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1. Introduction

The goal of these notes is to present the basic theory of what probabilists
and statisticians call “weak convergence of probability measures” to an au-
dience of readers that has a basic training in Measure Theory, Functional
Analysis and General Topology. For the readers convenience, we include
six appendices with short summaries of some of the relevant mathematical
prerequisites.

Date: January 17th, 2024.
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To avoid confusion with the notion of weak convergence on Banach spaces
that is used in the context of Functional Analysis we will not use the ter-
minology preferred by probabilists and statisticians and we will use “weak*
convergence” instead. Unlike expositions that are more oriented at probabil-
ity theory, we will state results for arbitrary finite measures and even signed
measures whenever possible. Moreover, results will be stated for arbitrary
topological spaces (satisfying the necessary assumptions) rather than just
metric spaces and we will consider the convergence of arbitrary nets rather
than just sequences.

2. Notation and measure-theoretic preliminaires

Let (X,A) be a measurable space, i.e., X is a set and A is a σ-algebra
of subsets of X. Elements of A are called measurable subsets of X. A map
ϕ between measurable spaces is called measurable if the inverse image of
measurable subsets under ϕ is measurable. By a measure µ on (X,A) we
will always mean a (possibly signed) countably additive measure defined on
A satisfying the condition µ(∅) = 0; the latter condition holds automatically
unless µ is infinite on every element of A. The positive part, negative part
and total variation of a signed measure µ on (X,A) are respectively the
nonnegative measures µ+, µ− and |µ| on (X,A) defined by

µ+(A) = sup

{
n∑

i=1

[µ(Ai)]
+ : A1, . . . , An ∈ A disjoint subsets of A, n ≥ 1

}
,

µ−(A) = sup

{
n∑

i=1

[µ(Ai)]
− : A1, . . . , An ∈ A disjoint subsets of A, n ≥ 1

}
,

|µ|(A) = sup

{
n∑

i=1

|µ(Ai)| : A1, . . . , An ∈ A disjoint subsets of A, n ≥ 1

}
,

for all A ∈ A, where as usual for t ∈ [−∞,+∞] we denote by t+ the
maximum between t and 0 and by t− the maximum between −t and 0. The
measure µ, its total variation and positive and negative parts are related by
the identities:

µ = µ+ − µ−, |µ| = µ+ + µ−.

A signed measure µ on (X,A) always admits a Hahn decomposition which
is a pair (P,N) of disjoint measurable subsets of X whose union is X and
such that µ is nonnegative on measurable subsets of P and nonpositive on
measurable subsets of N . The measures µ+, µ− and |µ| are then given by

µ+(A) = µ(A∩P ), µ−(A) = −µ(A∩N), |µ|(A) = µ(A∩P )−µ(A∩N),

for all A ∈ A.
Except for Appendices B and C, we will only be interested in finite mea-

sures. We denote by ca(X,A) the space of finite signed measures on (X,A),
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by ca+(X,A) the subset of ca(X,A) consisting of finite nonnegative mea-
sures and by ca1+(X,A) the set of probability measures on (X,A):

ca1+(X,A) =
{
µ ∈ ca+(X,A) : µ(X) = 1

}
.

We will often use without further comment that, for a finite measure, a
collection of pairwise disjoint measurable sets having positive measure must
be countable. This follows from the fact that a collection of pairwise disjoint
measurable sets with measure greater than some positive constant must be
finite.

The space ca(X,A) will always be endowed with the total variation norm

∥µ∥ = |µ|(X).

Such norm makes ca(X,A) into a Banach space and its subsets ca+(X,A)
and ca1+(X,A) are both convex and closed with respect to the norm topology.

We will use the bilinear pairing notation ⟨µ, f⟩ for the integral of a
[−∞,+∞]-valued measurable function f with respect to a measure µ, i.e.,
we set

⟨µ, f⟩ =
∫
X
f dµ

provided that the integral exists. If Mb(X,A) denotes the space of bounded
real-valued measurable functions on X then ⟨·, ·⟩ defines a bilinear form

(2.1) ca(X,A)×Mb(X,A) ∋ (µ, f) 7−→ ⟨µ, f⟩ ∈ R

such that

(2.2) |⟨µ, f⟩| ≤ ∥µ∥ ∥f∥sup,

for all µ ∈ ca(X,A), f ∈ Mb(X,A), where

∥f∥sup = sup
x∈X

|f(x)|

denotes the supremum norm of f . The space Mb(X,A) will always be
endowed with the supremum norm and such norm makes it into a Banach
space. It follows easily from the definition of the total variation norm that
the bilinear form ⟨·, ·⟩ defines a linear isometric embedding

ca(X,A) ∋ µ 7−→ ⟨µ, ·⟩ ∈ Mb(X,A)∗

of the Banach space ca(X,A) into the topological dual of Mb(X,A). The
topological dual of a normed space will always be assumed to be endowed
with the usual norm (E.3) given by the supremum of the absolute value
over the unit ball. For µ ∈ ca(X,A) we will often also denote by ⟨µ, ·⟩ the
restriction of the linear functional Mb(X,A) ∋ f 7→ ⟨µ, f⟩ ∈ R to some
subspace of Mb(X,A) and the domain of ⟨µ, ·⟩ will be made clear by the
context.

The bilinear form (2.1) also defines a linear isometric embedding

(2.3) Mb(X,A) ∋ f 7−→ ⟨·, f⟩ ∈ ca(X,A)∗
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of the Banach space Mb(X,A) into the topological dual of ca(X,A). To see
this, note that for every x ∈ X the Dirac delta δx ∈ ca1+(X,A) defined by

(2.4) δx(A) = χA(x) =

{
1, x ∈ A,

0, x ∈ X \A

for all A ∈ A, has unit norm and satisfies ⟨δx, f⟩ = f(x), for all f in
Mb(X,A). The function χA : X → R defined in (2.4) will be called the
characteristic function of the subset A of X (instead of “indicator function”
which is the more usual terminology in the Probability Theory community).

Definition 2.1. A linear functional α defined on some vector subspace of
the space of all real-valued functions on a set X is called positive if α(f) ≥ 0
for every nonnegative function f that belongs to the domain of α.

Clearly a measure µ ∈ ca(X,A) is nonnegative if and only if the linear
functional ⟨µ, ·⟩ ∈ Mb(X,A)∗ is positive, since ⟨µ, χA⟩ = µ(A) for every
A ∈ A.

If µ is a measure on (X,A) and f is a [−∞,+∞]-valued measurable
function such that ⟨µ, f⟩ exists, we define a measure fµ on (X,A) by setting

(fµ)(A) =

∫
A
f dµ = ⟨µ, fχA⟩,

for all A ∈ A. The map

(2.5) Mb(X,A)× ca(X,A) ∋ (f, µ) 7−→ fµ ∈ ca(X,A)

is bilinear and the identities

⟨fµ, g⟩ = ⟨µ, fg⟩,(2.6)

(gf)µ = g(fµ)(2.7)

hold for all µ ∈ ca(X,A) and all f, g ∈ Mb(X,A), so that (2.5) turns
ca(X,A) into a module over the real algebra Mb(X,A). Moreover, the total
variation |fµ| is equal to |f ||µ|, where |f | denotes the (pointwise) absolute
value of f . Thus:

∥fµ∥ = ⟨|µ|, |f |⟩ ≤ ∥µ∥ ∥f∥sup.
If ϕ : X → X ′ is a measurable map between measurable spaces (X,A),

(X ′,A′) and µ is a measure on (X,A), we denote by ϕ∗µ the push-forward
of µ by ϕ which is the measure on (X ′,A′) defined by

(ϕ∗µ)(A) = µ
(
ϕ−1[A]

)
,

for all A ∈ A′. The total variation of ϕ∗µ is bounded by the total variation
of µ, i.e.

(2.8) |ϕ∗µ|(A) ≤ (ϕ∗|µ|)(A),

for every A ∈ A′. It follows that ϕ∗ defines a bounded linear map

ϕ∗ : ca(X,A) ∋ µ 7−→ ϕ∗µ ∈ ca(X ′,A′)
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whose operator norm ∥ϕ∗∥ is less than or equal to 1. Moreover, the identity

(2.9) ⟨ϕ∗µ, f⟩ = ⟨µ, f ◦ ϕ⟩

holds for all µ ∈ ca(X,A) and f ∈ Mb(X
′,A′).

3. Main definition and topological preliminaires

If (X, τ) is a topological space, we denote by B(X) its Borel σ-algebra,
i.e., the σ-algebra generated by the topology τ . The topology will be
usually fixed by the context, so we just write X instead of (X, τ). We
use ca(X), ca+(X), ca1+(X) and Mb(X) as abbreviations of ca

(
X,B(X)

)
,

ca+
(
X,B(X)

)
, ca1+

(
X,B(X)

)
and Mb

(
X,B(X)

)
, respectively, and we de-

note by Cb(X) the closed subspace of the Banach space Mb(X) consisting
of bounded continuous functions. The bilinear pairing (2.1) between ca(X)
and Mb(X) restricts to a bilinear pairing between ca(X) and Cb(X) and it
induces a bounded linear map

(3.1) ca(X) ∋ µ 7−→ ⟨µ, ·⟩ ∈ Cb(X)∗

taking values in the topological dual Cb(X)∗ of the Banach space Cb(X).

Definition 3.1. Let X be a topological space and let the topological dual
Cb(X)∗ of the Banach space Cb(X) be endowed with its weak* topology.
By the weak* topology on ca(X) we mean the topology induced by the linear
map (3.1), i.e., the smallest topology that makes (3.1) continuous.

The weak* topology on ca(X) is simply the topology induced by the lin-
ear functionals ⟨·, f⟩ ∈ ca(X)∗ with f varying over Cb(X), i.e., it is the
smallest topology that makes all such linear functionals continuous. In the
terminology of Appendix E, the weak* topology of ca(X) is the weak topol-
ogy induced by the bilinear pairing ⟨·, ·⟩ of ca(X) and Cb(X) given by the
restriction of (2.1). Such topology is characterized by the fact that a net
(µi)i∈I in ca(X) weak*-converges to a measure µ ∈ ca(X) if and only if
limi∈I⟨µi, f⟩ = ⟨µ, f⟩ for all f ∈ Cb(X).

At this level of generality, the weak* topology on ca(X) can be quite
trivial as, for instance, all real-valued continuous functions on X could be
constant. The weak* topology always makes ca(X) into a topological vector
space, but it is Hausdorff if and only if the linear map (3.1) is injective (see
Remark E.2). For such map to be injective the space X needs to have lots
of continuous real-valued functions. So, for instance, it is usually useful to
assume that X be normal, i.e., that disjoint closed sets can be separated
by open sets. Under this assumption, Urysohn’s Lemma can be used to
construct many real-valued continuous functions. Sometimes it is also useful
to assume that X be perfectly normal, i.e., that X is normal and every open
subset of X is an Fσ. Recall that an Fσ subset of a topological space is a
subset which is a countable union of closed sets and a Gδ subset is a subset
that is a countable intersection of open sets.
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The condition that every open set is an Fσ (equivalently, that every closed
set is a Gδ) is useful to establish regularity conditions for the measures (see
Corollary 3.5 below). Probability Theory textbooks tend to focus on the
case when X is metrizable or even Polish. Recall that a topological space is
called Polish if it is completely metrizable (i.e., its topology is induced by a
complete metric) and separable. Every metrizable space is perfectly normal.

Although we are not going to put much extra effort to find the absolute
most general topological spaces in which the results that we prove are valid,
we also think it is silly to put unnecessary assumptions on our statements
that are not at all used in the proofs.

Definition 3.2. Let X be a topological space. If µ ∈ ca+(X) and A is a
Borel subset of X, we say that A is µ-regular (or regular with respect to µ)
if it can be µ-approximated internally by closed sets and externally by open
sets, i.e., if for every ε > 0 there exists F closed in X and U open in X with
F ⊂ A ⊂ U , µ(A \ F ) < ε and µ(U \A) < ε. We will say that µ ∈ ca(X) is
regular if every Borel subset of X is regular with respect to |µ|.

Note that by taking complements one obtains that the condition that
every Borel subset of X can be µ-approximated internally by closed sets is
equivalent to the condition that every Borel subset of X can be µ-approx-
imated externally by open sets, so that only one of these conditions needs
to be checked to prove that a measure µ ∈ ca+(X) is regular. Moreover,
since µ is nonnegative and finite, the condition that a Borel subset A of X
is µ-regular is equivalent to the conjunction of the following two equalities:

µ(A) = inf
{
µ(U) : U ⊂ X open, A ⊂ U

}
,(3.2)

µ(A) = sup
{
µ(F ) : F ⊂ X closed, F ⊂ A

}
.(3.3)

Remark 3.3. The definition of a regular measure lacks complete standard-
ization, exhibiting variations in the literature. For example, some authors
will replace “F ⊂ X closed” in (3.3) with “F ⊂ X compact”. If X is
locally compact and Hausdorff then sometimes it is convenient to call “reg-
ular” what we call “Radon” in Appendix C. If X is compact and Hausdorff
and the measure is finite, all reasonable definitions of regularity agree (see
Subsection C.1).

Lemma 3.4. If X is a topological space and µ ∈ ca+(X) then the collection
of all µ-regular Borel subsets of X is a σ-algebra.

Proof. If A is µ-regular and for some ε > 0 the open set U and the closed set
F witness the µ-regularity condition of A for that ε then the open set X \F
and the closed set X \U witness the µ-regularity condition of X \A for the
same ε. Moreover, if (An)n≥1 is a sequence of µ-regular Borel subsets and
for some ε > 0 the open set Un and the closed Fn witness the µ-regularity
condition of An for ε

2n then the open set U =
⋃∞

n=1 Un and the closed set

F =
⋃N

n=1 Fn witness the µ-regularity condition of A =
⋃∞

n=1An for ε if N

is large enough, since limN→+∞ µ
(⋃N

n=1 Fn

)
= µ

(⋃∞
n=1 Fn). □
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Corollary 3.5. If X is a topological space for which every open set is an
Fσ then every measure µ ∈ ca(X) is regular.

Proof. Simply note that if µ ∈ ca+(X) then every open set that is an Fσ is
µ-regular and thus our assumptions and Lemma 3.4 yield that every Borel
subset of X is µ-regular. □

Proposition 3.6. If X is a normal topological space and µ ∈ ca(X) is
regular then the norm of µ is equal to the norm of the linear functional
⟨µ, ·⟩ ∈ Cb(X)∗, i.e.:

∥µ∥ = sup
{
|⟨µ, f⟩| : f ∈ Cb(X), ∥f∥sup ≤ 1

}
.

In particular, by Corollary 3.5, if X is a perfectly normal topological space
then the linear map (3.1) is an isometric embedding.

Proof. By (2.2) it is sufficient to show that if µ ∈ ca(X) is regular then for
every ε > 0 there exists f ∈ Cb(X) with ∥f∥sup ≤ 1 and |⟨µ, f⟩| > ∥µ∥ − ε.
If X = P ∪N is a Hahn decomposition for µ then by regularity there exist
closed sets F+ ⊂ P and F− ⊂ N with |µ|(P \ F+) < ε and |µ|(N \ F−) < ε.
Moreover, Urysohn’s Lemma gives us a continuous function f : X → [−1, 1]
which equals 1 on F+ and equals −1 on F−. We have

∥µ∥ = ⟨µ, χP − χN ⟩
and

|f − (χP − χN )| ≤ 2(χP\F+
+ χN\F−

)

from which it follows that:∣∣⟨µ, f⟩−∥µ∥
∣∣ = ∣∣⟨µ, f−(χP −χN )⟩

∣∣ ≤ 2|µ|(P \F+)+2|µ|(N \F−) < 4ε. □

Corollary 3.7. If X is a perfectly normal topological space then the weak*
topology in ca(X) is Hausdorff. □

Proof. Follows from Proposition 3.6 and Remark E.2. □

Example 3.8. Normality of X alone does not ensure even the injectivity
of the linear map (3.1). For instance, denote by ω1 the first uncountable
ordinal and let the ordinal segment X = [0, ω1] be endowed with the order
topology. We have that X is a compact Hausdorff topological space and in
particular it is normal. If ν ∈ ca1+(X) is the nonregular probability measure
defined in Example C.8 then ⟨ν, f⟩ = ⟨δω1 , f⟩ for every continuous function
f : X → R and therefore (3.1) is not injective on probability measures and
the weak* topology on ca1+(X) is not Hausdorff.

Proposition 3.9. If X is a normal topological space and µ ∈ ca(X) is
a regular measure then µ is nonnegative if and only if the linear functional
⟨µ, ·⟩ ∈ Cb(X)∗ is positive. In particular, by Corollary 3.5, if X is a perfectly
normal topological space then

ca+(X) =
{
µ ∈ ca(X) : ⟨µ, ·⟩ ∈ Cb(X)∗ is positive

}
and hence ca+(X) is weak*-closed in ca(X).
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Proof. Assume that µ ∈ ca(X) is regular and that ⟨µ, ·⟩ ∈ Cb(X)∗ is pos-
itive. If µ ̸∈ ca+(X) and X = P ∪ N is a Hahn decomposition for µ then
µ(N) < 0. By regularity, for every ε > 0 we obtain F ⊂ N closed and
U ⊃ N open with |µ|(F \ N) < ε and |µ|(U \ N) < ε. Now Urisohn’s
Lemma gives f : X → [0, 1] continuous which equals 1 on F and vanishes
outside of U . This implies |f − χN | ≤ χU\F and:∣∣⟨µ, f⟩ − µ(N)

∣∣ = ∣∣⟨µ, f − χN ⟩
∣∣ ≤ |µ|(U \ F ) < 2ε.

But we could have chosen ε > 0 with µ(N) + 2ε ≤ 0 which would yield
⟨µ, f⟩ < 0, contradicting our assumptions. □

4. Basic properties of the weak* topology

We start with a very simple result which says that with respect to the
weak* topology of ca(X) the Dirac delta δx varies continuously with x in
X. This is an important property for practical applications to Statistics
as if two points of some sample space are very close and thus “empirically
indistinguishable” then probability measures associated to them should also
be close. Note that the situation is very different with the norm topology,
as ∥δx − δy∥ = 2 for distinct points x, y ∈ X if the topological space X
is Hausdorff (or if X at least satisfies the weakest separation axiom T0).
Similarly, with respect to the weak topology of the Banach space ca(X) we
have that

{
µ ∈ ca(X) : µ

(
{x}
)
> 1

2

}
is an open neighborhood of δx that

does not contain any δy with y ̸= x, provided that {x} is a Borel subset of
X. Thus, if X is Hausdorff, the set {δx : x ∈ X} is discrete both in the
weak and in the norm topology of the Banach space ca(X).

Proposition 4.1. If X is a topological space then the map

δ : X ∋ x 7−→ δx ∈ ca(X)

is continuous with respect to the weak* topology of ca(X).

Proof. Since the weak* topology of ca(X) is induced by the linear functionals
⟨·, f⟩ with f ∈ Cb(X), it suffices to show that the composition of δ with all
such linear functionals is continuous. But this follows trivially from the
equality ⟨δx, f⟩ = f(x). □

Corollary 4.2. Let X be a topological space and f ∈ Mb(X) be a bounded
Borel measurable function. The following statements are equivalent:

(a) f is continuous;

(b) the map ca(X) ∋ µ 7→ ⟨µ, f⟩ ∈ R is weak*-continuous;

(c) the map ca+(X) ∋ µ 7→ ⟨µ, f⟩ ∈ R is weak*-continuous;

(d) the map ca1+(X) ∋ µ 7→ ⟨µ, f⟩ ∈ R is weak*-continuous.

Proof. Obviously (a)⇒(b)⇒(c)⇒(d) and (d)⇒(a) follows by noting that f
is the composition of the map δ : X → ca1+(X) with the map in (d). □
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Corollary 4.3. Let X be a topological space and B be a Borel subset of X.
The following statements are equivalent:

(a) B is clopen (i.e., closed and open) in X;

(b) the map ca(X) ∋ µ 7→ µ(B) ∈ R is weak*-continuous;

(c) the map ca+(X) ∋ µ 7→ µ(B) ∈ R is weak*-continuous;

(d) the map ca1+(X) ∋ µ 7→ µ(B) ∈ R is weak*-continuous.

Proof. Note that µ(B) = ⟨µ, χB⟩ and that χB is continuous if and only if B
is clopen. □

Remark 4.4. If X is a topological space and ca(X) is endowed with the
weak* topology then the topology induced on X by the map δ : X → ca(X)
is equal to the topology induced by all compositions ⟨·, f⟩ ◦ δ, f ∈ Cb(X),
and therefore it is equal to the topology induced by all bounded continuous
functions f : X → R. Such topology coincides with the topology of X if
and only if X is a completely regular topological space (Definition D.4). In
other words, the topology of X coincides with the topology induced by δ
from the weak* topology of ca(X) if and only if X is completely regular. If
X is completely regular and Hausdorff then δ is also injective and therefore
it is a homeomorphism onto its image endowed with the weak* topology.

Though the evaluation functional µ 7→ µ(B) is weak*-continuous only if
B is clopen, we have that its restriction to ca+(X) has weak*-semicontinuity
properties if B is either open or closed and X is perfectly normal.

Lemma 4.5. Let X be a normal topological space and let ca+(X) be endowed
with the weak* topology. If U is an open Fσ subset of X then the map
ca+(X) ∋ µ 7→ µ(U) ∈ R is lower semicontinuous, i.e., the set

(4.1)
{
µ ∈ ca+(X) : µ(U) > c

}
is weak*-open in ca+(X) for every c ∈ R. Moreover, if F is a closed Gδ

subset of X then the map ca+(X) ∋ µ 7→ µ(F ) ∈ R is upper semicontinuous,
i.e., the set

(4.2)
{
µ ∈ ca+(X) : µ(F ) < c

}
is weak*-open in ca+(X) for every c ∈ R.

In more simple terms: for nonnegative measures on a normal topological
space, the measure of an open Fσ set cannot drop a lot if we make a small
weak*-perturbation of the measure and the measure of a closedGδ set cannot
increase a lot if we make a small weak*-perturbation of the measure.

Proof. If µ(U) > c, since U is Fσ, we can find H ⊂ U closed in X with
µ(H) > c. Now Urysohn’s Lemma yields a [0, 1]-valued continuous function
f on X which equals 1 on H and that vanishes outside of U . The set{
ν ∈ ca+(X) : ⟨ν, f⟩ > c

}
is then a weak*-open neighborhood of µ in

ca+(X) contained in (4.1), since ν(H) ≤ ⟨ν, f⟩ ≤ ν(U) for ν ∈ ca+(X).
Similarly, if µ(F ) < c, since F is Gδ there exists an open set V containing F
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with µ(V ) < c and a [0, 1]-valued continuous function f which equals 1 on F
and vanishes outside of V . Hence

{
ν ∈ ca+(X) : ⟨ν, f⟩ < c

}
is a weak*-open

neighborhood of µ in ca+(X) contained in (4.2). □

Since the characteristic function of a set is lower semicontinuous (resp.,
upper semicontinuous) if and only if the set is open (resp., the set is closed),
one might expect after looking at Lemma 4.5 that for a perfectly normal
topological space X the linear functional ⟨·, f⟩ restricted to ca+(X) will be
weak*-semicontinuous if f is semicontinuous. This is indeed correct if f is
bounded.

Lemma 4.6. Let X be a perfectly normal topological space and let ca+(X)
be endowed with the weak* topology. If f : X → ]−∞,+∞] is a lower
semicontinuous function bounded from below then the map

ca+(X) ∋ µ 7−→ ⟨µ, f⟩ ∈ ]−∞,+∞]

is lower semicontinuous, i.e., for every c ∈ R the set

(4.3)
{
µ ∈ ca+(X) : ⟨µ, f⟩ > c

}
is weak*-open in ca+(X). Similarly, for every upper semicontinuous func-
tion f : X → [−∞,+∞[ bounded from above the map

ca+(X) ∋ µ 7−→ ⟨µ, f⟩ ∈ [−∞,+∞[

is upper semicontinuous, i.e., for every c ∈ R the set{
µ ∈ ca+(X) : ⟨µ, f⟩ < c

}
is weak*-open in ca+(X).

Proof. Obviously the part of the statement for upper semicontinuous func-
tions follows from the part of the statement for lower semicontinuous func-
tions by replacing f with −f , so we consider only lower semicontinuous func-
tions. By possibly adding a constant to f we can assume without loss of gen-
erality that f is nonnegative. Given µ ∈ ca+(X) and c ∈ R with ⟨µ, f⟩ > c,
since every open subset of X is an Fσ we can apply Corollary B.6 to get
g ∈ Cb(X) with 0 ≤ g ≤ f and ⟨µ, g⟩ > c. Hence

{
ν ∈ ca+(X) : ⟨ν, g⟩ > c

}
is a weak*-open neighborhood of µ in ca+(X) contained in (4.3). □

For nonnegative measures on a perfectly normal topological space there
are many interesting characterizations of weak* convergence which we list
in Proposition 4.9 below. First we need another simple lemma.

Lemma 4.7. If (X,A) is a measurable space and (µi)i∈I is a net in ca(X,A)
such that the family (µi)i≥i0 is bounded for some i0 ∈ I then the set

(4.4)
{
f ∈ Mb(X,A) : lim

i∈I
⟨µi, f⟩ = ⟨µ, f⟩

}
is a closed subspace of Mb(X,A) with respect to the supremum norm for
any µ ∈ ca(X,A).

Proof. Follows directly from (2.2) and Corollary F.3. □
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Corollary 4.8. If (X,A) is a measurable space and (µi)i∈I is a net in
ca+(X) such that the limit limi∈I µi(X) exists and is finite then the set
(4.4) is a closed subspace of Mb(X,A) with respect to the supremum norm
for any µ ∈ ca(X,A).

Proof. Simply note that if the limit limi∈I µi(X) exists and is finite then the
set {µi(X) : i ≥ i0} is bounded for some i0 ∈ I and that for nonnegative
measures µi we have ∥µi∥ = µi(X). □

In the statement below we talk about the measure of the set of continuity
points of a real-valued function on a topological space X and for that to
make sense we need such set to be Borel. We recall that this is always the
case as the set of continuity points of a map f : X → M taking values in
a metric space M is always a Gδ set. Namely, for every ε > 0 the set of
points x ∈ X for which the oscillation of f is less than ε (i.e., the set of
points having a neighborhood V such that f [V ] has diameter less than ε) is
open and the set of continuity points of f coincides with the set of points
for which the oscillation of f is less than 1

n for every positive integer n.

Proposition 4.9 (Portmanteau). Let X be a topological space, (µi)i∈I be a
net in ca+(X) and µ ∈ ca+(X) be fixed. If X is perfectly normal then the
following conditions are equivalent:

(a) the net (µi)i∈I weak*-converges to µ;

(b) limi∈I µi(X) = µ(X) and for every open set U in X the inequality

µ(U) ≤ lim inf
i∈I

µi(U)

holds;

(c) limi∈I µi(X) = µ(X) and for every closed set F in X the inequality

lim sup
i∈I

µi(F ) ≤ µ(F )

holds;

(d) for every lower semicontinuous function f : X → ]−∞,+∞] bounded
from below the inequality

(4.5) ⟨µ, f⟩ ≤ lim inf
i∈I

⟨µi, f⟩

holds;

(e) for every upper semicontinuous function f : X → [−∞,+∞[ bounded
from above the inequality

lim sup
i∈I

⟨µi, f⟩ ≤ ⟨µ, f⟩

holds;
(f) for every Borel subset B of X with µ(∂B) = 0 the equality

lim
i∈I

µi(B) = µ(B)

holds, where ∂B denotes the boundary of B;
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(g) for every bounded Borel measurable function f : X → R whose set of
discontinuity points has measure zero with respect to µ, the equality

(4.6) lim
i∈I

⟨µi, f⟩ = ⟨µ, f⟩

holds.

For an arbitrary topological space X we have:

(b) ⇐⇒ (c) ⇐⇒ (d) ⇐⇒ (e) =⇒ (f) ⇐⇒ (g) =⇒ (a).

Proof. The equivalence between (b) and (c) is established by taking com-
plements and using Lemma A.4 and the equivalence between (d) and (e) is
established by replacing f with −f . The fact that (d) implies (b) follows
by letting f be the characteristic function of U and by setting f = ±1 to
establish limi∈I µi(X) = µ(X). Now (b) and (c) imply (f) since if we let U
be the interior of B and F be the closure of B we obtain:

µ(B) = µ(U) ≤ lim inf
i∈I

µi(U) ≤ lim inf
i∈I

µi(B)

≤ lim sup
i∈I

µi(B) ≤ lim sup
i∈I

µi(F ) ≤ µ(F ) = µ(B).

Trivially (g) implies (f) by letting f be the characteristic function of B and
(g) implies (a). If X is perfectly normal, (a) implies (b), (c), (d) and (e) by
Lemmas 4.5 and 4.6, keeping in mind Lemma B.4. To see that (b) implies
(d) for arbitrary X, note first that by (A.1) the set of those f for which (4.5)
holds is closed under finite linear combinations with real nonnegative coef-
ficients and that for nonnegative functions it is also closed under pointwise
monotonically increasing limits of sequences by the Monotone Convergence
Theorem. Assuming (b), we have that (4.5) holds for characteristic functions
of open sets and for constant functions. Since a lower semicontinuous func-
tion bounded from below can be made nonnegative by adding a constant,
the conclusion follows from Lemma B.5.

To conclude the proof, we prove (g) assuming (f). Using (f) with B = X
and Corollary 4.8 we conclude that it is sufficient to show that every f in
Mb(X) whose set of discontinuity points has measure zero with respect to
µ can be uniformly approximated by linear combinations of characteristic
functions of Borel sets B with µ(∂B) = 0. To this aim, let a, b ∈ R with
a < b be such that the image of f is contained in [a, b[. Since µ

(
f−1(c)

)
> 0

for at most countably many c ∈ R, for any ε > 0 we can find a partition
a = t0 < t1 < · · · < tk = b with µ

(
f−1(tj)

)
= 0 for j = 1, . . . , k − 1 and

tj+1 − tj < ε for j = 0, . . . , k− 1. Setting Bj = f−1
[
[tj , tj+1[

]
we have then

µ(∂Bj) = 0 for j = 0, . . . , k− 1 and ∥f − g∥sup < ε for g =
∑k−1

j=0 tjχBj
. □

Example 4.10. Of course one should not expect the equivalence between
(a) in Proposition 4.9 and the conditions (b), (c), (d) and (e) involving
inequalities to hold for nets of signed measures. For instance, note that the
validity of (a) is kept invariant if we multiply all measures by −1, while this
is obviously not the case with the conditions involving inequalities. Yet, one
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could reasonably expect that (a) still implies (f) for nets of signed measures
(perhaps requiring in (f) that the boundary of B has measure zero with
respect to the total variation of µ). However, this is not true as the following
simple counterexample shows. Let X = R, B = ]0,+∞[ and consider the
sequence (µn)n≥1 in ca(R) given by

µn = δ 1
n
− δ− 1

n
,

for all n ≥ 1. Clearly (µn)n≥1 weak*-converges to µ = 0, but µn(B) = 1 for
all n ≥ 1.

Example 4.11. Counterexamples to the implications in Proposition 4.9
that are not valid for arbitrary X can be obtained by using the nonregular
probability measure ν on the compact Hausdorff space K = [0, ω1] defined
in Example C.8. Set X = K and let I be an arbitrary directed set. Letting
µ = 1

2ν + 1
2δω1 and µi = δω1 for all i ∈ I we obtain an example such that

condition (f) in the statement of Proposition 4.9 holds, but condition (b)
doesn’t. Namely, if B is Borel in K and µ(∂B) = 0 then ω1 ̸∈ ∂B. If ω1

is not in the closure of B we have that B is a countable subset of ω1 and
therefore µi(B) = µ(B) = 0, for all i ∈ I. On the other hand, if ω1 is an
interior point of B then K \ B is a countable subset of ω1 and therefore
µi(B) = µ(B) = 1, for all i ∈ I. However, setting U = ω1 we have that U
is open in K, but µ(U) = 1

2 , while µi(U) = 0, for all i ∈ I, contradicting
(b). Now if we set µ = ν and µi = δω1 for all i ∈ I then (a) holds, since
⟨µ, f⟩ = ⟨µi, f⟩ for all i ∈ I and all f ∈ Cb(X). However, letting B = ω1

then ∂B = {ω1}, so that µ(∂B) = 0, and yet µ(B) = 1 and µi(B) = 0, for
all i ∈ I, contradicting (f).

Proposition 4.9 can be used to obtain convenient bases of open sets and
convenient fundamental systems of neighborhoods for the weak* topology
on ca+(X). Recall that a subbasis for a topology τ on a set X is a subset
S of τ such that the collection of all finite intersections of elements of S is
a basis for τ . Given a collection S of subsets of a set X, we have that there
exists a topology on X for which S is a subbasis if and only if S is a covering
of X.

Corollary 4.12. Let X be a perfectly normal topological space. The collec-
tion of all sets of the form

(4.7)

{
µ ∈ ca+(X) : µ(U) > c

}
, U ⊂ X open, c ∈ R,{

µ ∈ ca+(X) : µ(X) < c
}
, c ∈ R

form a subbasis for the weak* topology on ca+(X). Similarly, the collection
of all sets of the form

(4.8)

{
µ ∈ ca+(X) : µ(F ) < c

}
, F ⊂ X closed, c ∈ R,{

µ ∈ ca+(X) : µ(X) > c
}
, c ∈ R

form a subbasis for the weak* topology on ca+(X).
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Proof. All the sets (4.7) are weak*-open in ca+(X) by Lemma 4.5 and there-
fore the unique topology τ on ca+(X) having (4.7) as subbasis is contained in
the weak* topology of ca+(X). To prove the reverse inclusion, use the equiv-
alence between (a) and (b) of Proposition 4.9 to establish that τ -convergence
of a net in ca+(X) implies weak*-convergence of such a net. The proof that
(4.8) is a subbasis for the weak* topology is analogous. □

Corollary 4.13. Let X be a perfectly normal topological space and let µ in
ca+(X) be fixed. The collection of all finite intersections of sets of the form{
ν ∈ ca+(X) : |ν(B)− µ(B)| < ε

}
, B ⊂ X Borel with µ(∂B) = 0, ε > 0

constitute a fundamental system of (not necessarily open) neighborhoods of
µ in ca+(X) endowed with the weak* topology.

Proof. Follows from Lemma A.3 and the equivalence between (a) and (f) in
Proposition 4.9. □

There are actually many other equivalences for weak* convergence of nets
of nonnegative measures on specific classes of topological spaces besides
those presented in Proposition 4.9. Our next lemma gives a general recipe
for producing other equivalences.

Lemma 4.14. Let X be a topological space and F be a collection of contin-
uous [0, 1]-valued functions on X satisfying the following condition: every
open subset U of X is a countable increasing union of closed subsets F of
X for which there exists f ∈ F that is equal to 1 on F and that vanishes
outside of U . Under such assumption, for every net (µi)i∈I in ca+(X) and
every µ ∈ ca+(X) we have that (µi)i∈I weak*-converges to µ if and only if
limi∈I µi(X) = µ(X) and limi∈I⟨µi, f⟩ = ⟨µ, f⟩, for all f ∈ F . In other
words, the weak* topology of ca+(X) coincides with the topology induced by
all maps of the form ⟨·, f⟩ with f ∈ F ∪ {1}.
Proof. Assume that limi∈I µi(X) = µ(X) and limi∈I⟨µi, f⟩ = ⟨µ, f⟩ for all
f ∈ F . By Proposition 4.9, to prove that (µi)i∈I weak*-converges to µ it
suffices to check that µ(U) ≤ lim infi∈I µi(U) for an arbitrary open subset
U of X. Let (Fn)n≥1 be an increasing sequence of closed subsets of X with
U =

⋃∞
n=1 Fn and (fn)n≥1 be a sequence in F such that fn is equal to 1 on

Fn and vanishes outside of U . We have

µ(Fn) ≤ ⟨µ, fn⟩ = lim
i∈I

⟨µi, fn⟩ ≤ lim inf
i∈I

µi(U),

for every n ≥ 1. The conclusion follows by taking the supremum over n
noting that supn≥1 µ(Fn) = µ(U). □

Remark 4.15. Due to Corollary 4.8 we can actually improve Lemma 4.14 by
weakening a bit the assumption on F . Namely, it is sufficient to assume that
every open subset U of X is a countable increasing union of closed subsets
F of X for which there exists f : X → [0, 1] in the closed linear span of
F ∪ {1} (with respect to the supremum norm) that is equal to 1 on F and
vanishes outside of U .
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We give two applications of Lemma 4.14.

Proposition 4.16. If (X, d) is a metric space then a net (µi)i∈I in ca+(X)
weak*-converges to µ ∈ ca+(X) if and only if limi∈I⟨µi, f⟩ = ⟨µ, f⟩ for every
bounded Lipschitz function f : X → R. In other words, the weak* topology
of ca+(X) coincides with the topology induced by all maps of the form ⟨·, f⟩
with f : X → R bounded and Lipschitz.

Proof. We use Lemma 4.14 with F equal to the set of [0, 1]-valued Lipschitz
functions on X. In order to establish the assumptions of Lemma 4.14 we
need a Lipschitz version of Urysohn’s Lemma. In a metric space (X, d), the
function

(4.9) X ∋ x 7−→ min{d(x, F1), 1}
min{d(x, F1), 1}+ d(x, F2)

∈ [0, 1]

is an Urysohn function for a pair of nonempty disjoint closed subsets F1 and
F2, i.e., it takes values in [0, 1], it vanishes on F1 and it is equal to 1 on
F2. Since the product of bounded Lipschitz functions is Lipschitz and the
function 1

f is Lipschitz if f is a positive Lipschitz function bounded away

from zero, we have that (4.9) is Lipschitz if d(F1, F2) > 0. To conclude
the proof, note that an arbitrary open subset U of X can be written as the
increasing union of the closed sets Fn given by

Fn =
{
x ∈ X : d(x,X \ U) ≥ 1

n

}
and that d(Fn, X \ U) > 0, so that the construction above yields Lipschitz
Urysohn functions for the pairs Fn, X \ U . □

Proposition 4.17. If X is a (Hausdorff, second countable, finite-dimen-
sional) differentiable manifold of class Ck (1 ≤ k ≤ +∞) then a net (µi)i∈I
in ca+(X) weak*-converges to µ ∈ ca+(X) if and only if

lim
i∈I

µi(X) = µ(X)

and ⟨µ, f⟩ = limi∈I⟨µi, f⟩ for every function f : X → R of class Ck having
compact support.

Proof. Use Lemma 4.14 with F equal to the set of [0, 1]-valued functions
on X of class Ck having compact support. Note that since X is second
countable and locally compact, every open set U is a countable increasing
union of compact sets K and for every compact subset K of U one obtains
an Urysohn function of class Ck with compact support for the pair K, X \U
using a partition of unity of class Ck (see, for instance, [4, Proposition 2.26]
and note that every compact subset of X is contained in an open relatively
compact subset of X). □

Example 4.18. Propositions 4.16 and 4.17 are not in general valid for nets
of signed measures, not even for bounded sequences of signed measures. For
example, set X = R and let

(4.10) µn = δxn − δyn ,
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for all n ≥ 1, where (xn)n≥1 is a sequence in R with limn→+∞ xn = +∞ and
(yn)n≥1 is a sequence in R such that limn→+∞(xn − yn) = 0 and xn ̸= yn
for all n ≥ 1. If f : R→ R is either Lipschitz or has compact support then

lim
n→+∞

⟨µn, f⟩ = lim
n→+∞

[f(xn)− f(yn)] = 0.

But one can easily obtain f ∈ Cb(R) such that f(xn) − f(yn) = 1 for
infinitely many n ≥ 1 and f(xn) − f(yn) = 0 for infinitely many n ≥ 1,
so that (µn)n≥1 is not weak*-convergent. We note however that it is true
that if X is a (Hausdorff, second countable, finite-dimensional) differentiable
manifold of class Ck (1 ≤ k ≤ +∞) then a bounded net (µi)i∈I in ca(X)
weak*-converges to µ ∈ ca(X) if and only if ⟨µ, f⟩ = limi∈I⟨µi, f⟩ for every
bounded function f : X → R of class Ck. This follows from Lemma 4.7 and
from the well-known fact that the subspace of Cb(X) consisting of bounded
functions of class Ck is dense in Cb(X) with respect to the supremum norm
(see [2, Theorem 2.2]). The assumption that the net (µi)i∈I is bounded is
really essential here. For example, setting X = R and

(4.11) µn =
√
n
(
δ 1

n
− δ0

)
,

for all n ≥ 1, then

lim
n→+∞

⟨µn, f⟩ = lim
n→+∞

√
n
[
f
(
1
n)− f(0)

]
= 0

for a function f : R→ R of class C1 because f is Lipschitz in a neighborhood
of zero. However, if f ∈ Cb(R) is such that f(x) = 4

√
|x| for x ∈ R near

zero then limn→+∞⟨µn, f⟩ = +∞.

By the very definition of the weak* topology, a fundamental system of
weak*-neighborhoods for a measure µ ∈ ca(X) is obtained by considering
sets of the form{

ν ∈ ca(X) : |⟨ν, fi⟩ − ⟨µ, fi⟩| < ε, i = 1, . . . , k
}
,

with f1, . . . , fk ∈ Cb(X), ε > 0 and k a positive integer. Such neighborhoods
can be more efficiently written if we aggregate all maps fi into a single
Rk-valued map f . From this observation the following result immediately
follows. The space Rk is assumed to be endowed with some arbitrary fixed
norm.

Lemma 4.19. Let X be a topological space and µ ∈ ca(X). A fundamental
system of open neighborhoods of µ in ca(X) with respect to the weak* topology
consists of all sets of the form

(4.12)

{
ν ∈ ca(X) :

∥∥∥∥∥
∫
X
f dν −

∫
X
f dµ

∥∥∥∥∥ < ε

}
,

where f varies over the set of all bounded Rk-valued continuous functions
on X, k varies over all positive integers and ε varies over all positive real
numbers. □
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We now use Lemma 4.19 to prove that the Dirac deltas span a weak*-dense
subspace of ca(X) and that, moreover, the intersection of such subspace with
various interesting subsets of ca(X) are weak*-dense in the corresponding
subset.

Proposition 4.20. If X is a topological space then the linear span of

(4.13) {δx : x ∈ X}

is weak*-dense in ca(X). Moreover, the intersection with S of the linear
span of (4.13) is weak*-dense in S for any of the subsets S of ca(X) below:

(a) S =
{
µ ∈ ca(X) : ∥µ∥ ≤ c

}
, where c ≥ 0;

(b) S =
{
µ ∈ ca+(X) : µ(X) ∈ C

}
, where C is a subset of [0,+∞[.

Proof. Let µ ∈ ca(X) and consider a fundamental weak*-open neighborhood
of µ of the form (4.12), with f : X → Rk a bounded continuous function
and ε > 0. Since the image of f is relatively compact, it can be covered
by finitely many open sets with diameter less than ε′ > 0, where ε′ is cho-
sen with ε′ |µ|(X) < ε. Taking the inverse images of such open sets by f
and disjointifying, we obtain a partition X =

⋃n
i=1Bi of X into nonempty

disjoint Borel subsets Bi such that f [Bi] has diameter less than ε′. Choose
xi ∈ Bi for all i = 1, . . . , n and set ν =

∑n
i=1 µ(Bi)δxi . We have∥∥∥∥∥

∫
X
f dµ−

∫
X
f dν

∥∥∥∥∥ =

∥∥∥∥∥
∫
X
f dµ−

n∑
i=1

µ(Bi)f(xi)

∥∥∥∥∥
=

∥∥∥∥∥
n∑

i=1

∫
Bi

[f(x)− f(xi)] dµ(x)

∥∥∥∥∥ ≤ ε′ |µ|(X) < ε,

so that ν belongs to (4.12). To conclude the proof, note that ∥ν∥ ≤ ∥µ∥,
ν(X) = µ(X) and that ν is nonnegative if µ is nonnegative, so that in any
case ν is in S if µ is in S. □

Corollary 4.21. If X is a separable topological space then ca(X) is weak*-
separable and any of the subsets S of ca(X) appearing in the statement of
Proposition 4.20 is weak*-separable.

Proof. The proof of Proposition 4.20 has shown not only that the intersec-
tion of the linear span of (4.13) with S is weak*-dense in S, but the following
fact: there exists a set A ⊂

⋃∞
n=0R

n of finite sequences of real numbers such
that

(4.14)

∞⋃
n=0

{
n∑

i=1

aiδxi : (a1, . . . , an) ∈ An, (x1, . . . , xn) ∈ Xn

}
is a weak*-dense subset of S, where An = A∩Rn for all n ≥ 0. Namely, take
A =

⋃∞
n=0An, whereAn is the set of n-tuples of the form

(
µ(B1), . . . , µ(Bn)

)
,

with µ ∈ S and X =
⋃n

i=1Bi a partition of X into nonempty disjoint Borel
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subsets. We now prove that (4.14) is weak*-separable. Note that (4.14) is
the union of the images of the maps

(4.15) An ×Xn ∋
(
(a1, . . . , an), (x1, . . . , xn)

)
7−→

n∑
i=1

aiδxi ∈ ca(X),

with n ≥ 0. It follows from Proposition 4.1 and the fact that ca(X) is
a topological vector space that the maps (4.15) are continuous if ca(X) is
endowed with the weak* topology. To conclude the proof, observe that a
countable union of separable subsets is separable, that a continuous image of
a separable space is separable and that An×Xn is separable for all n ≥ 0. □

5. Weak*-continuity of operations with measures

We start with two very simple results that hold for the space of all finite
signed measures in arbitrary topological spaces.

Proposition 5.1. If X is a topological space and f ∈ Cb(X) then the map
ca(X) ∋ µ 7→ fµ ∈ ca(X) is weak*-continuous.

Proof. Follows from equality (2.6). □

Proposition 5.2. If X and Y are topological spaces and ϕ : X → Y is a con-
tinuous map then the map ca(X) ∋ µ 7→ ϕ∗µ ∈ ca(Y ) is weak*-continuous.

Proof. Follows from equality (2.9). □

For nonnegative measures and with reasonable assumptions for the topo-
logical spaces much better results can be obtained using Proposition 4.9.

Proposition 5.3. Let X be a perfectly normal topological space and let
f : X → [0,+∞[ be a nonnegative Borel measurable and bounded function.
The map ca+(X) ∋ µ 7→ fµ ∈ ca+(X) is weak*-continuous at every point
µ ∈ ca+(X) such that the set of discontinuity points of f has measure zero
with respect to µ.

Proof. Follows from equality (2.6) and the equivalence between (a) and (g)
in Proposition 4.9. □

We note that in Proposition 5.4 below we cannot talk directly about
the measure of the set of discontinuity points of ϕ because at this level of
generality we cannot ensure that such set is Borel.

Proposition 5.4. Let X and Y be topological spaces, with X perfectly nor-
mal, and let ϕ : X → Y be a Borel measurable map. The map

ca+(X) ∋ µ 7−→ ϕ∗µ ∈ ca+(Y )

is weak*-continuous at every point µ ∈ ca+(X) such that the set of discon-
tinuity points of ϕ is contained in a Borel set which has measure zero with
respect to µ.
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Proof. Follows from equality (2.9) and the equivalence between (a) and (g)
in Proposition 4.9. □

Let us now investigate the effect of restricting weak* convergent nets of
measures to subspaces of the topological space. We start with a more general
result from which the more interesting results will follow.

Proposition 5.5. Let X be a perfectly normal topological space, Y be a
set, ϕ : Y → X be a map and let Y be endowed with the topology induced
by ϕ. If ca+(X) and ca+(Y ) are endowed with its weak* topologies then
ϕ∗ : ca+(Y ) → ca+(X) is a homeomorphism onto its image.

Proof. Since Y has the topology induced by ϕ we have that the Borel σ-
algebra of Y coincides with the σ-algebra induced by ϕ from the Borel
σ-algebra of X, i.e.:

B(Y ) =
{
ϕ−1[B] : B ∈ B(X)

}
.

This implies that the map ϕ∗ is injective. Moreover, the continuity of ϕ∗
follows from the continuity of ϕ, by Proposition 5.2. To prove that the
inverse of ϕ∗ (defined on its image) is continuous, let (µi)i∈I be a net in
ca+(Y ) and µ ∈ ca+(Y ) be such that (ϕ∗µi)i∈I weak*-converges to ϕ∗µ.
We prove that (µi)i∈I weak*-converges to µ using that (b) implies (a) in
Proposition 4.9 for the space Y and that (a) implies (b) for the space X.
We have:

lim
i∈I

µi(Y ) = lim
i∈I

(ϕ∗µi)(X) = (ϕ∗µ)(X) = µ(Y ).

Moreover, if U is an open subset of Y then U = ϕ−1[V ] for some open subset
V of X and hence:

µ(U) = (ϕ∗µ)(V ) ≤ lim inf
i∈I

(ϕ∗µi)(V ) = lim inf
i∈I

µi(U). □

Example 5.6. In the context of the statement of Proposition 5.5, if the
image of ϕ is required to be closed, then assuming only that X is normal we
can obtain the stronger conclusion that the map ϕ∗ : ca(Y ) → ca(X) is a
homeomorphism onto its image. This is a simple consequence of (2.9) and
Tietze’s Extension Theorem which yields that Cb(Y ) =

{
f ◦ϕ : f ∈ Cb(X)

}
.

However, without the assumption that the image of ϕ be closed, one does
not have the stronger result that ϕ∗ : ca(Y ) → ca(X) is a homeomorphism
onto its image even if X = R. For example, let X = R, Y = ]0,+∞[ and
ϕ : Y → X be the inclusion map. Consider the sequence (µn)n≥1 in ca(Y )
defined by

µn = δ 1
n
− δ 1

n+1
,

for all n ≥ 1. Clearly (ϕ∗µn)n≥1 converges to 0 = ϕ∗0 in ca(X), yet (µn)n≥1

does not converge in ca(Y ). Namely, since the set
{

1
n : n ≥ 1

}
is discrete

and closed in Y , every bounded function f :
{

1
n : n ≥ 1

}
→ R extends to a

continuous bounded real-valued function on Y and thus we can easily obtain
f ∈ Cb(Y ) such that limn→+∞⟨µn, f⟩ does not exist.
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The image of the map ϕ∗ in Proposition 5.5 admits a simple description.

Lemma 5.7. Let (X,A) be a measurable space, Y be a set, ϕ : Y → X be
a map and let Y be endowed with the σ-algebra

{
ϕ−1[A] : A ∈ A

}
induced

by ϕ (for instance, if A is the Borel σ-algebra of some topology on X then
Y will be endowed with the Borel σ-algebra of the topology induced by ϕ).
Given a measure µ on X, the following conditions are equivalent:

(i) µ vanishes on every measurable subset of X disjoint from the image
of ϕ;

(ii) µ = ϕ∗ν for some measure ν on Y .

Moreover, the measure ν of item (ii) is unique if it exists and it has the
same image as µ. In particular, ν is finite if µ is finite and ν is nonnegative
if µ is nonnegative.

Proof. Obviously (ii) implies (i), so assume (i) and let us prove (ii). The
measure ν must necessarily be given by

ν
(
ϕ−1[A]

)
= µ(A), A ∈ A,

so that we only have to prove that ν is well-defined by such equality and
that it is a measure. First, if A1, A2 ∈ A are such that ϕ−1[A1] = ϕ−1[A2]
then A1 \ A2 and A2 \ A1 are measurable subsets of X disjoint from the
image of ϕ and thus (i) yields

µ(A1) = µ(A1 \A2) + µ(A1 ∩A2) = µ(A1 ∩A2)

= µ(A2 \A1) + µ(A1 ∩A2) = µ(A2),

which proves that ν is well-defined. To prove that ν is countably additive, let
(An)n≥1 be a sequence in A such that the sets ϕ−1[An] are pairwise disjoint.
If we set A′

n = An \
⋃

m<nAm then ϕ−1[An] = ϕ−1[A′
n] for all n and hence:

ν
( ∞⋃

n=1

ϕ−1[An]
)
= µ

( ∞⋃
n=1

A′
n

)
=

∞∑
n=1

µ(A′
n) =

∞∑
n=1

ν
(
ϕ−1[An]

)
. □

If X is a topological space and Y is a Borel subset of X endowed with
the induced topology then the Borel σ-algebra of Y consists of the Borel
subsets of X that are contained in Y . Thus, given a measure µ on the Borel
σ-algebra of X, we obtain a measure on the Borel σ-algebra of Y by simply
restricting µ to the Borel σ-algebra of Y . We denote such restriction by µ|Y
instead of µ|B(Y ) for simplicity. Note that if ι : Y → X denotes the inclusion
map then ι∗ : ca(Y ) → ca(X) is just the map that extends a measure to zero
on subsets of X \Y . Thus, given µ ∈ ca(X), we have that µ is on the image
of ι∗ if and only if |µ|(X \ Y ) = 0 and in this case we have µ = ι∗(µ|Y ).
Moreover, for arbitrary µ ∈ ca(X), we have the equality:

ι∗(µ|Y ) = χY µ.

The following result is an immediate consequence of Proposition 5.5 with
ϕ equal to the inclusion map of Y in X.
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Proposition 5.8. Let X be a perfectly normal topological space, Y be a
Borel subset of X and (µi)i∈I be a net in ca+(X) that weak*-converges to
some µ ∈ ca+(X). If µ(X \ Y ) = 0 and µi(X \ Y ) = 0 for all i ∈ I then
(µi|Y )i∈I weak*-converges to µ|Y . □

We can actually prove something a little better than Proposition 5.8.

Corollary 5.9. Let X be a perfectly normal topological space, Y be a Borel
subset of X and (µi)i∈I be a net in ca+(X) that weak*-converges to some
µ ∈ ca+(X). We have that (µi|Y )i∈I weak*-converges to µ|Y if either one
of the conditions below hold:

(a) µ(∂Y ) = 0;

(b)
(
µi|X\Y

)
i∈I weak*-converges to µ|X\Y .

Proof. By Proposition 5.8 it is sufficient to prove that (χY µi)i∈I weak*-
converges to χY µ. Assuming (a), this follows from Proposition 5.3. Assum-
ing (b) and taking the push-forwards by the inclusion of X \ Y in X we get
that (χX\Y µi)i∈I weak*-converges to χX\Y µ and since µi = χY µi+χX\Y µi,

µ = χY µ + χX\Y µ and ca(X) endowed with the weak* topology is a topo-

logical vector space, we obtain that (χY µi)i∈I weak*-converges to χY µ. □

6. Tightness and compactness

Since the weak* topology of ca(X) is induced from the weak* topology
of the topological dual Cb(X)∗ of the Banach space Cb(X), one naturally
expects that we should be able to establish that certain subsets of ca(X)
are weak*-compact using the Banach–Alaoglu Theorem. Recall that the
Banach–Alaoglu Theorem states that a closed ball of the topological dual of
a normed space, endowed with its weak* topology, is compact.

Maybe we can obtain as a corollary that a closed ball of ca(X) is weak*-
compact as well? The answer is no, because there is a catch: ca(X) does not
correspond to the entire topological dual of Cb(X), but only to a subspace
of it and a closed ball of a subspace of the topological dual of a normed space
need not be weak*-compact as it is not in general weak*-closed. Another
issue is that the linear map

(6.1) ca(X) ∋ µ 7−→ ⟨µ, ·⟩ ∈ Cb(X)∗

that we use to induce the weak* topology on ca(X) is not necessarily in-
jective for an arbitrary topological space X, so ca(X) is not truly homeo-
morphic to a subspace of Cb(X)∗. That issue, however, is harmless as the
following simple result shows.

Lemma 6.1. Let X be a set, Y be a topological space, Φ : X → Y be a map
and let X be endowed with the topology induced by Φ. Given a subset C of
X , we have that C is compact if and only if Φ[C] is compact. In particular,
if K is a compact subset of the image of Φ then Φ−1[K] is compact.

Proof. This is a trivial topology exercise. □
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Corollary 6.2. Let X be a set, Y be a topological space, Φ : X → Y be a
map and let X be endowed with the topology induced by Φ. If Y is Hausdorff
then the closure of a compact subset of X is compact.

Proof. If C is a compact subset of X then Lemma 6.1 yields that Φ−1
[
Φ[C]

]
is also compact. But since Y is Hausdorff, the compact set Φ[C] is closed
and thus so is Φ−1

[
Φ[C]

]
. Hence C is contained in a compact closed set and

therefore its closure is compact. □

In view of Lemma 6.1, what is essential in order to establish that certain
subsets of ca(X) are weak*-compact is to find weak*-compact subsets of the
image of (6.1). In order to get some insight on such image, it is convenient
to identify Cb(X)∗ with a space of measures. Such identification depends
on two ingredients that are discussed in more detail in Appendices C and
D. The first ingredient is that if K is a compact Hausdorff topological space
then the topological dual C(K)∗ of the space C(K) of continuous real-valued
functions on K endowed with the supremum norm can be isometrically iden-
tified with the space M(K) of finite signed regular measures on the Borel
σ-algebra of K endowed with the total variation norm (see Subsection C.1).
In what follows, what we call the weak* topology of M(K) is the topology in-
duced by the standard isometric identification M(K) ∋ ν 7→ ⟨ν, ·⟩ ∈ C(K)∗

from the weak* topology of C(K)∗.
The second ingredient is the Stone–Čech compactification of a topological

space X which allows us to identify the Banach space Cb(X) isometrically
with a C(K) space. More explicitly, for an arbitrary topological space X, if
ι : X → β(X) denotes a Stone–Čech compactification of X then β(X) is a
compact Hausdorff topological space and the composition map

ι∗ : C
(
β(X)

)
∋ f 7−→ f ◦ ι ∈ Cb(X)

is a linear isometry between the Banach spaces C
(
β(X)

)
and Cb(X). Its

adjoint

ι∗∗
def
= (ι∗)∗ : Cb(X)∗ −→ C

(
β(X)

)∗
is therefore a linear isometry and a weak*-homeomorphism between the
topological duals of C

(
β(X)

)
and Cb(X). Now we take the composition of

(6.1) with ι∗∗ and we identify C
(
β(X)

)∗
with M

(
β(X)

)
in the standard way

obtaining a linear map

(6.2) Φ : ca(X) −→ M
(
β(X)

)
that carries each µ ∈ ca(X) to the unique regular measure Φ(µ) ∈ M

(
β(X)

)
on β(X) such that:

(6.3) ⟨Φ(µ), f⟩ = ι∗∗(⟨µ, ·⟩)(f) = ⟨µ, ι∗(f)⟩ = ⟨µ, f ◦ ι⟩,

for every f ∈ C
(
β(X)

)
. Obviously the weak* topology of ca(X) is induced

by Φ from the weak* topology of M
(
β(X)

)
, so that what we need now is to

find weak*-compact subsets of the image of Φ.
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Recall from (2.9) that ⟨µ, f ◦ ι⟩ = ⟨ι∗µ, f⟩ for all µ ∈ ca(X) and all
f ∈ C

(
β(X)

)
, so that (6.3) yields:

(6.4) ⟨Φ(µ), f⟩ = ⟨ι∗µ, f⟩.
One might have the impression that equality (6.4) shows that Φ(µ) = ι∗µ
for all µ ∈ ca(X) but it only does that if ι∗µ is regular. Let us formally
state this preliminary result.

Lemma 6.3. For an arbitrary topological space X, we have Φ(µ) = ι∗µ for
all µ ∈ ca(X) for which the measure ι∗µ is regular.

Proof. Follows from (6.4) and the uniqueness of the regular measure repre-
senting a bounded linear functional on C

(
β(X)

)
. □

When the topological space X is completely regular (Definition D.4),
Lemmas 6.3 and 5.7 yield a simple sufficient condition for a regular measure
on β(X) to belong to the image of Φ .

Lemma 6.4. If X is a completely regular topological space and a regular
measure ν ∈ M

(
β(X)

)
vanishes on every Borel subset of β(X) that is dis-

joint from the image of ι : X → β(X) then ν belongs to the image of Φ.
Moreover, if ν is in addition nonnegative then it belongs to Φ[ca+(X)].

Proof. Since X is completely regular we have that the topology of X is
induced by ι : X → β(X) (Proposition D.5) and therefore Lemma 5.7 yields
µ ∈ ca(X) with ι∗µ = ν. Moreover, µ is in ca+(X) if ν is nonnegative. Since
ι∗µ = ν is regular, it follows from Lemma 6.3 that ν = Φ(µ). □

One might expect that ι∗µ is a regular measure on β(X) when µ is a
regular measure on X, but to prove that ι∗µ is regular we need the following
additional property for µ.

Definition 6.5. Given a topological space X, a measure µ ∈ ca(X) is called
tight if for every ε > 0 there exists a Borel compact subset K of X such
that |µ|(X \K) < ε. More generally, a collection Λ ⊂ ca(X) of measures on
X is called tight if for every ε > 0 there exists a Borel compact subset K of
X such that |µ|(X \K) < ε for all µ ∈ Λ.

Since we are stating Definition 6.5 for a completely arbitrary topological
space X we need to require explicitly that the compact subset K be Borel
in order for the measure of X \K to be defined. Of course, if X is Hausdorff
then every compact subset of X is closed and therefore automatically Borel.

Lemma 6.6. If X is a topological space and µ ∈ ca(X) is a tight regular
measure then ι∗µ is a regular measure on β(X) and therefore by Lemma 6.3
we have Φ(µ) = ι∗µ.

Proof. We just have to show that given a Borel subset B of β(X) and ε > 0
we can find a closed subset of β(X) contained in B whose complement in B
has measure less than ε with respect to |ι∗µ|. By the regularity of µ there
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exists a closed subset F of X contained in the Borel subset ι−1[B] with
|µ|
(
ι−1[B] \ F

)
< ε and by the tightness of µ there exists a Borel compact

subset K of X with |µ|(X \K) < ε. Setting C = F ∩K we have that C is
a compact subset of ι−1[B] and:

|µ|
(
ι−1[B] \ C

)
≤ |µ|

(
ι−1[B] \ F

)
+ |µ|(X \K) < 2ε.

Now ι[C] is a closed subset of β(X) contained in B and using (2.8) we obtain:

|ι∗µ|
(
B \ ι[C]

)
≤ (ι∗|µ|)

(
B \ ι[C]

)
= |µ|

(
ι−1[B] \ ι−1[ι[C]]

)
≤ |µ|

(
ι−1[B] \ C

)
< 2ε. □

We need now a tool to obtain weak*-closed subsets of M(K).

Lemma 6.7. If K is a compact Hausdorff topological space and U is an
open subset of K then for every c ≥ 0 the set

(6.5)
{
µ ∈ M(K) : |µ|(U) ≤ c

}
is weak*-closed in M(K).

Proof. Given µ ∈ M(K), we have that the restriction µ|U of µ to the Borel
σ-algebra of U is a Radon measure (Definition C.1) on the locally compact
Hausdorff space U whose total variation |µ|U | is the restriction of the total
variation of µ to the Borel σ-algebra of U . Proposition C.2 then says that
∥µ|U∥ = |µ|(U) is equal to the supremum of |⟨µ|U , f⟩| with f varying over
the set of continuous functions f : U → R with compact support such that
∥f∥sup ≤ 1. Thus |µ|(U) is also equal to the supremum of |⟨µ, f⟩| with f
varying over the set of functions f ∈ C(K) with support contained in U
such that ∥f∥sup ≤ 1. Hence (6.5) is equal to the set of those µ ∈ M(K)
with |⟨µ, f⟩| ≤ c for every f ∈ C(K) with support contained in U such that
∥f∥sup ≤ 1. Such set is obviously weak*-closed. □

We now have all the necessary ingredients to establish the core of our
weak*-compactness result.

Lemma 6.8. If X is a completely regular topological space and Λ ⊂ ca(X)
is a tight collection of regular measures then Φ[Λ] is contained in a weak*-
closed subset F of M

(
β(X)

)
that is contained in the image of Φ. Moreover,

if in addition Λ ⊂ ca+(X) then F can be chosen in such a way that it is
contained in Φ[ca+(X)].

Proof. Using the tightness of Λ, choose for each n ≥ 1 a compact Borel
subset Kn of X such that |µ|(X \Kn) ≤ 1

n for all µ ∈ Λ. The set

F =

∞⋂
n=1

{
ν ∈ M

(
β(X)

)
: |ν|

(
β(X) \ ι[Kn]

)
≤ 1

n

}
is weak*-closed in M

(
β(X)

)
by Lemma 6.7. To see that F contains Φ[Λ],

note that every µ ∈ Λ is tight and regular so that Lemma 6.6 implies that
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Φ(µ) = ι∗µ and using (2.8) we obtain

|ι∗µ|
(
β(X) \ ι[Kn]

)
≤ (ι∗|µ|)

(
β(X) \ ι[Kn]

)
= |µ|

(
X \ ι−1[ι[Kn]]

)
≤ |µ|(X \Kn) ≤ 1

n ,

for all n ≥ 1. Obviously every ν ∈ F vanishes on every Borel subset of β(X)
disjoint from the image of ι and thus Lemma 6.4 implies that F is contained
in the image of Φ. It remains to check that if Λ is contained in ca+(X) then
we can choose F contained in Φ[ca+(X)

]
. To this aim, simply replace F

with its intersection with the set of nonnegative regular measures on β(X).
Such set is weak*-closed in M

(
β(X)

)
as it corresponds to the set of positive

linear functionals on C
(
β(X)

)
via the identification M

(
β(X)

)
≡ C

(
β(X)

)∗
(Proposition C.3). □

In what follows, a subset of an arbitrary topological space will be called
relatively compact if its closure is compact (equivalently, if it is contained in
a subset that is both compact and closed). For general topological spaces
that are not Hausdorff this notion of relative compactness is stronger than
the requirement that the set be contained in a compact subset as compact
subsets need not have compact closures. However, for the weak* topology of
ca(X) (or the weak* topology of a subset of ca(X)) the situation is nicer and
we do have that the closure of a compact subset is compact. Namely, this
follows from Corollary 6.2 since the weak* topology of ca(X) (and also of its
subsets) is induced from the weak* topology of Cb(X)∗ which is Hausdorff.

Proposition 6.9. Let X be a completely regular topological space and Λ be
a bounded subset of ca(X). If Λ is tight and every element of Λ is regular
then Λ is weak*-relatively compact in ca(X). If in addition Λ ⊂ ca+(X)
then Λ is weak*-relatively compact in ca+(X).

Proof. Since Λ is bounded and Φ is a bounded linear map, the set Φ[Λ] is
contained in a closed ball B of M

(
β(X)

)
. Let F be the weak*-closed subset

of M
(
β(X)

)
given by Lemma 6.8. The set F ∩B is weak*-compact by the

Banach–Alaoglu Theorem and as the weak* topology of ca(X) is induced by
Φ from the weak* topology of M

(
β(X)

)
, Lemma 6.1 yields that Φ−1[F ∩B]

is a (weak*-closed and) weak*-compact subset of ca(X) containing Λ. To
conclude the proof, note that if Λ ⊂ ca+(X) then F can be assumed to be
contained in Φ[ca+(X)] and applying Lemma 6.1 to Φ|ca+(X) we obtain that

Φ−1[F ∩B] ∩ ca+(X) is (weak*-closed in ca+(X) and) weak*-compact. □

Now we are going to study conditions under which a converse of Proposi-
tion 6.9 can be proven. First we show that weak*-compact subsets of ca(X)
are bounded under assumptions that make the map (6.1) from ca(X) to
Cb(X)∗ an isometric embedding.
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Lemma 6.10. If X is a perfectly normal topological space then every weak*-
compact subset of ca(X) is bounded.

Proof. The image of a weak*-compact subset of ca(X) under (6.1) is weak*-
compact in Cb(X)∗ and thus it is a pointwise bounded set of bounded linear
functionals on the Banach space Cb(X). The conclusion follows from the
Uniform Boundedness Principle and from the fact that (6.1) is an isometric
embedding if X is perfectly normal (Proposition 3.6). □

We will only be able to prove tightness of a weak*-compact subset of
ca+(X) if X is a Polish space. The trick is to use the fact that a totally
bounded subset of a complete metric space is relatively compact. Recall
that a subset of a metric space is called totally bounded if for every ε > 0 it
can be covered by finitely many sets of diameter less than ε.

Lemma 6.11. Let (X, d) be a metric space and Λ be a subset of ca(X). The
following conditions are equivalent:

(a) for every ε > 0 there exists a Borel subset B of X which is a finite
union of sets with diameter less than ε and such that |µ|(X \B) < ε,
for all µ ∈ Λ;

(b) for every ε > 0 there exists a totally bounded Borel subset B of X
such that |µ|(X \B) < ε, for all µ ∈ Λ.

If (X, d) is complete then (a) and (b) are equivalent to:

(c) Λ is tight.

Proof. The only nontrivial implication is (a)⇒(b). Given ε > 0, use (a) to
find for every n ≥ 1 a Borel subset Bn of X which is a finite union of sets
with diameter less than 1

n and for which |µ|(X \Bn) <
ε
2n , for every µ ∈ Λ.

The proof of (b) is concluded by taking B =
⋂∞

n=1Bn. □

Lemma 6.12. If (X, d) is a separable metric space and Λ is a weak*-compact
subset of ca+(X) then for every ε > 0 there exists a totally bounded Borel
subset B of X such that µ(X \B) < ε, for all µ ∈ Λ.

Proof. We prove that condition (a) in Lemma 6.11 holds. Given ε > 0, since
X is separable we can write X as a countable union of open subsets with
diameter less than ε and therefore for every µ ∈ ca+(X) we can find an open
subset Uµ of X which is a finite union of open subsets with diameter less
than ε and for which µ(X \ Uµ) < ε. By Lemma 4.5 the set

(6.6)
{
ν ∈ ca+(X) : ν(X \ Uµ) < ε

}
is a weak*-open neighborhood of µ in ca+(X) and therefore the weak*-
compactness of Λ implies that there exists a finite subset F of Λ such that
the sets (6.6) with µ ∈ F cover Λ. Finally, setting U =

⋃
µ∈F Uµ we obtain

that U is a finite union of open subsets with diameter less than ε and that
ν(X \ U) < ε for all ν ∈ Λ. □
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Corollary 6.13. If X is a Polish space then every weak*-compact subset of
ca+(X) is tight. □

All the work done in this section yields now the following characterization
of weak*-relatively compact subsets of ca+(X) if X is Polish.

Theorem 6.14. If X is a Polish space then a subset of ca+(X) is weak*-
relatively compact in ca+(X) if and only if it is bounded and tight.

Proof. Follows from Proposition 6.9, Corollary 3.5, Lemma 6.10 and Corol-
lary 6.13. □

Corollary 6.15. If X is a Polish space then a subset of ca1+(X) is weak*-
relatively compact in ca1+(X) if and only if it is tight.

Proof. Follows from Theorem 6.14 noting that ca1+(X) is weak*-closed in
ca+(X) and bounded. □

7. The Prokhorov metric

The goal of this section is to show that if X is a separable metric space
then the weak* topology of ca+(X) is metrizable. This is done by explicitly
exhibiting a metric that induces the weak* topology of ca+(X).

We start by introducing some notation. Let (X, d) be a metric space.
Given a subset A of X and ε > 0 we set:

Aε =
{
x ∈ X : d(x,A) < ε

}
=
{
x ∈ X : d(x, a) < ε, for some a ∈ A

}
.

Clearly Aε is an open subset of X containing A. Moreover,

(7.1) Aε ⊂ Aε′ , if 0 < ε ≤ ε′

and

(7.2) (Aε)ε
′ ⊂ Aε+ε′ ,

for all ε, ε′ > 0. Given µ, ν ∈ ca+(X), it follows from (7.1) that the set

Πµ,ν =
{
ε ∈ ]0,+∞[ : µ(A) ≤ ν(Aε) + ε, for every Borel subset A of X

}
is a right-unbounded interval. We define

(7.3) π0(µ, ν) = inf Πµ,ν ,

for all µ, ν ∈ ca+(X). Let us summarize the properties of π0.

Lemma 7.1. If (X, d) is a metric space and π0 is defined by (7.3) then the
following conditions hold for all µ, ν, ρ ∈ ca+(X):

(a) π0(µ, ν) ≥ 0;

(b) π0(µ, ν) is zero if and only if µ(A) ≤ ν(A) for every Borel subset A
of X;

(c) π0(µ, ρ) ≤ π0(µ, ν) + π0(ν, ρ).
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Proof. Condition (a) is obvious. To prove (b), note first that π0(µ, ν) = 0 if
and only if

(7.4) µ(A) ≤ ν(Aε) + ε,

for every Borel subset A of X and every ε > 0. Obviously (7.4) holds if
µ(A) ≤ ν(A) and, moreover, if A is closed and (7.4) holds for all ε > 0 then
µ(A) ≤ ν(A), since

⋂
ε>0A

ε is the closure of A. To conclude the proof of
(b), note that if A is an arbitrary Borel subset of X and µ(F ) ≤ ν(F ) for
every closed subset F of A then µ(F ) ≤ ν(A) for every closed subset F of
A and thus µ(A) ≤ ν(A) by the regularity of µ (Corollary 3.5). Finally, to
prove (c) note that if ε ∈ Πµ,ν and ε′ ∈ Πν,ρ then it follows from (7.2) that
ε+ ε′ ∈ Πµ,ρ. □

Lemma 7.1 shows that π0 is close to being a metric and that the ingredient
that is missing is the symmetry. So we symmetrize it by setting

(7.5) π(µ, ν) = max{π0(µ, ν), π0(ν, µ)},

for all µ, ν ∈ ca+(X). Note that since Πµ,ν and Πν,µ are right-unbounded
intervals, we have:

π(µ, ν) = inf Πµ,ν ∩Πν,µ,

i.e., π(µ, ν) is the infimum of the set of those ε > 0 such that both inequalities

(7.6) µ(A) ≤ ν(Aε) + ε, ν(A) ≤ µ(Aε) + ε

hold for every Borel subset A of X.
The fact that π is a metric is an immediate consequence of Lemma 7.1.

Proposition 7.2. If (X, d) is a metric space then the map π defined in
(7.5) is a metric on the set ca+(X). □

Definition 7.3. The map π defined in (7.5) is called the Prokhorov metric.

Remark 7.4. If µ, ν ∈ ca+(X) are such that µ(X) = ν(X) then Πµ,ν = Πν,µ.
Namely, if ε > 0 is such that the inequality

(7.7) µ(A) ≤ ν(Aε) + ε

holds for every Borel subset A of X then replacing A with X \ Aε in (7.7)
and using that (X \ Aε)ε ⊂ X \ A we obtain ν(A) ≤ µ(Aε) + ε. It follows
from this observation that if µ(X) = ν(X) then:

π0(µ, ν) = π0(ν, µ) = π(µ, ν).

In particular, π0 and π are the same for probability measures.

Let us now study the relationship between the topology induced by the
Prokhorov metric π and the weak* topology on ca+(X).

Proposition 7.5. If (X, d) is a metric space then every weak*-open subset
of ca+(X) is open with respect to the topology induced by the Prokhorov
metric.
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Proof. It is sufficient to prove that the subbasic weak*-open sets (4.7) are
Prokhorov-open. First, given c ∈ R and µ ∈ ca+(X) with µ(X) < c we show
that ν(X) < c for ν in some Prokhorov-open ball centered at µ. To this aim,
pick ε > 0 with µ(X) + ε < c. If ν ∈ ca+(X) is such that π(µ, ν) < ε then
the inequalities (7.6) hold for every Borel subset A of X and in particular
setting A = X we get:

ν(X) ≤ µ(Xε) + ε = µ(X) + ε < c.

Now let c ∈ R, U be an open subset of X and µ ∈ ca+(X) be such that
µ(U) > c and let us again show that ν(U) > c for ν in some Prokhorov-open
ball centered at µ. As in the final part of the proof of Proposition 4.16,
we can write U as a countable increasing union of closed sets H such that
d(H,X \ U) > 0 and therefore we can choose such a closed set H satisfying
µ(H) > c. Now pick ε > 0 small enough so that ε ≤ d(H,X \ U) and
µ(H) > c+ε and let ν ∈ ca+(X) be such that π(µ, ν) < ε. Using inequalities
(7.6) with A = H we obtain

c+ ε < µ(H) ≤ ν(Hε) + ε ≤ ν(U) + ε,

since Hε ⊂ U . Hence ν(U) > c and we are done. □

Our proof that Prokhorov-open sets in ca+(X) are weak*-open when X is
a separable metric space will use the weak* fundamental system of neighbor-
hoods given by Corollary 4.13. We first prove two simple lemmas concerning
Borel subsets whose boundary has null measure.

Lemma 7.6. If (X, d) is a metric space and µ ∈ ca+(X) then for every
x ∈ X we have that the boundary of the open ball B(x, r) of center x and
radius r has measure zero with respect to µ except possibly for countably
many r > 0.

Proof. The boundary of the open ball B(x, r) is contained in the sphere{
y ∈ X : d(y, x) = r

}
and such spheres are pairwise disjoint, so at most

countably many of them can have nonzero measure. □

Lemma 7.7. If X is a topological space and µ is a nonnegative measure on
the Borel σ-algebra of X then the collection of all Borel subsets B ⊂ X with
µ(∂B) = 0 is an algebra of subsets of X, i.e., it is nonempty, closed under
finite unions and complements (and thus also under finite intersections and
differences).

Proof. Simply note that ∂(B1∪B2) ⊂ (∂B1)∪ (∂B2) for any subsets B1 and
B2 of X and that ∂(X \B) = X \ (∂B) for any subset B of X. □

Theorem 7.8. If (X, d) is a separable metric space then the weak* topology
in ca+(X) coincides with the topology induced by the Prokhorov metric.

Proof. By Proposition 7.5 it is sufficient to prove that for every µ ∈ ca+(X)
and every ε > 0 there exists a weak*-neighborhood of µ in ca+(X) contained
in the Prokhorov-open ball of center µ and radius ε. Fix ε′ > 0 which we
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will choose later in terms of ε alone. By Lemma 7.6 the space X can be
covered by open balls of diameter less than ε′ whose boundary has measure
zero with respect to µ and by separability such covering can be assumed
to be countable. Moreover, using Lemma 7.7 we can disjointify such open
balls obtaining a countable partition X =

⋃∞
n=1Bn of X by Borel subsets

Bn with diameter less than ε′ and satisfying µ(∂Bn) = 0. Pick N ≥ 1 large

enough so that µ(X \ B) < ε′, where B =
⋃N

n=1Bn. We have that also
∂(X \ B) has measure zero with respect to µ and therefore Corollary 4.13
yields that{

ν ∈ ca+(X) : |µ(Bn)− ν(Bn)| < ε′

N , n = 1, . . . , N

and |µ(X \B)− ν(X \B)| < ε′
}

is a weak*-neighborhood of µ in ca+(X). Let ν in such weak*-neighborhood
of µ in ca+(X) be fixed and let us estimate the Prokhorov distance π(µ, ν).
Given a Borel subset A of X, let I denote the set of indices n ∈ {1, . . . , N}
such that A intersects Bn. Since all Bn have diameter less than ε′, we have
that Bn ⊂ Aε′ for all n ∈ I and therefore:

(7.8) µ(A) = µ(A \B) +
∑
n∈I

µ(A ∩Bn) ≤ µ(X \B) +
∑
n∈I

µ(Bn)

< ε′ +
∑
n∈I

(
ν(Bn) +

ε′

N

)
≤ ν(Aε′) + 2ε′ ≤ ν(A2ε′) + 2ε′.

Similarly:

(7.9) ν(A) = ν(A \B) +
∑
n∈I

ν(A ∩Bn) ≤ ν(X \B) +
∑
n∈I

ν(Bn)

< µ(X \B) + ε′ +
∑
n∈I

(
µ(Bn) +

ε′

N

)
< µ(Aε′) + 3ε′ ≤ µ(A3ε′) + 3ε′.

From (7.8) and (7.9) we get π(µ, ν) ≤ 3ε′ and we could have chosen ε′ > 0
with 3ε′ < ε to now get the desired conclusion that ν is in the Prokhorov-
open ball of center µ and radius ε. □

Remark 7.9. We observe that the weak* topology is typically not metrizable
in the space ca(X) of all finite signed measures. In fact, if X is completely
regular and Hausdorff then Proposition E.15 and Remark E.16 imply that
the weak* topology on ca(X) is metrizable if and only if X is finite. Even
bounded regions of ca(X) are often not metrizable in the weak* topology.
For instace, assuming again that X is completely regular and metrizable,
Proposition E.17 and Lemma E.18 imply that the unit ball of ca(X) is
metrizable in the weak* topology if and only if X is compact and metrizable.

We conclude the section by showing that ca+(X) is Polish with respect to
the weak* topology ifX is Polish. The missing ingredient is the completeness
of the Prokhorov metric.
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Proposition 7.10. If (X, d) is a separable complete metric space then the
Prokhorov metric in ca+(X) is complete.

Proof. Since every compact metric space is complete, it is sufficient to show
that every Prokhorov-Cauchy sequence is contained in a Prokhorov-compact
subset of ca+(X). By Theorem 7.8, Proposition 6.9 and Corollary 3.5 it is
then sufficient to prove that if (µn)n≥1 is Prokhorov-Cauchy in ca+(X) then
{µn : n ≥ 1} is bounded (with respect to the total variation norm) and tight.
It is readily checked that |µ(X)− ν(X)| ≤ π(µ, ν) for all µ, ν ∈ ca+(X) and
therefore every Prokhorov-bounded sequence in ca+(X) is bounded with
respect to the norm of ca(X). To prove that {µn : n ≥ 1} is tight we check
condition (a) of Lemma 6.11. Let ε > 0 be given and fix ε′ > 0 which we
will choose later in terms of ε alone. Let n0 ≥ 1 be such that π(µn, µm) < ε′

for all n,m ≥ n0.
Since X is separable, it can be covered by countably many open balls

B(x, ε′) of radius ε′ and therefore there exists a finite subset F ⊂ X such
that µn

(
X \

⋃
x∈F B(x, ε′)

)
< ε′ for all n = 1, . . . , n0. Setting

A = X \
⋃
x∈F

B(x, 2ε′),

we have Aε′ ⊂ X \
⋃

x∈F B(x, ε′) and since π(µn, µn0) < ε′ for n ≥ n0 we
obtain:

µn(A) ≤ µn0(A
ε′) + ε′ ≤ µn0

(
X \

⋃
x∈F

B(x, ε′)

)
+ ε′ < 2ε′.

Since also µn(A) ≤ µn

(
X \

⋃
x∈F B(x, ε′)

)
< ε′ for n ≤ n0 we have that the

open set B =
⋃

x∈F B(x, 2ε′) is a finite union of sets of diameter less than
or equal to 4ε′ and µn(X \ B) = µn(A) < 2ε′ for all n ≥ 1. This concludes
the proof as we could have chosen ε′ > 0 with 4ε′ < ε. □

Theorem 7.11. If X is a Polish space then ca+(X) endowed with the weak*
topology is also Polish.

Proof. Follows from Theorem 7.8, Proposition 7.10 and Corollary 4.21. □

Corollary 7.12. If X is a Polish space then ca1+(X) endowed with the weak*
topology is also Polish.

Proof. Follows from Theorem 7.11 and the fact that ca1+(X) is weak*-closed
in ca+(X). □

8. The vague topology

Given a topological space X, we denote by Cc(X) the space of continuous
real-valued functions on X having compact support. The vague topology
on ca(X) is the defined like the weak* topology but replacing Cb(X) with
Cc(X).
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Definition 8.1. Let X be a topological space. The vague topology on ca(X)
is the topology induced by the linear functionals ⟨·, f⟩ with f ∈ Cc(X).

Obviously the weak* topology on ca(X) is finer than the vague topology
so that weak* convergence of a net implies vague convergence. In this section
we will always assume thatX is locally compact and Hausdorff so that Cc(X)
is “reasonably large”. Note, for example, that if X is an infinite-dimensional
normed vector space then every compact subset of X has empty interior and
therefore Cc(X) is the null space, so that the vague topology on ca(X) is
trivial.

Recall that a noncompact locally compact Hausdorff space X admits a
unique (up to homeomorphism) Hausdorff one-point compactification which
is obtained by adding a new point∞ to the spaceX and by declaring as open
subsets of X ∪ {∞} the original open subsets of X and the complements in
X∪{∞} of the compact subsets of X. Since X∪{∞} is compact Hausdorff,
it is normal and therefore Urysohn’s Lemma is valid on X ∪{∞}. From this
observation one readily obtains the following version of Urysohn’s Lemma
for a locally compact Hausdorff space.

Lemma 8.2. If X is a locally compact Hausdorff space, K is a compact
subset of X and F is a closed subset of X disjoint from K then there exists
a continuous function f : X → [0, 1] that is equal to 1 on K and vanishes
on F .

Proof. Simply note that K is closed in the one-point compactification of X
and hence one can apply Urysohn’s Lemma to K and the closure of F in
the one-point compactification of X. □

Corollary 8.3. A locally compact Hausdorff topological space is completely
regular. □

Corollary 8.4. If X is locally compact Hausdorff and K is a compact subset
of X contained in an open subset U of X then there exists a continuous
function f : X → [0, 1] that is equal to 1 on K and whose support is compact
and contained in U .

Proof. Apply Lemma 8.2 to K and F = X \ V , where V is an open subset
of X containing K whose closure is compact and contained in U . □

Example 8.5. If X is compact then Cc(X) = Cb(X) and therefore the
vague and weak* topologies coincide. On the other hand, if X is locally
compact Hausdorff but noncompact then there exists a net (xi)i∈I in X
that converges to ∞ in the one-point compactification of X and therefore
limi∈I⟨δxi , f⟩ = 0 for all f ∈ Cc(X), so that (δxi)i∈I vaguely converges to
zero. On the other hand, δxi(X) = 1 for all i ∈ I and thus (δxi)i∈I does not
weak*-converge to zero.

For an important class of locally compact Hausdorff topological spaces
it holds that, for nonnegative measures, weak* convergence is just vague
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convergence plus convergence of the measure of the entire space, as we show
below. Recall that a subset of a topological space is called σ-compact if it
is a countable union of compact subsets.

Proposition 8.6. Let X be a locally compact Hausdorff topological space
in which every open subset is σ-compact (this happens, for instance, if X is
second countable). Given a net (µi)i∈I in ca+(X) and µ ∈ ca+(X) we have
that (µi)i∈I weak*-converges to µ if and only if (µi)i∈I vaguely converges to
µ and limi∈I µi(X) = µ(X).

Proof. Apply Lemma 4.14 with F equal to the set of [0, 1]-valued continuous
functions on X with compact support, keeping in mind Corollary 8.4 and
the fact that every open subset of X is an increasing union of a sequence of
compact subsets of X. □

Example 8.7. Proposition 8.6 fails for signed measures. For example, if
X = R and µn = δn − δn+1 for all n ≥ 1 then the sequence (µn)n≥1 vaguely
converges to zero and µn(R) = 0 for all n ≥ 1. Yet (µn)n≥1 is not weak*-
convergent as there are bounded continuous functions f : R→ R for which
the limit limn→+∞[f(n)− f(n+ 1)] does not exist.

Example 8.8. Proposition 8.6 fails without the assumption that every open
subset is σ-compact. Let ω1 denote the first uncountable ordinal and let X
be the disjoint union of ω1 and R endowed with the topology that makes
ω1 and R open subspaces of X, where ω1 = [0, ω1[ is endowed with the
order topology and R is endowed with the Euclidean topology. Let ν be the
nonregular measure on [0, ω1] defined in Example C.8 and define µ ∈ ca+(X)
by setting

µ(B) = ν(B ∩ ω1),

for every Borel subset B of X. The sequence (δn)n≥1 converges vaguely to µ
since for f ∈ Cc(X) we have f(n) = 0 for n sufficiently large and ⟨µ, f⟩ = 0.
Also δn(X) = µ(X) = 1, for all n ≥ 1 and yet (δn)n≥1 does not weak*-
converge to µ. Namely, if f is the characteristic function of the clopen ω1

then ⟨δn, f⟩ = 0 for all n ≥ 1 and ⟨µ, f⟩ = 1.

If X is a locally compact Hausdorff topological space then the vague
topology on ca(X) obviously coincides with the topology induced by the
linear map

(8.1) ca(X) ∋ µ 7−→ ⟨µ, ·⟩ ∈ Cc(X)∗,

where the topological dual Cc(X)∗ of Cc(X) is endowed with the weak*
topology. Here we regard Cc(X) as a normed space endowed with the supre-
mum norm. The map (8.1) is not in general injective (see Example C.8) and
therefore the vague topology is not in general Hausdorff. Using the theory
developed in Appendix C we obtain a simple sufficient condition for the
injectivity of (8.1).
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Proposition 8.9. Let X be a locally compact Hausdorff topological space.
The following conditions are equivalent:

(1) the linear map (8.1) is injective;

(2) the vague topology on ca(X) is Hausdorff;

(3) ca+(X) is vaguely closed in ca(X);

(4) the linear map (8.1) is an isometry.

Moreover, the condition

(5) every open subset of X is σ-compact

implies (1), (2), (3) and (4).

Proof. We will show that (1), (2), (3) and (4) are all equivalent to the
condition that every µ ∈ ca(X) is Radon (see Definition C.1). The proof will
then be concluded by observing that Proposition C.7 says that (5) implies
that every µ ∈ ca(X) is Radon. Note first that the equivalence between (1)
and (2) follows from Remark E.2. Moreover, if every µ ∈ ca(X) is Radon
then Corollary C.6 shows that (4) holds and Proposition C.3 shows that
(3) holds because the set of bounded positive linear functionals on Cc(X)
is weak*-closed in Cc(X)∗. To see that (1) implies that every µ ∈ ca(X)
is Radon note that if µ ∈ ca(X) is not Radon then Theorem C.5 implies
that some Radon measure must be mapped under (8.1) to the same linear
functional that µ is mapped to. It remains to check that (3) implies (1).
To see this, note that if (8.1) is not injective then some nonzero µ ∈ ca(X)
is mapped to zero under (8.1) and therefore both µ and −µ belong to the
vague closure of {0} ⊂ ca+(X). However, either µ or −µ is not in ca+(X)
and hence ca+(X) is not vaguely closed. □

We now present adaptations to the vague topology of several results that
were proven in the previous sections for the weak* topology. We start with
Lemmas 4.5 and 4.6.

Lemma 8.10. Let X be a locally compact Hausdorff topological space and
let ca+(X) be endowed with the vague topology. If U is an open σ-compact
subset of X then the map ca+(X) ∋ µ 7→ µ(U) ∈ R is lower semicontinuous,
i.e., for every c ∈ R the set{

µ ∈ ca+(X) : µ(U) > c
}

is vaguely open in ca+(X). Moreover, if K is a compact Gδ subset of X
then the map ca+(X) ∋ µ 7→ µ(K) ∈ R is upper semicontinuous, i.e., for
every c ∈ R the set {

µ ∈ ca+(X) : µ(K) < c
}

is vaguely open in ca+(X).

Proof. Analogous to the proof of Lemma 4.5 using Corollary 8.4 instead of
Urysohn’s Lemma and noting that H can be chosen to be compact because
U is σ-compact. □
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Lemma 8.11. Let X be a locally compact Hausdorff topological space in
which every relatively compact open set is an Fσ and let ca+(X) be endowed
with the vague topology. If f : X → ]−∞,+∞] is a lower semicontinuous
function bounded from below with compact support then the map

ca+(X) ∋ µ 7−→ ⟨µ, f⟩ ∈ ]−∞,+∞]

is lower semicontinuous, i.e., for every c ∈ R the set{
µ ∈ ca+(X) : ⟨µ, f⟩ > c

}
is vaguely open in ca+(X). Similarly, for every upper semicontinuous func-
tion f : X → [−∞,+∞[ bounded from above with compact support the map

ca+(X) ∋ µ 7−→ ⟨µ, f⟩ ∈ [−∞,+∞[

is upper semicontinuous, i.e., for every c ∈ R the set{
µ ∈ ca+(X) : ⟨µ, f⟩ < c

}
is vaguely open in ca+(X).

Proof. A simple adaptation of the proof of Lemma 4.6: to reduce the general
case to the case of nonnegative f we add an element of Cc(X) to f instead of
a constant. Since f has compact support, the assumptions in Corollary B.6
can be weakened so that it applies when every relatively compact open subset
ofX is an Fσ and the spaceX is only Hausdorff (see Remark B.7). Moreover,
the map g given by Corollary B.6 will also have compact support. □

Adapting Proposition 4.9 to the vague topology is a little trickier as we
have to remove the condition limi∈I µi(X) = µ(X) from the items in which
it appears because such equality is not a consequence of vague convergence.
Thus the equivalence between items (b) and (c) is lost and they must be
combined in a single item which we call (b-c) to make the comparison be-
tween the new and old statements easier.

We need first a slight generalization of Lemma 4.7.

Lemma 8.12. Let (X,A) be a measurable space, B ∈ A be a measurable
subset of X and (µi)i∈I be a net in ca(X,A). If supi≥i0 |µi|(B) < +∞ for
some i0 ∈ I then the set{

f ∈ Mb(X,A) : lim
i∈I

⟨µi, f⟩ = ⟨µ, f⟩ and f vanishes outside of B
}

is a closed subspace of Mb(X,A) with respect to the supremum norm for
any µ ∈ ca(X,A).

Proof. Note that |⟨µ, f⟩| ≤ |µ|(B) ∥f∥sup if µ ∈ ca(X,A) and f ∈ Mb(X,A)
vanishes outside of B and apply Corollary F.3 to the bounded bilinear pair-
ing between the closed subspace of Mb(X,A) consisting of functions that
vanish outside of B and the space ca(X,A) endowed with the semi-norm
µ 7→ |µ|(B). □



WEAK* TOPOLOGY FOR FINITE MEASURES ON TOPOLOGICAL SPACES 36

Proposition 8.13. Let X be a locally compact Hausdorff topological space,
(µi)i∈I be a net in ca+(X) and µ ∈ ca+(X) be given. If every relatively com-
pact open subset of X is an Fσ then the following conditions are equivalent:

(a) the net (µi)i∈I vaguely converges to µ;

(b-c) for every relatively compact open subset U of X and every compact
subset K of X the inequalities

µ(U) ≤ lim inf
i∈I

µi(U) and lim sup
i∈I

µi(K) ≤ µ(K)

hold;

(d) for every lower semicontinuous function f : X → ]−∞,+∞] bounded
from below with compact support the inequality

⟨µ, f⟩ ≤ lim inf
i∈I

⟨µi, f⟩

holds;

(e) for every upper semicontinuous function f : X → [−∞,+∞[ bounded
from above with compact support the inequality

lim sup
i∈I

⟨µi, f⟩ ≤ ⟨µ, f⟩

holds;

(f) for every relatively compact Borel subset B of X with µ(∂B) = 0 the
equality

lim
i∈I

µi(B) = µ(B)

holds;

(g) for every bounded Borel measurable function f : X → R with com-
pact support whose set of discontinuities has measure zero with re-
spect to µ, the equality

lim
i∈I

⟨µi, f⟩ = ⟨µ, f⟩

holds.

If X is an arbitrary locally compact Hausdorff topological space we have:

(b-c) ⇐⇒ (d) ⇐⇒ (e) =⇒ (f) ⇐⇒ (g) =⇒ (a).

Proof. We highlight the differences with the proof of Proposition 4.9. If
every relatively compact open subset of X is an Fσ, the proof that (a)
implies (d) and (e) now uses Lemma 8.11 instead of Lemma 4.6. The proofs
of (d)⇔(e)⇒(b-c)⇒(f), (g)⇒(f) and (g)⇒(a) are the same as before. In the
proof of (f)⇒(g) we cannot use (f) with B = X to conclude that limi∈I µi(X)
exists so we use (f) with B = L given by Lemma 8.14 below where K is
equal to the support of f . Then we use Lemma 8.12 with B equal to the
support of f to conclude that it is sufficient to approximate f uniformly
by a function g that vanishes outside of the support of f and that is a
linear combination of characteristic functions of relatively compact Borel
subsets B with µ(∂B) = 0. Now the argument can proceed as before, with
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a slight modification to ensure that the approximating function g vanishes
outside of the support of f . This is achieved simply by deleting from the

sum
∑k−1

j=0 tjχBj
defining g the term corresponding to the index j with

0 ∈ [tj , tj+1[.
Finally, the proof of (b-c)⇒(d) also requires an adjustment as we cannot

add a constant to make f nonnegative as before. Instead, we add a suitable
continuous function with compact support h. As the proof of (b-c)⇒(a) does
not go through (d), we can use (a) to conclude that limi∈I⟨µi, h⟩ = ⟨µ, h⟩
and we are done. □

Lemma 8.14. Let X be a locally compact Hausdorff topological space. If
µ ∈ ca+(X) and K is a compact subset of X then there exists a compact
subset L of X whose interior contains K and whose boundary has measure
zero with respect to µ. Moreover, if K is contained in a given open subset
U of X, one can choose L such that L ⊂ U .

Proof. Pick an Urysohn function f as in Corollary 8.4 and note that since
µ is finite and the level sets f−1(c), c ∈ R, are measurable and disjoint,
only countably many of them can have positive measure. We can then find
c ∈ ]0, 1[ such that f−1(c) has null measure and the conclusion is obtained
by taking L = f−1

[
[c,+∞[

]
. □

Lemma 4.14 and its consequences also have an adaptation to the vague
topology.

Lemma 8.15. Let X be a locally compact Hausdorff topological space in
which every relatively compact open set is an Fσ. Let F be a collection of
continuous [0, 1]-valued functions on X with compact support satisfying the
following condition: for every relatively compact open subset U of X and
every compact subset K of U there exists f ∈ F that is equal to 1 on K and
that vanishes outside of U . Under such assumption, for every net (µi)i∈I in
ca+(X) and every µ ∈ ca+(X) we have that (µi)i∈I vaguely converges to µ
if and only if limi∈I⟨µi, f⟩ = ⟨µ, f⟩ for every f ∈ F .

Proof. Assuming limi∈I⟨µi, f⟩ = ⟨µ, f⟩ for all f ∈ F we prove condition
(b-c) of Proposition 8.13. Since a relatively compact open subset U of X
is an increasing union of closed (and thus compact) subsets, one proves
µ(U) ≤ lim infi∈I µi(U) just like in the proof of Lemma 4.14. Now if K is a
compact subset of X, we first observe that K is a decreasing intersection of
a sequence of relatively compact open subsets. Namely, since X is locally
compact we have that K is contained in a relatively compact open subset
U and thus the relatively compact open set U \K is the increasing union of
a sequence (Fn)n≥1 of closed sets. Setting Un = U \ Fn, we obtain that K
is the decreasing intersection of the sequence (Un)n≥1 of relatively compact
open subsets. Now for each n ≥ 1 pick fn ∈ F that equals 1 on K and
vanishes outside of Un and note that

lim sup
i∈I

µi(K) ≤ lim
i∈I

⟨µi, fn⟩ = ⟨µ, fn⟩ ≤ µ(Un),
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for all n ≥ 1. The conclusion follows by taking the infimum over n noting
that infn≥1 µ(Un) = µ(K). □

Corollary 8.16. If (X, d) is a locally compact metric space then a net
(µi)i∈I in ca+(X) vaguely converges to µ ∈ ca+(X) if and only if

lim
i∈I

⟨µi, f⟩ = ⟨µ, f⟩

for every Lipschitz function f : X → R with compact support. In other
words, the vague topology of ca+(X) coincides with the topology induced by
all maps of the form ⟨·, f⟩ with f : X → R Lipschitz with compact support.

Proof. Apply Lemma 8.15 with F equal to the set of [0, 1]-valued Lipschitz
functions on X with compact support and prove the existence of the relevant
Lipschitz Urysohn functions like in the proof of Proposition 4.16, keeping in
mind that ifK is a compact subset of an open set U then d(K,X\U) > 0. □

Corollary 8.17. If X is a (Hausdorff, second countable, finite-dimensional)
differentiable manifold of class Ck (1 ≤ k ≤ +∞) then a net (µi)i∈I in
ca+(X) vaguely converges to µ ∈ ca+(X) if and only if ⟨µ, f⟩ = limi∈I⟨µi, f⟩
for every function f : X → R of class Ck having compact support.

Proof. Identical to the proof of Proposition 4.17, using Lemma 8.15 instead
of Lemma 4.14. □

Let us now present a sufficient condition for the metrizability of the vague
topology in ca+(X).

Proposition 8.18. If X is a locally compact Hausdorff and second countable
topological space then vague topology on ca+(X) is metrizable.

Proof. Since X is σ-compact and locally compact, we can write it as a
countable unionX =

⋃∞
n=1Kn of compact setsKn such thatKn is contained

in the interior of Kn+1 for all n ≥ 1. Note that the fact that the interiors
of the sets Kn cover X implies that every compact subset of X is contained
in some Kn. For each n ≥ 1, let fn : X → [0,+∞[ be a continuous function
with compact support that is equal to 1 on Kn (Corollary 8.4) and consider
the map:

(8.2) ca+(X) ∋ µ 7−→ (fnµ)n≥1 ∈
∞∏
n=1

ca+(X).

We endow each factor ca+(X) in the product
∏∞

n=1 ca+(X) with the weak*
topology and the product

∏∞
n=1 ca+(X) with the corresponding product

topology. We claim that if the domain of (8.2) is endowed with the vague
topology then (8.2) is a homeomorphism onto its image. Since X is metriz-
able by Urysohn’s Metrization Theorem and thus the weak* topology on
ca+(X) is metrizable by Theorem 7.8, the desired conclusion will follow
from the claim and from the fact that a countable product of metrizable
spaces is metrizable.
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To see that (8.2) is injective note that if µ, ν ∈ ca+(X) and fnµ = fnν
for all n ≥ 1 then µ and ν agree on every relatively compact Borel subset of
X and therefore µ = ν, as every Borel subset of X is a countable increas-
ing union of relatively compact Borel subsets. Now by (2.6) the topology
induced on ca+(X) by the map (8.2) coincides with the topology induced
by all the linear functionals of the form ⟨·, fng⟩ with n ≥ 1 and g ∈ Cb(X).
Since

Cc(X) =
{
fng : n ≥ 1, g ∈ Cb(X)

}
we conclude that the topology induced on ca+(X) by the map (8.2) is the
vague topology. This proves the claim. □

We observe that the vague topology is typically not metrizable in the
space ca(X) of all finite signed measures. Namely, if X is locally compact
and Hausdorff then Proposition E.19 states that ca(X) is metrizable in the
vague topology if and only if X is countable and discrete. On the other
hand, the bounded subsets of ca(X) are metrizable in the vague topology if
and only if X is second countable, by Proposition E.20.

Remark 8.19. Let X be a locally compact Hausdorff and second countable
topological space. As we have just seen in Proposition 8.18, the vague
topology on ca+(X) is metrizable and it follows from Corollary 4.21 that
it is separable. One then is naturally led to ask if it is also Polish. We
will show below in Proposition 8.20 that vaguely closed bounded subsets of
ca+(X) are vaguely compact and therefore such subsets are Polish, being
both compact and metrizable. Moreover, if X is compact then the vague
topology coincides with the weak* topology and thus ca+(X) is Polish by
Theorem 7.11. However, as we show now, if X is not compact then ca+(X)
cannot be Polish in the vague topology because the thesis of Baire’s Category
Theorem is not valid in it. To see this, note that for r ≥ 0 the set

(8.3)
{
µ ∈ ca+(X) : ∥µ∥ ≤ r

}
is vaguely closed in ca+(X) because condition (4) in the statement of Propo-
sition 8.9 holds and a closed ball in Cc(X)∗ is weak*-closed. Let us check
that (8.3) has empty interior in ca+(X) with respect to the vague topol-
ogy. Let (xn)n≥1 be a sequence in X that converges to ∞ in the one-point
compactification of X (to obtain such sequence pick Kn as in the proof of
Proposition 8.18 and xn ∈ X \Kn). We have that (nδxn)n≥1 vaguely con-
verges to zero and therefore given µ in (8.3) we have that (µ+nδxn)n≥1 is a
sequence in ca+(X) that vaguely converges to µ and that is eventually out-
side of (8.3). This proves that (8.3) is closed with empty interior in ca+(X)
endowed with the vague topology and since ca+(X) is the union of all sets
(8.3) with r a positive integer, we obtain a contradiction with the thesis of
Baire’s Category Theorem.

We finish the section by discussing compactness with respect to the vague
topology. As we have seen in Section 6, weak*-closed bounded subsets of
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ca+(X) are not in general weak*-compact and obtaining a characterization
of weak*-compact subsets of ca+(X) (if X is Polish) took us some work.
The situation is much simpler with the vague topology.

Proposition 8.20. If X is a locally compact Hausdorff topological space
then for every r ≥ 0 the sets{

µ ∈ ca(X) : ∥µ∥ ≤ r
}
,(8.4) {

µ ∈ ca+(X) : ∥µ∥ ≤ r
}

(8.5)

are vaguely compact. Moreover, every bounded subset of ca(X) is vaguely
relatively compact in ca(X) and every bounded subset of ca+(X) is vaguely
relatively compact in ca+(X).

Proof. Recall that the linear map (8.1) induces the vague topology on ca(X)
from the weak* topology of the topological dual Cc(X)∗ of the space Cc(X)
endowed with the supremum norm and that by the Banach–Alaoglu The-
orem the closed balls of Cc(X)∗ are weak*-compact. Moreover, it follows
from (2.2) and Corollary C.6 that the image under (8.1) of (8.4) is precisely
the closed ball of radius r centered at the origin in Cc(X)∗. Lemma 6.1 then
yields that (8.4) is vaguely compact. Using also Proposition C.3 we obtain
that the image of (8.5) under (8.1) is the intersection of the closed ball of
radius r centered at the origin in Cc(X)∗ with the weak*-closed subset con-
sisting of bounded positive linear functionals. Thus Lemma 6.1 also yields
that (8.5) is vaguely compact. To prove the final part of the statement, note
that since the weak* topology of Cc(X)∗ is Hausdorff, Corollary 6.2 implies
that the vague closure of a vaguely compact subset of ca(X) is vaguely com-
pact and that the vague closure in ca+(X) of a vaguely compact subset of
ca+(X) is vaguely compact. □

Do we have a converse for Proposition 8.20? Note that the proof of
Lemma 6.10 does not work for the vague topology since Cc(X) is not in gen-
eral complete with respect to the supremum norm and the Uniform Bound-
edness Principle does not apply. In fact it is not true that a vaguely compact
subset of ca(X) must be bounded. For example, if there exists a sequence
(xn)n≥1 in X that converges to ∞ in the one-point compactification of X
then (nδxn)n≥1 vaguely converges to zero and therefore {nδxn : n ≥ 1}∪{0}
is vaguely compact. Nevertheless, it holds that vaguely compact subsets of
ca(X) are in some sense “bounded on compact subsets of X” under suitable
assumptions on X.

Proposition 8.21. Let X be a locally compact Hausdorff topological space
in which every relatively compact open set is an Fσ. If Λ is a vaguely compact
subset of ca(X) then for every compact subset K of X we have that the set
{|µ|(K) : µ ∈ Λ} is bounded.

Proof. Let K be a compact subset of X, U be a relatively compact open
subset of X containing K and let K ′ denote the closure of U . If C(X;K ′)
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denotes the subspace of Cc(X) consisting of functions with support con-
tained in K ′ then C(X;K ′) is a Banach space endowed with the supremum
norm and therefore the Uniform Boundedness Principle implies that every
weak*-compact subset of the topological dual of C(X;K ′) is bounded. Since
the map

(8.6) ca(X) ∋ µ 7−→ ⟨µ, ·⟩ ∈ C(X;K ′)∗

is continuous with respect to the vague topology of ca(X) and the weak*
topology of C(X;K ′)∗, we conclude that the image of Λ under (8.6) is weak*-
compact and hence bounded. To conclude the proof, it is sufficient to show
that for every µ ∈ ca(X) it holds that |µ|(K) is less than or equal to the
norm of the linear functional ⟨µ, ·⟩ ∈ C(X;K ′)∗. To this aim, note first
that the norm of ⟨µ, ·⟩ ∈ C(X;K ′)∗ is greater than or equal to the norm of
the linear functional ⟨µ|U , ·⟩ ∈ Cc(U)∗. Since every relatively compact open
subset of X is an Fσ, we have that every open subset of U is σ-compact
and thus Proposition C.7 implies that µ|U is Radon. Now Proposition C.2
gives us that the norm of the linear functional ⟨µ|U , ·⟩ ∈ Cc(U)∗ is equal to
∥µ|U∥ = |µ|(U), which is greater than or equal to |µ|(K). □

9. Weak* topology and cumulative distribution functions

In this section we consider only the topological space X = R, endowed
with its Euclidean topology.

Definition 9.1. Given µ ∈ ca(R), its cumulative distribution function is
the function Fµ : R→ R defined by

Fµ(x) = µ
(
]−∞, x]

)
,

for all x ∈ R.

Using the continuity properties of measures with respect to monotone
limits of sequences of measurable sets, we easily obtain that

lim
t→x+

Fµ(t) = Fµ(x), lim
t→x−

Fµ(t) = µ
(
]−∞, x[

)
,

for all x ∈ R so that Fµ is right-continuous and admits left limits at every
point. In particular

µ
(
{x}
)
= Fµ(x)− lim

t→x−
Fµ(t),

for all x ∈ R so that Fµ is continuous at x if and only if the singleton {x}
has measure zero with respect to µ. It follows that Fµ has at most countably
many discontinuity points. Moreover, we have the equalities:

lim
t→−∞

Fµ(t) = 0, lim
t→+∞

Fµ(t) = µ(R).

If the measure µ is nonnegative then obviously Fµ is increasing (but not
necessarily strictly increasing) and, for arbitrary µ ∈ ca(R), the function Fµ

has bounded variation being the difference of the increasing functions Fµ+

and Fµ− .
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There is a very simple criterion for the weak* convergence and for the
vague convergence of nonnegative measures onR in terms of their cumulative
distribution functions.

Proposition 9.2. Let (µi)i∈I be a net in ca+(R) and let µ ∈ ca+(R) be
given. We have that (µi)i∈I weak*-converges to µ if and only if

lim
i∈I

µi(R) = µ(R)

and

(9.1) lim
i∈I

Fµi(x) = Fµ(x),

for every x ∈ R that is a continuity point of Fµ. Moreover, (µi)i∈I vaguely
converges to µ if and only if

(9.2) lim
i∈I

(
Fµi(x)− Fµi(y)

)
= Fµ(x)− Fµ(y),

for every x, y ∈ R that are continuity points of Fµ.

Proof. If x ∈ R is a continuity point of Fµ then the boundary {x} of ]−∞, x]
has measure zero with respect to µ and thus (9.1) follows if (µi)i∈I weak*-
converges to µ from the equivalence between (a) and (f) in Proposition 4.9.
Similarly, if (µi)i∈I vaguely converges to µ then the equivalence between (a)
and (f) in Proposition 8.13 implies (9.2) for continuity points x, y of Fµ

since {x, y} is the boundary of ]x, y] for x < y.
Due to Proposition 8.6, to conclude the proof it is sufficient to show

that (µi)i∈I vaguely converges to µ assuming that (9.2) holds for every pair
x, y ∈ R of continuity points of Fµ. Let f ∈ Cc(R) be fixed and choose
continuity points a, b ∈ R of Fµ with a < b such that f vanishes outside of
]a, b]. Since the limit

(9.3) lim
i∈I

µi(]a, b]) = lim
i∈I

(
Fµi(b)− Fµi(a)

)
= Fµ(b)− Fµ(a) = µ(]a, b]),

is finite, applying Lemma 8.12 with B = ]a, b] we see that in order to show
that limi∈I⟨µi, f⟩ = ⟨µ, f⟩ it is sufficient to approximate f uniformly by
a function g ∈ Mb(R) that vanishes outside of ]a, b] and for which the
equality limi∈I⟨µi, g⟩ = ⟨µ, g⟩ holds. Given ε > 0, to obtain such g with
∥f − g∥sup ≤ ε, pick δ > 0 using the uniform continuity of f on [a, b] such
that f oscillates less than ε in subintervals of [a, b] with diameter less than
δ and consider a partition

a = t0 < t1 < · · · < tk = b

such that all tj are continuity points of Fµ and tj+1 − tj < δ for all j. Now

define g by setting g =
∑k−1

j=0 f(tj+1)χ]tj ,tj+1]
and use the analogue of (9.3)

for the interval ]tj , tj+1] to conclude that limi∈I⟨µi, g⟩ = ⟨µ, g⟩. □
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Remark 9.3. The proof of Proposition 9.2 actually shows that if (9.2) holds
for all x, y in a dense subset of R then the net (µi)i∈I in ca+(R) vaguely
converges to µ ∈ ca+(R). If in addition limi∈I µi(R) = µ(R) then (µi)i∈I
weak*-converges to µ.

Example 9.4. Equality (9.1) for continuity points x of Fµ does not follow
from the weak*-convergence of (µi)i∈I to µ if the measures are allowed to
be signed. For example, setting

µn = δ0 − δ 1
n

for all n ≥ 1 then obviously (µn)n≥1 weak*-converges to µ = 0 and yet
Fµn = χ[0, 1n [

does not converge to Fµ = 0 at the point x = 0 even though

Fµ is continuous. Equality (9.2) also fails for x = 0 and y ̸= 0.

Example 9.5. Equality (9.1) for continuity points x of Fµ together with
limi∈I µi(R) = µ(R) do not imply that (µi)i∈I weak*-converges to µ if the
measures are allowed to be signed. For example, setting µn = δn − δn+1 for
all n ≥ 1 then Fµn = χ[n,n+1[ converges pointwise to F0 = 0 and µn(R) = 0

for all n ≥ 1 and yet (µn)n≥1 is not weak*-convergent as there are bounded
continuous functions f : R→ R such that the limit limn→+∞[f(n)−f(n+1)]
does not exist. In this example (µn)n≥1 vaguely converges to zero, but using
instead

µn = n
(
δ 1

n
− δ 2

n

)
,

for all n ≥ 1 we have that Fµn = nχ[ 1n , 2
n [

converges pointwise to zero and

µn(R) = 0 for all n ≥ 1 and yet (µn)n≥1 does not vaguely converge as

picking f ∈ Cc(R) such that f(x) =
√

|x| for x ∈ R near zero we have that
limn→+∞⟨µn, f⟩ = −∞.

Remark 9.6. For a bounded net (µi)i∈I of signed measures µi ∈ ca(R) it
is indeed true that (µi)i∈I vaguely converges to µ ∈ ca(R) if (9.2) holds
for all continuity points x, y ∈ R of Fµ (or for all x, y in a dense subset
of R). Namely, note that the argument in the proof of Proposition 9.2
only used the assumption of nonnegativity of the measures to establish that
supi≥i0 |µi|

(
]a, b]

)
< +∞ for some i0 ∈ I using (9.3).

10. Characteristic functions of measures

In this section X denotes a real finite-dimensional vector space endowed
with its Euclidean topology (i.e., the topology induced by an arbitrary
norm).

Definition 10.1. Given a measure µ ∈ ca(X), its characteristic function is
the complex valued function φµ : X∗ → C on the dual space of X defined
by

(10.1) φµ(ξ) =

∫
X
eiξ(x) dµ(x),

for all ξ ∈ X∗.
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If X = Rn we identify X with its dual space using the canonical inner
product ⟨·, ·⟩ and then φµ is identified with the function φµ : Rn → C given
by

φµ(ξ) =

∫
Rn

ei⟨ξ,x⟩ dµ(x),

for all ξ ∈ Rn.
Since the integrand in (10.1) has unit modulus and µ is finite, it follows

from the Dominated Convergence Theorem that the function φµ is contin-
uous. Moreover, we have

(10.2) ∥φµ∥sup ≤ ∥µ∥
and thus the mapping µ 7→ φµ defines a bounded linear map from ca(X) to
the space of bounded continuous complex-valued functions on X∗ endowed
with the supremum norm. The function φµ is in fact uniformly continuous.
Namely, we have

|φµ(ξ1)− φµ(ξ2)| =

∣∣∣∣∣
∫
X
(ei(ξ1−ξ2)(x) − 1)eiξ2(x) dµ(x)

∣∣∣∣∣ ≤ h(ξ1 − ξ2),

for all ξ1, ξ2 ∈ X∗, where h : X∗ → [0,+∞[ is the function defined by

h(ξ) =

∫
X
|eiξ(x) − 1| d|µ|(x),

for all ξ ∈ X∗. The Dominated Convergence Theorem yields limξ→0 h(ξ) = 0
and the uniform continuity of φµ follows.

As it is to be expected, characteristic functions of measures transform
naturally under push-forwards by linear maps.

Lemma 10.2. If X and Y are real-finite dimensional vector spaces and
T : X → Y is a linear map then

φT∗µ = φµ ◦ T ∗,

for all µ ∈ ca(X), where T ∗ : Y ∗ → X∗ denotes the adjoint of T .

Proof. Follows from (2.9). □

It should be visible that the notion of characteristic function of a measure
is closely related to the notion of Fourier transform. Let us recall some basic
definitions and well-known facts. The Schwartz space S(Rn) is defined as
the space of all smooth functions ϕ : Rn → C such that any partial derivative
of ϕ (of any order) multiplied by an arbitrary polynomial is bounded. The

Fourier transform of a function ϕ ∈ S(Rn) is the map ϕ̂ : Rn → C defined
by

ϕ̂(ξ) =
1

(2π)
n
2

∫
Rn

e−i⟨ξ,x⟩ϕ(x) dx, ξ ∈ Rn

and the inverse Fourier transform of ϕ is the map ϕ̌ : Rn → C defined by

ϕ̌(x) =
1

(2π)
n
2

∫
Rn

ei⟨ξ,x⟩ϕ(ξ) dξ, x ∈ Rn,
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where the integrals are taken with respect to the Lebesgue measure and
⟨·, ·⟩ denotes the canonical inner product of Rn. It is well known that ϕ 7→ ϕ̂
and ϕ 7→ ϕ̌ are mutually inverse bijective linear maps of S(Rn) (see, for
instance, [1, 8.26 and 8.28]). Since every ϕ ∈ S(Rn) is Lebesgue integrable
and a measure µ ∈ ca(Rn) is finite, a simple application of Fubini’s Theorem
yields

(10.3)

∫
Rn

ϕ̂(ξ) dµ(ξ) =
1

(2π)
n
2

∫
Rn

φµ(−x)ϕ(x) dx,

for all ϕ ∈ S(Rn) and all µ ∈ ca(Rn).

Remark 10.3. Equality (10.3) means that the Fourier transform of µ re-

garded as a tempered distribution is the map Rn ∋ x 7→ (2π)−
n
2 φµ(−x) ∈ C.

As a simple consequence of (10.3) we obtain that two measures with the
same characteristic function are equal.

Proposition 10.4. If X is a real finite-dimensional vector space then the
map ca(X) ∋ µ 7→ φµ is injective.

Proof. Since µ 7→ φµ is linear, it suffices to prove that µ = 0 if φµ = 0.
Moreover, by Lemma 10.2 we can assume that X = Rn. If φµ = 0 then
equality (10.3) and the fact that the Fourier transform is a bijection of S(Rn)
imply that

∫
Rn ϕ dµ = 0 for all ϕ ∈ S(Rn) and in particular ⟨µ, ϕ⟩ = 0 for

every smooth function ϕ : Rn → R with compact support. It is well-known
that every continuous function f : Rn → R with compact support is a
uniform limit of smooth functions with compact support (see, for instance,
[1, 8.17] or [2, Theorem 2.2]) and thus the continuity of the linear functional
⟨µ, ·⟩ with respect to the supremum norm implies that ⟨µ, ·⟩ vanishes on
Cc(R

n). To conclude the proof, observe that by Proposition C.7 the measure
µ is Radon and hence Proposition C.2 implies that µ = 0. □

Let us now investigate the relationship between characteristic functions
of measures and weak*-convergence. We start with a trivial result.

Proposition 10.5. Let X be a real finite-dimensional vector space endowed
with its Euclidean topology. If (µi)i∈I is a net in ca(X) that weak*-converges
to some µ ∈ ca(X) then the net of characteristic functions (φµi)i∈I converges
pointwise to the characteristic function of µ.

Proof. Simply note that the real and imaginary parts of the value of the
characteristic function of a measure at a point ξ ∈ X∗ are obtained by
integrating continuous real-valued bounded functions on X with respect to
the given measure. □

Now we prove our main result which states that the converse of Proposi-
tion 10.5 holds for sequences of nonnegative measures.
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Proposition 10.6. Let X be a real finite-dimensional vector space endowed
with its Euclidean topology. Given a sequence (µk)k≥1 in ca+(X) and µ
in ca+(X) we have that (µk)k≥1 weak*-converges to µ if and only if the
sequence of characteristic functions (φµk

)k≥1 converges pointwise to φµ.

Proof. By Proposition 10.5 it is sufficient to prove that if (φµk
)k≥1 con-

verges pointwise to φµ then (µk)k≥1 weak*-converges to µ. Moreover, by
Lemma 10.2 and Proposition 5.2 we can assume that X = Rn. If (φµk

)k≥1

converges pointwise to φµ then

(10.4) lim
k→+∞

µk(X) = lim
k→+∞

φµk
(0) = φµ(0) = µ(X)

and therefore the sequence (µk)k≥1 is bounded. It then follows from (10.2)
that the sequence (φµk

)k≥1 is bounded with respect to the supremum norm.
Now equality (10.3) and the Dominated Convergence Theorem yield

lim
k→+∞

∫
Rn

ϕ̂ dµk =

∫
Rn

ϕ̂ dµ,

for every ϕ ∈ S(Rn) because ϕ is Lebesgue integrable over Rn. Since the
Fourier transform is a bijection of S(Rn) we conclude that

lim
k→+∞

∫
Rn

ϕ dµk =

∫
Rn

ϕ dµ,

for every ϕ ∈ S(Rn) and in particular the latter equality holds for every
ϕ : Rn → R that is smooth with compact support. Hence Proposition 4.17
and (10.4) imply that (µk)k≥1 weak*-converges to µ. □

Example 10.7. Proposition 10.6 fails for signed measures even when the
sequence of measures is bounded. Namely, using the Mean Value Inequality
we obtain

|eiξx − eiξy| ≤ |ξ||x− y|,
for all ξ, x, y ∈ R, so that the maps R ∋ x 7→ eiξx ∈ C are Lipschitz for all
ξ ∈ R. Thus, if (µn)n≥1 is the sequence (4.10) defined in Example 4.18 we
obtain

lim
n→+∞

φµn(ξ) = 0,

for all ξ ∈ R and yet (µn)n≥1 is not weak*-convergent.

Example 10.8. Proposition 10.6 fails if the sequence (µk)k≥1 is replaced
with an arbitrary net even if we consider only probability measures. Namely,
set X = R and assume by contradiction that Proposition 10.6 holds for nets
of probability measures. Denoting by CR the set of all complex-valued
functions on R endowed with the product topology (which is the same as
the pointwise convergence topology) we conclude that the weak* topology
on ca1+(R) coincides with the topology induced by the map:

(10.5) ca1+(R) ∋ µ 7−→ φµ ∈ CR.



WEAK* TOPOLOGY FOR FINITE MEASURES ON TOPOLOGICAL SPACES 47

Remark 4.4 then implies that the Euclidean topology of R coincides with
the topology induced by the map Φ : R → CR given by the composition of
(10.5) with δ : R→ ca1+(R). Clearly

Φ(x)(ξ) = φδx(ξ) = eiξx,

for all x, ξ ∈ R and therefore the sets of the form

(10.6)
{
x ∈ R : |eiξx − 1| < ε for all ξ ∈ F

}
with F = {ξ1, . . . , ξm} a finite subset of R and ε > 0 should constitute
a fundamental system of neighborhoods of zero in R. But the set (10.6)
is necessarily unbounded as an application of Lemma 10.9 below with z
equal to (eiξ1 , . . . , eiξm) shows that it must contain infinitely many positive
integers.

Lemma 10.9. Let m be a positive integer and denote by (S1)m the m-th
power of the unit circle endowed with the group operation of coordinatewise
multiplication of complex numbers. Given z ∈ (S1)m and a neighborhood V
of the identity in (S1)m, there are infinitely many positive integers k such
that zk ∈ V .

Proof. Since (S1)m is compact, the sequence (zk)k≥1 must contain a con-
vergent subsequence (zkj )j≥1 and passing to a smaller subsequence we can
assume that limj→+∞(kj+1 − kj) = +∞. Clearly

lim
j→+∞

zkj+1−kj = lim
j→+∞

zkj+1 lim
j→+∞

(zkj )−1

is equal to the identity and therefore zkj+1−kj is in V for j sufficiently large.
□

Though Example 10.7 shows that Proposition 10.6 fails for signed mea-
sures, we have the following weaker result.

Proposition 10.10. Let X be a real finite-dimensional vector space en-
dowed with its Euclidean topology. Given a bounded sequence (µk)k≥1 in
ca(X) and µ ∈ ca(X), if the sequence of characteristic functions (φµk

)k≥1

converges pointwise to φµ then (µk)k≥1 vaguely converges to µ.

Proof. As in the proof of Proposition 10.6 we can assume that X = Rn

and we obtain that limk→+∞⟨µk, ϕ⟩ = ⟨µ, ϕ⟩ for every ϕ : Rn → R that is
smooth with compact support. The conclusion then follows from Lemma 4.7
and the fact that a continuous function with compact support f : Rn → R

is the uniform limit of a sequence of smooth functions with compact support
(see, for instance, [1, 8.17] or [2, Theorem 2.2]). □

Example 10.11. Proposition 10.10 fails if the sequence of measures (µk)k≥1

is not bounded. For example, set X = R and let (µn)n≥1 be the sequence
(4.11) defined in Example 4.18. Given ξ ∈ R we have

lim
n→+∞

φµn(ξ) = 0
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because R ∋ x 7→ eiξx ∈ C is of class C1. However, choosing f ∈ Cc(R) with

f(x) = 4
√

|x| for x ∈ R near zero we obtain limn→+∞⟨µn, f⟩ = +∞ so that
(µn)n≥1 is not vaguely convergent.

Appendix A. Nets

We make a very brief summary of the theory of nets and prove a few
simple results that are used in the main text.

Definition A.1. A directed set is a nonempty set I endowed with a binary
relation ≤ that is reflexive, transitive and such that for all i1, i2 ∈ I there
exists i ∈ I with i1 ≤ i and i2 ≤ i. A net is a family (xi)i∈I indexed by a
directed set I. A net (xi)i∈I on a topological space X is said to converge
to a point x ∈ X if for every neighborhood V of x there exists i0 ∈ I with
xi ∈ V for all i ≥ i0.

Some authors assume the binary relation ≤ on a directed set to be also
anti-symmetric so that it is indeed a partial order, but the most relevant
theorems about nets hold with both definitions of directed set so we adopt
the more general definition.

One often writes limi∈I xi = x to mean that a net (xi)i∈I on a topological
space X converges to some x ∈ X but it should be noted that if X is not
Hausdorff then such notation is misleading as a net can converge to more
than one point of X, so that the limit limi∈I xi is not well-defined.

For metric spaces (or, more generally, for first countable spaces) the topol-
ogy can be characterized by the convergence of sequences. In the general
case, one needs nets. We state some of the main standard relevant results
relating convergence of nets to the topology of a space.

Proposition A.2. If X is a topological space then the following statements
hold:

(a) if V is a subset of X and x ∈ X then V is a neighborhood of x (i.e.,
x is an interior point of V ) if and only if for every net (xi)i∈I in X
converging to x there exists i0 ∈ I such that xi ∈ V for all i ≥ i0;

(b) if A is a subset of X and x ∈ X then x belongs to the closure of A
if and only if there exists a net in A converging to x;

(c) given a topological space Y , a map f : X → Y and a point x ∈ X,
we have that f is continuous at the point x if and only if

(
f(xi)

)
i∈I

converges to f(x) for every net (xi)i∈I in X that converges to x.

Proof. The nontrivial implications in (a) and (c) are proven by contradiction
by constructing a suitable net on X converging to x indexed by the directed
set of all neighborhoods of x in X partially ordered by reverse inclusion. The
proof of the nontrivial implication in (b) is also obtained by constructing
such a net. □

The following result is useful for obtaining fundamental systems of neigh-
borhoods from a characterization of convergence of nets.
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Lemma A.3. Let X be a topological space and let V be a nonempty collection
of neighborhoods of a point x ∈ X. Assume that V characterizes convergence
of nets to x, i.e., assume that given a net (xi)i∈I in X, if for every V ∈ V
there exists i0 ∈ I such that i ≥ i0 implies xi ∈ V then (xi)i∈I converges to
x. Under such assumption, the collection of finite intersections of elements
of V is a fundamental system of neighborhoods of x in X.

Proof. Let V ′ be the collection of all finite intersections of elements of V.
We have that V ′ is a directed set partially ordered by reverse inclusion.
If W is a neighborhood of x in X which contains no element of V ′ we
obtain a net (xV )V ∈V ′ with xV ∈ V and xV ̸∈ W for all V ∈ V ′. Since V
characterizes convergence of nets to x we get that (xV )V ∈V ′ converges to x,
which contradicts the fact that xV ̸∈ W for all V ∈ V ′. □

We finish the section by summarizing the theory of lim inf and lim sup
for nets, which is completely analogous to the theory for sequences. We
consider nets on the extended real line [−∞,+∞] to ensure that lim inf and
lim sup always exist. We will assume [−∞,+∞] to be endowed with the
order, the topology and the operations usually defined in measure theory
books. The sum of two elements of [−∞,+∞] is well-defined unless it is of
the form (+∞) + (−∞) or (−∞) + (+∞).

A net (xi)i∈I in [−∞,+∞] is called increasing (resp., decreasing) if for
all i, j ∈ I we have that i ≤ j implies xi ≤ xj (resp., xj ≤ xi). Clearly an
increasing (resp., decreasing) net (xi)i∈I in [−∞,+∞] converges to supi∈I xi
(resp., to infi∈I xi). If (xi)i∈I is an arbitrary net in [−∞,+∞], we set:

lim inf
i∈I

xi = lim
i0∈I

inf
i≥i0

xi = sup
i0∈I

inf
i≥i0

xi,

lim sup
i∈I

xi = lim
i0∈I

sup
i≥i0

xi = inf
i0∈I

sup
i≥i0

xi.

Obviously

lim inf
i∈I

(−xi) = − lim sup
i∈I

xi

and such equality can be used to reduce proofs of results about lim sup to
proves of results about lim inf.

One readily checks that, for x ∈ R, we have x ≤ lim infi∈I xi if and only
if for every ε > 0 there exists i0 ∈ I such that x < xi + ε for all i ≥ i0.
Similarly, for x ∈ R, we have x ≥ lim supi∈I xi if and only if for every ε > 0
there exists i0 ∈ I such that x > xi − ε for all i ≥ i0. Moreover, we have

lim inf
i∈I

xi ≤ lim sup
i∈I

xi

and the equality holds if and only if the net (xi)i∈I is convergent, in which
case limi∈I xi is the common value of lim infi∈I xi and lim supi∈I xi.
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Given nets (xi)i∈I and (yi)i∈I in [−∞,+∞], we have that the inequalities

lim inf
i∈I

xi + lim inf
i∈I

yi ≤ lim inf
i∈I

(xi + yi),(A.1)

lim sup
i∈I

(xi + yi) ≤ lim sup
i∈I

xi + lim sup
i∈I

yi,(A.2)

hold, provided that all sums involved are well-defined. Of course, if the sum
xi + yi is well-defined only for i larger than or equal to some i0 ∈ I then we
can just replace I with {i ∈ I : i ≥ i0} as this does not interfere with lim inf
and lim sup. Inequalities (A.1) and (A.2) follow from

inf
i≥i0

xi + inf
i≥i0

yi ≤ inf
i≥i0

(xi + yi), sup
i≥i0

(xi + yi) ≤ sup
i≥i0

xi + sup
i≥i0

yi

by taking the limit with respect to i0 ∈ I. If any of the nets (xi)i∈I , (yi)i∈I
is actually convergent then inequalities (A.1) and (A.2) become equalities.

Lemma A.4. If (xi)i∈I and (yi)i∈I are nets in [−∞,+∞] and (yi)i∈I is
convergent in [−∞,+∞] then the equalities

lim inf
i∈I

(xi + yi) = lim inf
i∈I

xi + lim
i∈I

yi,(A.3)

lim sup
i∈I

(xi + yi) = lim sup
i∈I

xi + lim
i∈I

yi,(A.4)

hold provided that all sums involved are well-defined.

Proof. It is sufficient to prove (A.3) as then (A.4) follows by replacing xi
with −xi and yi with −yi. Moreover, by (A.1), to prove (A.3) it is sufficient
to prove:

(A.5) lim inf
i∈I

(xi + yi) ≤ lim inf
i∈I

xi + lim
i∈I

yi.

If limi∈I yi is finite then replacing xi with xi + yi and yi with −yi in (A.1)
we obtain

(A.6) lim inf
i∈I

(xi + yi) + lim inf
i∈I

(−yi) ≤ lim inf
i∈I

[(xi + yi) + (−yi)] = lim inf
i∈I

xi

from which (A.5) follows. Finally, if limi∈I yi = +∞ then (A.5) holds triv-
ially and if limi∈I yi = −∞ holds and (A.5) fails then (A.6) can be used to
conclude that lim infi∈I xi = +∞, which contradicts the assumption that
the sum lim infi∈I xi + limi∈I yi is well-defined. □

Appendix B. Semicontinuous functions

Let us recall the definition and prove some simple facts about semicon-
tinuous functions. We will consider functions taking values in the extended
real line [−∞,+∞] rather than just real-valued functions.

Definition B.1. Let X be a topological space and f : X → [−∞,+∞] be
a function. Given x ∈ X, we say that f is lower semicontinuous (resp.,
upper semicontinuous) at the point x ∈ X if for every c ∈ [−∞,+∞] with
c < f(x) (resp., with c > f(x)) there exists a neighborhood of x in X
in which f is greater than (resp., less than) c. We say that f is lower
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semicontinuous (resp., upper semicontinuous) if it is lower semicontinuous
(resp., upper semicontinuous) at all points of X.

Obviously a function f is automatically lower semicontinuous (resp., up-
per semicontinuous) at a point x such that f(x) = −∞ (resp., such that
f(x) = +∞). Moreover, if we replace “for all c ∈ [−∞,+∞]” with “for all
c ∈ R” in Definition B.1 we obtain an equivalent definition.

Note that a function f is lower semicontinuous at a point if and only if
−f is upper semicontinuous at that point, so that one can obtain results for
upper semicontinuous functions as a corollary of results for lower semicon-
tinuous functions by replacing f with −f .

The following characterization of semicontinuous functions is an immedi-
ate consequence of the definition.

Lemma B.2. Let X be a topological space and f : X → [−∞,+∞] be a
function. If f is lower semicontinuous (resp., upper semicontinuous) then
for every c ∈ [−∞,+∞] the set

{
x ∈ X : f(x) > c

}
is open (resp., the

set
{
x ∈ X : f(x) < c

}
is open). Conversely, if for every c ∈ R the set{

x ∈ X : f(x) > c
}
is open (resp., the set

{
x ∈ X : f(x) < c

}
is open) then

f is lower semicontinuous (resp., upper semicontinuous). □

Corollary B.3. The characteristic function of a subset of a topological space
is lower semicontinuous (resp., upper semicontinuous) if and only if the
subset is open (resp., closed). □

Let us give a characterization of semicontinuity in terms of nets.

Lemma B.4. Let X be a topological space and f : X → [−∞,+∞] be
a function. Given x ∈ X we have that f is lower semicontinuous (resp.,
upper semicontinuous) at x if and only if f(x) ≤ lim infi∈I f(xi) (resp.,
lim supi∈I f(xi) ≤ f(x)) for every net (xi)i∈I in X converging to x.

Proof. If f is lower semicontinuous at x and (xi)i∈I converges to x then
for every c ∈ [−∞,+∞] with c < f(x) we have that f is larger than c
in a neighborhood of x and therefore f(xi) > c for all i ≥ i0, for some
i0 ∈ I. Thus lim infi∈I f(xi) ≥ infi≥i0 f(xi) ≥ c for all c ∈ [−∞,+∞]
less than f(x) and hence lim infi∈I f(xi) ≥ f(x). To prove the converse,
assume f is not lower semicontinuous at x and let V be the directed set of
all neighborhoods of x in X partially ordered by reverse inclusion. We can
then pick c ∈ [−∞,+∞] with c < f(x) such that for every V ∈ V there
exists xV ∈ V with f(xV ) ≤ c and then (xV )V ∈V is a net converging to
x with lim infV ∈V f(xV ) ≤ c < f(x). The result for upper semicontinuous
functions can of course be obtained by replacing f with −f . □

In the main text we use the following result concerning approximation
of lower semicontinuous functions by linear combinations of characteristic
functions of open sets.
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Lemma B.5. Let X be a topological space. If f : X → [0,+∞] is a lower
semicontinuous function then there exists a sequence (fn)n≥1 such that f
is the monotonically increasing pointwise limit of (fn)n≥1 and each fn is
a finite linear combination of characteristic functions of open subsets of X
with real nonnegative coefficients.

Proof. Set fn = ϕn ◦ f , where ϕn : [0,+∞] → [0,+∞[ is defined by

ϕn =
1

2n

n2n∑
k=1

χUk
, Uk =

]
k
2n ,+∞

]
,

for all n ≥ 1. To conclude the proof, note that (ϕn)n≥1 is pointwise mono-
tonically increasing and convergent to the identity map of [0,+∞]. □

Corollary B.6. Let X be a normal topological space and µ be a nonnega-
tive (not necessarily finite) measure on the Borel σ-algebra of X such that
equality (3.3) holds for every open subset A of X. If f : X → [0,+∞] is a
nonnegative lower semicontinuous function then:

⟨µ, f⟩ = sup
{
⟨µ, g⟩ : g ∈ Cb(X), 0 ≤ g ≤ f

}
.

Proof. If f is the characteristic function of an open set A then for every
closed subset F of A we use Urysohn’s Lemma to get a continuous function
g : X → [0, 1] that is equal to 1 on F and vanishes outside of A. Then
0 ≤ g ≤ f , ⟨µ, g⟩ ≥ µ(F ) and the conclusion follows from (3.3). From this
observation the result follows immediately if f is a finite linear combination
of characteristic functions of open sets with nonnegative coefficients. To
conclude the proof, pick (fn)n≥1 as in Lemma B.5, apply the result already
proven to each fn and note that ⟨µ, f⟩ = limn→+∞⟨µ, fn⟩ = supn≥1⟨µ, fn⟩.

□

Remark B.7. If f has compact support then in Corollary B.6 it is sufficient
to assume that equality (3.3) holds only for relatively compact open subsets
A and the normality assumption can be replaced by the assumption that
X is Hausdorff. Namely, the functions fn given by Lemma B.5 will also
have compact support and thus the first part of the proof of Corollary B.6
can assume that the open set A is relatively compact. We can then apply
Urysohn’s Lemma on the compact Hausdorff space A to get a continuous
function g : A → [0, 1] the is equal to 1 on F and vanishes outside of A. By
letting g be zero outside of A we get a continuous extension of g to X.

Appendix C. Radon measures and the Riesz Representation
Theorem

In this appendix we recall certain basic facts about representations of lin-
ear functionals on spaces of continuous functions by measures. This theory
is typically developed on locally compact Hausdorff spaces. We will not
supply the proofs of the hardest representation theorems.



WEAK* TOPOLOGY FOR FINITE MEASURES ON TOPOLOGICAL SPACES 53

Given a topological space X, we will as usual regard it as a measurable
space endowed with its Borel σ-algebra, so that by a measure on X we mean
a measure on the Borel σ-algebra of X.

Definition C.1. Let X be a locally compact Hausdorff topological space
and µ be a nonnegative (not necessarily finite) measure on X. We say that µ
is a Radon measure if it is finite on compact sets and the following conditions
hold

µ(B) = inf
{
µ(U) : U ⊂ X open, U ⊃ B

}
,(C.1)

µ(U) = sup
{
µ(K) : K ⊂ U compact

}
,(C.2)

for every Borel subset B of X and every open subset U of X. If µ is a signed
measure on the Borel σ-algebra of X, we say that µ is a Radon measure if
both its positive part µ+ and negative part µ− are Radon.

It is easily seen that if a signed measure µ is Radon then its total variation
|µ| is also Radon, but the converse is not in general true unless µ is finite.

If µ is an arbitrary nonnegative Radon measure onX then condition (C.2)
does not hold in general if the open subset U is replaced with an arbitrary
Borel subset B. However, for a Borel subset B of X we do have

µ(B) = sup
{
µ(K) : K ⊂ B compact

}
if µ(B) is finite (or if B is a countable union of Borel sets of finite measure).
This is shown by first approximating B from the outside by an open set V
using (C.1) and then approximating V from the inside by a compact subset
K using (C.2). The desired compact approximation for B from the inside is
then obtained by trimming the excess from K, i.e., subtracting from K an
open approximation from the outside for K \B.

As in Section 8, if X is a locally compact Hausdorff topological space, we
denote by Cc(X) the space of real-valued continuous functions on X having
compact support and we endow it with the supremum norm. Obviously
every measure µ on the Borel σ-algebra of X which is finite over compact
sets defines a linear functional

Cc(X) ∋ f 7−→ ⟨µ, f⟩ ∈ R

on Cc(X) which we denote below simply by ⟨µ, ·⟩.
The Radon condition is the appropriate substitute of regularity to obtain

versions of Propositions 3.6 and 3.9 in which Cb(X) is substituted by Cc(X).

Proposition C.2. Let X be a locally compact Hausdorff topological space
and µ a Radon measure on X. We have that the norm of the linear func-
tional ⟨µ, ·⟩ ∈ Cc(X)∗ is equal to ∥µ∥, i.e.:

∥µ∥ = sup
{
|⟨µ, f⟩| : f ∈ Cc(X), ∥f∥sup ≤ 1

}
.

Proof. If µ is finite, proceed as in the proof of Proposition 3.6 but choosing
the closed sets F+ and F− to be compact and using Corollary 8.4 instead of
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Urysohn’s Lemma. If µ is infinite then, say, µ+ is infinite and µ− is finite.
Since µ+ is Radon we have:

sup
{
µ+(K) : K ⊂ X compact

}
= +∞.

To conclude the proof, note that if f : X → [0, 1] is in Cc(X) and is equal
to 1 over a compact subset K then:

⟨µ, f⟩ = ⟨µ+, f⟩ − ⟨µ−, f⟩ ≥ µ+(K)− µ−(X). □

Proposition C.3. Let X be a locally compact Hausdorff topological space
and µ be a Radon measure on X. The linear functional ⟨µ, ·⟩ ∈ Cc(X)∗ is
positive if and only if µ is nonnegative.

Proof. If µ− is finite, proceed as in the proof of Proposition 3.9 but choosing
the closed set F to be compact and using Corollary 8.4 instead of Urysohn’s
Lemma. If µ− is infinite note first that if f : X → [0, 1] is in Cc(X) and is
equal to 1 over a compact subset K then

⟨µ, f⟩ = ⟨µ+, f⟩ − ⟨µ−, f⟩ ≤ µ+(X)− µ−(K)

and obtain the contradiction ⟨µ, f⟩ < 0 from the fact that the Radon con-
dition for µ− yields:

sup
{
µ−(K) : K ⊂ X compact

}
= +∞. □

It turns out that every positive linear functional on Cc(X) is of the form
⟨µ, ·⟩ for a nonnegative measure µ and that the measure µ becomes unique
if we require it to be Radon.

Theorem C.4 (Riesz Representation Theorem, positive case). If X is a
locally compact Hausdorff topological space and α is a positive linear func-
tional on Cc(X) then there exists a unique nonnegative Radon measure µ
on X such that α is equal to ⟨µ, ·⟩.

Proof. See [1, 7.2] or [5, Theorem 2.14]. □

Let Cc(X) be endowed with the supremum norm. Using a standard vector
lattice theory trick one easily shows that a bounded linear functional on
Cc(X) can be written as a difference of bounded positive linear functionals
and from this fact and Theorem C.4 one obtains the following version of
Riesz Representation Theorem for (not necessarily positive) bounded linear
functionals.

Theorem C.5 (Riesz Representation Theorem, bounded case). If X is a
locally compact Hausdorff topological space and α is a bounded linear func-
tional on Cc(X) then there exists a unique (signed) Radon measure µ on X
such that α is equal to ⟨µ, ·⟩.

Proof. See [1, 7.15 and 7.17] or [5, Theorem 6.19]. □
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It is easily checked that if X is locally compact Hausdorff then the subset
of ca(X) consisting of finite Radon measures is a closed subspace. The
results above show that such subspace is linearly isometric to the topological
dual of Cc(X).

Corollary C.6. If X is a locally compact Hausdorff topological space then
the map that sends µ to ⟨µ, ·⟩ ∈ Cc(X)∗ is a linear isometry between the
closed subspace of ca(X) consisting of finite Radon measures and the topo-
logical dual of the normed space Cc(X).

Proof. Follows from Theorem C.5 and Proposition C.2. □

As we have seen in Corollary 3.5, if every open subset of X is an Fσ then
every measure µ ∈ ca(X) is regular. We have an analogue of this result in
which regularity is replaced with the Radon condition.

Proposition C.7. If X is a locally compact Hausdorff topological space for
which every open subset is σ-compact then every measure µ on X that is
finite on compact sets is Radon.

Proof. We can assume without loss of generality that µ is nonnegative. Con-
dition (C.2) holds trivially for an open subset U of X since U is a countable
increasing union of compact subsets. The collection of Borel subsets B
for which condition (C.1) holds is easily seen to be closed under countable
unions and since X is σ-compact it then suffices to establish (C.1) if B is
relatively compact. Given a relatively compact Borel subset B of X, we
have that B is contained in a relatively compact open subset A of X, by
the local compactness of X. Now A is a topological space in which every
open subset is an Fσ and, since µ|A ∈ ca(A), Corollary 3.5 yields that µ|A
is regular and hence condition (C.1) holds. □

C.1. The compact case. If K is a compact Hausdorff topological space
then Cc(K) is just the Banach space C(K) of real-valued continuous func-
tions on K endowed with the supremum norm. In that case the (signed)
Radon measures on K are just the (signed) finite regular measures on K and
we denote the space of such measures by M(K) as it is usual in the literature
of C(K) spaces. In this context all reasonable definitions of regularity for
finite measures are equivalent:

(i) µ ∈ ca(K) is regular if Borel subsets can be approximated by open
subsets from the outside, i.e., for every Borel subset B of K and
every ε > 0 there exists an open subset U of K containing B such
that |µ|(U \B) < ε;

(ii) µ ∈ ca(K) is regular if Borel subsets can be approximated by closed
(or compact) subsets from the inside, i.e., for every Borel subset B
of K and every ε > 0 there exists a closed (automatically compact)
subset F of K contained in B such that |µ|(B \ F ) < ε;
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(iii) µ ∈ ca(K) is regular if closed subsets can be approximated by open
subsets from the outside, i.e., for every closed subset F of K and
every ε > 0 there exists an open subset U of K containing F such
that |µ|(U \ F ) < ε;

(iv) µ ∈ ca(K) is regular if open subsets can be approximated by closed
(or compact) subsets from the inside, i.e., for every open subset U
of K and every ε > 0 there exists a closed (automatically compact)
subset F of K contained in U such that |µ|(U \ F ) < ε.

The equivalence between (i) and (ii) and the equivalence between (iii) and
(iv) are obtained by taking complements and the equivalence of (i) or (ii)
with (iii) or (iv) follows from Lemma 3.4. If M(K) is endowed with the
total variation norm then Corollary C.6 just gives the standard linear iso-
metric identification M(K) ∋ µ 7→ ⟨µ, ·⟩ ∈ C(K)∗ between M(K) and the
topological dual of C(K).

Example C.8 (a nonregular probability measure on a compact Hausdorff
space). Let ω1 denote the first uncountable ordinal and consider the ordinal
segmentK = [0, ω1] endowed with the order topology, so thatK is a compact
Hausdorff space. A subset F of ω1 = [0, ω1[ is called a club if it is both closed
in the order topology of ω1 and unbounded in ω1 (equivalently, if it is both
closed and uncountable). It is well-known that a countable intersection
of clubs is club (see [3, Lemma 6.8]). It follows easily from this that the
collection of all subsets B of ω1 such that either B or ω1 \B contain a club
is a σ-algebra of subsets of ω1. In particular, if B is a Borel subset of ω1

then either B or ω1 \ B contain a club. Define a probability measure ν on
the Borel σ-algebra of K by setting ν(B) = 1 if B is a Borel subset of K
such that ω1 ∩ B contains a club and ν(B) = 0 if B is a Borel subset of
K such that ω1 \ B contains a club. Clearly ν(ω1) = 1 and if F is closed
in K and contained in ω1 then F is countable and therefore ν(F ) = 0. It
follows that ν is not regular. If f : K → R is a continuous function then it is
easily shown1 that f must be constant on [α, ω1] for some countable ordinal
α ∈ ω1. It follows that

⟨ν, f⟩ = ⟨δω1 , f⟩,

for all f ∈ C(K). This means that δω1 ∈ M(K) is the regular measure
corresponding to the bounded linear functional ⟨ν, ·⟩ ∈ C(K)∗ defined by
the nonregular measure ν.

Appendix D. Stone–Čech compactification

Let us recall the definition and the standard construction of the Stone–
Čech compactification of a topological space.

1It is also true that a continuous function f : ω1 → R must be constant on [α, ω1[ for
some countable ordinal α, but the proof is a little harder.
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Definition D.1. Let X be a topological space. A Stone–Čech compactifi-
cation of X consists of a compact Hausdorff topological space β(X) and a
continuous map ι : X → β(X) such that the following property holds: for
every compact Hausdorff space K and every continuous map f : X → K
there exists a unique continuous map f̃ : β(X) → K such that:

f̃ ◦ ι = f.

It follows easily from the definition that Stone–Čech compactifications are
unique in the sense that if ι : X → β(X) and ι′ : X → β(X)′ are both Stone–
Čech compactifications of X then there exists a (unique) homeomorphism
h : β(X) → β(X)′ such that h ◦ ι = ι′.

We recall that every compact Hausdorff space K is homeomorphic to a
subspace of some power [0, 1]κ of [0, 1] endowed with the product topology.
To prove this, simply use Urysohn’s Lemma to obtain a family (fα)α∈κ of
continuous functions fα : K → [0, 1] that separate the points of K. Such
family defines an injective continuous function from K to [0, 1]κ which is
then a homeomorphism onto its image. This observation yields the following
sufficient condition for ι : X → β(X) to be a Stone–Čech compactification
of X.

Lemma D.2. Let X be a topological space, β(X) be a compact Hausdorff
space and ι : X → β(X) be a continuous map. If the image of ι is dense
in β(X) and if for every continuous function f : X → [0, 1] there exists a

continuous function f̃ : β(X) → [0, 1] such that f̃ ◦ ι = f then ι : X → β(X)
is a Stone–Čech compactification of X.

Proof. Given a continuous function f : X → K taking values on a compact
Hausdorff space K, we assume without loss of generality that K is a closed
subspace of the product [0, 1]κ for some set κ and we apply the property given
in the statement to every coordinate of f to obtain a continuous function
f̃ : β(X) → [0, 1]κ such that f̃ ◦ ι = f . The fact that the image of ι is dense

in β(X) implies that f̃ takes values in K and that f̃ is unique. □

Using Lemma D.2 we obtain the following simple construction of a Stone–
Čech compactification of an arbitrary topological space X. Consider the set
C of all [0, 1]-valued continuous functions on X and the space [0, 1]C of all
[0, 1]-valued maps on the set C endowed with the product topology. The
product [0, 1]C is compact Hausdorff and the map ι : X → [0, 1]C defined by

ι(x)(f) = f(x), f ∈ C, x ∈ X

is continuous. Let β(X) be the closure of the image of ι. Clearly for every
continuous function f : X → [0, 1] the restriction to β(X) of the projection

onto the f -th coordinate is a continuous function f̃ : β(X) → [0, 1] with

f̃ ◦ ι = f . Hence ι : X → β(X) is a Stone–Čech compactification of X by
Lemma D.2.

We have just proven the following result.
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Theorem D.3. Every topological space X admits a Stone–Čech compacti-
fication ι : X → β(X). Moreover, the image of ι is dense in β(X). □

We note that, despite Theorem D.3, it is not always the case that the map
ι : X → β(X) is a homeomorphism onto its image and in fact it is not even
true in general that ι is injective. There is a simple well-known condition
which is equivalent to ι being a homeomorphism onto its image.

Definition D.4. A topological space X is called completely regular if for
every x ∈ X and every closed subset F of X with x ̸∈ F there exists a
continuous function f : X → R that vanishes on F and such that f(x) = 1.

Note that every normal space is completely regular by Urysohn’s Lemma.

Proposition D.5. Let X be a topological space and ι : X → β(X) be a
Stone–Čech compactification of X. We have that X is completely regular if
and only if the topology of X is induced by ι. Moreover, X is completely
regular and Hausdorff if and only if ι is a homeomorphism onto its image.

Proof. If X is completely regular then it is easily checked that the topology
of X coincides with the topology induced by all [0, 1]-valued continuous
functions on X and therefore it follows from the concrete construction of
ι : X → β(X) described above that X has the topology induced by ι. If X
is also Hausdorff then [0, 1]-valued continuous functions separate the points
of X and therefore ι is also injective and hence a homeomorphism onto
its image. Conversely, since β(X) is compact Hausdorff it is completely
regular and from that it follows easily that X is also completely regular
(resp., completely regular and Hausdorff) if the topology of X is induced by
ι (resp., if ι is a homeomorphism onto its image). □

Appendix E. Bilinear pairings and their induced weak
topologies

Given real vector spaces X and Y , by a bilinear pairing ⟨·, ·⟩ between X
and Y we mean simply an arbitrary bilinear map

(E.1) X × Y ∋ (x, y) 7−→ ⟨x, y⟩ ∈ R
that associates a real number to an element of X and an element of Y . A
bilinear pairing ⟨·, ·⟩ induces a linear map

(E.2) Φ : Y ∋ y 7−→ ⟨·, y⟩ ∈ X∗

from Y to the algebraic dual X∗ of X.

Definition E.1. The weak topology on X induced by the bilinear pairing
(E.1) is defined as the topology induced by the set of all linear functionals
⟨·, y⟩, with y ∈ Y , i.e., the topology induced by the image of the map (E.2).

Since the weak topology of X depends only on the image of the map
Φ, when proving results about a weak topology one can without loss of
generality always assume that Y is a subspace of X∗ and that the bilinear
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pairing ⟨x, y⟩ is just given by evaluating the linear functional y ∈ X∗ at
x ∈ X. In fact, instead of talking about weak topologies induced by bilinear
pairings we could instead talk about weak topologies induced by subspaces
of X∗. However, in concrete examples it is often a little easier to define the
pairing than the corresponding subspace of X∗ so we prefer to formulate the
theory in terms of pairings.

Note that the bilinear pairing (E.1) can also be used to define a topology
on Y , namely, the topology induced by the linear functionals ⟨x, ·⟩, with
x ∈ X. This topology is also called the weak topology induced on Y by the
bilinear pairing (E.1) and obviously every theorem about the weak topology
of X corresponds to a similar theorem about the weak topology of Y which
can be obtained as a corollary by switching the roles of X and Y . We thus
choose to state all our results about weak topologies in terms of the weak
topology of X alone and ignore the weak topology of Y .

Clearly a fundamental system of open neighborhoods of the origin of X
for the weak topology induced by the bilinear pairing (E.1) is obtained by
considering all sets of the form

VF,δ =
{
x ∈ X : |⟨x, y⟩| < δ for all y ∈ F

}
with F an arbitrary finite subset of Y and δ an arbitrary positive real num-
ber.

Remark E.2. The weak topology on X induced by the bilinear pairing (E.1)
always makes X into a topological vector space, i.e., a vector space endowed
with a topology that makes the vector space operations continuous. More-
over, the weak topology is Hausdorff if and only if the linear functionals
⟨·, y⟩ ∈ X∗, y ∈ Y , separate the points of X. In other words, the weak
topology is Hausdorff if and only if the linear map Φ is injective. Namely,
two points of X separated by a weakly continuous linear functional ⟨·, y⟩
are separated by weak open sets defined by such functional. Moreover, two
points in which Φ take the same value cannot be distinguished by weak open
sets (i.e., a weak open set contains one of the points if and only if it contains
the other) and thus the weak topology does not even satisfy the weakest
separation axiom T0 if Φ is not injective.

In concrete examples the spaces X and Y that are paired by the bilinear
pairing (E.1) are often endowed with norms or semi-norms and one wish
to consider compatibility conditions between the bilinear pairing and the
semi-norms. If X is endowed with a semi-norm ∥ · ∥ we will always endow
its topological dual (with respect to the semi-norm topology) with the norm
defined by

(E.3) ∥α∥ = sup
∥x∥≤1

|α(x)|,

for every bounded linear functional α : X → R. If both X and Y are
endowed with semi-norms, which will be both denoted by ∥ · ∥, we say that
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the bilinear pairing (E.1) is bounded (with respect to such semi-norms) if it
is bounded as a bilinear map, i.e., if there exists a constant c ≥ 0 such that

(E.4) |⟨x, y⟩| ≤ c∥x∥∥y∥,

for all x ∈ X and y ∈ Y . We have that the bilinear pairing ⟨·, ·⟩ is bounded
if and only if the corresponding linear map Φ takes values in the topological
dual of X and it is a bounded linear map. When only X is endowed with
a semi-norm ∥ · ∥ and Φ takes values in the topological dual of X, we can
endow Y with the semi-norm induced by the bilinear pairing (E.1) which is
defined by

(E.5) ∥y∥ = ∥Φ(y)∥ = sup
∥x∥≤1

|⟨x, y⟩|,

for all y ∈ Y . Such semi-norm is a norm if and only if Φ is injective. If Y is
endowed with (E.5) then the bilinear pairing is bounded with the constant
c in (E.4) equal to 1. Moreover, if Y is endowed with some other semi-norm
then the bilinear pairing is bounded if and only if such semi-norm is finer
than (E.5).

We want to investigate conditions under which the weak topology induced
by a bilinear pairing (E.1) coincides with the topology induced by a set of
linear functionals smaller than the image of Φ. We need a lemma.

Lemma E.3. Let a bilinear pairing (E.1) be fixed, F be a finite subset of
Y and δ be a positive real number. If a linear functional α ∈ X∗ is bounded
on the set VF,δ then α = ⟨·, y⟩ for some y in the linear span of F in Y .

Proof. Consider the linear map T : X → Rk given by

T (x) =
(
⟨x, y1⟩, . . . , ⟨x, yk⟩

)
,

for all x ∈ X, where F = {y1, . . . , yk}. We have that the kernel of T
is contained in VF,δ and therefore α is bounded on Ker(T ), which is only
possible if α vanishes on Ker(T ). The conclusion then follows by noting that

the annihilator of Ker(T ) is equal to the image of the adjoint T ∗ : Rk∗ → X∗,
which coincides with the linear span of

{
⟨·, y⟩ : y ∈ F

}
in X∗. □

Corollary E.4. A linear functional α ∈ X∗ is continuous with respect to
the weak topology induced by a bilinear pairing (E.1) if and only if α = ⟨·, y⟩
for some y ∈ Y .

Proof. Simply note that if α is continuous in the weak topology then α is
bounded in some fundamental neighborhood VF,δ of the origin. □

Corollary E.5. Let a bilinear pairing (E.1) be fixed and assume that the
linear map Φ defined in (E.2) is injective. Given a subset Λ of Y , we have
that the topology induced on X by the set of linear functionals Φ[Λ] coincides
with the weak topology induced by the bilinear pairing (E.1) if and only if Y
equals the linear span of Λ.
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Proof. Let Z denote the linear span of Λ in Y , so that Φ[Z] is the linear span
of Φ[Λ] in the algebraic dual of X. Since a linear combination of continuous
functions is continuous, the topologies on X that make all elements of Φ[Λ]
continuous are the same topologies that make all elements of Φ[Z] continuous
and thus the topology induced on X by the set of linear functionals Φ[Λ] is
the same as the topology induced on X by the set of linear functionals Φ[Z].
Hence the statement of the corollary is equivalent to the statement that the
weak topology induced by the bilinear pairing ⟨·, ·⟩ of X with Y coincides
with the weak topology induced by the bilinear pairing

(E.6) X × Z ∋ (x, z) 7−→ ⟨x, z⟩ ∈ R

of X with Z if and only if Y = Z. To prove the latter statement, simply
note that if such weak topologies coincide then, for all y ∈ Y , the linear
functional ⟨·, y⟩ is continuous with respect to the weak topology induced by
the bilinear pairing of X with Z and thus Corollary E.4 yields z ∈ Z with
⟨·, y⟩ = ⟨·, z⟩. □

Now we want to investigate conditions under which the weak topology
induced by a bilinear pairing (E.1) coincides with the topology induced by
a set of linear functionals smaller than the image of Φ in subsets of X that
are bounded with respect to a given semi-norm. We need an adaptation of
Lemma E.3.

Lemma E.6. Let a bilinear pairing (E.1) be fixed and assume X is endowed
with a semi-norm ∥ · ∥. Let F be a finite subset of Y and let ε > 0 and δ > 0
be given. If α ∈ X∗ is a linear functional such that |α(x)| ≤ ε for all
x ∈ VF,δ with ∥x∥ ≤ 1 then there exists y in the linear span of F such that
∥α− ⟨·, y⟩∥ ≤ ε.

Proof. Let T be defined as in the proof of Lemma E.3, so that again Ker(T )
is contained in VF,δ and our assumptions imply that ∥α|Ker(T )∥ ≤ ε. The
Hahn–Banach Theorem then gives us an extension α̃ : X → R of α|Ker(T )

with ∥α̃∥ ≤ ε. To conclude the proof, note that α − α̃ is in the annihilator
of Ker(T ) and hence α− α̃ = ⟨·, y⟩ for some y in the linear span of F . □

Corollary E.7. Let a bilinear pairing (E.1) be fixed and assume X is en-
dowed with a semi-norm ∥·∥ such that the image of the linear map Φ defined
in (E.2) is contained in the topological dual of X (this happens, for instance,
if Y is also endowed with a semi-norm and the bilinear pairing is bounded).
Given a linear functional α ∈ X∗, the following conditions are equivalent:

(a) α is bounded and it belongs to the norm-closure of the image of Φ in
the topological dual of X;

(b) the restriction of α to any bounded subset of X is continuous with
respect to the weak topology;

(c) the restriction of α to the unit ball of X is continuous at the origin
with respect to the weak topology.
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Proof. The implication (a)⇒(b) follows by noting that norm convergence on
the topological dual of X is equivalent to uniform convergence on bounded
subsets of X and that trivially all linear functionals in the image of Φ are
continuous with respect to the weak topology. Now assuming (c), for every
ε > 0 we obtain a fundamental neighborhood of the origin VF,δ such that
|α(x)| ≤ ε for all x ∈ VF,δ with ∥x∥ ≤ 1. Hence Lemma E.6 yields y ∈ Y
with ∥α− Φ(y)∥ ≤ ε. □

Corollary E.8. Let X and Y be endowed with semi-norms ∥ · ∥ and a
bounded bilinear pairing (E.1) be fixed such that the semi-norm of Y is
equivalent to the semi-norm (E.5) induced by the bilinear pairing. Given a
subset Λ of Y , the following conditions are equivalent:

(a) the linear span of Λ is dense in Y with respect to the semi-norm
topology;

(b) the topology induced on X by the set of linear functionals Φ[Λ] co-
incides with the weak topology induced by the bilinear pairing (E.1)
on every bounded subset of X;

(c) the topology induced on X by the set of linear functionals Φ[Λ] co-
incides with the weak topology induced by the bilinear pairing (E.1)
on the unit ball of X.

Proof. Let Z denote the linear span of Λ in Y , so that as in the proof of
Corollary E.5 the topology induced onX by the set of linear functionals Φ[Λ]
coincides with the weak topology induced on X by the bilinear pairing (E.6)
of X with Z. If Z is dense in Y with respect to the semi-norm topology then
Φ[Z] is dense in Φ[Y ] with respect to the norm topology of the topological
dual of X and thus Corollary E.7 yields that, for every y ∈ Y , the linear
functional Φ(y) = ⟨·, y⟩ is continuous when restricted to bounded subsets of
X with respect to the weak topology induced by the bilinear pairing of X
with Z. This proves (a)⇒(b). Now assuming (c), we have that for all y ∈ Y
the linear functional ⟨·, y⟩ is continuous when restricted to the unit ball of
X with respect to the weak topology induced by the bilinear pairing of X
with Z and thus Corollary E.7 yields that Φ(y) belongs to the norm-closure
of Φ[Z] in the topological dual of X. Since the semi-norm topology of Y
is induced from Φ by the norm topology of the topological dual of X we
conclude that y belongs to the closure of Z in the semi-norm topology of Y .
This proves (a) and we are done. □

E.1. Cardinal invariants of weak topologies. Let us recall some basic
definitions from the theory of cardinal invariants of topologies. As usual,
when dealing with cardinals, we denote by ω the cardinal of the natural
numbers. Cardinal invariants of topological spaces are usually defined by
taking the maximum between some cardinal and ω since one is not interested
in finite cardinals.
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Definition E.9. Let X be a topological space. The weight of X is defined
as the maximum between ω and the least cardinal of a basis of X and the
density of X is defined as the maximum between ω and the least cardinal
of a dense subset of X. Given a point x ∈ X, the character of x in X is
defined as the maximum between ω and the least cardinal of a fundamental
system of neighborhoods of x in X and the character of X is defined as the
maximum between ω and the least cardinal κ such that every point of X
has a fundamental system of neighborhoods of size less than or equal to κ
(equivalently, if X is nonempty, the character of X is the supremum of the
characters of all points of X).

The following facts are easy to prove. The weight of a topological space
X is equal to the maximum between ω and the least cardinal of a subbasis
of X. Thus, the weight of a topology induced by κ real-valued functions is
less than or equal to the maximum between κ and ω. The density and the
character of a topological space are always less than or equal to its weight.
For a metrizable or pseudo-metrizable space (Definition E.11), the weight is
equal to the density and the character is always ω. For a topological vector
space all points have the same character due to the translation invariance
of the topology.

Let us now prove some results about the weight and the character of a
weak topology induced by a bilinear pairing.

Proposition E.10. Let a bilinear pairing (E.1) between real vector spaces
X and Y be fixed. We have that the character and the weight of the weak
topology on X induced by the bilinear pairing coincide. Moreover, if the
linear map Φ defined in (E.2) is injective then the weight and the character
of the weak topology of X are equal to the maximum between the dimension
of Y (in the purely algebraic sense) and ω.

Proof. We can assume without loss of generality that Φ is injective, as a
weak topology is always induced by some bilinear pairing with an injective
map Φ. First note that if B is an algebraic basis of Y then, by Corollary E.5,
the weak topology of X is induced by Φ[B] and thus the weight of X in the
weak topology is less than or equal to the maximum between the cardinality
of B (which is the dimension of Y ) and ω. To conclude the proof, let κ
denote the character of the origin in the weak topology of X and let us show
that the dimension of Y is less than or equal to κ. We have that every
fundamental system of neighborhoods of the origin contains a fundamental
system of neighborhoods of the origin with cardinality less than or equal to
κ and therefore theree exists a subset Λ of Y with cardinality less than or
equal to κ such that the collection of all VF,δ with F ⊂ Λ finite and δ > 0
constitute a fundamental system of neighborhoods of the origin in the weak
topology. Now Lemma E.3 implies that Φ[Y ] is equal to the linear span of
Φ[Λ] and hence Y is equal to the linear span of Λ. □
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Definition E.11. A topological space is called pseudo-metrizable if its
topology is induced by some pseudo-metric (the definition of a pseudo-metric
is the same as the definition of a metric, but removing the requirement that
distinct points have a nonzero distance).

Obviously, a topology is metrizable if and only if it is pseudo-metrizable
and Hausdorff (alternatively, if and only if it is pseudo-metrizable and T0).

Corollary E.12. Let a bilinear pairing (E.1) between real vector spaces X
and Y be fixed and assume that the linear map Φ defined in (E.2) is injective.
The following conditions are equivalent:

(a) the weak topology of X is second countable;

(b) the weak topology of X is first countable;

(c) the weak topology of X is pseudo-metrizable;

(d) the dimension of Y (in the purely algebraic sense) is countable.

Proof. The equivalence between (a), (b) and (d) follows directly from Propo-
sition E.10. Now (c) obviously implies (b) and from the proof of Proposi-
tion E.10 we see that (d) implies (c) as a topology induced by a countable
set of real-valued functions is pseudo-metrizable. □

Let us now look at the weight and the character of the weak topology on
bounded subsets.

Proposition E.13. Let a bilinear pairing (E.1) between real vector spaces
X and Y be fixed and let X be endowed with a semi-norm such that the image
of the linear map Φ defined in (E.2) is contained in the topological dual of
X. Let also Y be endowed with a semi-norm equivalent to the semi-norm
(E.5) induced by the bilinear pairing and with the corresponding semi-norm
topology. If B denotes the unit ball of X endowed with the weak topology
then the character of the origin in B, the character of B and the weight of
B are all equal to the density of Y .

Proof. If follows from Corollary E.8 that the weak topology of B is induced
by a set of real-valued functions whose cardinality is less than or equal to the
cardinality of a dense subset of Y and thus the weight of B is less than or
equal to the density of Y . To conclude the proof, let κ denote the character
of the origin in B and let us check that the density of Y is less than or equal
to κ. As in the proof of Proposition E.10, we obtain a subset Λ of Y with
cardinality less than or equal to κ such that the collection of all VF,δ∩B with
F ⊂ Λ finite and δ > 0 constitute a fundamental system of neighborhoods
for the origin in B. Now Lemma E.6 implies that the linear span of Φ[Λ] is
dense in Φ[Y ] and thus the linear span of Λ is dense in Y , as the topology
of Y is induced by Φ. Hence the Q-linear span of Λ is a dense subset of Y
whose cardinality is less than or equal to κ. □
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Corollary E.14. Let a bilinear pairing (E.1) between real vector spaces X
and Y be fixed and let X be endowed with a semi-norm such that the image
of the linear map Φ defined in (E.2) is contained in the topological dual of
X. Let also Y be endowed with a semi-norm equivalent to the semi-norm
(E.5) induced by the bilinear pairing and with the corresponding semi-norm
topology. The following conditions are equivalent:

(a) the unit ball of X is second countable in the weak topology;

(a’) every bounded subset of X is second countable in the weak topology;

(b) the unit ball of X is first countable in the weak topology;

(b’) every bounded subset of X is first countable in the weak topology;

(c) the unit ball of X is pseudo-metrizable in the weak topology;

(c’) every bounded subset of X is pseudo-metrizable in the weak topology;

(d) Y is separable in the semi-norm topology.

Proof. Assuming (d), Corolary E.8 yields that the weak topology on a
bounded subset of X is induced by a countable set of real-valued functions
and thus (a’), (b’) and (c’) follow. Moreover, it is obvious that (a’), (b’)
and (c’) imply (a), (b) and (c), respectively. Finally, (c) implies (b) and the
conditions (a), (b) and (d) are all equivalent by Proposition E.13. □

Corollaries E.12 and E.14 have some interesting consequences for the
weak* topology on ca(X), where X denotes now an arbitrary topological
space. Recalling that the weak* topology of ca(X) is the weak topology
induced by the bilinear pairing of ca(X) with Cb(X) given by the restric-
tion of (2.1) and that the linear map (2.3) (and thus also its restriction to
Cb(X)) is an isometric embedding, we obtain the following results.

Proposition E.15. For an arbitrary topological space X, the following con-
ditions are equivalent:

(a) the weak* topology of ca(X) is second countable;

(b) the weak* topology of ca(X) is first countable;

(c) the weak* topology of ca(X) is pseudo-metrizable;

(d) Cb(X) is finite-dimensional.

Proof. Follows from Corollary E.12 keeping in mind that Cb(X) is a Ba-
nach space and that by the Baire Category Theorem an infinite dimensional
Banach space cannot have infinite countable dimension. □

Remark E.16. For a “reasonable” infinite topological space X the space
Cb(X) is never going to be finite-dimensional. For example, if X is an
infinite Hausdorff completely regular topological space then Cb(X) is always
infinite-dimensional. Namely, if (xn)n≥1 is a sequence of distinct points of X
and fn : X → [0, 1] is a continuous function with fn(xn) = 1 and fn(xk) = 0
for k < n then the sequence (fn)n≥1 in Cb(X) is linearly independent.
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Proposition E.17. For an arbitrary topological space X, the following con-
ditions are equivalent:

(a) the unit ball of ca(X) is second countable in the weak* topology;

(a’) every bounded subset of ca(X) is second countable in the weak* topol-
ogy;

(b) the unit ball of ca(X) is first countable in the weak* topology;

(b’) every bounded subset of ca(X) is first countable in the weak* topol-
ogy;

(c) the unit ball of ca(X) is pseudo-metrizable in the weak* topology;

(c’) every bounded subset of ca(X) is pseudo-metrizable in the weak*
topology;

(d) the Stone–Čech compactification β(X) is metrizable.

Proof. Corollary E.14 says that (a), (a’), (b), (b’), (c) and (c’) are all equiva-
lent to Cb(X) being separable. The conclusion follows by noting that Cb(X)
is isometric to C

(
β(X)

)
and that for a compact Hausdorff space K the space

C(K) is separable if and only if K is metrizable. □

Among completely regular Hausdorff topological spaces we can easily
characterize those with a metrizable Stone–Čech copactification.

Lemma E.18. If X is a completely regular Hausdorff topological space then
its Stone–Čech compactification β(X) is metrizable if and only if X is com-
pact and metrizable.

Proof. If X is compact and metrizable then β(X) is homeomorphic to X, so
obviously it is compact and metrizable. Since X is completely regular and
Hausdorff, the map ι : X → β(X) is a homeomorphism onto its image and
therefore we can identify X with ι[X], which is a dense subspace of β(X).
Assuming that β(X) is metrizable, we prove that X = β(X), so that X is
compact and metrizable. Assume by contradiction that there exists a point
p ∈ β(X) not in X. Since X is dense in β(X) and β(X) is metrizable, there
exists a sequence (xn)n≥1 of distinct points of X converging to p. The set
{xn : n ≥ 1

}
has the discrete topology and it is closed in X and therefore

by Tietze’s Extension Theorem every bounded real-valued function defined
on {xn : n ≥ 1

}
admits a bounded continuous extension to X. In particular

we can obtain a bounded continuous function f : X → R such that the
limit limn→+∞ f(xn) does not exist and such function does not admit a
continuous extension to β(X), contradicting the fact that ι : X → β(X) is
the Stone–Čech compactification of X. □

We can now apply Corollaries E.12 and E.14 to obtain results for the
vague topology of ca(X), with X a locally compact Hausdorff topological
space. The vague topology of ca(X) is obviously the weak topology induced
by the bilinear pairing of ca(X) with Cc(X) given by the restriction of (2.1).
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Proposition E.19. For a locally compact Hausdorff topological space X,
the following conditions are equivalent:

(a) the vague topology of ca(X) is second countable;

(b) the vague topology of ca(X) is first countable;

(c) the vague topology of ca(X) is pseudo-metrizable;

(d) the vague topology of ca(X) is metrizable;

(e) X is countable and discrete.

Proof. By Corollary E.12, (a), (b) and (c) are equivalent to Cc(X) having
countable dimension and by Proposition 8.9 the conjunction of (c) and (e)
implies (d). It thus remains to show that Cc(X) has countable dimension
if and only if X is countable and discrete. First, if X is discrete then
the characteristic functions of the singletons of X generate Cc(X) and thus
Cc(X) has countable dimension if X is countable. Conversely, assume that
Cc(X) has countable dimension. We claim that if K is a compact subset of
X then the restriction map

Cc(X) ∋ f 7−→ f |K ∈ C(K)

is surjective. Namely, applying Tietze’s Extension Theorem in the one-point
compactification of X we obtain that every real-valued continuous function
onK admits a continuous extension toX and we can make such an extension
have compact support by multiplying it by an element of Cc(X) that is
equal to 1 over K (Corollary 8.4). This proves the claim. Now, since Cc(X)
has countable dimension, the Banach space C(K) will also have countable
dimension and therefore it must be finite dimensional. But this is only
possible if K is finite (Remark E.16) and therefore we have proven that
every compact subset of X is finite. Since X is locally compact, this implies
that every point of X has a finite neighborhood and then the fact that X
is Hausdorff implies that it must be discrete. To conclude the proof, note
that if X is discrete then the characteristic functions of the singletons of
X constitute a linearly independent family in Cc(X) and hence X must be
countable. □

Proposition E.20. For a locally compact Hausdorff topological space X,
the following conditions are equivalent:

(a) the unit ball of ca(X) is second countable in the vague topology;

(a’) every bounded subset of ca(X) is second countable in the vague topol-
ogy;

(b) the unit ball of ca(X) is first countable in the vague topology;

(b’) every bounded subset of ca(X) is first countable in the vague topology;

(c) the unit ball of ca(X) is pseudo-metrizable in the vague topology;

(c’) every bounded subset of ca(X) is pseudo-metrizable in the vague
topology;

(d) the unit ball of ca(X) is metrizable in the vague topology;
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(d’) every bounded subset of ca(X) is metrizable in the vague topology;

(e) X is second countable.

Proof. Corollary E.14 says that (a), (a’), (b), (b’), (c) and (c’) are all equiv-
alent to Cc(X) being separable and by Proposition 8.9 the conjunction of
(c) and (e) (resp., of (c’) and (e)) implies (d) and (e) (resp., (d’) and (e)).
It thus remains to show that Cc(X) is separable if and only if X is second
countable. If X is compact then Cc(X) = C(X) and C(X) is separable if
and only if X is second countable. If X is not compact, we consider its one-
point compactificationX∪{∞} and we identify Cc(X) isometrically with the
subspace of C

(
X ∪ {∞}

)
consisting of maps that vanish on a neighborhood

of the point ∞. The closure of such subspace is the hyperplane consisting
of maps that vanish at ∞ and therefore Cc(X) is separable if and only if
C
(
X ∪ {∞}

)
is separable. To conclude the proof, note that C

(
X ∪ {∞}

)
is

separable if and only if X ∪ {∞} is second countable and that this holds if
and only if X is second countable2. □

Appendix F. Equicontinuity

In this short section we recall a very elementary but very useful lemma
about the set of points in which an equicontinuous net of functions converges.

Definition F.1. Let X be a topological space and (M,d) be a pseudo-
metric space. A set F of maps f : X → M is said to be equicontinuous at
a point x ∈ X if for every ε > 0 there exists a neighborhood V of x in X
such that d

(
f(x), f(y)

)
< ε for all y ∈ V and all f ∈ F . We say that F is

equicontinuous if it is equicontinuous at every point of X.

Lemma F.2. Let X be a topological space, (M,d) be a pseudo-metric space,
(fi)i∈I be a net of maps from X to M and f : X → M be a continuous map.
If the set {fi : i ≥ i0} is equicontinuous for some i0 ∈ I then the set

(F.1)
{
x ∈ X :

(
fi(x)

)
i∈I converges to f(x)

}
is closed in X.

Proof. Replacing (fi)i∈I with (fi)i≥i0 does not alter the set (F.1), so we
might just assume that {fi : i ∈ I} is equicontinuous. Let x ∈ X belong to
the closure of (F.1) and let us check that x belongs to (F.1). Given ε > 0,
pick a neighborhood V of x such that d

(
g(x), g(y)

)
< ε for all y ∈ V and

all g ∈ {fi : i ∈ I} ∪ {f}. Now choose y in the intersection between V
and (F.1) and i0 ∈ I with d

(
fi(y), f(y)

)
< ε for all i ≥ i0. We then obtain

d
(
fi(x), f(x)

)
< 3ε for all i ≥ i0, concluding the proof. □

2To see that if X is second countable then X∪{∞} is second countable note that if Kn

are compact sets like in the proof of Proposition 8.18 then the complements in X ∪ {∞}
of the sets Kn constitute a countable fundamental system of neighborhoods for ∞.
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If the topology of X is induced by a pseudo-metric and if F is a set of
maps f : X → M which are Lipschitz with a common Lipschitz constant
then F is obviously equicontinuous. In particular, a collection of linear maps
between semi-normed vector spaces that is bounded in the operator norm is
equicontinuous. This observation yields the following corollary.

Corollary F.3. Let X and Y be semi-normed real vector spaces and ⟨·, ·⟩
be a bounded bilinear pairing between X and Y . If (yi)i∈I is a net in Y and
if the family (yi)i≥i0 is bounded for some i0 ∈ I then the set{

x ∈ X :
(
⟨x, yi⟩

)
i∈I converges to ⟨x, y⟩

}
is a closed subspace of X with respect to the semi-norm topology. □
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