . , s and completes the prove of the lemma. �

17. The Group of Homeomorphisms of a Topological Space

Recall that given topological spaces X, Y then C(X,Y ) denotes the set of
all continuous maps f : X → Y ; in what follows, we consider C(X,Y ) to be
endowed with the compact-open topology (recall Section 16). Given a topo-
logical space X, denote by Homeo(X) the subset of C(X,X) consisting of all
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homeomorphisms f : X → X. Obviously Homeo(X) is a group under com-
position. In what follows, we investigate under which conditions Homeo(X)
is a topological group (when endowed with the topology inherited from the
compact-open topology of C(X,X)).

17.1. Lemma. Let Y be a locally compact topological space. Given a compact
subset K of Y and an open subset U of Y containing K then there exists a
compact subset L of U whose interior contains K.

Proof. For each x ∈ K, there exists a compact neighborhood Lx of x
contained in U . The interiors int(Lx) of the sets Lx constitute an open
cover of the compact set K, from which we can extract a finite subcover
K ⊂

⋃n
i=1 int(Lxi). Now define L by setting L =

⋃n
i=1 Lxi . �

17.2. Lemma. Let X, Y , Z be topological spaces with Y locally compact.
Then the composition map:

(17.1) C(X,Y )× C(Y,Z) 3 (f, g) 7−→ g ◦ f ∈ C(X,Z)

is continuous.

Proof. Let f0 ∈ C(X,Y ), g0 ∈ C(Y, Z) be fixed. It suffices to show that given
a compact subset K of X and an open subset U of Z with (g0 ◦ f0)(K) ⊂ U
then there exists a neighborhood of (f0, g0) in C(X,Y ) × C(Y, Z) that is
mapped by (17.1) into V(K,U). We have f0(K) ⊂ g−1

0 (U), with f0(K)

a compact subset of Y and g−1
0 (U) an open subset of Y ; by Lemma 17.1,

there exists a compact subset L of g−1
0 (U) whose interior int(L) contains

f0(K). Clearly V
(
K, int(L)

)
× V(L,U) is a neighborhood of (f0, g0) having

the desired property. �

17.3. Lemma. Let G be a group endowed with a topology for which the
multiplication map G × G → G is continuous. Then the inversion map
G 3 x 7→ x−1 ∈ G is continuous if and only if it is continuous at the
identity element 1 ∈ G.

Proof. For each g ∈ G, denote by lg : G → G and rg : G → G the maps
defined by lg(x) = gx and rg(x) = xg respectively. Clearly, lg and rg are
continuous for all g ∈ G. The conclusion follows from the commutativity of
the diagram below:

G
inversion //

lg−1

��

G

G
inversion

// G

rg−1

OO

�

17.4. Lemma. Let X be a Hausdorff, locally compact and locally connected
topological space. Given a compact subset K contained in an open subset U
of X then there exists a finite sequence (Ki)

n
i=1 of compact subsets of X and

a finite sequence (Ui)
n
i=1 of open subsets of X such that:
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• Ki ⊂ Ui, for all i = 1, . . . , n;
• the interior of Ki is nonempty, for all i = 1, . . . , n;
• Ki is connected and Ui is compact, for all i = 1, . . . , n;
•
⋂n
i=1 V(Ki, Ui) ⊂ V(K,U).

Proof. For each x ∈ K, let Vx be a compact neighborhood of x contained in
U , V ′x be a compact neighborhood of x contained in the interior of Vx and
let Wx be a connected neighborhood of x contained in V ′x. The open cover⋃
x∈K int(Wx) of K has a finite subcover

⋃n
i=1 int(Wxi). Now take Ki to be

the closure of Wxi and Ui to be the interior of Vxi . Since Wxi ⊂ V ′xi ⊂ Ui and
V ′xi is closed, it follows that Ki ⊂ Ui. Clearly, xi belongs to the interior of Ki,
so that int(Ki) 6= ∅. The connectedness of Ki follows from the connectedness
of Wxi and the compactness of Ui follows from the compactness of Vxi .
Finally, the inclusion

⋂n
i=1 V(Ki, Ui) ⊂ V(K,U) follows by observing that

K ⊂
⋃n
i=1Ki and

⋃n
i=1 Ui ⊂ U . �

17.5. Lemma. Let X be a Hausdorff, locally compact and locally connected
topological space. Then Homeo(X) is a topological group, i.e., both its mul-
tiplication map and its inversion map are continuous.

Proof. By Lemma 17.2, the multiplication map of the group Homeo(X) is
continuous and by Lemma 17.3, in order to complete the proof, it suffices to
show that the inversion map of Homeo(X) is continuous at the identity map
Id : X → X. The continuity of the inversion map of Homeo(X) at the point
Id is equivalent to the following condition: given a compact subset K of X
contained in an open subset U of X then for every f in some neighborhood
of Id in Homeo(X) we have f−1(K) ⊂ U . By Lemma 17.4, in order to
prove this condition, it suffices to consider the case in which K is connected,
int(K) 6= ∅ and U is compact. Let x be an arbitrary point in the interior of
K. Then:

(17.2) V(∂U,Kc) ∩ V
(
{x}, int(K)

)
∩Homeo(X)

is a neighborhood of the point Id in Homeo(X), where ∂U denotes the
boundary of U . Given f in (17.2), we prove that f−1(K) ⊂ U . Since
f : X → X is a homeomorphism, we have that f(U) is open in X and f(U)
is closed in X; moreover, since f(∂U) ∩K = ∅, we have:

f(U) ∩K =
(
f(U) ∪ f(∂U)

)
∩K = f(U) ∩K.

It follows that f(U)∩K is both open and closed relatively to K. Moreover,
f(x) ∈ f(U) ∩K and, since K is connected, we get f(U) ∩K = K. Hence
K ⊂ f(U) and f−1(K) ⊂ U . �

17.6. Example. Let X be the subspace of the real line R defined by:

X = {0, 1, 2, 3, . . .} ∪
{

1
2 ,

1
3 ,

1
4 , . . .

}
.

Then X is locally compact (obviously Hausdorff), but not locally con-
nected. It follows from Lemma 17.2 that the multiplication map of the group
Homeo(X) is continuous. We claim that the inversion map of Homeo(X) is
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not continuous. For each n ≥ 2, let fn : X → X be the homeomorphism
defined by:

• fn(0) = 0;

• fn
(

1
k

)
= 1

k+1 , for k ≥ n;

• fn
(

1
k

)
= 1

k and fn(k) = k, for k = 1, . . . , n− 1;

• fn(k) = k − 1, for k > n;

• fn(n) = 1
n .

It is easy to see that (fn)n≥2 converges to the identity of X in Homeo(X)
but (f−1

n )n≥2 does not.

18. Liftings

We start with the following:

18.1. Lemma. Let X, X̃ and Y be topological spaces, with X̃ Hausdorff

and Y connected. Let π : X̃ → X be a locally injective map (i.e., every

point of X̃ has a neighborhood in which π is injective) and let f̃1 : Y → X̃,

f̃2 : Y → X̃ be continuous maps with π ◦ f̃1 = π ◦ f̃2. If f̃1 and f̃2 agree on
some point of Y then f̃1 = f̃2.

Proof. Since X̃ is Hausdorff, the set:

(18.1)
{
y ∈ Y : f̃1(y) = f̃2(y)

}
is closed in Y . It is also nonempty, by our hypotheses. We claim that (18.1)

is open in Y . Namely, Let y ∈ Y be fixed with f̃1(y) = f̃2(y). If A is an open

neighborhood of f̃1(y) in X̃ such that π|A in injective then f̃−1
1 (A)∩ f̃−1

2 (A)
is an open neighborhood of y in Y contained in (18.1). This proves the claim
and concludes the proof. �

In what follows X̃ and X are topological spaces and π : X̃ → X is a

local homeomorphism, i.e., for every x̃ ∈ X̃ there exists an open subset

A ⊂ X̃ such that x̃ ∈ A, π(A) is open in X and π|A : A → π(A) is a
homeomorphism. By a lifting of a continuous map f : Y → X defined in

a topological space Y we mean a continuous map f̃ : Y → X̃ such that

π ◦ f̃ = f . Lemma 18.1 implies that, if X̃ is Hausdorff and Y is connected, a

continuous map f : Y → X admits at most one lifting f̃ : Y → X̃ satisfying
a prescribed condition of the form f(y0) = x̃0.

We are now concerned with liftings of curves γ : [a, b]→ X. Let L denote

the subset of X̃ × C
(
[a, b], X

)
consisting of pairs (x̃0, γ) such that γ admits

a unique lifting γ̃ : [a, b]→ X̃ satisfying the initial condition γ̃(a) = x̃0. We

endow the sets C
(
[a, b], X

)
and C

(
[a, b], X̃

)
with the compact-open topology

(see Section 16). Obviously if (x̃0, γ) is in L then γ(a) = π(x̃0); observe also

that if X̃ is Hausdorff then the uniqueness of the lifting of γ satisfying the
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prescribed initial condition γ̃(a) = x̃0 is automatic; its existence, however,
is not. Consider the map:

L : L −→ C
(
[a, b], X̃

)
defined by L(x̃0, γ) = γ̃, where γ̃ : [a, b]→ X̃ is the unique lifting of γ such
that γ̃(a) = x̃0. We have the following:

18.2. Lemma. The map L is continuous.

Proof. Let B denote the collection of all open subsets A of X̃ such that π(A)
is open in X and π|A : A → π(A) is a homeomorphism. Since π is a local

homeomorphism, the set B is a basis of open subsets of X̃. Let (x̃0, γ) ∈ L
be fixed and set γ̃ = L(x̃0, γ). Let P = {t0, . . . , tr} be a partition of [a, b]
and let A1, . . . , Ar ∈ B be such that (recall (16.1)):

γ̃ ∈ V(P ;A1, . . . , Ar).

By Lemma 16.3, in order to complete the proof, it suffices to find a neigh-
borhood of (x̃0, γ) in L that is mapped by L into V(P ;A1, . . . , Ar). Let Z
denote the set of pairs (ỹ0, µ) in L such that:

• ỹ0 ∈ A1;
• µ
(
[ti−1, ti]

)
⊂ π(Ai), for i = 1, . . . , r;

• µ(ti) ∈ π(Ai ∩Ai+1), for i = 1, . . . , r − 1.

Keeping in mind the definition of the compact-open topology in C
(
[a, b], X

)
,

it is immediate that Z is open in L. Moreover, (x̃0, γ) is in Z. We will show
that L(Z) ⊂ V(P ;A1, . . . , Ar). Let (ỹ0, µ) ∈ Z be fixed. For i = 1, . . . , r,

we consider the continuous curve µ̃i : [ti−1, ti]→ Ai ⊂ X̃ defined by:

µ̃i = (π|Ai)−1 ◦ µ|[ti−1,ti].

We claim that µ̃i(ti) = µ̃i+1(ti), for i = 1, . . . , r − 1. Namely, since µ(ti) is
in π(Ai ∩ Ai+1), there exists p ∈ Ai ∩ Ai+1 with µ(ti) = π(p). Since π|Ai is
injective, µ̃i(ti) and p are in Ai and π

(
µ̃i(ti)

)
= µ(ti) = π(p), it follows that

µ̃i(ti) = p. Similarly, since π|Ai+1 is injective, µ̃i+1(ti) and p are in Ai+1

and π
(
µ̃i+1(ti)

)
= µ(ti) = π(p), it follows that µ̃i+1(ti) = p. This proves the

claim.
Since µ̃i(ti) = µ̃i+1(ti), for i = 1, . . . , r − 1, we can consider the curve

µ̃ : [a, b] → X̃ such that µ̃|[ti−1,ti] = µ̃i, for i = 1, . . . , r. The curve µ̃ is a
lifting of µ. Moreover, since π|A1 is injective, ỹ0 and µ̃(a) are in A1 and
π(ỹ0) = µ(a) = π

(
µ̃(a)

)
, it follows that µ̃(a) = ỹ0. Therefore L(ỹ0, µ) = µ̃.

The proof is completed by observing that µ̃ ∈ V(P ;A1, . . . , Ar). �

18.3. Corollary. Let Y be a topological space and let f : Y × [a, b] → X

and f̃0 : Y → X̃ be continuous maps such that for every y ∈ Y , the curve

γy : [a, b] 3 t 7→ f(y, t) ∈ X has a unique lifting γ̃y : [a, b] → X̃ such that

γ̃y(a) = f̃0(y). Then f has a unique lifting f̃ : Y × [a, b] → X̃ such that

f̃(y, a) = f̃0(y), for all y ∈ Y .
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Proof. By Lemma 16.1, the map F : Y → C
(
[a, b], X

)
defined by F (y) = γy,

y ∈ Y , is continuous. By our hypotheses, the continuous map:

(f̃0, F ) : Y −→ X̃ × C
(
[a, b], X̃

)
takes values in L. It is clear that there exists a unique map f̃ : Y ×[a, b]→ X̃

such that π ◦ f̃ = f and f̃(y, a) = f̃0(y), for all y ∈ Y ; such map is given

by f̃(y, t) = L
(
f̃0(y), F (y)

)
(t), for all y ∈ Y , t ∈ [a, b]. It follows from

Lemmas 18.2 and 16.2 that f̃ is indeed continuous. �

18.4. Definition. We say that π has the unique lifting property for paths if
for any continuous map γ : [a, b]→ X and any x̃0 ∈ π−1

(
γ(a)

)
there exists

a unique lifting γ̃ : [a, b]→ X̃ of γ with γ̃(a) = x̃0.

18.5. Definition. By a loop in a topological space Y we mean a continuous
map γ : [a, b]→ Y with γ(a) = γ(b). We say that the loop γ is contractible
in Y if there exists a continuous map H : [0, 1]× [a, b]→ Y such that:

• H(0, t) = γ(t), for all t ∈ [a, b];
• H(s, a) = H(s, b), for all s ∈ [0, 1];
• the map [a, b] 3 t 7→ H(1, t) ∈ Y is constant.

We say that Y is semi-locally simply-connected if every point of Y has a
neighborhood V such that any loop in V is contractible in Y .

18.6. Lemma. Assume that π has the unique lifting property for paths. Let

A be an arc-connected subset of X̃ such that every loop in π(A) is contractible
in X. Then π|A is injective.

Proof. Assume that x̃1, x̃2 ∈ A and that π(x̃1) = π(x̃2). Since A is arc-
connected, there exists a continuous map γ̃ : [a, b]→ A with γ̃(a) = x̃1 and
γ̃(b) = x̃2. Then γ = π ◦ γ̃ is a loop in π(A); therefore γ is contractible in X,
i.e., there exists a continuous map H : [0, 1]×[a, b]→ X as in Definition 18.5.
Since π has the unique lifting property for paths, Corollary 18.3 gives us a

lifting H̃ : [0, 1]× [a, b]→ X̃ of H such that H̃(0, t) = γ̃(t), for all t ∈ [a, b]
(notice that [a, b] plays the role of Y and [0, 1] plays the role of the interval
[a, b] in the statement of Corollary 18.3).

Since the map [a, b] 3 t 7→ H(1, t) ∈ X is constant, the unique lifting

property for paths implies that its lifting [a, b] 3 t 7→ H̃(1, t) ∈ X̃ is also

constant. In particular, H̃(1, a) = H̃(1, b); therefore, the paths:

[0, 1] 3 s 7−→ H̃(1− s, a) ∈ X̃, [0, 1] 3 s 7−→ H̃(1− s, b) ∈ X̃,

are liftings of the same path in X and they agree on s = 0. Again, by the

unique lifting property for paths, it follows that H̃(1 − s, a) = H̃(1 − s, b),
for all s ∈ [0, 1]. In particular:

x̃1 = γ̃(a) = H̃(0, a) = H̃(0, b) = γ̃(b) = x̃2.

This concludes the proof. �
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18.7. Corollary. Under the hypotheses of Lemma 18.6, if in addition the

set A is open in X̃ then π(A) is open in X and π|A : A → π(A) is a
homeomorphism.

Proof. Simply observe that, being a local homeomorphism, π is an open

mapping; moreover, if A is open in X̃ and the restriction of π to A is
injective then π|A : A→ π(A) is a continuous, bijective open mapping. �

18.8. Definition. An open subset U ⊂ X is called a fundamental open
subset of X if π−1(U) equals a disjoint union

⋃
i∈I Ui of open subsets Ui of

X̃ such that π|Ui : Ui → U is a homeomorphism for all i ∈ I. We say that
π is a covering map if X can be covered by fundamental open subsets.

Obviously every covering map is a local homeomorphism.

18.9. Corollary. Assume that π has the unique lifting property for paths

and that X̃ is locally arc-connected (recall Definition 6.1). Let U be an arc-
connected open subset of X such that every loop in U is contractible in X.
Then U is a fundamental open subset of X.

Proof. Let (Ui)i∈I denote the arc-connected components of π−1(U). Since

π−1(U) is open in X̃, each Ui is open in X̃, by Lemma 6.2. Obviously
π−1(U) =

⋃
i∈I Ui is a disjoint union. Let i ∈ I be fixed and let us show

that π|Ui : Ui → U is a homeomorphism. Obviously π(Ui) ⊂ U . We claim
that π(Ui) = U . Given x ∈ U , choose an arbitrary point x̃0 ∈ Ui and let
γ : [a, b]→ U be a continuous map with γ(a) = π(x̃0) and γ(b) = x. By the

unique lifting property for paths, we can find a lifting γ̃ : [a, b] → X̃ of γ
such that γ̃(a) = x̃0. Since γ̃ is a continuous curve in π−1(U) starting at a
point of Ui and since Ui is an arc-connected component of π−1(U), it follows
that γ̃ takes values in Ui. In particular γ̃(b) ∈ Ui and π

(
γ̃(b)

)
= γ(b) = x.

Finally, Corollary 18.7 implies that π|Ui : Ui → U is a homeomorphism. �

18.10. Corollary. Assume that π has the unique lifting property for paths
and that X is locally arc-connected and semi-locally simply-connected. Then
π is a covering map.

Proof. Observe that, since π is a local homeomorphism and X is locally arc-

connected, it follows that also X̃ is locally arc-connected. The conclusion
follows from Corollary 18.9 (recall also Corollary 6.3). �

Assume now that X̃ is Hausdorff, so that Lemma 18.1 guarantees the
uniqueness of the liftings of curves (with prescribed initial conditions). Now
let γ : [a, b]→ X be a continuous curve and let x̃0 ∈ π−1

(
γ(a)

)
be such that

γ does not admit a lifting γ̃ : [a, b]→ X̃ with γ̃(a) = x̃0. Consider the set:

(18.2)
{
t ∈ ]a, b] : γ|[a,t] admits a lifting γ̃ : [a, t]→ X̃ with γ̃(a) = x̃0

}
.

The set (18.2) is not empty; namely, if A is an open neighborhood of x̃0 such
that π(A) is open in X and π|A : A→ π(A) is a homeomorphism then there
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exists ε > 0 with γ
(
[a, a + ε]

)
⊂ π(A) and therefore γ̃ = (π|A)−1 ◦ γ|[a,a+ε]

is a lifting of γ|[a,a+ε] with γ̃(a) = x̃0.
Obviously if t is in (18.2) and t′ is in ]a, t] then also t′ is in (18.2). Therefore

(18.2) is an interval. Let t0 ∈ ]a, b] be the supremum of (18.2). Then ]a, t0[

is contained in (18.2). For each t ∈ ]a, t0[, let γ̃t : [a, t] → X̃ be a lifting of
γ|[a,t] with γ̃t(a) = x̃0. Given t, t′ ∈ ]a, t0[, with t′ < t then γ̃t′ and γ̃t|[a,t′] are
both liftings of the same curve having the same initial condition; therefore

γ̃t′ = γ̃t|[a,t′]. We can thus define a curve γ̃ : [a, t0[→ X̃ by setting:

γ̃|[a,t] = γ̃t,

for all t ∈ ]a, t0[. The curve γ̃ is continuous, since its restriction to ]a, t]
is continuous for all t ∈ ]a, t0[. Moreover, γ̃ is a lifting of γ|[a,t0[ satisfying
the initial condition γ̃(a) = x̃0. We call γ̃ the maximal partial lifting of γ
starting at x̃0.

We have the following:

18.11. Lemma. Assume that X̃ is Hausdorff. Let γ : [a, b] → X be a
continuous curve and let x̃0 ∈ π−1

(
γ(a)

)
be such that γ does not admit a

lifting starting at x̃0. Let γ̃ : [a, t0[ → X̃ be the maximal partial lifting of γ
starting at x̃0, where t0 ∈ ]a, b]. Then γ|[a,t0] does not admit a lifting starting
at x̃0 (i.e., t0 is not in (18.2)).

Proof. If t0 = b then γ|[a,t0] = γ and, by our hypotheses, γ does not admit a
lifting starting at x̃0. Assume that t0 < b and assume by contradiction that

γ|[a,t0] admits a lifting γ̃ : [a, t0] → X̃ with γ̃(a) = x̃0. Let A be an open

neighborhood of γ̃(t0) in X̃ such that π(A) is open in X and π|A : A→ π(A)
is a homeomorphism. Then γ

(
[t0, t0+ε]

)
is contained in π(A) for some ε > 0.

Consider the curve µ̃ : [t0, t0 + ε] → A defined by µ̃ = (π|A)−1 ◦ γ|[t0,t0+ε].
Then µ̃ is a lifting of γ|[t0,t0+ε] starting at γ̃(t0). Therefore the concatenation
of γ̃ with µ̃ is a lifting of γ|[a,t0+ε] starting at x̃0. This contradicts the
maximality of γ̃ and concludes the proof. �

Recall that a point p in a topological space Y is called a limit value of a
map f : [a, b[ → Y at the point b if for any neighborhood V of p and any
ε > 0 there exists t ∈ ]b− ε, b[ with f(t) ∈ V . We have the following:

18.12. Lemma. Assume that X̃ and X are Hausdorff. Let γ : [a, b]→ X be
a continuous curve and let x̃0 ∈ π−1

(
γ(a)

)
be such that γ does not admit a

lifting starting at x̃0. Let γ̃ : [a, t0[ → X̃ be the maximal partial lifting of γ
starting at x̃0, where t0 ∈ ]a, b]. Then the map γ̃ has no limit values at the
point t0.

Proof. Assume by contradiction that p ∈ X̃ is a limit value of γ̃ at the point
x̃0. We claim that π(p) = γ(t0). Otherwise, we could find disjoint open sets
U1, U2 ⊂ X with π(p) ∈ U1 and γ(t0) ∈ U2; then γ

(
]t0 − ε, t0]

)
⊂ U2 for

some ε > 0 and there exists t ∈ ]t0 − ε, t0[ with γ̃(t) ∈ π−1(U1). This implies
γ(t) = π

(
γ̃(t)

)
∈ U1, contradicting U1 ∩ U2 = ∅. The claim is proved.
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Let now A be an open neighborhood of p in X̃ such that π(A) is open in X
and π|A : A→ π(A) is a homeomorphism. Since γ(t0) = π(p) is in π(A), we
can find ε > 0 with γ

(
]t0 − ε, t0]

)
⊂ π(A). Now there exists t ∈ ]t0 − ε, t0[

with γ̃(t) ∈ A. define µ̃ : [t, t0]→ A by setting:

µ̃ = (π|A)−1 ◦ γ|[t,t0].

Then µ̃ is a lifting of γ|[t,t0] starting at γ̃(t); the concatenation of γ̃|[a,t] with µ̃
is therefore a lifting of γ|[a,t0] starting at x̃0. This contradicts Lemma 18.11.

�

18.13. Corollary. Under the assumptions of Lemma 18.12, we have:

(a) if (tn)n≥1 is a sequence in [a, t0[ converging to t0 then
(
γ̃(tn)

)
n≥1

has no converging subsequence in X̃;

(b) if K is a compact subset of X̃ then there exists ε > 0 such that
γ̃
(

]t0 − ε, t0[
)

is disjoint from K.

Proof. If
(
γ̃(tn)

)
n≥1

had a converging subsequence to a point p ∈ X̃ then p

would be a limit value of γ̃ at the point t0. Thus (a) is proven. Let us prove
(b). For each point p ∈ K, since p is not a limit value of γ̃ at the point t0, we

can find an open neighborhood Up of p in X̃ and a positive number εp > 0
such that γ̃

(
]t0 − εp, t0[

)
is disjoint from Up. The open cover

⋃
p∈K Up of K

has a finite subcover
⋃r
i=1 Upi . Let ε = minri=1 εpi > 0. Then γ̃

(
]t0 − ε, t0[

)
is disjoint from K. �

18.14. Definition. We will say that a continuous curve γ : [a, b] → X
admits liftings with arbitrary initial conditions if for every x̃0 ∈ π−1

(
γ(a)

)
there exists a continuous lifting γ̃ : [a, b]→ X̃ of γ with γ̃(a) = x̃0.

18.15. Lemma. Assume that X̃ is Hausdorff and that the following property
holds; for any point p ∈ X there exists a neighborhood U of p in X, a point
p0 ∈ X and a continuous map H : [0, 1]× U → X such that:

• H(0, x) = p0 and H(1, x) = x, for all x ∈ U ;
• for any x ∈ U , the curves:

(18.3) [0, 1] 3 t 7−→ H(t, x) ∈ X, [0, 1] 3 t 7−→ H(1− t, x) ∈ X,
admit liftings with arbitrary initial conditions.

Then π has the unique lifting property for paths.

Proof. Let γ : [a, b] → X be a continuous curve and let x̃0 ∈ π−1
(
γ(a)

)
be

fixed. Assume by contradiction that γ does not admit a lifting starting at

x̃0. Let γ̃ : [a, t0[ → X̃ be the maximal partial lifting of γ starting at x̃0,
where t0 ∈ ]a, b]. Set p = γ(t0) and let U , p0 and H be as in the statement

of the lemma. Let ε > 0 be such that γ
(
[t0 − ε, t0]

)
⊂ U . Let µ̃ : [0, 1]→ X̃

be a lifting of the curve [0, 1] 3 t 7→ H
(
1 − t, γ(t0 − ε)

)
∈ X such that

µ̃(0) = γ̃(t0 − ε). Then p̃0 = µ̃(1) is a point in X̃ such that π(p̃0) = p0.
Since for every x ∈ U the curve [0, 1] 3 t 7→ H(t, x) ∈ X admits a lifting
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starting at p̃0, Corollary 18.3 gives us a lifting H̃ : [0, 1]×U → X̃ of H such

that H̃(0, x) = p̃0, for all x ∈ U . The curves [0, 1] 3 t 7→ µ̃(1 − t) ∈ X̃ and

[0, 1] 3 t 7→ H̃
(
t, γ(t0− ε)

)
∈ X̃ are liftings of the same curve in X and they

both start at the point p̃0; therefore they are equal. In particular:

µ̃(0) = γ̃(t0 − ε) = H̃
(
1, γ(t0 − ε)

)
.

Therefore [t0 − ε, t0] 3 t 7→ H̃
(
1, γ(t)

)
∈ X̃ is a lifting of γ|[t0−ε,t0] starting

at γ̃(t0 − ε); setting γ̃(t0) = H̃
(
1, γ(t0)

)
we thus obtain a lifting of γ|[a,t0]

starting at x̃0. This contradicts Lemma 18.11. �

18.16. Definition. If X is a manifold of class Ck (1 ≤ k ≤ ∞ or k = ω)
then9 a curve γ : [a, b]→ X is called an embedding of class Ck if the following
conditions hold:

• γ extends to a curve of class Ck defined in an open interval containing
the interval [a, b];
• γ′(t) 6= 0 for all t ∈ [a, b];
• γ is injective.

18.17. Corollary. Assume that the space X is a manifold of class Ck (1 ≤
k ≤ ∞ or k = ω) and that X̃ is Hausdorff. Assume also that every em-
bedding γ : [a, b] → X of class Ck admits liftings with arbitrary initial con-
ditions. Then π has the unique lifting property for paths. In particular, by
Corollary 18.10, π is a covering map.

Proof. Let p ∈ X be fixed and let ϕ : U → Ũ ⊂ Rn be a local chart of class

Ck on X with p ∈ U and Ũ a convex open subset of Rn. Set p0 = p and
define H : [0, 1]× U → X by setting:

H(t, x) = ϕ−1
(
(1− t)ϕ(p) + tϕ(x)

)
,

for all t ∈ [0, 1], x ∈ U . For any x ∈ U , x 6= p, the curves (18.3) are em-
beddings of class Ck and therefore they admit liftings with arbitrary initial
conditions. For x = p the curves (18.3) are constant and therefore they
obviously admit liftings with arbitrary initial conditions. The conclusion
follows from Lemma 18.15. �

18.18. Corollary. Assume that X is a Riemannian manifold and that X̃
is Hausdorff. Assume also that every minimizing geodesic γ : [a, b] → X
admits liftings with arbitrary initial conditions. Then π has the unique lifting
property for paths. In particular, by Corollary 18.10, π is a covering map.

Proof. Let p ∈ X be fixed and let r > 0 be such that the exponential map
expp carries the open ball B(0; r) on TpX diffeomorphically onto an open
subset U of X. Set p0 = p and define H : [0, 1]× U → X by setting:

H(t, x) = expp

[
t
((

expp |B(0;r)

)−1
(x)
)]
,

9Recall that “class Cω” means real-analytic.
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for all t ∈ [0, 1], x ∈ U . Then for every x ∈ U , the curves (18.3) are
minimizing geodesics and therefore they admit liftings with arbitrary initial
conditions. The conclusion follows from Lemma 18.15. �

In the next lemma we show that uniqueness of liftings works for covering

maps even if the space X̃ is not Hausdorff (compare with Lemma 18.1).

18.19. Lemma. Assume that π is a covering map. Let Y be a connected

topological space and let f̃1 : Y → X̃, f̃2 : Y → X̃ be continuous maps with
π ◦ f̃1 = π ◦ f̃2. If f̃1 and f̃2 agree on some point of Y then f̃1 = f̃2.

Proof. We proceed as in the proof of Lemma 18.1. We consider the set
(18.1); since π is locally injective, (18.1) is open. Again, (18.1) is nonempty,
by our hypotheses. We complete the proof by showing that (18.1) is closed

(without using that X̃ is Hausdorff). Let y ∈ Y be a point not in (18.1), i.e.,

f̃1(y) 6= f̃2(y). We have π
(
f̃1(y)

)
= π

(
f̃2(y)

)
; let U ⊂ X be a fundamental

open set containing π
(
f̃1(y)

)
. Then π−1(U) =

⋃
i∈I Ui, where (Ui)i∈I is a

family of disjoint open subsets of X̃ and π maps Ui homeomorphically onto
U , for all i ∈ I. We have f̃1(y) ∈ Ui and f̃2(y) ∈ Uj , for some i, j ∈ I.

Since π|Ui is injective, it must be i 6= j. Set V = f̃−1
1 (Ui) ∩ f̃−1

2 (Uj). Then

V is an open neighborhood of y in Y . Moreover, f̃1(V ) ⊂ Ui, f̃2(V ) ⊂ Uj
and Ui ∩ Uj = ∅; therefore V is disjoint from (18.1). This completes the
proof. �

18.20. Lemma. If π is a covering map then π has the unique lifting property
for paths.

Proof. Let γ : [a, b] → X be a continuous map and let x̃0 ∈ π−1
(
γ(a)

)
be

fixed. We will show that γ has a lifting γ̃ : [a, b] → X̃ with γ̃(a) = x̃0; by
Lemma 18.19, such lifting is unique.

Let us start with the case where the image of γ is contained in a funda-
mental open subset U of X. Write π−1(U) =

⋃
i∈I Ui, where (Ui)i∈I is a

family of disjoint open subsets of X̃ and π maps Ui homeomorphically onto
U for all i ∈ I. Since x̃0 ∈ π−1(U), we have x̃0 ∈ Ui, for some i ∈ I. Then
γ̃ = (π|Ui)−1 ◦ γ is a lifting of γ with γ̃(a) = x̃0.

Let us now go to the general case. Since the fundamental open subsets
of X form an open cover of X, its inverse images by γ form an open cover
of the compact metric space [a, b]; let δ > 0 be a Lebesgue number for
this open cover, i.e., every subset of [a, b] having diameter less than δ is
contained in the inverse image by γ of some fundamental open subset of X.
Let P = {t0, . . . , tr} be a partition of [a, b] with ti − ti−1 < δ, i = 1, . . . , r.
Then γ

(
[ti−1, ti]

)
is contained in a fundamental open subset of X; by the

first part of the proof, the curve γ|[ti−1,ti] admits liftings with arbitrary
initial conditions, for all i = 1, . . . , r. We construct a lifting γ̃i of γ|[ti−1,ti]

by induction on i as follows. Let γ̃1 be a lifting of γ|[t0,t1] with γ̃1(a) = x̃0.
Assuming that γ̃i is constructed for some i < r, we consider the lifting γ̃i+1

of γ|[ti,ti+1] with γ̃i+1(ti) = γ̃i(ti).
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Since the continuous curves γ̃1, . . . , γ̃r satisfy γ̃i(ti) = γ̃i+1(ti), for all

i = 1, . . . , r − 1, we can define a continuous curve γ̃ : [a, b] → X̃ by setting
γ̃|[ti−1,ti] = γ̃i, for i = 1, . . . , r. Then γ̃ is a lifting of γ and γ̃(a) = x̃0. This
concludes the proof. �

18.21. Corollary. Assume that π is a covering map and that X̃ is locally
arc-connected. If U is an arc-connected open subset of X such that every
loop in U is contractible in X (in particular, if U is simply-connected) then
U is a fundamental open subset of X.

Proof. Follows from Lemma 18.20 and Corollary 18.9. �

18.22. Lemma. If π is a covering map then the image of π is closed in X.

Proof. Let x ∈ X be a point outside the image of π. Let U be a fundamental
open subset of X containing x. Then π−1(U) =

⋃
i∈I Ui, where (Ui)i∈I is a

family of disjoint open subsets of X̃ and π maps Ui homeomorphically onto
U for all i ∈ I. We claim that I = ∅; namely, otherwise there would exist
some i ∈ I and U = π(Ui) would be contained in the image of π. Since
I = ∅, it follows that π−1(U) = ∅, i.e., U is disjoint from the image of π. �

18.23. Corollary. If π is a covering map, X̃ is nonempty and X is connected
then π is surjective.

Proof. The image of π is nonempty (because X̃ is nonempty), open in X
(because π is a local homeomorphism) and closed in X (by Lemma 18.22).

�

Recall that a topological space X is said to be simply-connected if every
loop in X is contractible in X.

18.24. Lemma. Assume that π is a covering map, X̃ is nonempty and arc-
connected and X is connected and simply-connected. Then π is a homeo-
morphism.

Proof. By Corollary 18.23, π is surjective and by Lemma 18.20, π has the

unique lifting property for paths. It follows from Lemma 18.6 (with A = X̃)
that π is injective. Hence π is a homeomorphism. �

19. More on Covering Maps

In what follows X̃ and X are topological spaces and π : X̃ → X is a

local homeomorphism, i.e., given x̃ ∈ X̃, there exists an open subset A of

X̃ containing x̃ such that π(A) is open in X and π|A : A → π(A) is a
homeomorphism.

19.1. Definition. A section of π is a continuous map s : U → X̃ defined on
an open subset U of X such that π ◦ s equals the identity map of U .
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19.2. Lemma. If s : U → X̃, s′ : U ′ → X̃ are sections of π such that
s(x) = s′(x) for some x ∈ U ∩ U ′ then there exists an open neighborhood V
of x contained in U ∩ U ′ such that s|V = s′|V .

Proof. Let A be an open neighborhood of s(x) = s′(x) in X̃ such that π(A)
is open and π|A : A→ π(A) is a homeomorphism. Set V = s−1(A)∩s′−1(A).
Then V is open in X, x ∈ V and V ⊂ U ∩U ′. Moreover, for y ∈ V we have
π
(
s(y)

)
= π

(
s′(y)

)
= y and s(y), s′(y) ∈ A; since π|A is injective, we get

s(y) = s′(y). �

19.3. Corollary. Assume that X̃ is Hausdorff. Let s : U → X̃, s′ : U → X̃
be sections of π with U connected. If s(x) = s′(x) for some x ∈ U then
s = s′.

Proof. The set E =
{
y ∈ U : s(y) = s′(y)

}
is nonempty and it is closed in

U , since X̃ is Hausdorff. By Lemma 19.2, E is open in U . Thus E = U . �

19.4. Lemma. If s : U → X̃ is a section of π then s(U) is open in X̃ and
s : U → s(U) is a homeomorphism.

Proof. The map s : U → s(U) is continuous, bijective and its inverse, which
is equal to π|s(U) : s(U) → U , is also continuous; thus s : U → s(U) is a

homeomorphism. To complete the proof we show that s(U) is open in X̃.

Given x ∈ U , we will find a neighborhood of s(x) in X̃ contained in s(U).

Let A ⊂ X̃ be an open subset such that s(x) ∈ A, π(A) is open in X and

π|A : A → π(A) is a homeomorphism. Then s′ = (π|A)−1 : π(A) → X̃
is a section of π and s′(x) = s(x). By Lemma 19.2, there exists an open
subset V of X with x ∈ V , V ⊂ U ∩ π(A) and s|V = s′|V . Since s′ is a

homeomorphism onto an open subset of X̃, it follows that s′(V ) is open in

X̃; moreover, s(x) ∈ s′(V ) = s(V ) ⊂ s(U). Hence s′(V ) is a neighborhood
of s(x) contained in s(U). �

19.5. Lemma. Assume that X̃ is Hausdorff. Let U be a connected open
subset of X satisfying the following property:

(∗) for every x ∈ U and every x̃ ∈ X̃ with π(x̃) = x there exists a section

s : U → X̃ of π with s(x) = x̃.

Then U is a fundamental open subset of X (recall Definition 18.8).

Proof. Let S be the set of all sections of π defined in U . We claim that:

π−1(U) =
⋃
s∈S

s(U).

Indeed, if s ∈ S then obviously s(U) ⊂ π−1(U); moreover, given x̃ ∈ π−1(U)
then x = π(x̃) ∈ U and by property (∗) there exists s ∈ S with s(x) = x̃.
Thus x̃ ∈ s(U). This proves the claim. Now observe that, by Lemma 19.4,

s(U) is open in X̃ for all s ∈ S; moreover, π|s(U) : s(U)→ U is a homeomor-
phism, being the inverse of s : U → s(U). To complete the proof, we show
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that the union
⋃
s∈S s(U) is disjoint. Pick s, s′ ∈ S with s(U) ∩ s′(U) 6= ∅.

Then there exists x, y ∈ U with s(x) = s′(y). Observe that:

x = π
(
s(x)

)
= π

(
s′(y)

)
= y,

and thus s(x) = s′(x). Since U is connected and X̃ is Hausdorff, Corol-
lary 19.3 implies that s = s′. �

19.6. Remark. The converse of Lemma 19.5 holds. In fact, if U is a funda-
mental open subset of X then U has property (∗). Namely, write π−1(U) =⋃
i∈I Ui, where (Ui)i∈I is a family of pairwise disjoint open subsets of X̃ such

that π maps Ui homeomorphically onto U for all i ∈ I. Given x ∈ U and

x̃ ∈ π−1(x) then x̃ ∈ Ui for some i ∈ I. Let s = (π|Ui)−1 : U → X̃. Then s
is a section of π and s(x) = x̃.

19.7. Corollary. Assume that X̃ is Hausdorff and that X is locally con-
nected. If X can be covered by open sets satisfying condition (∗) above then
π is a covering map.

Proof. Given x ∈ X, there exists an open subset U of X containing x and
satisfying condition (∗). Since X is locally connected, U contains an open
connected neighborhood U ′ of x. Obviously U ′ also satisfies condition (∗).
Thus U ′ is a fundamental open subset of X, by Lemma 19.5. �

19.8. Lemma. If U ⊂ X is a fundamental open subset then every open
subset V of U is also fundamental.

Proof. Write π−1(U) =
⋃
i∈I Ui, where (Ui)i∈I is a family of disjoint open

subset of X̃ and π maps Ui homeomorphically onto U , for every i ∈ I. Ob-
serve that π−1(V ) =

⋃
i∈I
(
π−1(V ) ∩ Ui); moreover,

(
π−1(V ) ∩ Ui

)
i∈I is a

family of disjoint open subsets of X̃ and π maps π−1(V )∩Ui homeomorphi-
cally onto V , for every i ∈ I. �

19.9. Lemma. Let Y be a subset of X. The map:

π′ = π|π−1(Y ) : π−1(Y ) −→ Y

is a local homeomorphism; moreover, if U ⊂ X is a fundamental open subset
for π the U ∩ Y is a fundamental open subset (of Y ) for π′.

Proof. Since π is a local homeomorphism, given x̃ ∈ π−1(Y ) we can find an

open subset A of X̃ with π(A) open in X and π|A : A → π(A) a homeo-
morphism. Now A ∩ π−1(Y ) is an open subset of π−1(Y ) containing x̃ and
π
(
A ∩ π−1(Y )

)
= π(A) ∩ Y is open in Y ; moreover, π maps A ∩ π−1(Y )

homeomorphically onto π(A)∩ Y . Thus π′ is a local homeomorphism. Now
let us prove that U ∩ Y is fundamental for π′. Write π−1(U) =

⋃
i∈I Ui,

where (Ui)i∈I is a family of disjoint open subsets of X̃ and π maps Ui home-
omorphically onto U , for all i ∈ I. We have:

π′−1(U ∩ Y ) = π−1(U) ∩ π−1(Y ) =
⋃
i∈I

(
Ui ∩ π−1(Y )

)
,
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and
(
Ui ∩ π−1(Y )

)
i∈I is a family of disjoint open subsets of π−1(Y ). More-

over, π′ maps Ui ∩ π−1(Y ) homeomorphically onto U ∩ Y , for all i ∈ I. �

19.10. Corollary. If π is a covering map and Y is a subset of X then
π|π−1(Y ) : π−1(Y )→ Y is also a covering map. �

19.11. Lemma. If π is a covering map, X is locally arc-connected and Ỹ is

an arc-connected component of X̃ then π|
Ỹ

: Ỹ → X is also a covering map.

Proof. Let U be a fundamental arc-connected open subset of X (relatively
to π). We will show that U is also fundamental relatively to π|

Ỹ
. Write

π−1(U) =
⋃
i∈I Ui, where (Ui)i∈I is a family of disjoint open subsets of X̃

and π maps Ui homeomorphically onto U , for every i ∈ I. Since Ui is
homeomorphic to U , we have that Ui is arc-connected for every i ∈ I; since

Ỹ is an arc-connected component of X̃, we have either Ui ⊂ Ỹ or Ui∩Ỹ = ∅,
for all i ∈ I. Set:

I ′ =
{
i ∈ I : Ui ⊂ Ỹ

}
.

Then (π|
Ỹ

)−1(U) = π−1(U) ∩ Ỹ =
⋃
i∈I′ Ui. This proves that U is funda-

mental for π|
Ỹ

. Since π is a covering map and X is locally arc-connected,
Lemma 19.8 implies that the fundamental arc-connected open subsets of X
form a covering of X. This concludes the proof. �

19.12. Corollary. Assume that π is a covering map. Let Y be a connected,

locally arc-connected and simply-connected subset of X and let Ỹ be an arc-

connected component of π−1(Y ). Then π|
Ỹ

: Ỹ → Y is a homeomorphism.

Proof. By Corollary 19.10, π|π−1(Y ) : π−1(Y )→ Y is a covering map. Since

Y is locally arc-connected and Ỹ is an arc-connected component of π−1(Y ),

Lemma 19.11 implies that π|
Ỹ

: Ỹ → Y is also a covering map. The conclu-
sion follows from Lemma 18.24. �

19.13. Corollary. Assume that π is a covering map and that X is simply-
connected and locally arc-connected. Assume also that the image of π inter-
sects every connected component of X. Then π admits a global section, i.e.,

a sections s : X → X̃ whose domain is X.

Proof. Write X =
⋃
i∈I Xi, where each Xi is a connected component of

X. Since X is locally arc-connected (and, in particular, locally connected),
each Xi is open in X; thus each Xi is also locally arc-connected. The fact
that X is simply-connected implies that each Xi is also simply-connected.

Let X̃i be an arc-connected component of π−1(Xi); observe that, since the
image of π intersects Xi, the set π−1(Xi) is nonempty and thus such an
arc-connected component does exist. It follows from Corollary 19.12 that

π maps X̃i homeomorphically onto Xi. Let si : Xi → X̃i be the inverse of

the homeomorphism π|
X̃i

: X̃i → Xi. Then each si is a section of π. The

desired global section s : X → X̃ is obtained by setting s|Xi = si, for every
i ∈ I. �
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20. Sheaves and Pre-Sheaves

Let X be a topological space. A pre-sheaf on X is a map P that assigns
to each open subset U ⊂ X a set P(U) and to each pair of open subsets
U, V ⊂ X with V ⊂ U a map PU,V : P(U)→ P(V ) such that the following
properties hold:

• for every open subset U ⊂ X the map PU,U is the identity map of
the set P(U);
• given open sets, U, V,W ⊂ X with W ⊂ V ⊂ U then:

PV,W ◦PU,V = PU,W .

20.1. Remark. A pre-sheaf on X is simply a contravariant functor from
the category of open subsets of X to the category of sets and maps. The
morphisms in the category of open subsets of X are defined as follows; if
U, V ⊂ X are open then the set of morphisms from V to U has a single
element if V ⊂ U and it is empty otherwise.

A sheaf over a topological space X is a pair (S, π), where S is a topological
space and π : S → X is a local homeomorphism (see the beginning of
Section 19).

20.2. Example. If (S, π) is a sheaf over the topological space X then the
following pre-sheaf P is naturally associated to (S, π); for every open subset
U ⊂ X let P(U) be the set of sections of π whose domain is U (recall
Definition 19.1). Given open subsets U, V ⊂ X with V ⊂ U then the map
PU,V is defined by:

PU,V (s) = s|V ,
for all s ∈ P(U).

Let P be a pre-sheaf over a topological space X. Given a point x ∈ X,
consider the disjoint union of all sets P(U), where U is an open neighborhood
of x in X. We define an equivalence relation ∼ on such disjoint union as
follows; given f1 ∈ P(U1), f2 ∈ P(U2), where U1, U2 are open neighborhoods
of x in X then f1 ∼ f2 if and only if there exists an open neighborhood V
of x contained in U1 ∩ U2 such that PU1,V (f1) = PU2,V (f2). If U is an
open neighborhood of x in X and f ∈ P(U) then the equivalence class of f
corresponding to the equivalence relation ∼ will be denote by [f ]x and will
be called the germ of f at the point x. We set:

Sx =
{

[f ]x : f ∈ P(U), for some open neighborhood U of x in X
}
.

20.3. Remark. The set Sx is simply the direct limit of the net U 7→ P(U),
where U runs over the set of open neighborhoods of x ordered by reverse
inclusion.

Let S denote the disjoint union of all Sx, with x ∈ X. Let π : S → X
denote the map that carries Sx to the point x. Our goal now is to define a
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topology on S. Given an open subset U ⊂ X and an element f ∈ P(U) we
set:

V(f) =
{

[f ]x : x ∈ U
}
⊂ S.

Observe that if V is an open subset of U then:

V
(
PU,V (f)

)
=
{

[f ]x : x ∈ V
}

;

namely, we have
[
PU,V (f)

]
x

= [f ]x, for all x ∈ V .

We claim that the set:

(20.1)
{
V(f) : f ∈ P(U), U an open subset of X

}
is a basis for a topology on S. First, it is obvious that (20.1) is a covering
of S. Second, we have to prove the following property; given open subsets
U1, U2 ⊂ X, f1 ∈ P(U1), f2 ∈ P(U2) and g ∈ V(f1) ∩ V(f2), there exists an
element of (20.1) containing g and contained in V(f1) ∩ V(f2). Let us find
such element of (20.1). Since g ∈ V(f1)∩V(f2) we have g = [f1]x = [f2]x, for
some x ∈ U1∩U2. Since [f1]x = [f2]x, there must exist an open neighborhood
V of x contained in U1∩U2 such that PU1,V (f1) = PU2,V (f2). Now it is easy
to see that V

(
PU1,V (f1)

)
is an element of (20.1) containing g and contained

in V(f1) ∩ V(f2).
In what follows we consider the set S endowed with the topology having

(20.1) as a basis. Our goal is to show that (S, π) is a sheaf over X. We start
with the following:

20.4. Lemma. Let U ⊂ X be an open subset. Given x ∈ U and f ∈ P(U)
then the set:

(20.2)
{
V
(
PU,V (f)

)
: V an open neighborhood of x contained in U

}
is a fundamental system of open neighborhoods of [f ]x in S (i.e., every neigh-
borhood of [f ]x in S contains an element of (20.2)).

Proof. Let W be a neighborhood of [f ]x in S; since (20.1) is a basis of open
subsets for S, we can find an open subset U1 ⊂ X and f1 ∈ P(U1) with
[f ]x ∈ V(f1) ⊂ W. Since [f ]x ∈ V(f1), it must be x ∈ U1 and [f ]x = [f1]x;
thus there exists an open neighborhood V of x contained in U ∩ U1 such
that PU,V (f) = PU1,V (f1). Then V

(
PU1,V (f1)

)
belongs to (20.2) and is

contained in W. �

Given an open subset U ⊂ X and an element f ∈ P(U) we define a map

f̂ : U → S by setting:

f̂(x) = [f ]x,

for all x ∈ U .

20.5. Lemma. If U ⊂ X is an open subset and f ∈ P(U) then the map f̂
maps U homeomorphically onto V(f).
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Proof. It is clear hat f̂ : U → V(f) is a bijection. Moreover, if V is open

in U (and hence in X), we have f̂(V ) = V
(
PU,V (f)

)
; thus f̂ is an open

mapping. To complete the proof, we show that f̂ is continuous. Let x ∈ U
be fixed and let V

(
PU,V (f)

)
be an element of the fundamental system of

neighborhoods (20.2) of f̂(x) = [f ]x; by V we denote an open neighborhood

of x contained in U . Then f̂(V ) = V
(
PU,V (f)

)
; this proves the continuity

of f̂ and completes the proof of the lemma. �

20.6. Corollary. The map π : S → X is a local homeomorphism. Thus
(S, π) is a sheaf over X.

Proof. If U ⊂ X is an open subset and f ∈ P(U) then π maps the open
set V(f) homeomorphically onto the open subset U of X; namely, the map

π|V(f) : V(f) → U is the inverse of the map f̂ : U → V(f). The conclusion
follows by observing that the sets V(f) cover S. �

We call (S, π) the sheaf of germs associated to the pre-sheaf P. Observe

that if U is an open subset of X and f ∈ P(U) then f̂ is a section of the
sheaf of germs defined in U .

20.7. Definition. We say that the pre-sheaf P has the localization property
if, given a family (Ui)i∈I of open subsets of X and setting U =

⋃
i∈I Ui then

the map:

(20.3) P(U) 3 f 7−→
(
PU,Ui(f)

)
i∈I ∈

∏
i∈I

P(Ui)

is injective and its image consists of the families (fi)i∈I in
∏
i∈I P(Ui) such

that PUi,Ui∩Uj (fi) = PUj ,Ui∩Uj (fj), for all i, j ∈ I.

20.8. Remark. Observe that if P has the localization property then the set
P(∅) has exactly one element. Namely, consider the empty family (Ui)i∈I ,
i.e., I is the empty set. Then U =

⋃
i∈I Ui is the empty set and the image

of the map (20.3) has exactly one element (the empty family (fi)i∈I). Thus
P(∅) has exactly one element as well.

20.9. Definition. Given pre-sheafs P and P′ over a topological space X
then an isomorphism from P to P′ is a map λ that associates to each open
subset U ⊂ X a bijection λU : P(U)→ P′(U) such that, given open subsets
U, V ⊂ X with V ⊂ U then the diagram:

(20.4) P(U)
λU //

PU,V
��

P′(U)

P′U,V
��

P(V )
λV

// P′(V )

commutes.
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20.10. Lemma. If the pre-sheaf P has the localization property then, for
every open subset U ⊂ X, the map f 7→ f̂ gives a bijection between the
set P(U) and the set of sections of the sheaf of germs defined in U . More
precisely, such bijections give an isomorphism between the pre-sheaf P and
the pre-sheaf naturally associated to the sheaf of germs (S, π) (recall Exam-
ple 20.2).

Proof. We start by observing that, once we prove that the maps f 7→ f̂ are
bijections, it will follow easily that they give an isomorphism of pre-sheaves
(i.e., diagram (20.4) commutes). Namely, given open subsets U, V ⊂ X
with V ⊂ U and given f ∈ P(U), the commutativity of diagram (20.4) is

equivalent to ĝ = f̂ |V , where g = PU,V (f).

Let U ⊂ X be an open subset. Let us prove that the map P(U) 3 f 7→ f̂

is injective. Let f1, f2 ∈ P(U) be fixed and assume that f̂1 = f̂2. For every
x ∈ U we have [f1]x = [f2]x and thus there exists an open neighborhood Ux
of x contained in U such that PU,Ux(f1) = PU,Ux(f2). Now U =

⋃
x∈U Ux

and thus the localization property implies that f1 = f2. This proves the
injectivity of f 7→ f̂ .

Now let s : U → S be a section of π and let us find f ∈ P(U) with

s = f̂ . For every x ∈ U , s(x) is an element of Sx; thus there exists an open
neighborhood Ux of x and an element fx ∈ P(Ux) such that s(x) = [fx]x.

Since s and f̂x are both sections of the local homeomorphism π and since

s(x) = f̂x(x), there exists an open neighborhood Vx of x contained in Ux∩U
such that s|Vx = f̂x|Vx (recall Lemma 19.2). Set gx = PUx,Vx(fx), for all
x ∈ U ; we claim that there exists f ∈ P(U) with PU,Vx(f) = gx, for all
x ∈ U . Since

⋃
x∈U Vx is an open cover of U , by the localization property, in

order to prove the claim it suffices to show that for every x, y ∈ U we have:

PVx,Vx∩Vy(gx) = PVy ,Vx∩Vy(gy).

Let x, y ∈ U be fixed and set h1 = PVx,Vx∩Vy(gx), h2 = PVy ,Vx∩Vy(gy). We
have:

ĥ1 = ĝx|Vx∩Vy = f̂x|Vx∩Vy = s|Vx∩Vy = f̂y|Vx∩Vy = ĝy|Vx∩Vy = ĥ2.

By the first part of the proof, we get h1 = h2. This proves the claim, i.e.,
there exists f ∈ P(U) with PU,Vx(f) = gx, for all x ∈ U . This implies

[f ]x = [gx]x = [fx]x = s(x), for all x ∈ U . Hence f̂ = s. �

20.11. Remark. It is easily seen that the pre-sheaf naturally associated to a
sheaf (recall Example 20.2) always satisfy the localization property. Thus
the localization property is indeed an essential hypothesis in Lemma 20.10.

20.12. Definition. We say that the pre-sheaf P has the uniqueness property
if for every connected open subset U ⊂ X and every nonempty open subset
V ⊂ U the map PU,V is injective.

20.13. Lemma. If the pre-sheaf P has the uniqueness property and if X is
locally connected and Hausdorff then the space S is Hausdorff.
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Proof. Let U1, U2 ⊂ X be open sets, f1 ∈ P(U1), f2 ∈ P(U2), x ∈ U1, y ∈ U2

be fixed with [f1]x 6= [f2]y. We have to find disjoint open neighborhoods of
[f1]x and [f2]y in S. If x 6= y, we can find disjoint open subsets V1, V2 ⊂ X
with x ∈ V1 and y ∈ V2. Then π−1(V1) and π−1(V2) are disjoint open
neighborhoods of [f1]x and [f2]y, respectively. Assume now that x = y.
Let U be a connected open neighborhood of x contained in U1 ∩ U2. Then
V
(
PU1,U (f1)

)
is an open neighborhood of [f1]x and V

(
PU2,U (f2)

)
is an open

neighborhood of [f2]x. We claim that V
(
PU1,U (f1)

)
and V

(
PU2,U (f2)

)
are

disjoint. Otherwise, there would exist z ∈ U with [f1]z = [f2]z and thus
there would exist an open neighborhood V of z contained in U such that
PU1,V (f1) = PU2,V (f2). This implies:

(PU,V ◦PU1,U )(f1) = (PU,V ◦PU2,U )(f2);

by the uniqueness property, PU,V is injective and so PU1,U (f1) = PU2,U (f2).
In particular, [f1]x = [f2]x, contradicting our hypothesis. �

20.14. Definition. We say that an open subset U ⊂ X has the extension
property with respect to the pre-sheaf P if for every connected nonempty
open subset V of U the map PU,V is surjective. We say that the pre-sheaf
P has the extension property if X can be covered by open sets having the
extension property with respect to P.

20.15. Lemma. Assume that X is locally connected. If U is an open subset
of X having the extension property with respect to the pre-sheaf P then U
has the property (∗) in the statement of Lemma 19.5 with respect to the local
homeomorphism π : S → X.

Proof. Let x ∈ U and x̃ ∈ S be fixed, with π(x̃) = x. We have to find a
section s : U → S of π with s(x) = x̃. Since x̃ ∈ Sx, there exists an open
neighborhood W of x and f ∈ P(W ) with x̃ = [f ]x. Let V be a connected
open neighborhood of x contained in U ∩ W . Since U has the extension
property with respect to P, we can find g ∈ P(U) with PU,V (g) = PW,V (f).
Hence s = ĝ is a section of π defined in U and s(x) = [g]x = [f ]x = x̃. �

20.16. Corollary. Assume that X is Hausdorff and locally connected and
that the pre-sheaf P has the uniqueness property. If U is a connected open
subset of X having the extension property with respect to the pre-sheaf P
then U is a fundamental open subset of X with respect to the map π.

Proof. By Lemma 20.15, U has the property (∗) and by Lemma 20.13 the
space S is Hausdorff. The conclusion follows from Lemma 19.5. �

20.17. Corollary. Assume that X is Hausdorff and locally connected and
that the pre-sheaf P has the uniqueness property and the extension property.
Then the map π : S → X is a covering map.

Proof. By Lemma 20.13, S is Hausdorff. The conclusion follows from Corol-
lary 19.7. �
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The following is a converse of Lemma 20.15.

20.18. Lemma. Assume that the pre-sheaf P has the localization property
and the uniqueness property. If an open subset U ⊂ X has the property (∗)
in the statement of Lemma 19.5 with respect to the local homeomorphism
π : S → X then U has the extension property with respect to the pre-sheaf
P.

Proof. Let V be a connected nonempty open subset of U . Let f ∈ P(V ) be
fixed. We have to find an element g ∈ P(U) with PU,V (g) = f . Choose an
arbitrary point x ∈ V . The germ [f ]x is an element of S with π

(
[f ]x

)
= x.

Since x ∈ U and U has the property (∗), it follows that there exists a
section s : U → S of π with s(x) = [f ]x. Since P has the localization
property, Lemma 20.10 gives us an element g ∈ P(U) with s = ĝ. Then
[g]x = s(x) = [f ]x and therefore there exists an open neighborhood W of x
contained in V such that PU,W (g) = PV,W (f); thus:

PV,W

(
PU,V (g)

)
= PV,W (f).

Since P has the uniqueness property and W is a nonempty open subset
of the connected open set V , we have PU,V (g) = f . This concludes the
proof. �

Finally, we prove our main results.

20.19. Lemma. Assume that X is Hausdorff, locally arc-connected and that
the pre-sheaf P has the localization property, the uniqueness property and
the extension property. If U is an arc-connected open subset of X such that
every loop in U is contractible in X (in particular, if U is simply-connected)
then U has the extension property.

Proof. By Corollary 20.17, the map π : S → X is a covering map. Observe
that, since X is locally arc-connected and π : S → X is a local homeomor-
phism then S is also locally arc-connected; thus, by Corollary 18.21, U is a
fundamental open subset of X. By Remark 19.6, U has property (∗) and
hence Lemma 20.18 implies that U has the extension property. �

20.20. Corollary. Assume that X is Hausdorff, locally arc-connected, arc-
connected, simply-connected and that the pre-sheaf P has the localization
property, the uniqueness property and the extension property. Then for every
connected nonempty open subset V ⊂ X and every f ∈ P(V ) there exists
g ∈ P(X) with PX,V (g) = f .

Proof. It follows from Lemma 20.19 that X itself is an open subset of X hav-
ing the extension property. Thus, since V is open, connected and nonempty,
it follows that the map PX,V : P(X)→ P(V ) is surjective. �

20.21. Lemma. Assume that X is Hausdorff, locally arc-connected and
simply-connected and that the pre-sheaf P has the localization property, the
uniqueness property and the extension property. Assume also that every
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connected component of X contains a nonempty open set U such that P(U)
is nonempty. Then the set P(X) is nonempty.

Proof. By Corollary 20.17, the map π : S → X is a covering map. Since
every connected component of X contains a nonempty set U such that P(U)
is nonempty, it follows that the image of π intersects every connected com-
ponent of X. It follows from Corollary 19.13 that π admits a global section
s : X → S. By Lemma 20.10, there exists f ∈ P(X) with s = f̂ . Hence
P(X) is nonempty. �

20.22. Example. Let X be a Hausdorff, simply-connected smooth manifold
and let θ be a smooth closed 1-form on X. Let us prove that θ is exact. For
every open subset U ⊂ X let P(U) be the set of smooth maps f : U → R

with df = θ|U . If U, V ⊂ X are open subsets with V ⊂ U , define:

PU,V (f) = f |V ,
for all f ∈ P(U). It is immediate that P is a pre-sheaf over X satisfying
the localization property. If U is a connected open subset of X and if
f1, f2 ∈ P(U) are equal at one point of U then f1 = f2; this implies that
P satisfies the uniqueness property. Assuming the well-known fact that
every smooth closed 1-form on an open ball in Euclidean space is exact,
we conclude that for every open subset U of X that is diffeomorphic to an
open ball in Euclidean space the set P(U) is nonempty; in particular, every
connected component of X contains a nonempty open subset U such that
P(U) is nonempty. Finally, let us prove that P has the extension property.
To this aim, we prove that if U is an open subset of X that is diffeomorphic
to an open ball in Euclidean space then U has the extension property with
respect to P. Namely, let V be a connected nonempty open subset of U
and let f ∈ P(V ) be fixed. Since U is diffeomorphic to an open ball in
Euclidean space, there exists a smooth map f1 : U → R with df1 = θ|U .
Since V is connected, f1|V − f is constant and equal to some c ∈ R. Hence
f1− c ∈ P(U) and (f1− c)|V = f . This concludes the proof of the extension
property. Now Lemma 20.21 implies that P(X) is nonempty, i.e., there
exists a smooth map f : X → R with df = θ. Hence θ is exact.

21. Two-Coloring of Abelian Groups

In what follows we identify abelian groups with Z-modules.

21.1. Definition. Let G be an abelian group. A subset S ⊂ G is said
to be admissible if given x1, . . . , xk ∈ S and integers n1, . . . , nk ∈ Z with∑k

i=1 nixi = 0 then
∑k

i=1 ni is even.

In the definition above we do not require the elements x1, . . . , xk ∈ S to
be distinct; nevertheless, it is easy to see that S ⊂ G is admissible if and
only if given distinct elements x1, . . . , xk ∈ S and integers n1, . . . , nk ∈ Z
with

∑k
i=1 nixi = 0 then

∑k
i=1 ni is even.

The following statements concerning admissible subsets are trivial:
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• the empty set is admissible;
• a subset of an admissible subset is admissible;
• a subset S ⊂ G is admissible if and only if every finite subset of S is

admissible;
• if H is a subgroup of G and S is a subset of H then S is admissible

in H if and only if S is admissible in G;
• if S ⊂ G is admissible then 0 6∈ S.

21.2. Definition. Let G be an abelian group and S ⊂ G be a subset. A
two-coloring of (G,S) is a map α : G → {0, 1} such that, for all x, y ∈ G
with x− y ∈ S we have α(x) 6= α(y).

In what follows, if S is a subset of an abelian group G we denote by 〈S〉
the subgroup of G spanned by S, i.e.:

〈S〉 =

{
k∑
i=1

nixi : x1, . . . , xk ∈ S, n1, . . . , nk ∈ Z

}
.

We set Z2 = Z/2Z = {0̄, 1̄}.

21.3. Lemma. Let G be an abelian group and S ⊂ G be a subset. The
following statements are equivalent:

(a) S is admissible;
(b) there exists a homomorphism f : 〈S〉 → Z2 that carries S to 1̄;
(c) there exists a two-coloring of (G,S).

Proof.
(a)⇒(b). Set:

f
( k∑
i=1

nixi

)
=
( k∑
i=1

ni

)
+ 2Z ∈ Z2,

for all x1, . . . , xk ∈ S, n1, . . . , nk ∈ Z. If
∑k

i=1 nixi =
∑l

i=1miyi with
x1, . . . , xk, y1, . . . , yl ∈ S and n1, . . . , nk,m1, . . . ,ml ∈ Z then:

k∑
i=1

nixi −
l∑

i=1

miyi = 0,

and, since S is admissible,
∑k

i=1 ni−
∑l

i=1mi is even. Thus f is well-defined.
It is easy to see that f is a homomorphism that carries S to 1̄.

(b)⇒(c). Denote by q : G→ G/〈S〉 the quotient map and let s : G/〈S〉 → G
be a right inverse for q, i.e., s choses an element for each class on G/〈S〉.
Observe that for any x ∈ G we have x− s

(
q(x)

)
∈ 〈S〉; set:

α(x) = f
(
x− s

(
q(x)

))
,

for all x ∈ G. We claim that α : G → Z2
∼= {0, 1} is a two-coloring of

(G,S). Let x, y ∈ G be fixed with x − y ∈ S. Then q(x) = q(y); set



SOME GOOD LEMMAS 84

z = s
(
q(x)

)
= s
(
q(y)

)
. We have:

f(x− y) = f
(
(x− z)− (y − z)

)
= f(x− z)− f(y − z) = α(x)− α(y).

Since x− y ∈ S, we have f(x− y) = 1̄ and thus α(x) 6= α(y).

(c)⇒(a). Given x ∈ G and y ∈ S we have:

α(x) 6= α(x+ y) and α(x) 6= α(x− y);

it follows easily by induction on
∑k

i=1 |ni| that α(x) = α
(
x +

∑k
i=1 niyi

)
if

and only if
∑k

i=1 ni is even, for all x ∈ G, y1, . . . , yk ∈ S, n1, . . . , nk ∈ Z. In
particular, setting x = 0, we get that S is admissible. �

21.4. Lemma. Let G be an abelian group and S ⊂ G be a nonempty subset.
Then S is admissible if and only if there exists a subgroup H ⊂ G and an
element x ∈ G, x 6∈ H, such that 2x ∈ H and S is contained in the coset
x+H.

Proof. Assume that S is admissible. By Lemma 21.3, there exists a ho-
momorphism f : 〈S〉 → Z2 that carries S to 1̄. Set H = Ker(f) and
choose x ∈ S. Then f(x) = 1̄ and f(2x) = 0̄, i.e., x 6∈ H but 2x ∈ H.
Moreover, given y ∈ S we have f(y − x) = 0̄ and thus y − x ∈ H; hence
y = x+(y−x) ∈ x+H. Assume now thatH is a subgroup ofG, x ∈ G, x 6∈ H
and 2x ∈ H. We show that x+H (and thus any subset of x+H) is admissi-

ble. Let y1, . . . , yk ∈ H and n1, . . . , nk ∈ Z be fixed with
∑k

i=1 ni(x+yi) = 0.
Then: ( k∑

i=1

ni

)
x = −

k∑
i=1

niyi ∈ H;

since 2x ∈ H, if
∑k

i=1 ni where odd, it would follow that x ∈ H, contradict-
ing our hypothesis. �

22. Inductive Limits of Locally Convex Spaces

Let K denote either the field R of real numbers or the field C of complex
numbers.

23. Non separable metric spaces

23.1. Lemma. Let (M,d) be a metric space. Then M is non separable if
and only if there exists an ε > 0 and a uncountable subset A of M such that
d(x, y) > ε, for all x, y ∈ A with x 6= y.

Proof. Clearly the existence of A and ε an in the statement imply that M
is non separable, since the open balls of radius ε

2 centered at the points of A
constitute an uncountable family of non empty pairwise disjoint open subsets
(and every dense subset must intersect all such open subsets and therefore
must be uncountable). Conversely, assume that M is not separable. We use
transfinite recursion to construct a family (xα)α∈ℵ1 of points of M indexed
in the first uncountable ordinal ℵ1 as follows: given α ∈ ℵ1, if the points
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xβ ∈ M are defined for β < α then
{
xβ : β < α

}
is a countable subset of

M and therefore cannot be dense. We can thus choose a point xα ∈M not
in the closure of

{
xβ : β < α

}
. Once the family (xα)α∈ℵ1 is constructed, let

εα denote the (positive) distance between xα and the set
{
xβ : β < α

}
, for

each α ∈ ℵ1. Given distinct ordinals α, β ∈ ℵ1, we have:

d(xα, xβ) ≥ εmax{α,β}.

For each n ≥ 1, set:
In =

{
α ∈ ℵ1 : εα >

1
n

}
.

Since ℵ1 =
⋃
n≥1 In, there must exist n ≥ 1 such that In is uncountable.

The proof is concluded by setting:

A =
{
xα : α ∈ In

}
and ε = 1

n . Notice that the map α 7→ xα is injective, so that A is uncountable

like In. Moreover, d(xα, xβ) > 1
n , for all α, β ∈ In with α 6= β. �

24. Fibered implicit function theorem

24.1. Theorem. Let E, F , M , N be differentiable manifolds, p : E → M ,
q : F → N be smooth submersions and φ : E → F , f : M → N be smooth
maps such that the diagram:

E
φ //

p

��

F

q

��
M

f
// N

commutes. Let e0 ∈ E be such that the differential dφ(e0) maps Ker
(
dp(e0)

)
isomorphically onto Ker

[
dq
(
φ(e0)

)]
. Given a smooth map g : M → F such

that the diagram:

F

q

��
M

f
//

g
>>

N

commutes and φ(e0) = g
(
p(e0)

)
, then there exists an open neighborhood U

of e0 in E such that the set:{
e ∈ U : φ(e) = g

(
p(e)

)}
equals the image of a smooth map s : p(U)→ U such that p◦s is the identity
map of p(U).

Proof. Using the local form of submersions, the general case is easily reduced
to the case in which E = M × E0, F = N × F0, with E0, F0 open subsets
of Euclidean spaces, and p, q are the first projection maps of such cartesian
products. In that case, the map φ is of the form:

φ(m, y) =
(
f(m), ψ(m, y)

)
, (m, y) ∈M × E0,
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with ψ : M × E0 → F0 a smooth map. Set (m0, y0) = e0. The assumption
that dφ(e0) maps Ker

(
dp(e0)

)
isomorphically onto Ker

[
dq
(
φ(e0)

)]
means

that ∂ψ
∂y (m0, y0) : Ty0E0 → Tψ(m0,y0)F0 is an isomorphism. The map g is of

the form:
g(m) =

(
f(m), h(m)

)
, m ∈M,

with h : M → F0 a smooth map. Apply the standard implicit function
theorem to the equation:

ψ(m, y)− h(m) = 0

to find an open neighborhood V of m0 in M , an open neighborhood W of
y0 in E0 and a smooth map σ : V →W such that the set:{

(m, y) ∈ V ×W : ψ(m, y) = h(m)
}

equals the graph of σ. The proof is concluded by setting U = V ×W and
by defining s : V → U ⊂M × E0 by s(m) =

(
m,σ(m)

)
, m ∈ V . �

24.2. Remark. If p : E → M , q : F → N are smooth submersions and
φ : E → F is a smooth map then, for e0 ∈ E, the assumption that dφ(e0)
maps Ker

(
dp(e0)

)
isomorphically onto Ker

[
dq
(
φ(e0)

)]
holds if φ restricts to

a smooth diffeomorphism from p−1
(
p(e0)

)
to q−1

[
q
(
φ(e0)

)]
.

24.1. Application to groupoids. Consider a small category G with set of
objects M and set of morphisms G; denote by s : G → M , t : G → M ,
respectively, the source and target maps. The composition of morphisms
operation is a map G ? G→ G defined in the set:

G ? G =
{

(g, h) ∈ G×G : s(g) = t(h)
}
.

If every morphism of G is an isomorphism we say that G is a groupoid.
Denote by 1 : M → G the map x 7→ 1x that associates to each object x ∈M
the identity morphism 1x of x. Assume that both M and G are endowed
with the structure of a differentiable manifold and that the maps t and s
are smooth submersions. In this case, the map s× t : G×G→M ×M is a
smooth submersion as well and in particular it is transverse to the diagonal
of M ×M ; it follows that G ? G is an embedded submanifold of G × G.
If both the multiplication map G ? G → G and the map 1 : M → G are
smooth, we say that G is a Lie groupoid. Given (g, h) ∈ G ? G, the tangent
space T(g,h)(G?G) is equal to the inverse image by dsg×dth of the diagonal
of TxM × TxM , where x = s(g) = t(h); in other words:

(24.1) T(g,h)(G ? G) =
{

(v, w) ∈ TgG× ThG : dsg(v) = dth(w)
}
,

(g, h) ∈ G ? G.

It follows from (24.1) and from the fact that s and t are smooth submersions
that the projection maps:

G ? G 3 (g, h) 7−→ g ∈ G, G ? G 3 (g, h) 7−→ h ∈ G
are smooth submersions as well.
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24.3. Lemma. The inversion map G 3 g 7→ g−1 ∈ G of a Lie groupoid is
smooth.

Proof. Apply Theorem 24.1 to the following set up:

G ? G
φ //

p

��

G

s
��

G s
// M

G

s
��

G

1◦s
>>

s
// M

where φ is the multiplication map, p is the projection (g, h) 7→ h and s is the
source map. The validity of the assumption about the map φ appearing in
the statement of Theorem 24.1 is checked by keeping in mind Remark 24.2:
notice that, for a fixed h ∈ G, the restriction of φ to p−1(h) = s−1

(
t(h)

)
×{h}

is a diffeomorphism onto s−1
(
s(h)

)
. Namely, the inverse of such restriction

is given by k 7→ (kh−1, h) and it is therefore smooth. �

25. Tubular neighborhood trick improved

Given topological spaces X, Y , we say that a map f : X → Y is a quasi-
local homeomorphism if every x ∈ X has an open neighborhood U in X
such that f |U : U → f(U) is a homeomorphism (it is not assumed that
f(U) be open in Y , so f might not be a local homeomorphism). Obviously,
a quasi-local homeomorphism is continuous and locally injective. Moreover,
if X is locally compact and Y is Hausdorff then any continuous locally
injective map f : X → Y is a quasi-local homeomorphism. Namely, if
x ∈ X and U0 is an open neighborhood of x in which f is injective and
if U is an open neighborhood of x contained in a compact subset K of U0

then f |K : K → f(K) is a homeomorphism and thus f |U : U → f(U) is a
homeomorphism.

25.1. Lemma (tubular neighborhood trick improved). Let X, Y be topologi-
cal spaces, with Y hereditarily paracompact and Hausdorff. Let f : X → Y be
a quasi-local homeomorphism; if S ⊂ X is a subset such that f |S : S → f(S)
is a homeomorphism then there exists an open subset Z ⊂ X containing S
such that f |Z is injective.

We need a preparatory lemma.

25.2. Lemma. Let X, Y be topological spaces, f : X → Y be a continuous
map and S ⊂ X be a subset such that f |S : S → f(S) is an open map.
Given x ∈ S and an open neighborhood U of x in X then we can find an
open neighborhood U ′ of x contained in U and an open subset V of Y such
that f(U ′ ∩ S) = V ∩ f(S) and f(U ′) ⊂ V .

Proof. The set U ∩ S is open in S and thus f(U ∩ S) is open in f(S); let
V ⊂ Y be an open set with f(U ∩ S) = V ∩ f(S). Then U ′ = U ∩ f−1(V )
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is an open neighborhood of x contained in U . Obviously f(U ′) ⊂ V and
f(U ′ ∩ S) ⊂ V ∩ f(S); moreover:

V ∩ f(S) = f(U ∩ S) = f(U ′ ∩ S).

The last equality above follows by observing that U ∩S ⊂ f−1(V ) and hence
U ∩ S = U ′ ∩ S. �

Proof of Lemma 25.1. For each x ∈ S, let U ′x be an open neighborhood of
x in X such that f |U ′x : U ′x → f(U ′x) is a homeomorphism. By Lemma 25.2,
we can replace U ′x with a smaller open neighborhood of x (so that the map
f |U ′x : U ′x → f(U ′x) remains a homeomorphism) and obtain an open subset
V ′x of Y such that f(U ′x) ⊂ V ′x and:

(25.1) f(U ′x ∩ S) = V ′x ∩ f(S).

The set:

Y0 =
⋃
x∈S

V ′x

is open in Y and it contains f(S). Moreover, Y0 is Hausdorff and paracom-
pact; therefore, by Lemma 8.10, Y0 is also T4. Let Y0 =

⋃
i∈I Vi be a locally

finite open refinement of the open cover Y0 =
⋃
x∈S V

′
x of Y0 (the family

(Vi)i∈I is locally finite in Y0). For each i ∈ I, choose x ∈ S with Vi ⊂ V ′x
and set:

Ui = f−1(Vi) ∩ U ′x.
Then Ui ⊂ U ′x is open in X, f |Ui : Ui → f(Ui) is a homeomorphism and
from (25.1) we get:

(25.2) f(Ui ∩ S) = Vi ∩ f(S),

for all i ∈ I. By Lemma 7.1, there exists a shrinking Y0 =
⋃
i∈IWi of the

open cover Y0 =
⋃
i∈I Vi of Y0, i.e., Wi ⊂ Vi for all i ∈ I (the closure on Wi

will always be taken with respect to the space Y0). For each i ∈ I set:

Zi = f−1(Wi) ∩ Ui.

Then Zi ⊂ Ui is open in X, f |Zi : Zi → f(Zi) is a homeomorphism and
from (25.2) we get:

(25.3) f(Zi ∩ S) = Wi ∩ f(S),

for all i ∈ I. We claim that:

(25.4) S ⊂
⋃
i∈I

Zi.

Namely, given x ∈ S, there exists i ∈ I with f(x) ∈ Wi. Then f(x) ∈
Wi∩f(S) and therefore, by (25.3), we can find y ∈ Zi∩S with f(x) = f(y).
Since f |S is injective, we obtain x = y ∈ Zi, proving the claim.

Now for x ∈ S, we set:

Ix =
{
i ∈ I : f(x) ∈Wi

}
;
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since the cover Y0 =
⋃
i∈IWi is locally finite, the set Ix is finite and

nonempty. Observe that for i ∈ Ix we have, using (25.2):

f(x) ∈Wi ∩ f(S) ⊂ Vi ∩ f(S) = f(Ui ∩ S)

and thus the injectivity of f |S implies x ∈ Ui. We have just shown that:

(25.5) x ∈
⋂
i∈Ix

Ui,

for all x ∈ S.
Now, given x ∈ S, i ∈ Ix, the intersection

⋂
j∈Ix Uj is open in Ui and thus

f
(⋂

j∈Ix Uj
)

is open in f(Ui); we can therefore find an open subset Hx,i of
Y0 with:

(25.6) f
( ⋂
j∈Ix

Uj

)
= Hx,i ∩ f(Ui).

Then:

(25.7) f
( ⋂
i∈Ix

Ui

)
⊂
⋂
i∈Ix

Hx,i.

Our next goal is to find for each x ∈ S an open neighborhood Gx of f(x)
in Y0 with the following properties:

(i) for each i ∈ I, Gx intersects Wi if and only if i ∈ Ix;
(ii) Gx ⊂

⋂
i∈Ix Hx,i.

The desired set Gx can be defined by:

Gx =
( ⋂
i∈Ix

Hx,i

)
∩
(
Y0 \

⋃
i∈I\Ix

Wi

)
.

It follows from (25.5) and (25.7) that f(x) ∈ Gx. The fact that Gx is open
follows using Lemma 8.2. Property (ii) is obvious. For property (i), observe
that i ∈ Ix implies f(x) ∈ Gx ∩Wi and thus Gx ∩Wi 6= ∅; moreover, for
i ∈ I \ Ix we obviously have Gx ∩Wi = ∅.

Now set G =
⋃
x∈S Gx and finally:

Z = f−1(G) ∩
⋃
i∈I

Zi.

Obviously Z is open in X and S ⊂ Z, by (25.4). We complete the proof by
showing that f |Z is injective. Let x, y ∈ Z be chosen with f(x) = f(y). We
can find i, j ∈ I with x ∈ Zi and y ∈ Zj . Moreover, f(x) = f(y) ∈ Gz for
some z ∈ S. We have f(x) ∈ Gz ∩Wi and f(y) ∈ Gz ∩Wj , so that i, j ∈ Iz,
by property (i). Property (ii) implies Gz ⊂ Hz,i. Now x ∈ Zi ⊂ Ui, and
f(x) ∈ Hz,i ∩ f(Ui), so (25.6) implies:

f(x) ∈ f
( ⋂
k∈Iz

Uk

)
.

We can thus find p ∈
⋂
k∈Iz Uk ⊂ Ui ∩ Uj with f(p) = f(x) = f(y). Since f

is injective in Ui and in Uj , we conclude that x = p = y. �
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26. Perturbation of operators

The following lemma is well-known.

26.1. Lemma. Let X be a normed space and Y be a nondense subspace of X.
Then, for every ε > 0, there exists x ∈ X with ‖x‖ = 1 and d(x, Y ) > 1− ε.
Proof. Choose z ∈ X not in the closure of Y , so that d(z, Y ) > 0. Let
(yn)n≥1 be a sequence in Y such that limn→+∞ ‖z − yn‖ = d(z, Y ). Setting

xn = z−yn
‖z−yn‖ then:

d(xn, Y ) =
1

‖z − yn‖
d(z − yn, Y ) =

1

‖z − yn‖
d(z, Y ),

so that limn→+∞ d(xn, Y ) = 1. �

The following immediate corollary is rarely mentioned.

26.2. Corollary. Let X be a normed space and Y be a subspace of X. If:

sup
{
d(x, Y ) : x ∈ X, ‖x‖ = 1

}
< 1

then Y is dense in X. �

Given Banach spaces X, Y and a bounded operator T : X → Y , we set:

ρ(T ) = inf
{
‖T (x)‖ : x ∈ X, ‖x‖ = 1

}
.

Clearly, ρ(T ) is the largest c ≥ 0 with ‖T (x)‖ ≥ c‖x‖, for all x ∈ X.
Moreover, ρ(T ) > 0 if and only if T is a homeomorphism onto its range, if
and only if T is injective with closed range.

26.3. Lemma. Let X, Y be Banach spaces and T : X → Y , S : X → Y be
bounded operators. Then:

|ρ(T )− ρ(S)| ≤ ‖T − S‖.
Proof. Given x ∈ X with ‖x‖ = 1 we have:

‖S(x)‖ ≥ ‖T (x)‖ − ‖T (x)− S(x)‖ ≥ ρ(T )− ‖T − S‖,
yielding ρ(S) ≥ ρ(T )− ‖T − S‖. Thus ρ(T )− ρ(S) ≤ ‖T − S‖. �

We obtain now the following interesting proof of a well-known result.

26.4. Proposition. Let X be a Banach space and H : X → X be a bounded
operator with ‖H‖ < 1. If Id denotes the identity operator of X then Id+H
is an isomorphism of X.

Proof. Lemma 26.3 yields:

|ρ(Id +H)− ρ(Id)| ≤ ‖H‖ < 1,

and, since ρ(Id) = 1, we have ρ(Id + H) > 0. This proves that Id + H is
injective with closed range. Now we use Corollary 26.2 to establish that the
range of Id + H is dense in X. Namely, simply note that, for x ∈ X with
‖x‖ = 1 we have:

d
(
x, (Id +H)[X]

)
≤
∥∥x− (x+H(x)

)∥∥ = ‖H(x)‖ ≤ ‖H‖ < 1. �
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26.5. Lemma. Let X be a Banach space. If Y is a closed subspace of X
and V is a finite-dimensional subspace of X then Y + V is closed in X.

Proof. Consider the quotient map q : X → X/Y . Since q[V ] is a finite-
dimensional subspace of the Banach space X/Y , it is closed. Hence:

Y + V = q−1
[
q[V ]

]
is closed in X. �

26.6. Lemma. Let X be a finite-dimensional normed space. Given ε > 0,
there exists a finite subset F of the open unit ball of X such that d(x, F ) < ε,
for all x ∈ X with ‖x‖ ≤ 1.

Proof. Follows by observing that that the open unit ball of X is totally
bounded and dense in the unit closed ball of X. �

26.7. Corollary. Let X be a Banach space and Y be a finite-codimensional
closed subspace of X. Then, for any ε > 0, there exists a finite subset F
of the open unit ball of X such that d(x, F + Y ) < ε, for all x ∈ X with
‖x‖ ≤ 1.

Proof. The lemma yields a finite subset F1 of the open unit ball of X/Y such
that d(z, F1) < ε, for all z ∈ X/Y with ‖z‖ ≤ 1. Let F be a finite subset of
the open unit ball of X with q[F ] = F1, where q : X → X/Y denotes the
quotient map. The conclusion follows. �

26.8. Lemma. Let X, Y be Banach spaces and T : X → Y be a bounded
operator with ρ(T ) = c > 0. Assume that the range of T has finite codimen-
sion in Y . Then, for any bounded operator S : X → Y with ‖S − T‖ < c

2 ,
we have that S is injective with closed range and that the range of S has
finite codimension in Y .

Proof. From Lemma 26.3 we obtain:

ρ(S) ≥ ρ(T )− ‖S − T‖ > c

2
> 0,

so that S is injective with closed range. Let us prove that the range of S has
finite codimension. Let ε > 0 be fixed (to be specified later). Since the range
of T is closed with finite codimension, Corollary 26.7 yields a finite subset
F of the open unit ball of Y such that d(y, F + T [X]) < ε, for all y ∈ Y
with ‖y‖ ≤ 1. Let V be the linear span of F . By Lemma 26.5, S[X] + V is
closed in Y . Let us prove that (for an adequate choice of ε), S[X]+V is also
dense in Y . For this purpose we use Corollary 26.2. Let y ∈ Y with ‖y‖ = 1
be fixed and let us estimate d(y, S[X] + V ). From d(y, F + T [X]) < ε we
obtain x ∈ X and z ∈ F with

∥∥y− (z+ T (x)
)∥∥ < ε. Note that ‖z‖ < 1 and

therefore:

‖T (x)‖ ≤
∥∥y − (z + T (x)

)∥∥+ ‖y‖+ ‖z‖ < 2 + ε.

Using ρ(T ) = c this yields:

‖x‖ < 2 + ε

c
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and therefore:

‖T (x)− S(x)‖ ≤ 2 + ε

c
‖T − S‖.

Moreover:

d(y, S[X] + V ) ≤
∥∥y − (z + S(x)

)∥∥ ≤ ∥∥y − (z + T (x)
)∥∥+ ‖T (x)− S(x)‖

< ε+
2 + ε

c
‖T − S‖.

Since ‖T − S‖ < c
2 , we could have chosen ε > 0 (depending only on S, not

on y) with:

ε+
2 + ε

c
‖T − S‖ < 1.

This concludes the proof. �

26.9. Corollary. Let X, Y be Banach spaces and T : X → Y be a bounded
operator with ρ(T ) = c > 0. Assume that the range of T has infinite codi-
mension in Y . Then, for any bounded operator S : X → Y with ‖S−T‖ < c

3 ,
we have that S is injective with closed range and that the range of S has in-
finite codimension in Y .

Proof. Set ρ(S) = c′. From Lemma 26.3 we obtain:

c′ ≥ ρ(T )− ‖T − S‖ > 2

3
c > 0,

and therefore S is injective with closed range. Now ‖T − S‖ < c
3 < c′

2 .
Assuming by contradiction that the range of S has finite codimension, the
lemma yields that the range of T also has finite codimension, contradicting
our assumptions. �

27. Ordered sets

Recall that a topological space X is called Lindelöf if every open cover
of X admits a countable subcover and that X is called hereditarily Lindelöf
if every subspace of X is Lindelöf. (For example, second countable spaces
are hereditarily Lindelöf.) Observe that if X is hereditarily Lindelöf then X
satisfies the countable chain condition, i.e., every family of nonempty disjoint
open subsets of X is countable. Namely, if (Ui)i∈I is a family of nonempty
disjoint open subsets of X then Y =

⋃
i∈I Ui is Lindelöf and therefore there

exists a countable subset I ′ of I such that Y =
⋃
i∈I′ Ui. But then I = I ′.

27.1. Lemma. Let X be a linearly ordered set endowed with the order topol-
ogy. Assume that X is hereditarily Lindelöf. Let S be an uncountable subset
of X and φ : S → X be a map such that φ(x) > x and ]x, φ(x)[ 6= ∅, for all
x ∈ S. Then there exists x ∈ S such that S ∩ ]x, φ(x)[ is uncountable.
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Proof. Set Y =
⋃
x∈S ]x, φ(x)[. Note that the intervals ]x, φ(x)[, with x

varying in S \ Y , are pairwise disjoint. Namely, if x1, x2 ∈ S \ Y , x1 6= x2

(so that, for instance, x1 < x2) and z ∈ ]x1, φ(x1)[ ∩ ]x2, φ(x2)[ then:

x1 < x2 < z < φ(x1),

yielding x2 ∈ Y . Since X satisfies the countable chain condition, it follows
that S \Y is countable and therefore S ∩Y is uncountable. Now, since Y is
Lindelöf, there exists a countable subset S′ of S such that:

Y =
⋃
x∈S′

]x, φ(x)[ .

If S ∩ ]x, φ(x)[ were countable for all x ∈ S′ then S ∩ Y would also be
countable. Hence, there exists x ∈ S′ such that S ∩ ]x, φ(x)[ is uncountable.

�

27.2. Corollary. Under the assumptions of Lemma 27.1, there exists a se-
quence (xn)n≥1 in S such that xn < xn+1 < φ(xn), for all n ≥ 1.

Proof. By Lemma 27.1, there exists x1 ∈ S such that S1 = S ∩ ]x1, φ(x1)[ is
uncountable. Assuming that we are given xn ∈ S such that:

Sn = S ∩ ]xn, φ(xn)[

is uncountable, apply Lemma 27.1 to φ|Sn obtaining xn+1 ∈ Sn such that
Sn ∩ ]xn+1, φ(xn+1)[ is uncountable. Then xn+1 ∈ S, xn < xn+1 < φ(xn)
and S ∩ ]xn+1, φ(xn+1)[ is uncountable. �

27.3. Lemma. Let X be a linearly ordered set endowed with the order topol-
ogy. Assume that X satisfies the countable chain condition. Let ε > 0 and
f : X → R be a map. Denote by S the set of those x ∈ X such that there
exists y ∈ X with y > x, ]x, y[ 6= ∅ and |f(z)− f(x)| ≥ ε, for all z ∈ ]x, y[.
Then S is countable.

Proof. For each n ∈ Z, set Sn = S ∩ f−1
([
n ε2 , (n + 1) ε2

])
. For each x ∈ S,

choose φ(x) ∈ X with φ(x) > x, ]x, φ(x)[ 6= ∅ and |f(z)− f(x)| ≥ ε, for all
z ∈ ]x, φ(x)[. We claim that the intervals ]x, φ(x)[, with x varying in Sn,
are pairwise disjoint. Namely, if x1, x2 ∈ Sn, x1 6= x2 (so that, for instance,
x1 < x2) and z ∈ ]x1, φ(x1)[ ∩ ]x2, φ(x2)[ then:

x1 < x2 < z < φ(x1) =⇒ x2 ∈ ]x1, φ(x1)[ =⇒ |f(x2)− f(x1)| ≥ ε.
But f(x1), f(x2) ∈

[
n ε2 , (n + 1) ε2

]
, so that |f(x2) − f(x1)| ≤ ε

2 . Since X
satisfies the countable chain condition, it follows that Sn is countable and
hence S =

⋃
n∈Z Sn is countable. �

27.4. Corollary. Let X be a linearly ordered set endowed with the order
topology. Assume that X satisfies the countable chain condition and let
f : X → R be a map. Denote by S the set of those x ∈ X such that there
exists y ∈ X with y > x, ]x, y[ 6= ∅ and:

inf
{
|f(z)− f(x)| : z ∈ ]x, y[

}
> 0.
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Then S is countable.

Proof. For each ε > 0, the set Sε of those x ∈ X such that there exists
y ∈ X with y > x, ]x, y[ 6= ∅ and |f(z) − f(x)| ≥ ε for all z ∈ ]x, y[ is

countable, by Lemma 27.3. Then S =
⋃∞
k=1 S

1
k is countable. �

28. Weak-star topology and Fréchet-Urisohn spaces

A topological space X is called a Fréchet–Urysohn space if given a subset
A of X and a point x ∈ X in the closure of A, there exists a sequence (xn)n≥1

in A converging to x. Obviously, every first-countable (in particular, every
metrizable) topological space is Frechét–Urysohn.

28.1. Lemma. Let X, Y be topological spaces and q : X→ Y be a continuous,
surjective closed map. If X is Frechét–Urysohn then so is Y.

Proof. Let A be a subset of Y and y ∈ Y be in the closure of A. Let B
denote the closure of q−1[A]. Then q[B] is closed and contains A, so that
y = q(x) for some x ∈ B. Since X is Fréchet–Urisohn, x is the limit of a
sequence (xn)n≥1 in q−1[A]. Hence

(
q(xn))n≥1 is a sequence in A converging

to y. �

Given a Banach space X, we denote by BX =
{
x ∈ X : ‖x‖ ≤ 1

}
its

closed unit ball.

28.2. Lemma. Let (X, ‖ · ‖) be a Banach space such that the dual ball BX∗
is Fréchet–Urysohn in its weak-star topology. Let V be a norm-closed finite-
codimensional subspace of X∗. If V is weak-star dense in X∗ then V is
weak-star sequentially dense in X∗, i.e., every point of X∗ is the weak-star
limit of a sequence in V .

Proof. Define a semi-norm p on X by setting:

p(x) = sup
{
|α(x)| : α ∈ V, ‖α‖ ≤ 1

}
.

Clearly:

(28.1) p(x) ≤ ‖x‖,
for all x ∈ X. The fact that V is weak-star dense in X∗ implies that V
separates the points of X; thus, if x ∈ X is nonzero, there exists α ∈ V with
‖α‖ ≤ 1 and α(x) 6= 0. So p is in fact a norm in X. From (28.1) it follows
that every p-bounded linear functional on X is also ‖ · ‖-bounded, i.e., the
dual space of (X, p) is a vector10 subspace W of X∗. If α ∈ V and ‖α‖ ≤ 1
then, obviously:

|α(x)| ≤ p(x),

for all x ∈ X, so that α ∈ W . Then V ⊂ W . Since V is norm-closed in X∗

and has finite codimension, it follows thatW is also norm-closed inX∗ (being
the inverse image by the quotient map X∗ → X∗/V of W/V ). Denote by

10Of course, the topology of (X, p)∗ defined by the norm associated to p might not
coincide with the induced topology from X∗.
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(X̂, p̂) the completion of the normed space (X, p) and by i : (X, p)→ (X̂, p̂)
the corresponding inclusion map. From (28.1), it follows that the operator

T : (X, ‖ · ‖) → (X̂, p̂) defined by T (x) = i(x) is bounded. Since every
bounded linear functional on (X, p) has a (unique) bounded linear extension

to (X̂, p̂), it follows that the range of the adjoint T ∗ is precisely W . The
fact that T ∗ has closed range implies that T has closed range. But, since the

range of T is dense, it follows that T is surjective: this means that X̂ = X,
i.e., that the norm p was complete to begin with. It also means that the
norms p and ‖ · ‖ are equivalent, so that there exists a constant c > 0 such
that:

p(x) ≥ c‖x‖,
for all x ∈ X. We claim that the weak-star closure in X∗ of the unit ball
BV = V ∩BX∗ of V contains the ball cBX∗ of radius c. Namely, assume that
α ∈ X∗ is not in the weak-star closure of BV and let us show that ‖α‖ > c.
Since BV is convex, applying the Hahn–Banach separation theorem to the
(locally convex topological vector space) X∗, endowed with the weak-star
topology, we obtain a weak-star continuous linear functional γ : X∗ → K

(K = R or C) whose real part <γ separates α from BV , i.e.:

|γ(α)| ≥ <γ(α) > sup
β∈BV

<γ(β) = sup
β∈BV

|γ(β)|.

The weak*-continuity of γ means that γ is given by evaluation at a vector
x in X. Then:

|α(x)| > sup
β∈BV

|β(x)| = p(x) ≥ c‖x‖,

which yields ‖α‖ > c. Since BX∗ is Fréchet–Urysohn in its weak-star topol-
ogy, it follows that every point of cBX∗ is the weak-star limit of a sequence
in BV . The conclusion follows. �

28.3. Lemma. Let X be a Banach space such that the dual ball BX∗ is
Fréchet–Urysohn in its weak-star topology. Let Γ be a finite-dimensional
subspace of the bidual X∗∗ such that Γ ∩ X = {0} (where X is identified
with a subspace of X∗∗ in the usual way). Let (γ1, . . . , γm) be a basis of
Γ. Given scalars c1, . . . , cm ∈ K (K = R or C), there exists a sequence
(αn)n≥1 in X∗, weak-star convergent to zero, such that γi(αn) = ci, for all
i = 1, . . . ,m and all n ≥ 1.

Proof. Let P : X∗ → Km be the bounded linear operator defined by:

P (α) =
(
γ1(α), . . . , γm(α)

)
, α ∈ X∗.

The fact that γ1, . . . , γm are linearly independent implies that P is onto
(because the annihilator of the range of P is the kernel of the adjoint of
P , which maps the i-th vector of the canonical basis of (Km)∗ to γi). Let
V = Ker(P ) ⊂ X∗ be the subspace annihilated by Γ. The annihilator V o

of V in X∗∗ is equal to the range of the adjoint of P and therefore equal
to Γ. Clearly, V is norm-closed in X∗ and finite-codimensional. We claim
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that V is weak-star dense in X∗. Otherwise, we obtain a nonzero weak-star
continuous linear functional γ : X∗ → K that annihilates V , i.e., γ ∈ Γ∩X,
contradicting the assumption that Γ∩X is zero. By Lemma 28.2, V is weak-
star sequentially dense in X∗. Pick β ∈ X∗ with P (β) = (c1, . . . , cm) and let
(βn)n≥1 be a sequence in V weak-star convergent to β. Setting αn = β−βn,
then (αn)n≥1 is weak-star convergent to zero and:

P (αn) = P (β) = (c1, . . . , cm),

for all n. This concludes the proof. �

28.4. Lemma. Let X be a Banach space such that the dual ball BX∗ is
Fréchet–Urysohn in its weak-star topology. Let Γ be a finite-dimensional
subspace of the bidual X∗∗ such that Γ ∩ X = {0} (where X is identified
with a subspace of X∗∗ in the usual way). Then, for every bounded operator
M : Γ→ `∞ ≡ c∗∗0 there exists a bounded operator T : X → c0 such that M
is the restriction of T ∗∗ to Γ.

Proof. Let (γ1, . . . , γm) be a basis of Γ and set ui = (uin)n≥1 = M(γi) ∈ `∞,
for i = 1, . . . ,m. By Lemma 28.3, for each i = 1, . . . ,m, there exists a
sequence (αin)n≥1 in X∗, weak-star convergent to zero, such that γi(α

i
n) = 1

and γj(α
i
n) = 0, for j 6= i and all n ≥ 1. Set:

αn =

m∑
i=1

uinα
i
n, n ≥ 1.

Since the sequence (uin)n≥1 is bounded for all i, the sequence (αn)n≥1 is
weak-star convergent to zero. Therefore, we obtain a bounded operator
T : X → c0 by setting:

T (x) =
(
αn(x)

)
n≥1

, x ∈ X.

Also, it is easily checked that T ∗∗(γi) =
(
γi(αn)

)
n≥1

. But γi(αn) = uin and

therefore T ∗∗(γi) = M(γi), i.e., T ∗∗|Γ = M . �

29. Inverses of perturbations of identity

Consider a category such that, for each pair of objects X, Y , the set
of morphisms Hom(X,Y ) is endowed with an abelian group structure (de-
noted additively) such that the composition of morphisms (denoted multi-
plicatively) is distributive with respect to addition. Given an object X, we
denote its identity morphism by IX .

29.1. Lemma. Let X, Y be objects and T : X → Y , L : Y → X be
morphisms. If A : X → X is a left inverse (resp., right inverse) for IX +LT
then:

B = IY − TAL : Y −→ Y

is a left inverse (resp., right inverse) for IY + TL.
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Proof. Assuming that A is a left inverse for IX + LT , we compute:

B(IY + TL) = (IY − TAL)(IY + TL) = IY + TL− TA(IX + LT )L

= IY + TL− TL = IY .

Similarly, assuming that A is a right inverse for IX + LT , we compute:

(IY + TL)B = (IY + TL)(IY − TAL) = IY + TL− T (IX + LT )AL

= IY + TL− TL = IY . �

30. Associative algebras without divisors of zero

Let K be a field. By an algebra over K we mean a vector space A over
K endowed with a bilinear binary operation:

A 3 (a1, a2) 7−→ a1a2 ∈ A,

called the multiplication of the algebra. The algebra is called associative if
its multiplication is associative. In what follows, all algebras are assumed
to be associative. An algebra is called commutative if its multiplication is
commutative. A unit for an algebra A is a (necessarily unique) element 1 of
A that is a bilateral neutral element for the multiplication; we have 1 6= 0,
unless A = {0}. If A has a unit 1, then an element a ∈ A is called invertible
if it admits a (necessarily unique) bilateral multiplicative inverse. We say
that an algebra A has no divisors of zero if a1a2 = 0 implies a1 = 0 or
a2 = 0, for all a1, a2 ∈ A. We call an algebra A a division algebra if A has
a unit 1 and if every nonzero element of A is invertible. A division algebra
has no divisors of zero. A subalgebra of A is a vector subspace of A that is
closed under multiplication and an ideal of A is a vector subspace I of A
such that a1a2 ∈ I for all a1, a2 ∈ A, provided that either a1 ∈ I or a2 ∈ I.
The subalgebra of A spanned by a subset S of A is the smallest subalgebra
of A containing S; it is equal to the vector subspace of A spanned by the
set: {

a1a2 · · · ak : a1, . . . , ak ∈ S, k ≥ 1
}

of all (nonvacuous) finite products of elements of S. Notice that the sub-
algebra spanned by S is commutative if and only if a1a2 = a2a1, for all
a1, a2 ∈ S. If A and B are algebras (over the same field K), then an algebra
homomorphism from A to B is a linear map φ : A→ B such that:

(30.1) φ(a1a2) = φ(a1)φ(a2),

for all a1, a2 ∈ A. Notice that a linear map φ : A→ B is an algebra homo-
morphism if and only if (30.1) holds for all a1, a2 belonging to a subset of A
that spans A as a vector space. A bijective algebra homomorphism is called
an algebra isomorphism and its inverse is automatically an algebra homo-
morphism as well. The kernel of an algebra homomorphism is an ideal in the
domain of the homomorphism and the range of an algebra homomorphism
is a subalgebra of its counterdomain.
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A field K is itself a commutative division algebra over K and also a
commutative division algebra over any subfield of K. In particular, the field
of real numbers R is a commutative division algebra over R and the field C
of complex numbers is a commutative division algebra over R and over C.
Set H = R4 and denote the canonical basis of H by {1, i, j, k}. The space H
becomes a division algebra over R by endowing H with the unique bilinear
multiplication such that 1 is the neutral element and:

i2 = −1, j2 = −1, k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j.

We call H the algebra of quaternions. If V is a vector space over K, then the
space Lin(V ) of all linear endomorphisms of V , endowed with the operation
of composition, is an algebra over K whose unit is the identity map of V .
The space K[X] of polynomials with coefficients in K, endowed with the
standard operations, is a commutative algebra over K with unit and no
divisors of zero. It is well-known that every ideal of K[X] is principal, i.e.,
it is of the form:

〈p(X)〉 =
{
p(X)q(X) : q(X) ∈ K[X]

}
,

for some p(X) ∈ K[X]. If I is a nonzero ideal of K[X], then the unique
monic polynomial p(X) in K[X] with I = 〈p(X)〉 is called the generator of
the ideal I. The generator of I is the unique monic element of I having the
least degree among nonzero elements of I. Let A be an algebra over K with
a unit 1. The map:

(30.2) K 3 λ 7−→ λ1 ∈ A

is an algebra homomorphism and its range (which is the subalgebra of A
spanned by {1}) is called the subalgebra of scalars of A. If 1 6= 0, then (30.2)
is an algebra isomorphism from K to the subalgebra of scalars of A. If K
is a subfield of a field K ′ and if φ : K ′ → A is a homomorphism of algebras
(over K) that extends (30.2), then we can extend the operation K×A→ A
of multiplication by scalars of the vector space A to K ′ ×A, turning A into
a vector space over K ′, by defining:

(30.3) λa = φ(λ)a, λ ∈ K ′, a ∈ A.

If every element in the range of φ commutes with every element of A, then
the multiplication of A is bilinear over K ′, i.e., A becomes an algebra over
K ′ endowed with the multiplication by scalars defined in (30.3).

For p(X) ∈ K[X] and a ∈ A we define:

p(a) = c01 +
n∑
i=1

cia
i ∈ A,

if p(X) = c0 +
∑n

i=1 ciX
i, ci ∈ K, i = 0, 1, . . . , n. The evaluation map:

(30.4) K[X] 3 p(X) 7−→ p(a) ∈ A
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is then an algebra homomorphism whose range is a commutative subalgebra
of A. The range of (30.4) is the subalgebra of A spanned by {1, a}. If (30.4)
is not injective, then the kernel of (30.4) is a nonzero ideal of K[X] and its
generator ma(X) ∈ K[X] is called the minimal polynomial of a. Notice that,
since K[X] is infinite dimensional, the map (30.4) is never injective if A is
finite dimensional. If A has no divisors of zero and A 6= {0}, then clearly
the minimal polynomial of an element of A (if it exists) is an irreducible
polynomial.

30.1. Lemma. Let A be a finite dimensional algebra with a unit 1 over a
field K. If a ∈ A is invertible, then 1 belongs to the subalgebra of A spanned
by {a}.

Proof. Let ma(X) = c0 +
∑n

i=1 ciX
i be the minimal polynomial of a. If

c0 = 0, then ma(X) = Xp(X) for some p(X) ∈ K[X]; then ap(a) = 0 and
the invertibility of a implies p(a) = 0, contradicting the fact that ma(X) is
the minimal polynomial of a. So c0 6= 0. It then follows that:

1 = − 1

c0

n∑
i=1

cia
i,

concluding the proof. �

30.2. Lemma. If A is a finite dimensional algebra with no divisors of zero
over a field K then A (has a unit and) is a division algebra.

Proof. Assume A 6= {0}, otherwise the result is trivial. For each a ∈ A,
consider the linear maps:

La : A 3 x 7−→ ax ∈ A, Ra : A 3 x 7−→ xa ∈ A.
The fact that A has no divisors of zero implies that La and Ra are injective,
for all nonzero a ∈ A. Thus, since A is finite dimensional, La and Ra are
linear isomorphisms, for all nonzero a ∈ A. The sets:{

La : a ∈ A
}
,
{
Ra : a ∈ A

}
are subalgebras of Lin(A) containing an invertible element of Lin(A). It
follows from Lemma 30.1 that they contain the unit of Lin(A), i.e., there
exist a, b ∈ A such that La and Rb are equal to the identity map of A. Then:

a = Rb(a) = ab = La(b) = b,

so that 1 = a is a unit for A. For nonzero x ∈ A, the surjectivity of Lx and
Rx yield y, z ∈ A with xy = 1 and zx = 1. Then:

y = 1y = (zx)y = z(xy) = z1 = z,

so that x is invertible. �

30.3. Lemma. Let A be a finite dimensional algebra over an algebraically
closed field K. If A has no divisors of zero, then A (has a unit and) is equal
to its subalgebra of scalars. In particular, if A 6= {0}, then A is isomorphic
(as an algebra) to K.
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Proof. By Lemma 30.2, A has a unit 1. Assume A 6= {0}, otherwise the
result is trivial. Given a ∈ A, then ma(X) ∈ K[X] is a monic irreducible
polynomial. Since K is algebraically closed, we have ma(X) = X − λ, for
some λ ∈ K. Then a = λ1. �

30.4. Lemma. Let A be a nonzero finite dimensional commutative algebra
over R. If A has no divisors of zero, then A is isomorphic (as an algebra)
to either R or C.

Proof. By Lemma 30.2, A has a unit 1. If A is equal to its subalgebra of
scalars, then A is isomorphic to R. Otherwise, let a ∈ A be an element
that does not belong to the subalgebra of scalars of A. Then the minimal
polynomialma(X) ∈ R[X] cannot have degree 1. Sincema(X) is irreducible,
it must be a degree 2 polynomial with no real roots, i.e., it must be of the
form ma(X) = (X + λ)2 + µ, for some λ, µ ∈ R with µ > 0. Set:

b =
1
√
µ

(a+ λ1) ∈ A.

Then b2 = −1. This implies that 1 and b are linearly independent. Let
φ : C → A be the linear map such that φ(1) = 1 and φ(i) = b. We have
that φ : C→ φ[C] is an algebra isomorphism. We can extend the operation
R × A → A of multiplication by scalars of the vector space A to C × A,
turning A into a complex vector space, by defining:

(30.5) wx = φ(w)x, w ∈ C, x ∈ A.
The fact that A is commutative implies that A becomes an algebra over C
when endowed with (30.5). Obviously, A remains finite dimensional over
C (since it is finitely generated as a real vector space) and the property of
having no divisors of zero does not depend on the scalar field. It then follows
from Lemma 30.3 that A = φ[C]. �

30.5. Lemma. Let A be a nonzero finite dimensional algebra over R. If A
has no divisors of zero, then A is isomorphic (as an algebra) to either R, C
or H.

Proof. By Lemma 30.2, A has a unit 1. If A is equal to its subalgebra
of scalars, then A is isomorphic to R. Otherwise, we can pick an element
of A not in the subalgebra of scalars; such element and the unit 1 span a
commutative subalgebra of A which, by Lemma 30.4, must be isomorphic
to C. Then there exists an element a ∈ A with a2 = −1. The subspace of
A spanned by {1, a} is a subalgebra C of A isomorphic to C. If C = A, we
are done. Assume C 6= A. Consider the linear map T : A→ A defined by:

T (x) = [a, x]
def
= ax− xa, x ∈ A.

The kernel of T consists of those elements of A that commute with a. Since
C is commutative, we have C ⊂ Ker(T ). Moreover, if x ∈ Ker(T ), then the
subalgebra of A spanned by {1, a, x} is commutative and hence isomorphic
to C, by Lemma 30.4. This shows that x ∈ C and therefore Ker(T ) = C.
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A straightforward computation using a2 = −1 shows that every element in
the range of T anticommutes with a, i.e.,

ay + ya = 0,

for every y ∈ Im(T ). Since only zero can both commute and anticommute
with a, we have Ker(T ) ∩ Im(T ) = {0}. By a dimension argument, we
obtain:

A = Ker(T )⊕ Im(T ) = C ⊕ Im(T ).

Since C 6= A, there exists a nonzero element y ∈ Im(T ). Using Lemma 30.4
we obtain that the subalgebra of A spanned by {1, y} is isomorphic to C,
and therefore there exist α, β ∈ R such that (α1 + βy)2 = −1. Then:

α21 + 2αβy + β2y2 = −1;

since y anticommutes with a, it follows that y2 commutes with a and the
equality above implies then that 2αβy commutes with a. But 2αβy also
anticommutes with a, so αβ = 0. Since β = 0 implies α2 = −1, the only
possibility is α = 0, i.e., β2y2 = −1. Set b = βy and c = ab. We have that
both b and c anticommute with a and that b2 = −1 and c2 = −1. Moreover,
b anticommutes with c, bc = a and ca = b. Hence the unique linear map
φ : H→ A such that:

φ(1) = 1, φ(i) = a, φ(j) = b, φ(k) = c,

is an algebra homomorphism. The kernel of φ is an ideal of H; being a
division algebra, H has only the trivial ideals {0} and H, so φ must be
injective and φ[H] is a subalgebra of A isomorphic to H. To conclude the
proof, we have to show that φ[H] = A. Since C ⊂ φ[H], it suffices to check
that Im(T ) ⊂ φ[H]. Let z ∈ Im(T ). Then z anticommutes with a, so bz
commutes with a, and thus bz = γ1+ δa, for some γ, δ ∈ R. Using b2 = −1,
we obtain:

z = −γb+ δc,

proving that z ∈ φ[H]. �

31. Disjoint refinement of a family of sets

In what follows, |X| denotes the cardinality of a set X.

31.1. Lemma. Let κ be a cardinal and let (Aα)α∈κ be a family of sets with
|Aα| ≥ κ, for all α ∈ κ. Then there exists an injective function f with
domain κ such that f(α) ∈ Aα, for all α ∈ κ.

Proof. Define f by transfinite recursion choosing f(α) in Aα\
{
f(β) : β ∈ α

}
,

for all α ∈ κ. �

31.2. Lemma. Let κ be an infinite cardinal and let (Aα)α∈κ be a family of
sets with |Aα| ≥ κ, for all α ∈ κ. Then there exists an injective function f
with domain κ× κ such that f(α, β) ∈ Aα, for all α, β ∈ κ.

Proof. Let us define by transfinite recursion a family (fα)α∈κ such that:
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(a) fα is an injective function with domain α× α, for all α ∈ κ;
(b) fα(β, γ) ∈ Aβ, for all β, γ ∈ α and all α ∈ κ;
(c) fα extends fβ, for β ≤ α ∈ κ.

Let f0 = ∅ and, for α ∈ κ a limit ordinal, set fα =
⋃
β∈α fβ. Now, given

α ∈ κ, let us define fα+1 in terms of fα. Set Bβ = Aβ \ Im(fα), for all
β ∈ κ, so that |Bβ| ≥ κ. By Lemma 31.1, there exists an injective map g
with domain κ and g(β) ∈ Bβ, for all β ∈ κ. Let h be an injective map with
domain α and with image contained in

Aα \
(
Im(fα) ∪

{
g(β) : β ≤ α

})
and let fα+1 be the extension of fα such that fα+1(α, β) = h(β), for all
β ∈ α, and such that fα+1(β, α) = g(β), for all β ≤ α. It is easily seen that
the family (fα)α∈κ satisfies conditions (a), (b) and (c) above. To conclude
the proof, set f =

⋃
α∈κ fα. �

31.3. Corollary (disjoint refinement). Let κ be an infinite cardinal and let
(Aα)α∈κ be a family of sets with |Aα| ≥ κ, for all α ∈ κ. Then there exists
a family (Bα)α∈κ of pairwise disjoint sets such that Bα ⊂ Aα and |Bα| = κ,
for all α ∈ κ.

Proof. Take f as in Lemma 31.2 and set Bα =
{
f(α, β) : β ∈ κ

}
, for all

α ∈ κ. �

31.4. Corollary. Let κ be an infinite cardinal and let (Aα)α∈κ be a family
of sets with |Aα| ≥ κ, for all α ∈ κ. Then there exists a family (Bα)α∈κ of
pairwise disjoint sets such that:

• Bα ⊂
⋃
β∈κAβ, for all α ∈ κ;

• |Bα| = κ, for all α ∈ κ;
• Bα ∩Aβ 6= ∅, for all α, β ∈ κ.

Proof. Take f as in Lemma 31.2 and set Bα =
{
f(β, α) : β ∈ κ

}
, for all

α ∈ κ. �

31.5. Corollary. Denote by c the cardinal of the continuum. There exists a
family (Bα)α∈c of pairwise disjoint subsets of [0, 1] such that |Bα| = c and
the outer Lebesgue measure of Bα is equal to 1, for all α ∈ c.

Proof. The collection of all closed subsets of [0, 1] has cardinality c and
therefore there exists a family (Fα)α∈c such that

{
Fα : α ∈ c

}
is the collection

of all closed subsets of [0, 1] with positive Lebesgue measure. We have that
|Fα| = c, for all α ∈ c, since every uncountable closed subset of R has
cardinality c. Applying Corollary 31.4 to the family (Fα)α∈c, we obtain a
family (Bα)α∈c of pairwise disjoint subsets of [0, 1] such that:

• |Bα| = c, for all α ∈ c;
• for all α ∈ c, Bα intersects every closed subset of [0, 1] with positive

Lebesgue measure.
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To conclude the proof, let us show that Bα has outer Lebesgue measure
equal to 1, for all α ∈ c. If the outer Lebesgue measure of Bα were less
than 1, there would exist a Lebesgue measurable subset M of R containing
Bα with measure less than 1. Then [0, 1] \M would have positive Lebesgue
measure and hence would contain a closed subset F with positive Lebesgue
measure. But this implies Bα ∩ F = ∅ and yields a contradiction. �

32. Generalized Cayley–Hamilton theorem

In this section, rings are assumed to have a unity element and homomor-
phisms of rings are assumed to send the unity of the domain to the unity
of the counterdomain. The zeroth power r0 of an element r of a ring is
defined as being equal to the unity of the ring. If R is a commutative ring,
we denote by Mn(R) the ring of n × n matrices with entries in R and by
R[X] the ring of polynomials in the indeterminate X with coefficients in R.
We regard R as a subring of R[X] and Mn(R) as a subring of Mn

(
R[X]

)
.

The ring Mn(R) carries the structure of an R-module and it is an associa-
tive R-algebra. Since the ring R[X] is commutative as well, we have that
the ring Mn

(
R[X]

)
carries the structure of an R[X]-module and it is an

associative R[X]-algebra. The unity of the ring Mn(R) is denoted by I. For
p(X) ∈ R[X] and A ∈Mn

(
R[X]

)
, we write

p(A) =

m∑
k=0

rkA
k,

where p(X) =
∑m

k=0 rkX
k and r0, r1, . . . , rm ∈ R.

A family (gi)i∈I in an abelian group is said to be almost null if the set{
i ∈ I : gi 6= 0

}
is finite. For an almost null family (gi)i∈I , the sum

∑
i∈I gi

is defined in the obvious way.

32.1. Lemma. If R is a commutative ring, then for every A ∈ Mn

(
R[X]

)
,

there exists a unique almost null sequence (Ak)k≥0 in Mn(R) such that:

(32.1) A =
∞∑
k=0

XkAk.

Proof. Equality (32.1) is equivalent to the statement that the (i, j)-entry of
Ak equals the coefficient of Xk in the (i, j)-entry of A, for all i, j = 1, . . . , n
and all k ≥ 0. The conclusion follows by observing that the sequence (Ak)k≥0

in Mn(R) defined by the latter requirement is almost null. �

32.2. Lemma. Let R and S be rings and h : R → S be a homomorphism
of the underlying additive abelian groups. If A ⊂ R spans R as an additive
abelian group and if

(32.2) h(ab) = h(a)h(b),

for all a, b ∈ A, then (32.2) holds for all a, b ∈ R.
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Proof. If b ∈ A, then the set{
a ∈ R : h(ab) = h(a)h(b)

}
is a subgroup of R containing A and thus it is equal to R. It follows that,
for all a ∈ R, the set

(32.3)
{
b ∈ R : h(ab) = h(a)h(b)

}
is a subgroup of R containing A. Hence (32.3) is equal to R for all a ∈ R
and the conclusion follows. �

32.3. Lemma. Let R be a commutative ring, S be a ring and h : Mn(R)→ S
be a ring homomorphism. If s ∈ S commutes with every element in the image
of h, then there exists a unique extension h̃ : Mn

(
R[X]

)
→ S of h such that

h̃ is a ring homomorphism and h̃(XI) = s.

Proof. By Lemma 32.1, every A ∈Mn

(
R[X]

)
can be written uniquely as

A =
∞∑
k=0

XkAk =

∞∑
k=0

(XI)kAk,

with (Ak)k≥0 an almost null sequence in Mn(R). It follows that h̃(A) is
necessarily given by:

(32.4) h̃(A) =

∞∑
k=0

skh(Ak).

Defining h̃ by (32.4), it is readily seen that h̃ is a homomorphism of the
underlying additive abelian groups and it follows from Lemma 32.2 with

A =
{
XkB : k ≥ 0, B ∈Mn(R)

}
that h̃ is a homomorphism of rings. �

32.4. Corollary. Let R be a commutative ring and M be a left Mn(R)-
module. If f :M→M is Mn(R)-linear, then the operation of multiplication
by elements of Mn(R) of M extends in a unique way to an operation of
multiplication by elements of Mn

(
R[X]

)
in such a way that M becomes a

left Mn

(
R[X]

)
-module and (XI)m = f(m), for all m ∈M.

Proof. The left Mn(R)-module structure ofM is the same thing as a struc-
ture of abelian group in M together with a homomorphism of rings

h : Mn(R) −→ End(M),

where End(M) is the ring of homomorphisms of the abelian group M to
itself. The assumption that f is Mn(R)-linear means that f ∈ End(M)
commutes with every element in the image of h. By Lemma 32.3, h extends
to a unique homomorphism of rings

h̃ : Mn

(
R[X]

)
−→ End(M)

with h̃(XI) = f . �
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32.5. Corollary. Let R be a commutative ring and consider the ring Mn(R)
as a left Mn(R)-module in the canonical way. Given U ∈ Mn(R), then the
operation of multiplication by elements of Mn(R) extends in a unique way
to an operation ? of multiplication by elements of Mn

(
R[X]

)
in such a way

that Mn(R) becomes a left Mn

(
R[X]

)
-module and (XI) ? A = AU , for all

A ∈Mn(R).

Proof. Note that f : Mn(R) 3 A 7→ AU ∈Mn(R) is (left) Mn(R)-linear and
apply Corollary 32.4. �

32.6. Lemma. Let R be a commutative ring and U ∈ Mn(R). If Mn(R) is
regarded as a left Mn

(
R[X]

)
-module as in Corollary 32.5, then(
p(X)I

)
? A = Ap(U),

for every p(X) ∈ R[X] and every A ∈Mn(R).

Proof. If p(X) =
∑m

k=0 rkX
k, with rk ∈ R, k = 0, 1, . . . ,m, then:

(
p(X)I

)
? A =

m∑
k=0

(rkI)(XI)k ? A =

m∑
k=0

rkAU
k = A

m∑
k=0

rkU
k = Ap(U). �

32.7. Lemma (generalized Cayley–Hamilton). Let R be a commutative ring,
U ∈Mn(R) and let A0, A1, . . . , Am ∈Mn(R) satisfy

m∑
k=0

AkU
k = 0.

If we set A =
∑m

k=0X
kAk ∈ Mn

(
R[X]

)
and p(X) = det(A) ∈ R[X], then

p(U) = 0.

Proof. Let Mn(R) be endowed with the struture of left Mn

(
R[X]

)
-module

defined in Corollary 32.5. We have:

A ? I =

m∑
k=0

(XI)k ? (Ak ? I) =

m∑
k=0

AkU
k = 0.

Let B ∈Mn

(
R[X]

)
be the classical adjoint of A, so that BA = p(X)I. Using

Lemma 32.6, we compute:

0 = B ? (A ? I) = (BA) ? I =
(
p(X)I) ? I = p(U). �

32.8. Corollary (Cayley–Hamilton). Let R be a commutative ring. Given
U ∈ Mn(R), if p(X) = det(XI − U) is the characteristic polynomial of U ,
then p(U) = 0.

Proof. Use Lemma 32.7 with A0 = −U , A1 = I and m = 1. �
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33. Nice criteria for a map to be a homeomorphism

33.1. Lemma. Let K and Y be topological spaces, X be a dense subset of
K and f : K → Y be a continuous map. Consider the following conditions:

(a) f |X : X → f [X] is a homeomorphism;
(b) for all p ∈ K and all x ∈ X, if f(p) = f(x), then p = x.

If K is Hausdorff, then condition (a) implies condition (b). If Y is Hausdorff
and K is compact, then condition (b) implies condition (a).

Proof. Assume that K is Hausdorff and that condition (a) holds. Pick p ∈ K
and x ∈ X with p 6= x and let us show that f(p) 6= f(x). Let U and V be
disjoint open subsets of K with p ∈ U and x ∈ V . Since X is dense in K and
U is open in K, it follow that X ∩ U is dense in U ; in particular, p belongs
to the closure of X∩U . Thus, f(p) belongs to the closure of f [X∩U ]. From
(a), we obtain that f [X ∩U ] and f [X ∩V ] are disjoint open subsets in f [X]
and, since f(x) ∈ f [X ∩ V ], we conclude that f(x) is not in the closure of
f [X ∩ U ] in f [X]. Hence f(x) 6= f(p).

Now assume that K is compact, Y is Hausdorff and that condition (b)
holds. It follows immediately from (b) that f |X is injective and therefore
f |X : X → f [X] is a continuous bijection. Let us show that f |X : X → f [X]
is a closed map. Let F be a closed subset of K. It follows easily from (b)
that

f [F ∩X] = f [F ] ∩ f [X].

Since f [F ] is compact and Y is Hausdorff, we obtain that f [F ] is closed in
Y and hence that f [F ] ∩ f [X] is closed in f [X]. �

34. Conditions in which FIP implies nonempty intersection

A nonempty collection of sets has the finite intersection property (FIP) if
every nonempty finite subcollection has a nonempty intersection. It is a basic
fact that a topological space X is compact if and only if every nonempty
collection of closed subsets of X with FIP has nonempty intersection. It
follows that for an arbitrary topological space X, if a collection of closed
subsets of X has a compact member and has FIP, then the intersection of
the collection is nonempty. We will now generalize this result.

34.1. Lemma. Let (Xi)i∈I be a family of topological spaces and let F be
a nonempty collection of closed subsets of the product space X =

∏
i∈I Xi

with FIP. Assume that for each i ∈ I, there exists F ∈ F such that πi[F ]
is contained in a compact subset of Xi, where πi : X → Xi denotes the i-th
projection. Then the collection F has a nonempty intersection.

Proof. Since the collection F has FIP, it is contained in a ultrafilter U of
subsets of X. Let i ∈ I be given and consider the ultrafilter (πi)∗ U of subsets
of Xi having {

πi[F ] : F ∈ U
}
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as a filter basis. Our assumptions imply that (πi)∗ U has a compact member
Ki and thus (πi)∗ U ∩℘(Ki) is an ultrafilter of subsets of the compact space
Ki. Then (πi)∗ U ∩℘(Ki) converges to a point xi ∈ Ki and this implies that
also (πi)∗ U converges to xi. Hence U converges to the point x = (xi)i∈I and
x belongs to the intersection of the family F . �

34.2. Corollary. Let (Xi)i∈I be a family of topological spaces and let F be
a nonempty collection of closed subsets of the product space X =

∏
i∈I Xi.

Assume that for each i ∈ I, there exists F ∈ F such that πi[F ] is contained
in a compact subset of Xi, where πi : X → Xi denotes the i-th projection. If
the intersection of the collection F is contained in an open subset U of X,
then the intersection of some nonempty finite subcollection of F is contained
in U .

Proof. Apply Lemma 34.1 to the collection F ∪ {X \ U}. �

34.3. Corollary. Let (Xi)i∈I be a family of Hausdorff topological spaces and
for each i ∈ I let Ki be a compact subset of Xi. Let U be an open subset of
the product space X =

∏
i∈I Xi such that

∏
i∈I Ki ⊂ U . Then there exists a

finite subset J of I such that U contains the set:

KJ =
{

(xi)i∈I ∈ X : xi ∈ Ki, for all i ∈ J
}
.

Proof. Apply Corollary 34.2 to the collection:

F =
{
KJ : J a finite subset of I

}
. �

35. Proper maps and regular measures

Let X and Y be topological spaces. A map f : X → Y is called proper
if f−1[K] is compact, for every compact subset K of Y . A subset F of
a topological space Y is called sequentially closed if every limit11 in Y of
every sequence in F is in F . We say that Y is a sequential space if every
sequentially closed subset of Y is closed in Y . This happens, for instance, if
Y is a first countable space.

35.1. Lemma. Let X and Y be topological spaces with Y Hausdorff. Assume
that Y is either locally compact or sequential. Then every continuous proper
map f : X → Y is closed.

Proof. Let F be a closed subset of X and let us show that f [F ] is closed
in Y . If Y is sequential, it suffices to check that f [F ] is sequentially closed
in Y . Let (xn)n≥1 be a sequence in F such that

(
f(xn)

)
n≥1

converges to

a point y ∈ Y . Then K = {y} ∪
{
f(xn) : n ≥ 1

}
is a compact subset of

Y and hence (xn)n≥1 is a sequence in the compact subset f−1[K]. Thus
(xn)n≥1 has a cluster point x ∈ K which is also in F , since F is closed. It

11Since we are not assuming that Y is Hausdorff, a sequence could have more than one
limit.
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follows that f(x) is a cluster point of the sequence
(
f(xn)

)
n≥1

and since Y

is Haussdorff this implies that f(x) = y.
Now assume that Y is locally compact. Given y ∈ Y \f [F ], we show that

y has a neighborhood disjoint from f [F ]. Let V be a compact neighborhood
of y. Then F ∩f−1[V ] is a compact subset of X and thus H = f

[
F ∩f−1[V ]

]
is a compact subset of Y . Since Y is Hausdorff, it follows that H is closed
in Y . Moreover, since y 6∈ f [F ], we have y 6∈ H and thus V \ H is a
neighborhood of y. It is easily seen that V \H is disjoint from f [F ]. �

35.2. Definition. Let X be a locally compact Hausdorff topological space.
By a regular measure on X we mean a nonnegative countably additive mea-
sure µ on the Borel σ-algebra of X satisfying the following conditions:

(i) µ(B) = inf
{
µ(U) : U ⊃ B open in X

}
, for every Borel subset B of

the space X;
(ii) µ(U) = sup

{
µ(K) : K ⊂ U compact

}
, for every open subset U of

the space X;
(iii) µ(K) < +∞, for every compact subset K of the space X.

Note that condition (i) is trivially satisfied when µ(B) = +∞.
If X and Y are topological spaces, µ is a nonnegative countably additive

measure on the Borel σ-algebra of X and f : X → Y is a continuous map,
we denote by f∗µ the nonnegative countably additive measure on the Borel
σ-algebra of Y defined by

(35.1) (f∗µ)(B) = µ
(
f−1[B]

)
,

for every Borel subset B of Y .

35.3. Lemma. Let X and Y be locally compact Hausdorff topological spaces,
f : X → Y be a continuous proper map and µ be a regular measure on X.
Then f∗µ is a regular measure on Y .

Proof. Let B be a Borel subset of Y with (f∗µ)(B) < +∞. Given ε > 0,
there exists an open subset U of X containing f−1[B] such that:

µ(U) < µ
(
f−1[B]

)
+ ε.

It follows from Lemma 35.1 that V = Y \ f [X \U ] is open in Y . Moreover,
one readily checks that B ⊂ V and that f−1[V ] ⊂ U , so that:

(f∗µ)(V ) ≤ µ(U) < (f∗µ)(B) + ε.

Now let U be an open subset of Y and fix M < (f∗µ)(U). Since f−1[U ] is
open in X and M < µ

(
f−1[U ]

)
, there must exist a compact subset K of

f−1[U ] with µ(K) > M . Then f [K] is a compact subset of U and:

(f∗µ)
(
f [K]

)
= µ

(
f−1[f [K]]

)
≥ µ(K) > M.

Finally, note that for every compact subset K of Y we have that (f∗µ)(K)
is finite, since f−1[K] is a compact subset of X. �
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35.4. Lemma. Let X be a locally compact Hausdorff topological space and let
µ and ν be nonnegative countably additive measures on the Borel σ-algebra
of X. Assume that ν(B) ≤ µ(B) and that

ν(B) < +∞ =⇒ µ(B) < +∞,

for every Borel subset B of X. If µ is regular, then also ν is regular.

Proof. Let B be a Borel subset of X with ν(B) < +∞ and let ε > 0 be
given. Since µ(B) < +∞, there exists an open subset U of X containing B
with µ(U) < µ(B) + ε. But since µ(B) is finite this implies:

ν(U)− ν(B) = ν(U \B) ≤ µ(U \B) = µ(U)− µ(B) < ε,

which proves that ν(U) < ν(B) + ε. Now let U be an open subset of X and
let us prove that:

(35.2) ν(U) = sup
{
ν(K) : K ⊂ U compact

}
.

Assume first that ν(U) < +∞ and let ε > 0 be given. Since µ(U) < +∞,
there exists a compact subset K of U such that µ(K) > µ(U)− ε. Then:

ν(U)− ν(K) = ν(U \K) ≤ µ(U \K) = µ(U)− µ(K) < ε,

which proves that ν(K) > ν(U)−ε and establishes (35.2). Now assume that
ν(U) = +∞. Then µ(U) = +∞ and, for each positive integer n, there exists
a compact subset Kn of U with µ(Kn) > n. Replacing Kn with

⋃n
i=1Ki, we

may assume that the sequence of compact sets (Kn)n≥1 is increasing. Then
µ
(⋃∞

n=1Kn

)
= +∞, so that

sup
n≥1

ν(Kn) = lim
n→+∞

ν(Kn) = ν
( ∞⋃
n=1

Kn

)
= +∞,

which again establishes (35.2). Finally, it is obvious that

ν(K) ≤ µ(K) < +∞,

for every compact subset K of X. �

Recall that if µ is a signed countably additive measure on a σ-algebra A,
then there exists a decomposition µ = µ1 − µ2 with µ1 and µ2 nonnegative
countably additive measures on A and either µ1 or µ2 finite; moreover, there
is a unique such decomposition µ = µ+ − µ− which is minimal in the sense
that µ+ ≤ µ1 and µ− ≤ µ2 for every other decomposition µ = µ1 − µ2. The
decomposition µ = µ+ − µ− is called the Jordan decomposition of µ.

35.5. Definition. Let X be a locally compact Hausdorff topological space.
A signed countably additive measure µ on the Borel σ-algebra of X is called
regular if both µ+ and µ− are regular.

35.6. Lemma. Let X be a locally compact Hausdorff topological space and
µ be a signed countably additive measure on the Borel σ-algebra of X. As-
sume that µ = µ1 − µ2, where µ1 and µ2 are nonnegative countably additive
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measures on the Borel σ-algebra of X and either µ1 or µ2 finite. If both µ1

and µ2 are regular, then so is µ.

Proof. We have µ+ ≤ µ1, µ− ≤ µ2 and

µ+(B) < +∞ =⇒ µ(B) < +∞ =⇒ µ1(B) < +∞,
µ−(B) < +∞ =⇒ µ(B) > −∞ =⇒ µ2(B) < +∞,

for every Borel subset B of X. The conclusion follows from Lemma 35.4. �

Clearly definition (35.1) for f∗µ also makes sense when µ is a signed
measure. Though obviously f∗µ = f∗(µ+)− f∗(µ−), it is not true in general
that this is the Jordan decomposition for f∗µ. Nevertheless, we have the
following result.

35.7. Corollary. Let X and Y be locally compact Hausdorff topological
spaces, f : X → Y be a continuous proper map and µ be a signed regu-
lar measure on X. Then f∗µ is a signed12 regular measure on Y .

Proof. Simply note that f∗µ = f∗(µ+) − f∗(µ−) and apply the results of
Lemmas 35.3 and 35.6. �
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12We are assuming the convention according to which the set of signed measures in-
cludes the set of nonnegative measures. It may happen that µ(B) < 0 for some B but
that f∗µ is nonnegative. This is the case, for instance, if X = {x1, x2} has two points,
Y has a unique point, µ

(
{x1}

)
> 0, µ

(
{x2}

)
< 0 and µ(X) > 0. Note also that in this

example (f∗µ)− = 0, while f∗(µ−) is not zero.


