ELETROMAGNETISM NOTES

DANIEL V. TAUSK

1. Spacetime and units

Spacetime is a four-dimensional real affine space whose underlying fourdimensional real vector space is endowed with a Minkowski-type inner product with signature +--- and a time-orientation. A point of spacetime is typically denoted by x. Using coordinates (defined by an origin and a positively time-oriented orthonormal basis), we write

$$
x=\left(x^{0}, x^{1}, x^{2}, x^{3}\right) \in \mathbb{R}^{4}, \quad t=x^{0}, \quad \vec{x}=\left(x^{1}, x^{2}, x^{3}\right) \in \mathbb{R}^{3}, \quad x=(t, \vec{x}) .
$$

A vector in spacetime (i.e., an element of the vector space underlying spacetime) is typically denoted by \dot{x} and, using coordinates:

$$
\dot{x}=\left(\dot{x}^{0}, \dot{x}^{1}, \dot{x}^{2}, \dot{x}^{3}\right) \in \mathbb{R}^{4}, \quad \dot{t}=\dot{x}^{0}, \quad \dot{\vec{x}}=\left(\dot{x}^{1}, \dot{x}^{2}, \dot{x}^{3}\right), \quad \dot{x}=(\dot{t}, \dot{\vec{x}})
$$

Units are chosen such that

$$
c=1, \quad \varepsilon_{0}=\frac{1}{4 \pi}, \quad \mu_{0}=4 \pi
$$

where c denotes the speed of light in vacuum, ε_{0} denotes vacuum permittivity and μ_{0} denotes vacuum permeability (Coulomb's constant then becomes equal to 1, i.e., Coulomb's force becomes the product of charges divided by the square of the distance). The spacetime Minkowski inner product $\langle\cdot, \cdot\rangle$ is given by:

$$
\left\langle\left(\dot{t}_{1}, \dot{\vec{x}}_{1}\right),\left(\dot{t}_{2}, \dot{\vec{x}}_{2}\right)\right\rangle=\dot{t}_{1} \dot{t}_{2}-\left\langle\dot{\vec{x}}_{1}, \dot{\vec{x}}_{2}\right\rangle, \quad \dot{t}_{1}, \dot{t}_{2} \in \mathbb{R}, \dot{\vec{x}}_{1}, \dot{\vec{x}}_{2} \in \mathbb{R}^{3},
$$

where the $\langle\cdot, \cdot\rangle$ in the righthand side of the equality denotes the standard Euclidean inner product (the Minkowski spacetime inner product and the Euclidean space inner product are both denoted by $\langle\cdot, \cdot\rangle$, but context should be sufficient to distinguish between them).

2. Density and flow of a Physical quantity

Given some physical quantity \mathfrak{a} which takes values in some real finitedimensional vector space \mathbb{E}, its distribution over spacetime is described by a density function

$$
\rho_{\mathfrak{a}}: \mathbb{R}^{4} \rightarrow \mathbb{E}
$$

and by a flow density

$$
\vec{\jmath}_{\mathfrak{a}}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3} \otimes \mathbb{E}
$$

Date: February 27th, 2017.

The map $\vec{\jmath}_{\mathfrak{a}}$ should be thought of as a (time-dependent) \mathbb{E}-valued vector field over \mathbb{R}^{3}, i.e., we think of $\vec{\jmath}_{\mathfrak{a}}(x) \in \mathbb{R}^{3} \otimes \mathbb{E}$ as having three components

$$
\vec{\jmath} \mathfrak{a}(x)=\left(\vec{\jmath}_{\mathfrak{a}}^{1}(x), \vec{\jmath}_{\mathfrak{a}}^{2}(x), \vec{\jmath}_{\mathfrak{a}}^{3}(x)\right)
$$

with each $\vec{\jmath}_{\mathfrak{a}}^{i}(x)$ an element of \mathbb{E}. We can thus define the flow of the \mathbb{E}-valued vector field $\vec{\jmath}_{\mathfrak{a}}(t, \cdot): \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \otimes \mathbb{E}$ over an oriented surface of \mathbb{R}^{3} and this is to be interpreted as the rate at time t of how much of the quantity \mathfrak{a} flows through the given surface. The divergence

$$
\operatorname{div} \vec{\jmath}_{\mathfrak{a}}(x)=\sum_{i=1}^{3} \frac{\partial \vec{\jmath}_{\mathfrak{a}}^{i}}{\partial x^{i}}(x) \in \mathbb{E}
$$

of $\vec{\jmath}_{\mathfrak{a}}$ with respect to the \vec{x} variable is an \mathbb{E}-valued function over \mathbb{R}^{4} and the divergence theorem holds. The expression

$$
\begin{equation*}
\frac{\partial \rho_{\mathfrak{a}}}{\partial t}+\operatorname{div} \vec{\jmath}_{\mathfrak{a}} \tag{2.1}
\end{equation*}
$$

is the density of how much of the quantity \mathfrak{a} is gained by the system. When the quantity \mathfrak{a} is not exchanged with external systems, conservation of \mathfrak{a} means that (2.1) is equal to zero. Otherwise, (2.1) should be equal to how much of \mathfrak{a} is gained by interaction with external systems.

When a basis of \mathbb{E} is given, we write $\vec{\jmath}_{\mathfrak{a}}^{i j}$ for the j-th coordinate of $\vec{\jmath}_{\mathfrak{a}}^{i}$ in the given basis of \mathbb{E}, so that:

$$
\left[\operatorname{div} \vec{\jmath}_{\mathfrak{a}}(x)\right]^{j}=\sum_{i=1}^{3} \frac{\partial \vec{\jmath}_{\mathfrak{a}}^{i j}}{\partial x^{i}}(x)
$$

One should pay attention to this convention for the ordering of i and j specially when \mathbb{E} happens to be \mathbb{R}^{3}, when this can get confusing.

3. Maxwell's equations and Lorentz force

Let

$$
E: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{3} \quad \text { and } \quad B: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{3}
$$

denote, respectively, electric and magnetic fields and let

$$
\rho: \mathbb{R}^{4} \rightarrow \mathbb{R} \quad \text { and } \quad \vec{\jmath}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}
$$

denote, respectively, charge density and current density. Maxwell's equations are:

$$
\begin{gathered}
\operatorname{div} B=0, \quad \operatorname{rot} E+\frac{\partial B}{\partial t}=0 \\
\operatorname{div} E=4 \pi \rho, \quad \operatorname{rot} B=4 \pi \vec{\jmath}+\frac{\partial E}{\partial t}
\end{gathered}
$$

where div and rot denote, respectively, divergence and curl with respect to the \vec{x} variable. Conservation of charge is expressed by the equation:

$$
\frac{\partial \rho}{\partial t}+\operatorname{div} \vec{\jmath}=0
$$

Let $u: \mathbb{R} \rightarrow \mathbb{R}^{3}$ denote the (smooth) trajectory of a particle, so that

$$
\{(t, u(t)): t \in \mathbb{R}\} \subset \mathbb{R}^{4}
$$

denotes its worldline. It is assumed that $\left\|u^{\prime}(t)\right\|<1$ for all t. If q denotes the charge of the particle, then the Lorentz force acting on it by the fields at time t is given by:

$$
q\left[E(t, u(t))+u^{\prime}(t) \wedge B(t, u(t))\right]
$$

where \wedge denotes the vector product. The dynamics for the motion of the particle is given by:

$$
p^{\prime}(t)=q\left[E(t, u(t))+u^{\prime}(t) \wedge B(t, u(t))\right]+\text { other forces }
$$

where the momentum $p: \mathbb{R} \rightarrow \mathbb{R}^{3}$ is defined by:

$$
p(t)=\frac{m u^{\prime}(t)}{\left(1-\left\|u^{\prime}(t)\right\|^{2}\right)^{\frac{1}{2}}}
$$

and m denotes the mass of the particle.
3.1. Potentials. The scalar potential $\phi: \mathbb{R}^{4} \rightarrow \mathbb{R}$ and the vector potential $\vec{A}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ are chosen such that the equalities

$$
\begin{equation*}
E=-\nabla \phi-\frac{\partial \vec{A}}{\partial t}, \quad B=\operatorname{rot} \vec{A} \tag{3.1}
\end{equation*}
$$

are satisfied, where ∇ denotes the gradient with respect to the \vec{x} variable. The Lorenz gauge condition on the potentials is:

$$
\frac{\partial \phi}{\partial t}+\operatorname{div} \vec{A}=0
$$

Denote by $\triangle=\sum_{i=1}^{3} \frac{\partial^{2}}{\left(\partial x^{i}\right)^{2}}$ the Laplace operator in \mathbb{R}^{3} and by $\square=\frac{\partial^{2}}{\partial t^{2}}-\triangle$ the wave operator in \mathbb{R}^{4}. In terms of potentials ϕ and \vec{A} satisfying the Lorenz gauge, Maxwell's equations become:

$$
\begin{equation*}
\square \phi=4 \pi \rho, \quad \square \vec{A}=4 \pi \vec{\jmath} \tag{3.2}
\end{equation*}
$$

4. Energy and momentum of the electromagnetic field

The energy density $\rho_{\mathfrak{e}}: \mathbb{R}^{4} \rightarrow \mathbb{R}$ and the energy flow density $\vec{\jmath}_{\mathfrak{e}}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ of the electromagnetic field are given by:

$$
\rho_{\mathfrak{e}}=\frac{1}{8 \pi}\left(\|E\|^{2}+\|B\|^{2}\right), \quad \vec{\jmath}_{\mathfrak{e}}=\frac{1}{4 \pi}(E \wedge B)
$$

The momentum density $\rho_{\mathfrak{p}}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ and the momentum flow density $\overrightarrow{\jmath_{\mathfrak{p}}}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3} \otimes \mathbb{R}^{3}$ of the electromagnetic field are given by:

$$
\rho_{\mathfrak{p}}=\frac{1}{4 \pi}(E \wedge B), \quad \overrightarrow{\jmath_{\mathfrak{p}}}=\frac{1}{8 \pi}\left(\|E\|^{2}+\|B\|^{2}\right) \mathrm{I}-\frac{1}{4 \pi}(E \otimes E+B \otimes B)
$$

where $I \in \mathbb{R}^{3} \otimes \mathbb{R}^{3}$ denotes the tensor represented in the canonical basis by the identity matrix (if we identify $\mathbb{R}^{3} \otimes \mathbb{R}^{3}$ with the space of bilinear forms on the dual space $\mathbb{R}^{3^{*}}$, then I is identified with the Euclidean inner product
in $\left.\mathbb{R}^{3^{*}}\right)$. The conservation laws of energy and momentum are expressed by the equalities:

$$
\frac{\partial \rho_{\mathfrak{e}}}{\partial t}+\operatorname{div} \overrightarrow{\jmath_{\mathfrak{e}}}=-\langle E, \vec{\jmath}\rangle, \quad \frac{\partial \rho_{\mathfrak{p}}}{\partial t}+\operatorname{div} \overrightarrow{\jmath_{\mathfrak{p}}}=-(\rho E+\vec{\jmath} \wedge B)
$$

Note that $\langle E, \vec{\jmath}\rangle$ is the time-derivative of the amount of energy that the fields give to the charge distribution (power density) and $\rho E+\vec{\jmath} \wedge B$ is the time-derivative of the amount of momentum that the fields give to the charge distribution (force density).

5. Inner product on multilinear maps and Hodge star

Given real finite-dimensional vector spaces $V_{i}, i=1,2, \ldots, n$ endowed with indefinite inner products $\langle\cdot, \cdot\rangle$ (i.e., $\langle\cdot, \cdot\rangle$ is a nondegenerate symmetric bilinear form on V_{i}), we obtain an indefinite inner product on the tensor product $\bigotimes_{i=1}^{n} V_{i}$ by setting:

$$
\left\langle v_{1} \otimes \cdots \otimes v_{n}, w_{1} \otimes \cdots \otimes w_{n}\right\rangle=\prod_{i=1}^{n}\left\langle v_{i}, w_{i}\right\rangle, \quad v_{i}, w_{i} \in V_{i}
$$

We identify the tensor product $\bigotimes_{i=1}^{n} V_{i}^{*}$ of the dual spaces with the space of multilinear maps $V_{1} \times \cdots \times V_{n} \rightarrow \mathbb{R}$ by setting:

$$
\begin{equation*}
\left(\alpha_{1} \otimes \cdots \otimes \alpha_{n}\right)\left(v_{1}, \ldots, v_{n}\right)=\prod_{i=1}^{n} \alpha_{i}\left(v_{i}\right), \quad \alpha_{i} \in V_{i}^{*}, v_{i} \in V_{i} \tag{5.1}
\end{equation*}
$$

An indefinite inner product on a real finite-dimensional vector space V yields an isomorphism $v \mapsto\langle v, \cdot\rangle$ between V and V^{*} and this isomorphism induces an indefinite inner product on V^{*}. Thus, the indefinite inner products on the spaces V_{i} induce also an indefinite inner product on $\bigotimes_{i=1}^{n} V_{i}^{*}$ and hence on the space of multilinear maps $V_{1} \times \cdots \times V_{n} \rightarrow \mathbb{R}$.

Given a real finite-dimensional vector space V, we identify the exterior product $\bigwedge_{k} V^{*}$ with the space of k-linear alternate forms on V by setting:

$$
\left(\alpha_{1} \wedge \cdots \wedge \alpha_{k}\right)\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\alpha_{i}\left(v_{j}\right)\right)_{k \times k}, \quad \alpha_{i} \in V^{*}, v_{i} \in V
$$

Thus $\bigwedge_{k} V^{*}$ is identified with a subspace of $\bigotimes_{k} V^{*}$ and we have:

$$
\alpha_{1} \wedge \cdots \wedge \alpha_{k}=\sum_{\sigma \in S^{k}} \operatorname{sgn}(\sigma)\left(\alpha_{\sigma(1)} \otimes \cdots \otimes \alpha_{\sigma(k)}\right), \quad \alpha_{i} \in V^{*}
$$

where S^{k} denotes the group of permutations of $\{1, \ldots, k\}$ and $\operatorname{sgn}(\sigma)$ denotes the sign of the permutation σ. An indefinite inner product on V thus induces an indefinite inner product on $\bigwedge_{k} V^{*}$ and we have:

$$
\left\langle\alpha_{1} \wedge \cdots \wedge \alpha_{k}, \beta_{1} \wedge \cdots \wedge \beta_{k}\right\rangle=k!\operatorname{det}\left(\left\langle\alpha_{i}, \beta_{j}\right\rangle\right)_{k \times k}, \quad \alpha_{i}, \beta_{i} \in V^{*}
$$

5.1. Hodge star. Given an indefinite inner product $\langle\cdot, \cdot\rangle$ in a real oriented vector space V of dimension $n<+\infty$, there exists a unique n-form on V, denoted vol $\in \bigwedge_{n} V^{*}$, such that

$$
\operatorname{vol}\left(e_{1}, \ldots, e_{n}\right)=1
$$

for any positive orthonormal basis $\left(e_{i}\right)_{i=1}^{n}$ of V; orthonormal means that $\left\langle e_{i}, e_{j}\right\rangle=0$, for $i \neq j$, and $\left|\left\langle e_{i}, e_{i}\right\rangle\right|=1$, for all i. We have:

$$
\operatorname{vol}=\mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{n}
$$

where $\left(\mathrm{d} x^{i}\right)_{i=1}^{n}$ is dual to some positive orthonormal basis of V. For any $\omega \in \bigwedge_{k} V^{*}$, we define $\star \omega \in \bigwedge_{n-k} V^{*}$ by requiring that:

$$
\lambda \wedge(\star \omega)=\frac{1}{k!}\langle\lambda, \omega\rangle \mathrm{vol},
$$

for all $\lambda \in \bigwedge_{k} V^{*}$. If $\left(\mathrm{d} x^{i}\right)_{i=1}^{n}$ is dual to a positive orthonormal basis $\left(e_{i}\right)_{i=1}^{n}$ of V, then

$$
\star\left(\mathrm{d} x^{i_{1}} \wedge \cdots \wedge \mathrm{~d} x^{i_{k}}\right)= \pm \mathrm{d} x^{j_{1}} \wedge \cdots \wedge \mathrm{~d} x^{j_{n-k}}
$$

where $\left\{i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}\right\}=\{1,2, \ldots, n\}$ and the sign is determined by the equality
$\mathrm{d} x^{i_{1}} \wedge \cdots \wedge \mathrm{~d} x^{i_{k}} \wedge\left(\star\left(\mathrm{~d} x^{i_{1}} \wedge \cdots \wedge \mathrm{~d} x^{i_{k}}\right)\right)=\left\langle e_{i_{1}}, e_{i_{1}}\right\rangle \cdots\left\langle e_{i_{k}}, e_{i_{k}}\right\rangle \mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{n}$.
If $\omega \in \bigwedge_{k} V^{*}$, then:

$$
\star \star \omega=(-1)^{k(n-k)}(-1)^{\mathrm{ind}} \omega,
$$

where ind denotes the index of the indefinite inner product (i.e., the number of minus signs in its signature).
5.2. Codifferential. If ω is a smooth differential k-form on a semi-Riemannian oriented ${ }^{1}$ manifold M, then the codifferential $\delta \omega$ is the smooth differential $(k-1)$-form on M such that:

$$
\begin{equation*}
\frac{1}{(k-1)!} \int_{M}\langle\lambda, \delta \omega\rangle \operatorname{vol}=\frac{1}{k!} \int_{M}\langle\mathrm{~d} \lambda, \omega\rangle \operatorname{vol} \tag{5.2}
\end{equation*}
$$

for any smooth differential $(k-1)$-form λ on M having compact support. By $\mathrm{d} \lambda$ we have denoted the exterior differential of λ. If $k=0$ we set $\delta \omega=0$. We have the following explicit formula for $\delta \omega$ in terms of the Hodge star and the exterior differential:

$$
\delta \omega=(-1)^{\mathrm{ind}}(-1)^{n(k-1)+1} \star \mathrm{~d} \star \omega,
$$

where ω is a differential k-form, n denotes the dimension of M and ind denotes the index of the semi-Riemannian metric.

[^0]
6. Fundamental solution for the wave operator

Let $C \subset \mathbb{R}^{4}$ denote the lightcone:

$$
C=\left\{x \in \mathbb{R}^{4}:\langle x, x\rangle=0\right\}=\left\{(t, \vec{x}) \in \mathbb{R}^{4}:|t|=\|x\|\right\}
$$

and C^{+}denote the future lightcone:

$$
C^{+}=\{(t, \vec{x}) \in C: t \geq 0\} .
$$

On what follows we will define a Borel measure μ_{C} on C. Consider the mapping

$$
\begin{equation*}
\mathbb{R} \times S^{2} \ni(t, u) \longmapsto(t, t u) \in C, \tag{6.1}
\end{equation*}
$$

where $S^{2}=\left\{u \in \mathbb{R}^{3}:\|u\|=1\right\}$ denotes the Euclidean unit sphere of \mathbb{R}^{3}. Let $\mathfrak{m}_{\mathbb{R} \times S^{2}}$ denote the Borel measure in $\mathbb{R} \times S^{2}$ defined as the product of the Lebesgue measure of \mathbb{R} by the standard area measure of S^{2}. We define μ_{C} to be the push-forward under (6.1) of the measure on $\mathbb{R} \times S^{2}$ given by:

$$
\begin{equation*}
\int|t| \mathrm{dm}_{\mathbb{R} \times S^{2}}(t, u) \tag{6.2}
\end{equation*}
$$

i.e., μ_{C} calculated in a Borel subset of C is equal to the integral (6.2) over the inverse image of such Borel subset by the mapping (6.1). We denote by $\mu_{C^{+}}$ the restriction of μ_{C} to C^{+}. We can think of $\mu_{C^{+}}$as a Borel measure over \mathbb{R}^{4} (whose value at a Borel subset of \mathbb{R}^{4} is the value of $\mu_{C^{+}}$at the intersection of such Borel subset with C^{+}) and, since such measure is finite over compact subsets, it defines a (Schwartz) distribution over \mathbb{R}^{4}. More explicitly, given a test function $\varphi: \mathbb{R}^{4} \rightarrow \mathbb{R}$ (smooth, with compact support), we set:

$$
\left\langle\left\langle\mu_{C^{+}}, \varphi\right\rangle\right\rangle=\int_{C^{+}} \varphi \mathrm{d} \mu_{C^{+}},
$$

where the bracket $\langle\langle\cdot, \cdot\rangle\rangle$ denotes evaluation of a distribution at a test function. If \square denotes the wave operator in \mathbb{R}^{4} (see Subsection 3.1), then:

$$
\square \mu_{C^{+}}=4 \pi \delta_{0},
$$

where δ_{0} denotes the Dirac delta distribution $\left\langle\delta_{0}, \varphi\right\rangle=\varphi(0)$. In other words, $\frac{1}{4 \pi} \mu_{C^{+}}$is a fundamental solution for the wave operator \square in \mathbb{R}^{4}.

We give an alternative description of $\mu_{C^{+}}$. Consider the mapping:

$$
\begin{equation*}
\mathbb{R}^{3} \ni \vec{x} \longmapsto(\|\vec{x}\|, \vec{x}) \in C^{+} \tag{6.3}
\end{equation*}
$$

If $\mathfrak{m}_{\mathbb{R}^{3}}$ denotes the Lebesgue measure of \mathbb{R}^{3}, then $\mu_{C^{+}}$is equal to the pushforward under (6.3) of the measure on \mathbb{R}^{3} given by:

$$
\int \frac{1}{\|\vec{x}\|} \mathrm{d} m(\vec{x})
$$

7. LORENTZ BOOSTS OF ELECTRIC AND MAGNETIC FIELDS

Given a vector $v \in \mathbb{R}^{3}$ with $\|v\|<1$, we define a linear transformation $L_{v}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ by setting:

$$
L_{v}(\dot{t}, \dot{\vec{x}})=\frac{1}{\left(1-\|v\|^{2}\right)^{\frac{1}{2}}}\left(\dot{t}+\langle\dot{\vec{x}}, v\rangle, v \dot{t}+\operatorname{proj}_{v} \dot{\vec{x}}\right)+\left(0, \operatorname{proj}_{v^{\perp}} \dot{\vec{x}}\right)
$$

for all $(\dot{t}, \dot{\vec{x}}) \in \mathbb{R}^{4}$, where

$$
\operatorname{proj}_{v} \dot{\vec{x}}=\frac{\langle\dot{\vec{x}}, v\rangle}{\langle v, v\rangle} v
$$

denotes the orthogonal projection of $\dot{\vec{x}}$ onto the one-dimensional subspace spanned by v and $\operatorname{proj}_{v^{\perp}} \dot{\vec{x}}=\dot{\vec{x}}-\operatorname{proj}_{v} \dot{\vec{x}}$ denotes the orthogonal projection of $\dot{\vec{x}}$ onto the orthogonal complement of v. The map L_{v} is a Lorentz transformation, i.e., a linear isometry of the Minkowski inner product. Moreover, it preserves time and space orientation and it leaves the two-dimensional subspace spanned by $(1,0)$ and $(0, v)$ invariant. The map L_{v} gives a "boost of velocity v " to particles, i.e., it sends the worldline $\mathbb{R} \times\{0\}$ of a particle at rest to the worldline $\{(t, v t): t \in \mathbb{R}\}$ of a particle with velocity v. The map that sends the coordinates $(\dot{t}, \dot{\vec{x}})$ to the coordinates used by an observer that, with respect to the coordinates $(\dot{t}, \dot{\vec{x}})$, moves with velocity v is $L_{-v}=L_{v}^{-1}$.

The push-forward of the electric and magnetic fields E, B by the Lorentz transformation L_{v} (which gives a "boost of velocity v " to such fields) are the fields E^{\prime} and B^{\prime} given by:

$$
\begin{aligned}
& E^{\prime}\left(x^{\prime}\right)=\operatorname{proj}_{v} E(x)+\frac{1}{\left(1-\|v\|^{2}\right)^{\frac{1}{2}}}\left(\operatorname{proj}_{v^{\perp}} E(x)+B(x) \wedge v\right) \\
& B^{\prime}\left(x^{\prime}\right)=\operatorname{proj}_{v} B(x)+\frac{1}{\left(1-\|v\|^{2}\right)^{\frac{1}{2}}}\left(\operatorname{proj}_{v^{\perp}} B(x)+v \wedge E(x)\right)
\end{aligned}
$$

for all $x^{\prime} \in \mathbb{R}^{4}$, where $x=L_{v}^{-1}\left(x^{\prime}\right)=L_{-v}\left(x^{\prime}\right)$.

8. Explicitly Lorentz invariant formulation

Given an electric field E and a magnetic field B, we define a differential 2-form $F: \mathbb{R}^{4} \rightarrow \bigwedge_{2} \mathbb{R}^{4^{*}}$ over spacetime by setting:

$$
\begin{aligned}
F_{x}\left(\left(\dot{t}_{1}, \dot{\vec{x}}_{1}\right),\left(\dot{t}_{2}, \dot{\vec{x}}_{2}\right)\right)=\dot{t}_{1}\left\langle E(x), \dot{\vec{x}}_{2}\right\rangle-\dot{t}_{2}\langle & \left.E(x), \dot{\vec{x}}_{1}\right\rangle-\operatorname{det}\left(B(x), \dot{\vec{x}}_{1}, \dot{\vec{x}}_{2}\right) \\
& x \in \mathbb{R}^{4}, \dot{t}_{1}, \dot{t}_{2} \in \mathbb{R}, \dot{\vec{x}}_{1}, \dot{\vec{x}}_{2} \in \mathbb{R}^{3} .
\end{aligned}
$$

From the charge density ρ and current density $\vec{\jmath}$, we obtain a vector field $j: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ over spacetime by setting:

$$
j=(\rho, \vec{\jmath})
$$

The flow 2 of the vector field j over a spacelike 3 -surface (which can be understood as a region of space at some instant of time, with respect to some general coordinate system) gives the amount of charge in that 3 -surface and the flow of j over a timelike surface (which can be understood as a moving 2 -surface in space, with respect to some general coordinate system) gives the amount of charge flowing through that surface. In terms of F and j, Maxwell's equations become:

$$
\mathrm{d} F=0, \quad \delta F=\star \mathrm{d} \star F=-4 \pi\langle j, \cdot\rangle
$$

where $\mathrm{d} F$ denotes the exterior differential of F.
8.1. Lorentz force. Let $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{4}$ denote a parametrization by arclength of the worldline of a particle with charge q (parametrization by arclength means that $\left\langle\gamma^{\prime}(s), \gamma^{\prime}(s)\right\rangle=1$, for all s. We assume also that the parametrization of γ is positively time-oriented, i.e., that $\gamma^{\prime}(s)$ points to the future, for all $s \in \mathbb{R}$. The Lorentz force law is expressed as:

$$
m\left\langle\gamma^{\prime \prime}(s), \cdot\right\rangle=q F\left(\cdot, \gamma^{\prime}(s)\right)
$$

where m denotes the mass of the particle. This equation defines the dynamics of the particle, in case there are no other forces acting on it.
8.2. Potentials. If ϕ denotes the scalar potential and \vec{A} denotes the vector potential, we define a vector field $A: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ over spacetime by setting:

$$
A=(\phi, \vec{A})
$$

We have:

$$
\mathrm{d}\langle A, \cdot\rangle=F
$$

where $\mathrm{d}\langle A, \cdot\rangle$ denotes the exterior differential of the 1 -form $\langle A, \cdot\rangle$. The Lorenz gauge condition is given by:

$$
\delta\langle A, \cdot\rangle=\star \mathrm{d} \star\langle A, \cdot\rangle=0
$$

8.3. Energy and momentum. The energy density, energy flow density, momentum density and momentum flow density of the electromagnetic field defined in Section 4 can be assembled into a energy-momentum tensor T, which is a tensor field $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4} \otimes \mathbb{R}^{4}$ over spacetime. We identify $\mathbb{R}^{4} \otimes \mathbb{R}^{4}$ with the space of bilinear forms in $\mathbb{R}^{4^{*}}$ by setting:

$$
(\dot{x} \otimes \dot{y})(\alpha, \beta)=\alpha(\dot{x}) \beta(\dot{y})
$$

for all $\alpha, \beta \in \mathbb{R}^{4^{*}}, \dot{x}, \dot{y} \in \mathbb{R}^{4}$. For a linear functional $\alpha \in \mathbb{R}^{4^{*}}$, we write:

$$
\alpha=\left(\alpha_{0}, \vec{\alpha}\right)
$$

[^1]with $\alpha_{0}=\alpha(1,0) \in \mathbb{R}$ and $\vec{\alpha} \in \mathbb{R}^{3^{*}}$ defined by $\vec{\alpha}(\dot{\vec{x}})=\alpha(0, \dot{\vec{x}})$, for all $\dot{\vec{x}} \in \mathbb{R}^{3}$. The energy-momentum tensor T of the electromagnetic field is defined by:
$$
T(x)(\alpha, \beta)=\rho_{\mathfrak{e}}(x) \alpha_{0} \beta_{0}+\alpha_{0} \vec{\beta}\left(\rho_{\mathfrak{p}}(x)\right)+\beta_{0} \vec{\alpha}\left(\overrightarrow{\jmath_{\mathfrak{e}}}(x)\right)+\overrightarrow{\jmath_{\mathfrak{p}}}(x)(\vec{\alpha}, \vec{\beta})
$$
for all $x \in \mathbb{R}^{4}, \alpha, \beta \in \mathbb{R}^{4^{*}}$, where $\overrightarrow{\jmath_{\mathfrak{p}}}(x) \in \mathbb{R}^{3} \otimes \mathbb{R}^{3}$ is identified with a bilinear form in $\mathbb{R}^{3^{*}}$. Since $\rho_{\mathfrak{p}}=\overrightarrow{\jmath_{\mathfrak{e}}}$ and since $\overrightarrow{\jmath_{\mathfrak{p}}}(x)$ is symmetric, it follows that $T(x)$ is symmetric. We can write a formula for T directly in terms of the 2-form F :
$$
T(x)(\alpha, \beta)=\frac{1}{4 \pi}\left(\frac{1}{4}\langle F(x), F(x)\rangle\langle\alpha, \beta\rangle-\left\langle F(x)\left(\alpha^{\sharp}, \cdot\right), F(x)\left(\beta^{\sharp}, \cdot\right)\right\rangle\right)
$$
for all $x \in \mathbb{R}^{4}, \alpha, \beta \in \mathbb{R}^{4^{*}}$, where, for $\alpha \in \mathbb{R}^{4^{*}}, \alpha^{\sharp} \in \mathbb{R}^{4}$ is defined by the equality $\left\langle\alpha^{\sharp}, \cdot\right\rangle=\alpha$. Conservation of energy and momentum is expressed by:
$$
\langle(\operatorname{div} T)(x), \cdot\rangle=F(j(x), \cdot)
$$
where the divergence $(\operatorname{div} T)(x) \in \mathbb{R}^{4}$ of T at the point x is defined as the trace of $\mathrm{d} T(x) \in \mathbb{R}^{4^{*}} \otimes \mathbb{R}^{4} \otimes \mathbb{R}^{4}$ in the first two variables and $\mathrm{d} T(x)$ denotes the (ordinary) differential of T at the point x. More precisely:
$$
\mathrm{d} T(x)(\dot{x}, \alpha, \beta)=\frac{\partial T}{\partial \dot{x}}(x)(\alpha, \beta), \quad x \in \mathbb{R}^{4}, \dot{x} \in \mathbb{R}^{4}, \alpha, \beta \in \mathbb{R}^{4^{*}}
$$
with $\frac{\partial T}{\partial \dot{x}}(x)$ the partial derivative of T at the point x, in the direction of the vector \dot{x} and:
$$
\beta((\operatorname{div} T)(x))=\sum_{i=1}^{4} \mathrm{~d} T(x)\left(e_{i}, \alpha^{i}, \beta\right), \quad x \in \mathbb{R}^{4}, \beta \in \mathbb{R}^{4^{*}}
$$
with $\left(e_{i}\right)_{i=1}^{4}$ an arbitrary basis of \mathbb{R}^{4} and $\left(\alpha^{i}\right)_{i=1}^{4}$ its dual basis.

9. Liénard-Wiechert potentials and fields

Let $u: \mathbb{R} \rightarrow \mathbb{R}^{3}$ denote the (smooth) trajectory of a particle, so that

$$
\{(t, u(t)): t \in \mathbb{R}\} \subset \mathbb{R}^{4}
$$

denotes its worldline. Assume that $\left\|u^{\prime}(t)\right\|<1$ for all t and that this particle has charge q. The charge density ρ and current density $\vec{\jmath}$ associated to this moving charged particle are the distributions over \mathbb{R}^{4} given by:

$$
\rho(x)=q \delta_{0}(\vec{x}-u(t)), \quad \vec{\jmath}(x)=q u^{\prime}(t) \delta_{0}(\vec{x}-u(t))
$$

where δ_{0} denotes the Dirac delta distribution of \mathbb{R}^{3}. More precisely, for a test function $\varphi: \mathbb{R}^{4} \rightarrow \mathbb{R}$, we have:

$$
\langle\langle\rho, \varphi\rangle\rangle=q \int_{\mathbb{R}} \varphi(t, u(t)) \mathrm{d} t, \quad\langle\langle\vec{\jmath}, \varphi\rangle\rangle=q \int_{\mathbb{R}} u^{\prime}(t) \varphi(t, u(t)) \mathrm{d} t
$$

where the bracket $\langle\langle\cdot, \cdot\rangle\rangle$ denotes evaluation of a distribution at a test function. If we solve the wave equations (3.2) by taking the convolution of ρ and $\vec{\jmath}$ with the fundamental solution of the wave operator given in Section 6 , we
obtain expressions for the scalar potential ϕ and vector potential \vec{A} that we describe below.

For each $x=(t, \vec{x})$ in \mathbb{R}^{4}, there exists at most one point $\left(t^{\prime}, u\left(t^{\prime}\right)\right)$ in the worldline of the particle that belongs to the past lightcone of the point x; the corresponding value of t^{\prime} is called the retarded time for the point x and is denoted by $t_{\text {ret }}(x)$. More precisely, $\left.\left.t_{\text {ret }}(x) \in\right]-\infty, t\right]$ is defined by the equality:

$$
t-t_{\mathrm{ret}}(x)=\left\|\vec{x}-u\left(t_{\mathrm{ret}}(x)\right)\right\|
$$

The domain of $t_{\text {ret }}$ is an open subset of \mathbb{R}^{4} containing the worldline of the particle. The map $t_{\text {ret }}$ is continuous and it is smooth in the complement of the worldline. For $x=(t, \vec{x})$ in the domain of $t_{\text {ret }}$, we write:

$$
r(x)=t-t_{\mathrm{ret}}(x)=\left\|\vec{x}-u\left(t_{\mathrm{ret}}(x)\right)\right\|
$$

and if x is also outside the worldline of the particle, we set:

$$
\vec{n}(x)=\frac{\vec{x}-u\left(t_{\mathrm{ret}}(x)\right)}{\left\|\vec{x}-u\left(t_{\mathrm{ret}}(x)\right)\right\|}
$$

The scalar potential ϕ and vector potential \vec{A} are given by:

$$
\phi(x)=\frac{q}{r} \frac{1}{1-\left\langle u^{\prime}\left(t_{\mathrm{ret}}\right), \vec{n}\right\rangle}, \quad \vec{A}(x)=\phi(x) u^{\prime}\left(t_{\mathrm{ret}}\right)
$$

for all x in the domain of $t_{\text {ret }}$ and outside the worldline of the particle; we have written $t_{\text {ret }}, r$ and \vec{n} instead of $t_{\text {ret }}(x), r(x)$ and $\vec{n}(x)$ for simplicity. For x outside the domain of $t_{\text {ret }}$, the potentials ϕ and \vec{A} are equal to zero (the values of ϕ and \vec{A} over the worldline are irrelevant because it has zero Lebesgue measure and we are thinking of ϕ and \vec{A} as distributions).

Using (3.1) we now obtain formulas for the fields E and B. We assume now that the domain of $t_{\text {ret }}$ is all of \mathbb{R}^{4}. The electric field is given by:

$$
\begin{aligned}
E(x) & =\frac{q}{r} \frac{\vec{n} \wedge\left[\left(\vec{n}-u^{\prime}\left(t_{\mathrm{ret}}\right)\right) \wedge u^{\prime \prime}\left(t_{\mathrm{ret}}\right)\right]}{\left(1-\left\langle u^{\prime}\left(t_{\mathrm{ret}}\right), \vec{n}\right\rangle\right)^{3}} \\
& +\frac{q}{r^{2}} \frac{1-\left\|u^{\prime}\left(t_{\mathrm{ret}}\right)\right\|^{2}}{\left(1-\left\langle u^{\prime}\left(t_{\mathrm{ret}}\right), \vec{n}\right\rangle\right)^{3}}\left(\vec{n}-u^{\prime}\left(t_{\mathrm{ret}}\right)\right)
\end{aligned}
$$

and the magnetic field is given by:

$$
B(x)=\vec{n} \wedge E(x)
$$

for all x outside the worldline of the particle. Again, we have abbreviated $t_{\text {ret }}(x), r(x)$ and $\vec{n}(x)$ by $t_{\text {ret }}, r$ and \vec{n}, respectively.
9.1. Explicitly Lorentz invariant description. If $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{4}$ denotes a positively time-oriented parametrization by arc-length of the worldline of the particle with charge q, we give explicit formulas for the vector field A and the 2-form F over \mathbb{R}^{4} corresponding to the potentials and fields above (see Section 8 for the relation between A, F and ϕ, \vec{A}, E and B). For each
$x \in \mathbb{R}^{4}$, there exists at most one point $\gamma(s)$ in the worldline of the particle that belongs to the past lightcone of x; the corresponding value of s is called the retarded proper time and it is denoted by $s_{\text {ret }}(x)$. More precisely, $s_{\text {ret }}(x)$ is defined by the requirement that

$$
\left\langle x-\gamma\left(s_{\mathrm{ret}}(x)\right), x-\gamma\left(s_{\mathrm{ret}}(x)\right)\right\rangle=0
$$

and that $\gamma\left(s_{\text {ret }}(x)\right)$ be in the past of x (note that, since a time-orientation is fixed, there exists an absolute notion of " y being in the past of x " when the vector $x-y$ is either timelike or lightlike). The maps $s_{\text {ret }}$ and $t_{\text {ret }}$ have the same domain and both maps share the same regularity properties. Indeed, we have $s_{\text {ret }}=\sigma \circ t_{\text {ret }}$, where $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is the diffeomorphism defined by $\gamma(\sigma(t))=(t, u(t))$, for all $t \in \mathbb{R}$. However, while $t_{\text {ret }}$ and σ are defined only with respect to a fixed coordinate system in spacetime, $s_{\text {ret }}$ is absolute. The vector field A is given by:

$$
A(x)=\frac{q \gamma^{\prime}\left(s_{\mathrm{ret}}\right)}{\left\langle x-\gamma\left(s_{\mathrm{ret}}\right), \gamma^{\prime}\left(s_{\mathrm{ret}}\right)\right\rangle}
$$

for all x in the domain of $s_{\text {ret }}$ and not in the worldline of the particle, where we have abbreviated $s_{\text {ret }}(x)$ by $s_{\text {ret }}$. For x not in the domain of $s_{\text {ret }}$, we have $A(x)=0$. Assuming now that the domain of $s_{\text {ret }}$ is \mathbb{R}^{4}, we have:

$$
\begin{aligned}
& F(x)=\frac{q\left(1-\left\langle x-\gamma\left(s_{\mathrm{ret}}\right), \gamma^{\prime \prime}\left(s_{\mathrm{ret}}\right)\right\rangle\right)}{\left\langle x-\gamma\left(s_{\mathrm{ret}}\right), \gamma^{\prime}\left(s_{\mathrm{ret}}\right)\right\rangle^{3}}\left(\left\langle x-\gamma\left(s_{\mathrm{ret}}\right), \cdot\right\rangle \wedge\left\langle\gamma^{\prime}\left(s_{\mathrm{ret}}\right), \cdot\right\rangle\right) \\
&+\frac{q\left(\left\langle x-\gamma\left(s_{\mathrm{ret}}\right), \cdot\right\rangle \wedge\left\langle\gamma^{\prime \prime}\left(s_{\mathrm{ret}}\right), \cdot\right\rangle\right)}{\left\langle x-\gamma\left(s_{\mathrm{ret}}\right), \gamma^{\prime}\left(s_{\mathrm{ret}}\right)\right\rangle^{2}}
\end{aligned}
$$

for all $x \in \mathbb{R}^{4}$ not in the worldline of the particle, where again we have abbreviated $s_{\text {ret }}(x)$ by $s_{\text {ret }}$ and

$$
\left(\alpha_{1} \wedge \alpha_{2}\right)\left(\dot{x}_{1}, \dot{x}_{2}\right)=\alpha_{1}\left(\dot{x}_{1}\right) \alpha_{2}\left(\dot{x}_{2}\right)-\alpha_{2}\left(\dot{x}_{1}\right) \alpha_{1}\left(\dot{x}_{2}\right)
$$

for all $\alpha_{1}, \alpha_{2} \in \mathbb{R}^{4^{*}}$ and $\dot{x}_{1}, \dot{x}_{2} \in \mathbb{R}^{4}$.

10. Tubular neighborhood of the trajectory

Let $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{4}$ be a smooth map with $\left\langle\gamma^{\prime}(s), \gamma^{\prime}(s)\right\rangle=1$, for all $s \in \mathbb{R}$. We look at the normal bundle

$$
\gamma^{\perp}=\left\{\left(s_{0}, z\right): s_{0} \in \mathbb{R}, z \in \gamma^{\prime}\left(s_{0}\right)^{\perp}\right\} \subset \mathbb{R} \times \mathbb{R}^{4}
$$

of the immersion γ and we define a map $\exp : \gamma^{\perp} \rightarrow \mathbb{R}^{4}$ by setting:

$$
\exp \left(s_{0}, z\right)=\gamma\left(s_{0}\right)+z, \quad\left(s_{0}, z\right) \in \gamma^{\perp}
$$

The map exp is a smooth diffeomorphism from an open neighborhood U_{0} of the zero section of γ^{\perp} onto an open neighborhood U of the image of γ in \mathbb{R}^{4}. If A is a measurable subset of U and $f: A \rightarrow \mathbb{R}$ is an integrable function (or
a measurable function whose either the positive part or the negative part is integrable), then

$$
\begin{equation*}
\int_{A} f(x) \mathrm{d} x=\int_{\mathbb{R}}\left(\int_{A_{s_{0}}} f\left(\exp \left(s_{0}, z\right)\right)\left(1-\left\langle z, \gamma^{\prime \prime}\left(s_{0}\right)\right\rangle\right) \mathrm{d} z\right) \mathrm{d} s_{0} \tag{10.1}
\end{equation*}
$$

where $A_{s_{0}} \subset \gamma^{\prime}\left(s_{0}\right)^{\perp}$ is defined by:

$$
A_{s_{0}}=\left\{z \in \gamma^{\prime}\left(s_{0}\right)^{\perp} \cap U_{0}: \gamma\left(s_{0}\right)+z \in A\right\} .
$$

In equality (10.1), the $\mathrm{d} x$ integral is taken with respect to the measure in \mathbb{R}^{4} canonically associated to the Minkowski inner product (which is just the standard Lebesgue measure of \mathbb{R}^{4}), the $\mathrm{d} z$ integral is taken with respect to the measure in $\gamma^{\prime}\left(s_{0}\right)^{\perp}$ canonically associated to the restriction to $\gamma^{\prime}\left(s_{0}\right)^{\perp}$ of the Minkowski inner product and the $\mathrm{d} s_{0}$ integral is taken with respect to the Lebesgue measure in \mathbb{R}. Note that, for any $s_{0} \in \mathbb{R}$, the restriction of the Minkowski inner product $\langle\cdot, \cdot\rangle$ to $\gamma^{\prime}\left(s_{0}\right)^{\perp}$ is negative definite; we set:

$$
\|z\|=\sqrt{-\langle z, z\rangle},
$$

for all $z \in \gamma^{\prime}\left(s_{0}\right)^{\perp}$.
If $I \subset \mathbb{R}$ is an open interval then, for any $r>0$, the tube:

$$
\operatorname{tube}(I, r)=\left\{\left(s_{0}, z\right) \in \gamma^{\perp}: s_{0} \in I,\|z\| \leq r\right\}
$$

is a smooth submanifold with boundary of the normal bundle γ^{\perp} and its boundary ${ }^{3}$ is given by:

$$
\partial \operatorname{tube}(I, r)=\left\{\left(s_{0}, z\right) \in \gamma^{\perp}: s_{0} \in I,\|z\|=r\right\} .
$$

If tube (I, r) is contained in U_{0}, then $\exp [$ tube $(I, r)]$ is a smooth submanifold with boundary of \mathbb{R}^{4} and its boundary is $\exp [\partial$ tube $(I, r)]$. Assuming that tube (I, r) is contained in U_{0} then, for all $\left(s_{0}, z\right) \in \partial$ tube (I, r), we have that $\frac{1}{r} z$ is the unit normal vector to $\exp [\partial$ tube $(I, r)]$ at the point $\exp \left(s_{0}, z\right)$ pointing to the outside of $\exp [\operatorname{tube}(I, r)]$. Thus, if $X: A \rightarrow \mathbb{R}^{4}$ is a vector field defined on a measurable subset A of $\exp [\partial \operatorname{tube}(I, r)]$, then its flow (with respect to the transverse orientation of $\exp [\partial$ tube $(I, r)]$ pointing to the outside of $\exp [\operatorname{tube}(I, r)])$ is given by:

$$
\int_{A}-\frac{1}{r}\langle X(x), z(x)\rangle \mathrm{d} x,
$$

where $z(x)$ is defined by $\left(s_{0}(x), z(x)\right)=\left(\exp \mid{ }_{U_{0}}\right)^{-1}(x)$ and the $\mathrm{d} x$ integral is taken with respect to the measure on the manifold $\exp [\partial$ tube $(I, r)]$ corresponding to the Lorentzian metric given by the restriction of the Minkowski inner product of \mathbb{R}^{4}. The minus sign inside the integral comes from the fact that $\left\langle\frac{z(x)}{r}, \frac{z(x)}{r}\right\rangle=-1$. We note that if $f: A \rightarrow \mathbb{R}$ is an integrable function (or a measurable function whose either the positive part or the negative part is integrable), then formula (10.1) still holds if the $\mathrm{d} z$ integral is taken with

[^2]respect to the measure on the sphere $\left\{z \in \gamma^{\prime}\left(s_{0}\right)^{\perp}:\|z\|=r\right\}$ corresponding to the Riemannian metric given by the restriction of (minus) the Minkowski inner product of \mathbb{R}^{4}. Finally, note that, if I is bounded, then tube (I, r) is contained in U_{0}, for $r>0$ sufficiently small.

11. Asymptotic expansions of LiÉnard-Wiechert fields

We consider the context of Subsection 9.1 and we give an asymptotic expansion for the electromagnetic field F and its corresponding energymomentum tensor T in a tubular neighborhood of the worldline γ. For $x \in U$ (see Section 10), we set:

$$
\left(s_{0}(x), z(x)\right)=\left(\left.\exp \right|_{U_{0}}\right)^{-1}(x)
$$

and we abbreviate $s_{0}(x)$ by s_{0} and $z(x)$ by z. Given $p \in \mathbb{R}$, we denote by $O\left(\|z\|^{p}\right)$ a (possibly vector-valued) function defined in a neighborhood of $\operatorname{Im}(\gamma)$, possibly minus $\operatorname{Im}(\gamma)$ itself, whose norm is bounded by a constant times $\|z\|^{p}$ in some neighborhood of any compact subset of $\operatorname{Im}(\gamma)$ (the constant might depend on the compact subset, of course). Recall that $\|z\|$ is defined as $\sqrt{-\langle z, z\rangle}$. We write the electromagnetic field F as:

$$
F=F^{[-2]}+F^{[-1]}+F^{[0]}
$$

with $F^{[p]}$ of order $O\left(\|z\|^{p}\right)$, $p=-2,-1,0$. Using (A.2) and Taylor expansions one obtains the following explicit formulas for $F^{[p]}$:

$$
\begin{gathered}
F^{[-2]}(x)=q\left(1-\left\langle z, \gamma^{\prime \prime}\left(s_{0}\right)\right\rangle\right)^{-\frac{1}{2}}\|z\|^{-3}\left(\langle z, \cdot\rangle \wedge\left\langle\gamma^{\prime}\left(s_{0}\right), \cdot\right\rangle\right), \\
F^{[-1]}(x)=\frac{q}{2}\left(1-\left\langle z, \gamma^{\prime \prime}\left(s_{0}\right)\right\rangle\right)^{-\frac{3}{2}}\|z\|^{-1}\left(\left\langle\gamma^{\prime}\left(s_{0}\right), \cdot\right\rangle \wedge\left\langle\gamma^{\prime \prime}\left(s_{0}\right), \cdot\right\rangle\right), \\
F^{[0]}(x)=-\frac{q}{2}\|z\|^{-1}\left(\langle z, \cdot\rangle \wedge\left\langle\gamma^{\prime \prime \prime}\left(s_{0}\right), \cdot\right\rangle\right)-\frac{2}{3} q\left(\left\langle\gamma^{\prime}\left(s_{0}\right), \cdot\right\rangle \wedge\left\langle\gamma^{\prime \prime \prime}\left(s_{0}\right), \cdot\right\rangle\right) \\
-\frac{q}{8}\left\langle\gamma^{\prime \prime}\left(s_{0}\right), \gamma^{\prime \prime}\left(s_{0}\right)\right\rangle\|z\|^{-1}\left(\langle z, \cdot\rangle \wedge\left\langle\gamma^{\prime}\left(s_{0}\right), \cdot\right\rangle\right)+O(\|z\|)
\end{gathered}
$$

In order to write the asymptotic expansion of the energy-momentum tensor, it is convenient to define the symmetric product

$$
\dot{x} \vee \dot{y}=\dot{x} \otimes \dot{y}+\dot{y} \otimes \dot{x}
$$

of two vectors $\dot{x}, \dot{y} \in \mathbb{R}^{4}$. We can now write the energy-momentum tensor T as:

$$
T=T^{[-4]}+T^{[-3]}+T^{[-2]}
$$

with $T^{[p]}$ of order $O\left(\|z\|^{p}\right), p=-4,-3,-2$. The explicit formulas are the following:

$$
\begin{aligned}
T^{[-4]}(x) & =\frac{q^{2}}{4 \pi}\left(1-\left\langle z, \gamma^{\prime \prime}\left(s_{0}\right)\right\rangle\right)^{-1}\left(\|z\|^{-4}\left(\gamma^{\prime}\left(s_{0}\right) \otimes \gamma^{\prime}\left(s_{0}\right)\right)-\|z\|^{-6}(z \otimes z)\right. \\
& \left.-\frac{1}{2}\|z\|^{-4}\langle\cdot, \cdot\rangle\right)
\end{aligned}
$$

$$
\begin{aligned}
T^{[-3]}(x) & =\frac{q^{2}}{4 \pi}\left(1-\left\langle z, \gamma^{\prime \prime}\left(s_{0}\right)\right\rangle\right)^{-1}\|z\|^{-4}\left(\left\langle z, \gamma^{\prime \prime}\left(s_{0}\right)\right\rangle\left(\gamma^{\prime}\left(s_{0}\right) \otimes \gamma^{\prime}\left(s_{0}\right)\right)\right. \\
& \left.+\frac{1}{2}\left(z \vee \gamma^{\prime \prime}\left(s_{0}\right)\right)-\frac{1}{2}\left\langle z, \gamma^{\prime \prime}\left(s_{0}\right)\right\rangle\langle\cdot, \cdot\rangle\right), \\
T^{[-2]}(x)= & \frac{q^{2}}{4 \pi}\left[\langle z , \gamma ^ { \prime \prime } (s _ { 0 }) \rangle \| z \| ^ { - 4 } \left(\left\langle z, \gamma^{\prime \prime}\left(s_{0}\right)\right\rangle\left(\gamma^{\prime}\left(s_{0}\right) \otimes \gamma^{\prime}\left(s_{0}\right)\right)\right.\right. \\
+ & \left.\frac{1}{2}\left(z \vee \gamma^{\prime \prime}\left(s_{0}\right)\right)-\frac{1}{2}\left\langle z, \gamma^{\prime \prime}\left(s_{0}\right)\right\rangle\langle\cdot, \cdot\rangle\right)+\frac{2}{3}\|z\|^{-3}\left\langle z, \gamma^{\prime \prime \prime}\left(s_{0}\right)\right\rangle\langle\cdot, \cdot\rangle \\
- & \frac{1}{4}\|z\|^{-2}\left\langle\gamma^{\prime \prime}\left(s_{0}\right), \gamma^{\prime \prime}\left(s_{0}\right)\right\rangle\langle\cdot, \cdot\rangle-\frac{3}{4}\left\langle\gamma^{\prime \prime}\left(s_{0}\right), \gamma^{\prime \prime}\left(s_{0}\right)\right\rangle\|z\|^{-4}(z \otimes z) \\
- & \left(\frac{1}{2}\|z\|^{-4}\left\langle z, \gamma^{\prime \prime \prime}\left(s_{0}\right)\right\rangle+\frac{2}{3}\|z\|^{-3}\left\langle\gamma^{\prime \prime}\left(s_{0}\right), \gamma^{\prime \prime}\left(s_{0}\right)\right\rangle\right)\left(z \vee \gamma^{\prime}\left(s_{0}\right)\right) \\
- & \frac{2}{3}\|z\|^{-3}\left(z \vee \gamma^{\prime \prime \prime}\left(s_{0}\right)\right)-\left(\frac{4}{3}\|z\|^{-3}\left\langle z, \gamma^{\prime \prime \prime}\left(s_{0}\right)\right\rangle\right. \\
+ & \left.\frac{1}{2}\|z\|^{-2}\left\langle\gamma^{\prime \prime}\left(s_{0}\right), \gamma^{\prime \prime}\left(s_{0}\right)\right\rangle\right)\left(\gamma^{\prime}\left(s_{0}\right) \otimes \gamma^{\prime}\left(s_{0}\right)\right) \\
- & \left.\frac{1}{2}\|z\|^{-2}\left(\gamma^{\prime}\left(s_{0}\right) \vee \gamma^{\prime \prime \prime}\left(s_{0}\right)\right)-\frac{1}{4}\|z\|^{-2}\left(\gamma^{\prime \prime}\left(s_{0}\right) \otimes \gamma^{\prime \prime}\left(s_{0}\right)\right)\right] \\
+ & O\left(\|z\|^{-1}\right)
\end{aligned}
$$

11.1. Turning the energy-momentum tensor into a distribution. The energy-momentum tensor T of the Liénard-Wiechert field is not a locally integrable function in \mathbb{R}^{4} and thus it does not in principle define a (Schwartz) distribution over \mathbb{R}^{4}. More precisely, given a test function $\varphi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4^{*}} \otimes \mathbb{R}^{4^{*}}$ (smooth, with compact support), the integral

$$
\int_{\mathbb{R}^{4}}\langle T(x), \varphi(x)\rangle \mathrm{d} x
$$

is not always well-defined. The bracket $\langle\cdot, \cdot\rangle$ inside the integral is given by

$$
\langle\dot{x} \otimes \dot{y}, \alpha \otimes \beta\rangle=\alpha(\dot{x}) \beta(\dot{y}), \quad \dot{x}, \dot{y} \in \mathbb{R}^{4}, \alpha, \beta \in \mathbb{R}^{4^{*}}
$$

and the $\mathrm{d} x$ integral is taken with respect to the measure in \mathbb{R}^{4} canonically associated to the Minkowski inner product (which is just the standard Lebesgue measure of \mathbb{R}^{4}). We turn T into a distribution, also denoted by T, by taking its value $\langle\langle T, \varphi\rangle\rangle$ at a test function $\varphi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4^{*}} \otimes \mathbb{R}^{4^{*}}$ to be the limit:

$$
\begin{align*}
& \langle\langle T, \varphi\rangle\rangle=\lim _{r \rightarrow 0^{+}}\left(\int_{\exp [\operatorname{tube}(I, r)]^{\mathrm{c}}}\langle T(x), \varphi(x)\rangle \mathrm{d} x\right. \tag{11.1}\\
& \left.-\frac{q^{2}}{r} \int_{\mathbb{R}}\left[\frac{1}{2} \varphi\left(\gamma\left(s_{0}\right)\right)\left(\gamma^{\prime}\left(s_{0}\right), \gamma^{\prime}\left(s_{0}\right)\right)+\frac{1}{6} \operatorname{tr}\left(\left.\varphi\left(\gamma\left(s_{0}\right)\right)\right|_{\gamma^{\prime}\left(s_{0}\right)^{\perp}}\right)\right] \mathrm{d} s_{0}\right)
\end{align*}
$$

where $I \subset \mathbb{R}$ denotes a bounded open interval containing the inverse image by γ of the support of $\varphi, \exp [\operatorname{tube}(I, r)]^{\text {c }}$ denotes the complement in \mathbb{R}^{4} of $\exp [\operatorname{tube}(I, r)]$ (see Section 10), elements of $\mathbb{R}^{4^{*}} \otimes \mathbb{R}^{4^{*}}$ are identified with bilinear forms over \mathbb{R}^{4} as in (5.1) and, for $\mathcal{B} \in \mathbb{R}^{4^{*}} \otimes \mathbb{R}^{4^{*}}$, the restricted trace $\operatorname{tr}\left(\left.\mathcal{B}\right|_{\gamma^{\prime}\left(s_{0}\right)^{\perp}}\right)$ is defined by:

$$
\operatorname{tr}\left(\left.\mathcal{B}\right|_{\gamma^{\prime}\left(s_{0}\right)^{\perp}}\right)=\text { trace of } L
$$

with $L: \gamma^{\prime}\left(s_{0}\right)^{\perp} \rightarrow \gamma^{\prime}\left(s_{0}\right)^{\perp}$ the linear operator such that

$$
-\langle L(\dot{x}), \dot{y}\rangle=\mathcal{B}(\dot{x}, \dot{y}), \quad \dot{x}, \dot{y} \in \gamma^{\prime}\left(s_{0}\right)^{\perp}
$$

and $\langle\cdot, \cdot\rangle$ the Minkowski inner product (note that the restriction of $-\langle\cdot, \cdot\rangle$ to $\gamma^{\prime}\left(s_{0}\right)^{\perp}$ is positive definite). We observe that the map γ is proper, so that the inverse image of the support of φ by γ is compact. Moreover, if I^{\prime} is a bounded open interval containing I, then $\exp \left[\operatorname{tube}\left(I^{\prime}, r\right)\right] \backslash \exp [\operatorname{tube}(I, r)]$ is disjoint from the support of φ for $r>0$ sufficiently small, so that the limit in (11.1) is independent of the choice of I. Using the asymptotic expansion of T and the material from Section 10 one shows that this limit always exists and yields a distribution.

The divergence $\operatorname{div} T$ of T, as a distribution, is an \mathbb{R}^{4}-valued distribution which has to be paired with an $\mathbb{R}^{4^{*}}$-valued test function $\varphi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4^{*}}$. We have:

$$
\langle\langle\operatorname{div} T, \varphi\rangle\rangle=-\langle\langle T, \mathrm{~d} \varphi\rangle\rangle
$$

for any test function $\varphi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4^{*}}$, where the standard (not exterior) differential $\mathrm{d} \varphi$ is the function $\mathrm{d} \varphi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4^{*}} \otimes \mathbb{R}^{4^{*}}$ given by:

$$
\mathrm{d} \varphi(x)(\dot{x}, \dot{y})=\frac{\partial \varphi}{\partial \dot{x}}(x)(\dot{y}), \quad x \in \mathbb{R}^{4}, \dot{x}, \dot{y} \in \mathbb{R}^{4}
$$

with $\frac{\partial \varphi}{\partial \dot{x}}(x) \in \mathbb{R}^{4^{*}}$ the directional derivative of φ at the point x, in the direction of \dot{x}. Using the divergence theorem and the asymptotic expansion for T, one obtains the explicit formula:

$$
\begin{aligned}
&\langle\langle\operatorname{div} T, \varphi\rangle\rangle=-\frac{2}{3} q^{2} \int_{\mathbb{R}}\left[\left\langle\gamma^{\prime \prime}\left(s_{0}\right), \gamma^{\prime \prime}\left(s_{0}\right)\right\rangle \varphi\left(\gamma\left(s_{0}\right)\right)\left(\gamma^{\prime}\left(s_{0}\right)\right)\right. \\
&\left.+\varphi\left(\gamma\left(s_{0}\right)\right)\left(\gamma^{\prime \prime \prime}\left(s_{0}\right)\right)\right] \mathrm{d} s_{0}
\end{aligned}
$$

for any test function $\varphi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4^{*}}$.

Appendix A. More on Retarded time

Let $f: I \rightarrow \mathbb{R}$ be a smooth map defined in a open interval I containing the origin and assume that $f(0)=f^{\prime}(0)=0$ and $f^{\prime \prime}(0)>0$. We have that $\left.f\right|_{] 0, \varepsilon[}$ has positive derivative for some small $\varepsilon>0$, so that we can define:

$$
g=\left(\left.f\right|_{[0, \varepsilon[}\right)^{-1}
$$

The map g is continuous on $f([0, \varepsilon[)$ and smooth on $f(] 0, \varepsilon[)$, but it is not differentiable at zero. Nevertheless, we can write $g(y)=h(\sqrt{y})$, for a smooth
map h. Namely, we have $f(x)=x^{2} u(x)$, for a smooth map $u: I \rightarrow \mathbb{R}$ with $u(0)>0$ and thus, on some neighborhood of zero in $[0,+\infty[$, the square root of f coincides with the smooth map

$$
x \longmapsto x \sqrt{u(x)}
$$

Since the derivative of such map at $x=0$ is nonzero, it admits a smooth inverse h on a neighborhood of zero. Clearly, we have $g(y)=h(\sqrt{y})$ for $y \geq 0$ close to zero. By calculating explicitly the Taylor polynomial of h up to order 3 in terms of the derivatives of f, one obtains:

$$
\begin{align*}
& g(y)=\sqrt{\frac{2}{f^{\prime \prime}(0)}} \sqrt{y}-\frac{1}{3} \frac{f^{\prime \prime \prime}(0)}{f^{\prime \prime}(0)^{2}} y \tag{A.1}\\
&+\left(\frac{2}{f^{\prime \prime}(0)}\right)^{\frac{3}{2}}\left(\frac{5}{72} \frac{f^{\prime \prime \prime}(0)^{2}}{f^{\prime \prime}(0)^{2}}-\frac{1}{24} \frac{f^{(4)}(0)}{f^{\prime \prime}(0)}\right) y^{\frac{3}{2}}+O\left(y^{2}\right)
\end{align*}
$$

where $f^{(4)}$ denotes the fourth derivative of f and $O\left(y^{2}\right)$ denotes a map that is bounded by a constant times y^{2} in a neighborhood of zero.

Consider now the context of Subsection 9.1. For x in the neighborhood U of the worldline γ (see Section 10), we will obtain an asymptotic expansion of the retarded proper time $s_{\text {ret }}(x)$ (abbreviated as $s_{\text {ret }}$) in terms of

$$
\left(s_{0}(x), z(x)\right)=\left(\exp \mid U_{0}\right)^{-1}(x)
$$

As in Section 11, we abbreviate $s_{0}(x)$ by s_{0} and $z(x)$ by z. We have:

$$
\begin{aligned}
\left\langle x-\gamma\left(s_{\mathrm{ret}}(x)\right), x-\right. & \left.\gamma\left(s_{\mathrm{ret}}(x)\right)\right\rangle \\
& =\left\langle z-\left(\gamma\left(s_{\mathrm{ret}}\right)-\gamma\left(s_{0}\right)\right), z-\left(\gamma\left(s_{\mathrm{ret}}\right)-\gamma\left(s_{0}\right)\right)\right\rangle=0
\end{aligned}
$$

and $s_{\text {ret }} \leq s_{0}$. Thus, for fixed s_{0}, if we set:

$$
f_{z}(a)=\left\langle\gamma\left(s_{0}-a\right)-\gamma\left(s_{0}\right), \gamma\left(s_{0}-a\right)-\gamma\left(s_{0}\right)\right\rangle-2\left\langle z, \gamma\left(s_{0}-a\right)-\gamma\left(s_{0}\right)\right\rangle
$$

then:

$$
f_{z}\left(s_{0}-s_{\mathrm{ret}}\right)=-\langle z, z\rangle=\|z\|^{2}
$$

Moreover $f_{z}(0)=f_{z}^{\prime}(0)$ and

$$
f_{z}^{\prime \prime}(0)=2\left(1-\left\langle z, \gamma^{\prime \prime}\left(s_{0}\right)\right\rangle\right)>0
$$

for small z. If we define g_{z} from f_{z} as g was defined from f in the first part of the appendix, we obtain:

$$
s_{\mathrm{ret}}=s_{0}-g_{z}\left(\|z\|^{2}\right)
$$

Using (A.1) we now get the following asymptotic expansion for $s_{\text {ret }}$:

$$
\begin{align*}
& s_{\mathrm{ret}}=s_{0}+\left(1-\left\langle z, \gamma^{\prime \prime}\left(s_{0}\right)\right\rangle\right)^{-\frac{1}{2}}\left(-\|z\|+\frac{1}{6}\left\langle z, \gamma^{\prime \prime \prime}\left(s_{0}\right)\right\rangle\|z\|^{2}\right. \tag{A.2}\\
&\left.-\frac{1}{24}\left\langle\gamma^{\prime \prime}\left(s_{0}\right), \gamma^{\prime \prime}\left(s_{0}\right)\right\rangle\|z\|^{3}\right)+O\left(\|z\|^{4}\right)
\end{align*}
$$

Departamento de Matemática,
Universidade de São Paulo, Brazil
E-mail address: tausk@ime.usp.br
URL: http://www.ime.usp.br/~ tausk

[^0]: ${ }^{1}$ Orientation is not needed, but without an orientation one has to use the volume density of M in (5.2) rather than the volume form. Though the Hodge star \star depends on a choice of orientation, the codifferential δ does not, since it has two Hodge stars.

[^1]: ${ }^{2}$ The flow of j over a 3 -surface is the integral of the 3 -form $\operatorname{vol}(j, \cdot, \cdot, \cdot)$ over that surface, where vol denotes the volume form of spacetime (canonically associated to the Minkowski inner product). If the 3-surface is not lightlike, this is equal to the integral over the 3 -surface (with respect to the measure defined by the metric given by the restriction of the Minkowski inner product) of the Minkowski inner product of j with the unit normal vector.

[^2]: ${ }^{3}$ Of course, the boundary of tube (I, r) as a subset of the topological space γ^{\perp} is the union of ∂ tube (I, r) with $\left\{\left(s_{0}, z\right) \in \gamma^{\perp}: s_{0}\right.$ an endpoint of $\left.I,\|z\| \leq r\right\}$.

