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Abstract. The use of variables is omnipresent throughout the practice
of Mathematics and its various applications. Mathematicians, physicists
and other users of Mathematics learn from practice how to handle vari-
ables and their usage eventually becomes instinctive and automatical,
like talking and moving. Nevertheless, there are certain subtleties and
distinctions that people almost never explicitly talk about and the ab-
sence of a proper discussion has the potential to create some confusion,
specially for students. These notes intend to fill in this gap and most of
the material here is meant to be accessible to undergraduate students
that have taken a few Calculus courses and that have mild familiar-
ity with more rigorous proof-oriented courses. The use of variables in
computer programming languages will not be discussed in these notes.
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1. Introduction

There are two very different notions of variables in the practice of Math-
ematics and its applications: one of them — more akin to formal Logic
— arose from the foundational developments in Mathematics that occurred
during the final part of the nineteenth century and the first part of the
twentieth century; it became standard in most of the modern rigorous pre-
sentations of Mathematics. The other is an old notion of variable that
remains largely in use today among physicists and, more generally, among
those that study applications of Mathematics. There is also some sort of
middle arena consisting of certain areas of Mathematics (specially Calculus,
but also parts of Differential Geometry) that are closer to Physics and in
which the use of variables tend to be a mixture of the two notions.

The fact that this difference in the usage of variables remains to this day
is in part explicable by the existence of a certain degree of isolation between
various academic communities. It is also true, however, that the old notion
of variable is very convenient for dealing with applications of Mathematics
and it is thus to be expected that it will remain in use in more applied fields.

These notes are structured as follows. In Section 2 we summarize how
variables are used in modern mathematical practice and we informally ex-
plain some terminology that is standard in books on Mathematical Logic. In
Sections 3 and 4 we discuss and try to make sense of various notations that
are typical in Calculus books. Finally, in Section 5 we discuss the notion of
variable that is normally used by physicists and we explain how a rigorous
mathematical treatment can be achieved for that notion. While the defini-
tions that we give in Section 5 are not very standard, what we do there is
not particularly original: we simply take the notion of random variable that
is normally used among probabilists and we remove the “random” part.

2. Variables in modern mathematical practice

Let us start by reviewing some of the more common ways that variables
appear in modern presentations of Mathematics. That is the goal of Sub-
sections 2.1, 2.2 and 2.3. We then take some time in Subsections 2.4 and
2.5 to explain some terminology that will be useful for the discussion in the
remaining sections.

2.1. Introduction of a variable by the “let” construction. This con-
struction works as follows: at some point, the presentation of some mathe-
matical argument states “let x be a real number” (or, more generally1, “let
x satisfy the property P (x)”). The idea is that at that point we are being
instructed to pick some (arbitrary, unspecified) real number and to put it
inside a box labelled “x”. In the following lines of text of that presentation,

1It would be better to think that here we are combining the construction “let x”
with the construction “assume P (x)”, but you will rarely find just “let x” in a normal
presentation of Mathematics, as it doesn’t sound good in English.
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whenever one talks about x, one will be talking about that (fixed) real num-
ber. In other words, inside that block of text, the value of x does not vary,
it becomes a constant : it always points to the same real number that was
picked at the moment of the “let” construction. At some point further in the
presentation, the reasoning involving x is concluded and a certain fact Q(x)
about x is established. At that point, we are allowed to conclude that the
property Q holds for all real numbers, i.e., that “Q(x) holds for every real
number x” (more generally, if x were introduced by “let x satisfy P (x)”,
then at this point we would conclude that “for all x satisfying P (x), the
property Q(x) holds”). The justification for that conclusion is that, given
any real number, we could repeat the reasoning that was just presented by
replacing x with that specific real number and conclude that the property
Q holds for that real number.

After the desired conclusion is obtained, we normally think that the value
of x is discarded (the box labelled “x” becomes empty again), so that now
x points to nothing and we are free to use it again later for something else.

2.2. Bound variables. Roughly speaking, we say that a variable x appears
free in a certain formula if that formula is a statement about the value of x
so that, typically2, the formula will be true for some values of x and false for
other values of x. For example, in the formula x2 = 2x the variable x is free:
the formula is true if we replace x with 2 and it is false if we replace x with
3. A variable that is not free is called bound. The typical way for a variable
to become bound is by means of a quantifier. By a quantifier we mean the
symbols ∀ (meaning “for all”) and ∃ (meaning “there exists”); the symbol
∃! for “there exists precisely one” is also sometimes used as a quantifier. For
example, consider the sentence

for all x ∈ R, there exists y ∈ R such that y > x

or, in symbols:

(1) ∀x ∈ R, ∃y ∈ R, y > x.

The variables in this sentence are bound: in order to decide whether (1) is
true or false, we don’t have to ask for the value of x or for the value of y.
Also, we can replace the variables x and y in (1) with other two (distinct)
variables and the meaning of the formula will remain exactly the same. We
could even state the same thing avoiding variables, by saying “for every
real number, there is a greater real number”, but as our formulas become
complicated, avoiding variables becomes difficult to accomplish in practice
and makes the exposition unintelligible. Bound variables are also called
dummy variables.

2But not necessarily. It can happen that a formula in which the variable x appears free
turns out to be true for all values of x (such as in x = x) or false for all values of x.
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A formula can have a mixture of free and bound variables, as in:

(2) ∃y ∈ Q, y2 = x.

Here the variable x is free and the variable y is bound, so that the formula
makes a statement about the value of x, but not about the value of y. In
fact, the same variable x can appear free and bound in one formula, as in:(

∀x ∈ R, (x+ 1)2 = x2 + 2x+ 1
)

and x2 = 2x.

In this formula, the occurrences of x before the “and” are bound and the
occurrences of x after the “and” are free. What happens is that a quantifier
has a limited scope within a formula: in this example, the scope of ∀x ∈ R
is only the expression inside the parenthesis, so the occurrences of x outside
of that parenthesis are not bound by that quantifier. Of course, in terms of
clarity of exposition, having the same variable occur free and bound inside
a formula is not good practice.

When we write a formula in which some variable x appears free, we have
normally previously introduced x by a “let x” construction, so that we are
talking about that value of x that was fixed at the point where the “let x”
appeared. When x appears bound by a quantifier, then we normally haven’t
introduced it by a “let x” construction (if we did, then the quantifier is
normally understood to temporarily override the value assigned by the “let
x” construction, but in order to achieve clarity the best option is simply to
avoid this).

Notice that a variable that was introduced through a “let” construction
has a fixed value throughout an entire argument (that could take several
pages of text), while the value of a bound variable is kept fixed only inside
one specific formula and, more precisely, only within the scope of the cor-
responding quantifier. So, if x appears bound by a quantifier in a formula
and if we reuse the variable x in the following formula, this new x does not
refer to the same thing as the previous x. Even within the same formula,
we can use x again in the scope of another quantifier and it does not refer
to the same thing. For instance, in

(3)
(
∀x ∈ R, (x+ 1)2 = x2 + 2x+ 1

)
and (∃x ∈ R, x2 = x)

the occurrences of x before the “and” have nothing to do with the occur-
rences of x after the “and”. We could replace the occurrences of x before
the “and” with y and the sentence would mean exactly the same thing.

2.3. Bound variables in the definition of a set and in summation-
like constructions. Not only quantifiers can make a variable bound. For
instance, when we define a set by writing

(4)
{
x ∈ A : P (x)

}
then the variable x in this expression is bound. This expression is simply a
notation for the set of all elements of A satisfying the property P and this
set does not depend on the value of x (but it does depend on the value of A,
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so that A is free in (4)). Another possible notation for defining a set that
creates a bound variable is:

(5)
{
f(x) : x ∈ A

}
;

this set does not depend on the value of x and it is equal to the set:{
y : there exists x ∈ A with y = f(x)

}
.

Bound variables also appear when we write a summation:

(6)

10∑
i=1

i2.

The variable i is bound in this expression. The value of the summation is
simply 12 + 22 + · · · + 102 and it does not depend on the value of i. There
are actually several summation-like constructions in mathematical practice
that create bound varibles, such as products

∏10
i=1(2i + 3), unions

⋃
i∈I Ai,

and so on.

2.4. Terms versus formulas. A term is an expression that denotes a value
like a number, a set, a function, a surface, etc3. So, for instance, 3 + 7 is a
term, xy+z is a term,

∑n
i=1 xi is a term and

{
(x, y, z) ∈ R3 : x2+y2+z2 = 1

}
is a term. Obviously, when a term has free variables, the value of the term
will depend on the values assigned to the free variables. A formula is an
expression that makes a statement and it can be either true or false; it has
a truth-value (the possible truth-values are “true” and “false”). Of course,
just like in the case of terms, the truth-value of a formula will be dependent
on the values of the free variables, if any are present. Formulas without free
variables are usually called sentences. For example, 2 < 3 is a formula (and
a sentence), x+ y = z is a formula (but not a sentence), the expression (2)
is a formula (but not a sentence), the expressions (1) and (3) are formulas
(and sentences) and so on.

We now take advantage of this terminology to make some comments on
the notations discussed in the previous subsections. In Subsection 2.2 we
were discussing only free and bound occurrences of variables in formulas.
A quantifier is something that you can add to a formula to create a new
formula; if a variable were free in the original formula, then that variable
will become bound in the new formula, if it is under the action of the added
quantifier. What we saw in Subsection 2.3 is that the free/bound distinction

3Technically, if the axiomatic foundations of mathematics is ZFC (Zermelo–Fraenkel
set theory, with the axiom of choice), then everything is a set, though we don’t normally
think of real numbers as being sets. For instance, the irrational numbers π and e are sets
and it makes sense to ask for the intersection π∩e, but it is a stupid question about which
no one cares. The answer will depend on the specific details chosen for the construction
of the real numbers, such as Dedekind cuts or equivalence classes of Cauchy sequences of
rational numbers and it will also depend on all sorts of irrelevant conventions. The reason
why everything is a set in ZFC is that having a richer ontology would serve no practical
purpose and it would only make it harder to formulate the theory.
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is also relevant for variables that appear in terms. A summation construction
such as (6) takes a term i2 with a free variable i and it creates a new term∑10

i=1 i
2 in which the variable i is bound. The construction (4) takes the

term A and the formula P (x) (with a free variable x) and it generates a
term in which x is bound. Finally, the construction (5) takes the term f(x)
(with a free variable x) and the term A and it creates a new term in which
x is bound.

2.5. Syntactic objects versus mathematical objects. The distinction
that we are going to make in this subsection is like the distinction between
the word “cat” and a cat. The word “cat” contains three letters and the
middle letter is a vowel. The word “cat” cannot scratch your sofa, while
a cat can and a cat has no letters. While words are abstract objects and
cats are concrete objects made of matter and having a location in space and
time, in Mathematics everything is abstract, but nevertheless the distinction
between an expression and the thing the expression refers to is relevant. So
what I will mean by a mathematical object is something like the cat in the
previous analogy: it is the type of object that mathematicians talk about,
like numbers, sets, functions, surfaces and so on (things that can be the value
of a term). On the other hand, syntactic objects are like words: they are
the symbols and strings of symbols that we use to talk about mathematics4.
So, for instance, terms and formulas are syntactic objects. Variables, in the
sense discussed in this section, are also syntactic objects.

Some comments are in order here to avoid confusion in the future. When
we say “let x be a real number” then apparently it will be correct to say that
“x is a real number” and it will also be correct to say that “x is a variable”.
How can that be? The same thing is a real number and a variable? The
same problem happens when we say “cat is an animal” and also “cat is a
word”. How can something be both a word and an animal? It can’t: the
apparent contradiction arises because we use symbols as names for certain
objects and also as names for themselves. In “x is a real number” we are
using x as the name of some mathematical object (which is a real number)
and in “x is a variable” we are using x as the name of the symbol x. In
situations where this might get too confusing, we will use quotation marks,
just like in ordinary language: we use “cat” as a name for the word cat,
which is not the same thing as a cat. With this convention, we should say
then that “cat is an animal” and that ““cat” is a word”. Likewise, with this
convention, saying “x is a real number” is appropriate, while saying “x is
a variable” is not. We should instead say that ““x” is a variable”. Since

4When you are studying topics like Mathematical Logic and Model Theory, things get
a little messier since strings of symbols and formulas become themselves the object of
study, so we have to pick certain mathematical objects to represent the symbols and the
strings of symbols. This is what is called Gödelization, but you don’t have to worry about
it here.
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using so many quotation marks would soon get very annoying, we will only
use them when strictly necessary to avoid confusion.

3. Dynamical definition of functions from terms

The perfectly rigorous way to introduce a function in a mathematical
presentation is by a statement of the following form: “let f : R→ R be the
function defined by f(x) = x2 + x, for all x ∈ R”. It is not right to simply
talk about “the function x2 +x” as this is really the value of the function at
the point x. Saying something that is not exactly right is not a big problem
if the audience can understand you — sometimes it is even preferable and
it makes the exposition more intelligible — but in certain situations this
kind of loose talk can generate some ambiguity. For instance, an expression
like x2y3 + xy can be used to define several different functions. We could
think that y is constant and define the function f1(x) = x2y3 +xy, we could
think that x is constant and define the function f2(y) = x2y3 + xy or we
could define the two distinct two-variable functions f3(x, y) = x2y3+xy and
f4(y, x) = x2y3 + xy. So, when you talk about “the function x2y3 + xy”, it
is not very clear what you are talking about5.

When we are doing Calculus, in a single page of computations we will
normally have to deal with dozens of different functions, sometimes more
than one per line of text. Namely, each intermediate step of a computation
forces us to break a function into pieces and to generate more functions.
If we had to formally introduce each function by a “let f : R → R . . . ”
construction, doing Calculus would be impossible. So we need a notation
that allows for the dynamical definition of functions, in such a way that
we can quickly use a term with free variables like x2y3 + xy to refer to a
function. Let us review the various notations of this sort that normally
appear in Calculus.

3.1. Definite integrals. Given a function f : I → R defined over some
domain I that contains the interval [a, b], then the definite Riemann (or
Lebesgue) integral of f can be denoted simply by

(7)

∫ b

a
f,

i.e., we specify the function, the interval and the fact that we are doing
an integral. This notation works well if we have a name (like f) for the
function that we want to integrate. This name was typically introduced
by some “let” construction that came before. Now, if we don’t want to
go through the trouble of formally introducing every function with a “let”

5Ambiguity can get much worse when we are dealing with a function f whose counter-
domain is again a set of functions. In this case, f is a function and f(x) is also a function,
so confusing a function with its value at a point becomes a more serious problem.
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construction, we can use a notation that dynamically creates a function from
a term, like this:

(8)

∫ b

a
(x2y3 + xy) dx.

The expression (8) is a term with a bound variable x (and a free variable
y) that was created from a term x2y3 + xy with a free variable x (and a
free variable y), so in this respect it is the same type of construction used in
(6). In the summation (6), the i below the summation symbol

∑
indicates

that it is the variable i that becomes bound in the summation and in the
definite integral (8) it is the x in dx that indicates the variable that becomes
bound, i.e., the variable of integration. Historically, the notation dx was used
because the integral was thought of some sort of infinite sum of products
(x2y3 + xy) dx, with dx an infinitesimal perturbation of x, but in modern
Mathematics we normally think of dx merely as a notation to indicate the

variable of integration6. The integral (8) is equal to
∫ b
a f , with f : [a, b]→ R

the function defined by
f(x) = x2y3 + xy,

for all x ∈ [a, b] (and y has some fixed value that was previously declared by
a “let y” construction).

3.2. Limits. Like in the case of the definite integral, the usual notation
for limits allows us to deal with functions dynamically defined by a term,
without the need of formal introduction with a “let” construction. So, for
instance, in

(9) lim
x→0

sinx

x

we have a term with a bound variable x obtained from the term sinx
x with

a free variable x. The bound variable is the one that appears below the
symbol “lim”. In (9) we are taking the limit at 0 of the function f defined
by f(x) = sinx

x . Curiously, unlike the case of the definite integral, there is
no standard notation for limits which is like (7), i.e., a notation to be used
when the function has a name f . Even if the function is named f , we have
to write something like limx→a f(x), with the pointless introduction of the
new bound variable x.

3.3. Derivatives. Given a function f : I → R defined, for example, in
an interval I ⊂ R, then the derivative f ′ is a new function defined at the
set of points where f is differentiable. The derivative of f at the point
x ∈ I is then f ′(x). Sometimes it is said that this is “the derivative of
f with respect to the variable x” or that “f is a function of the variable
x” but this is really nonsense: a function is not attached to some variable
and “taking a derivative with respect to a certain variable” in this context

6The symbol dx can have a more serious meaning in the theory of differential forms,
which we will not discuss in these notes.
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is meaningless. In particular, a notation like df
dx in which a variable x is

specified is pointless7: the function f has a certain derivative at a certain
point and there is no need and no use for the specification of a variable.
Nevertheless, like in the previous subsections, it is useful to have a notation
that allows us to write the derivative of a function being dynamically created
from a term (without the need for the formal introduction of f by a “let
f” construction) and, in this case, it is necessary to specify a variable so
that one can unambiguously obtain a function from the term. A common
notation for this purpose is this:

(10)
d

dx

(
x2y + sin(xy)

)
.

The expression (10) is a term and it should be understood as being the
same as f ′(x), with f the function defined by f(x) = x2y + sin(xy), for
all x, where y has some fixed value (typically fixed by some previous “let
y” construction). Notice that, unlike the analogous constructions in the
previous subsections, the variable x is free in the term (10), as this term is
the same thing as f ′(x).

There is a small number of authors that use the symbol 7→ to create
functions from terms, so that the function f defined by f(x) = x2y+sin(xy)
would be denoted by

(11) x 7−→ x2y + sin(xy)

or

R 3 x 7−→ x2y + sin(xy) ∈ R
if one wants to specify the domain and the counterdomain. Notice that (11)
is the same as f , not as f(x), so that x is a bound variable in the term (11).
Using this notation, we obtain the monstrosity

d

dx

(
x2y + sin(xy)

)
=
(
x 7−→ x2y + sin(xy)

)′
(x),

i.e., we can see (10) as the composition of three operations: forming the
function x 7→ x2y+sin(xy) from the term x2y+sin(xy), taking the derivative
and then evaluating at x. The simple notation (10) is clearly preferable in
this case, though the notation 7→ for creating functions from terms might
be helpful in certain situations.

Finally, we note that although the notation df
dx contains a weird meaning-

less reference to the variable x, the notation

d

dx

(
f(x)

)
is, due to the conventions above, a valid (but unnecessarily complicated)
notation for f ′(x).

7However, see Sections 4 and 5 for further comment.
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3.4. Indefinite integral. In terms of notation, the situation for indefi-
nite integrals is similar to what we discussed in the previous subsection for
derivatives, except for the fact that Calculus books normally take the indef-
inite integral to (somehow) denote all primitives of the given function. For
instance, when we write

(12)

∫
(x2y3 + xy) dx

we mean something like F (x), with F an arbitrary primitive of the function
f defined by f(x) = x2y3 +xy. In (12) the variable x is free, as (12) denotes
F evaluated at x, not just F . The insistence that (12) should denote an
arbitrary primitive of f leads to the odd situation in which (12) must be
something like a multi-valued term. Indeed, Calculus books will say that∫

(x2y3 + xy) dx =
x3y3

3
+
x2y

2
+ C,

with C an “arbitrary constant”.
The idea of a multi-valued term is a monstrosity that is normally not

used elsewhere in mathematical practice, as it creates all kinds of problems.
For instance, if τ1 and τ2 are multi-valued terms, then when will a formula
like τ1 < τ2 be satisfied? Is it satisfied when the inequality holds for all
possible values of the given terms or when it holds for some of the possible
values of the given terms? If a multi-valued term τ appears more than once
in an expression, should we understand that all occurrences of τ have the
same value or should we understand that different occurrences might have
different values? Dealing with multi-valued terms would require a careful
formulation of the semantics of the formulas (i.e., a careful explanation of
their meaning) and one would then have to carefully check which of the stan-
dard rules of deduction continue to hold with this semantics. The standard
notation for indefinite integrals does lead to paradoxes if not handled with
the appropriate care, as in the following integration by parts∫

1

x
dx =

∫
1

x
· 1 dx =

1

x
x−

∫
x
(
− 1

x2

)
dx = 1 +

∫
1

x
dx,

which leads to 0 = 1.
There are two ways to handle this: one is to think of the standard notation

for indefinite integrals as a calculating tool that is not to be taken very
seriously. For rigorous arguments, one should use a notation in which some
fixed primitive is considered for the function, for instance one could use
F (x) =

∫ x
x0
f , which yields the only primitive F of f satisfying F (x0) = 0.

The other possibility is to think of an indefinite integral as a set of functions,
so that

∫
(x2y3 +xy) dx is not something like a multi-valued term but just a

standard single-valued term whose value is a set. For rigorous reasoning, one
would have then to take into account the fact that indefinite integrals are
sets and treat them accordingly in algebraic manipulations. The sum of two
indefinite integrals should be understood as a sum of sets of functions, the
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sum of a function with an indefinite integral should be understood as a sum
of a function with a set of functions and so on8. But note that it is important
to regard the indefinite integral as the set of functions themselves, not as the
set of those functions evaluated at some point. Namely, if

∫
(x2y3 + xy) dx

denotes the set {
F (x) : F primitive of f

}
with f defined by f(x) = x2y3+xy, then it turns out that

∫
(x2y3+xy) dx is

simply the set R of all real numbers. Taking the set of all possible primitives
of a function and evaluating them all at a given point x will always yield
the set of all real numbers, so that would not be a very interesting meaning.
Thus, the strategy of regarding the indefinite integral as a set of functions
contradicts the fact that

∫
(x2y3 + xy) dx is supposed to be a term in which

the variable x is free. For this to work, one then has to use a different notion
of variable that we will explain in Section 5 (see Remark 5.7).

4. Taking a partial derivative with respect to a variable

Given a function f : U → R defined in a (typically open) subset U of R3,
then the partial derivatives of f are normally denoted by

(13)
∂f

∂x
,

∂f

∂y
and

∂f

∂z
,

and they are called the “partial derivative of f with respect to the variable
x”, the “partial derivative of f with respect to the variable y” and the
“partial derivative of f with respect to the variable z”. But what does this
mean really? There is no sense in which f is a “function of the variables
x, y and z” and there is no connection between these variables and f . The
function f is a rule that takes triples of real numbers as inputs and generates
real numbers as outputs. In the standard set-theoretic formalization of
mathematics, the function f is a subset of the cartesian product R3 × R.
The variables x, y and z are merely symbols and it is not clear what they
are supposed to be denoting here.

Notice that, using the notational convention of Subsection 3.3, the partial
derivatives of f calculated at a point (x, y, z) ∈ U can be denoted by

d

dx

(
f(x, y, z)

)
,

d

dy

(
f(x, y, z)

)
and

d

dz

(
f(x, y, z)

)
,

but there is nothing special about the letters x, y and z. One could also
say that the partial derivatives of f calculated at a point (ρ, w, σ) ∈ U are
denoted by:

d

dρ

(
f(ρ, w, σ)

)
,

d

dw

(
f(ρ, w, σ)

)
and

d

dσ

(
f(ρ, w, σ)

)
.

8If A and B are sets of functions, the sum A+B should be the set of functions defined
by
{
f + g : f ∈ A, g ∈ B

}
and, if f is a function, the sum f +B should be defined as the

set of functions
{
f + g : g ∈ B

}
. The “arbitrary constant of integration” C could then be

understood as a notation for the set of all constant functions.
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Let us now review some basic notions of Calculus and then let us discuss
a rational foundation for the use of the notation (13).

4.1. Partial and directional derivatives. Given a function f : U → R

defined in a (typically open) subset U of Rn, then for i = 1, 2, . . . , n, we
define the i-th partial derivative of f or the partial derivative of f with
respect to the i-th variable at a point x = (x1, . . . , xn) ∈ U by setting:

(∂if)(x) = g′(xi),

where g is the function defined by

g(t) = f(x1, . . . , xi−1, t, xi+1, . . . , xn),

for all t ∈ R such that (x1, . . . , xi−1, t, xi+1, . . . , xn) ∈ U . In principle,
something like ∂if is the only type of notation that makes sense for a partial
derivative of f ; namely, since the elements in the domain of f are families
indexed by the positive integers 1, 2, . . . , n, one has merely to specify one
of those integers i ∈ {1, 2, . . . , n} and this is all that we need in order to
specify a partial derivative of f .

Given a point x ∈ U and a vector v ∈ Rn, then the directional derivative
of f at the point x in the direction of v is defined by9:

∂f

∂v
(x) = lim

t→0

f(x+ tv)− f(x)

t
.

Clearly, the partial derivative ∂if is equal to the directional derivative of
f in the direction of the i-th vector of the canonical basis of Rn. Thus, if
{e1, e2, . . . , en} denotes the canonical basis ofRn, then we get this alternative
notation for the partial derivatives of f :

∂if =
∂f

∂ei
.

4.2. Going back to the traditional notation. How can we make sense of
the notation (13)? It is really simple: one merely chooses a bijection between
the positive integers 1, 2, . . . , n and some arbitrary list of n distinct symbols
and then we introduce the convention that, for i = 1, 2, . . . , n, the partial
derivative ∂if will be denoted by ∂f

∂# , with # the symbol that was chosen

to correspond to the positive integer i. For instance, if n = 3, we could pick
the bijection

(14) 1 7→ x, 2 7→ y, 3 7→ z,

and according to this bijection and the convention above, we have:

(15) ∂1f =
∂f

∂x
, ∂2f =

∂f

∂y
and ∂3f =

∂f

∂z
.

9Though the notation ∂f
∂v

is common, the similarity with the notation (13) for partial
derivatives is somewhat annoying: if one is using v as the “name for one of the variables
of f”, then ∂f

∂v
denotes both a partial derivative of f and the directional derivative in the

direction of the vector v ∈ Rn.
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We could choose a different bijection, with different symbols

(16) 1 7→ ρ, 2 7→ w, 3 7→ σ,

and then the same partial derivatives of f would be denoted differently:

(17) ∂1f =
∂f

∂ρ
, ∂2f =

∂f

∂w
and ∂3f =

∂f

∂σ
.

Note that the symbols x, y, z, ρ, w, σ are not variables in any meaningful
way, they are merely symbols. But it is common to call them “the names of
the variables of f”.

In many cases it is convenient to use different bijections for different
functions10 and that is perfectly fine, as long as the bijections are specified
in some way. In practice, Calculus books do not explain this very explicitly
and they don’t present the bijection like we did in (14). A bijection like that
is usually implied by the formula used to introduce the function, which will
be a formula like:

f(x, y, z) = sin(xy + z2), for all (x, y, z) ∈ R3;

from this formula, the reader infers the bijection (14) and thus the notation
(15) for the partial derivatives of f . If the same function f were introduced
by the formula

f(ρ, w, σ) = sin(ρw + σ2), for all (ρ, w, σ) ∈ R3,

then the reader should infer the bijection (16) and the notation (17) for the
partial derivatives of f .

But what is the point of picking these bijections? Couldn’t we just use
∂1f , ∂2f and ∂3f for the partial derivatives of f? The point is that in
practice we commonly have some concrete meaning in mind for the various
variables of f and remembering numbers is not practical. For instance, in a
concrete situation, f could be a function of time, volume and pressure and
it is easier to remember the association of “time”, “volume” and “pressure”
with letters like t, V and P than an association with numbers 1, 2 and 3. We
want to denote the partial derivative of f with respect to time by something
like ∂f

∂t , not ∂1f ; we just don’t care to remember if time happens to be the
first or the seventh variable of f .

4.3. How to get rid of the useless variable numbering. Imagine a
practical problem in which we have a function f : R2 → R which we think
of as a function of time t ∈ R and some spatial position x ∈ R, say f is
given by:

(18) f(t, x) = cos(3x− 2t), for all (t, x) ∈ R2.

10Even if f and g happen to denote exactly the same function, we might want to use
one bijection for f and another for g. So it is not just “different bijections for different
functions” that we want, but really different bijections for different function names.
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We would then pick the bijection

(19) 1 7→ t, 2 7→ x

and denote the partial derivatives ∂1f and ∂2f by ∂f
∂t and ∂f

∂x , respectively.

Now consider the function g : R2 → R defined by:

g(x, t) = cos(3x− 2t), for all (x, t) ∈ R2.

For the purpose of handling the given practical problem, the function g will
be just as good as f . Properly understood, both f and g describe the same
physical situation and yet the functions f and g are different functions. For
instance, we have f(1, 0) = cos(−2) = cos 2 and g(1, 0) = cos 3 6= f(1, 0).
For the function g we would prefer to use the bijection

1 7→ x, 2 7→ t

so that ∂1g is denoted by ∂g
∂x and ∂2g is denoted by ∂g

∂t .
Since we don’t care about whether time is going to be the first variable

or the second variable, wouldn’t it be nice to simply get rid of the useless
variable numbering? How can we do this? Simple: forget about R2, in
which the elements are indexed by {1, 2}, and use a more appropriate set
for indexation. An element x of Rn can be thought of as a mapping from
{1, 2, . . . , n} to R (the mapping that associates i ∈ {1, 2, . . . , n} to the i-th
coordinate xi of the n-tuple x). We could replace {1, 2, . . . , n} by another
set with n elements and get something that is not exactly Rn, but it is
isomorphic11 to Rn. So, given a set I, we denote by RI the space of all
mappings from I to R. If I has n elements, then RI is like Rn, but without
the numbering of the coordinates. A coordinate of an element x ∈ RI is
associated to an element of I, not to a positive integer between 1 and n. So,
instead of Rn, we could just use RI as the domain of our function f , with
I the set containing the n symbols12 that we would like to associate to the
“variables” of f .

I’m not defending that following the strategy proposed in the previous
paragraph is desirable, I’m just proposing that as a possibility for those that
are annoyed by the necessity of fixing some arbitrary variable ordering when
dealing with multivariable functions. In the case of the function (18), one

could think that the domain of f is R{t,x} instead of R2, with t and x being
some fixed distinct symbols. One can then denote the partial derivatives
of f by ∂f

∂t and ∂f
∂x (or simply ∂tf and ∂xf) and no bijection like (19) has

to be specified. If the domain of f is R{t,x}, then f does not have a first
variable and a second variable, but a t-variable and an x-variable. However,

11As a vector space, for instance.
12Strictly speaking, the symbols are syntactic objects, not mathematical objects, so

they cannot be elements of the set I. If the axiomatic foundation of mathematics is ZFC,
then the elements of I should be sets. But we can simply imagine that we have picked
arbitrary (unspecified) sets to correspond to the symbols that we want to be the elements
of I.
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it is somewhat annoying now that the elements of the domain of f are not
ordered pairs, so an expression like f(3, 5) will not be understandable. One
would have then to use some awkward notation for an element of the domain
of f such as (t 7→ 3, x 7→ 5) or something like that.

5. Variables as interdependent quantities

In Physics and other applications of Mathematics, we often want to study
the behaviour of certain systems and, in particular, we are interested in
studying the relation between certain variables that describe properties of
a given system. The meaning of “variable” in this context is completely
different from the meaning we have discussed in the previous sections. In
order to avoid confusion, we will call dynamical variables the type of variable
that will be discussed in this section and syntactic variables the type of
variables considered in the previous sections.

For example, suppose that the system we want to study is a (Newtonian)
particle moving in three-dimensional space. For each instant of time t, the
particle will have a certain position ~r = (x, y, z), represented in terms of
coordinates with respect to some given coordinate system in physical space.
The particle also has a certain mass m and, for each t, the particle has
a vector velocity ~v, a scalar velocity v, a vector momentum ~p, a scalar

momentum p, a kinetic energy K, a total force ~F applied to it and so on.
These various dynamical variables can satisfy certain relations that make
some of them dependent on the others. For instance, we have the equalities

~p = m~v, v2 = ~v · ~v, p2 = ~p · ~p, K =
1

2
mv2 =

p2

2m
,

where the dot denotes the scalar product. Moreover, we often talk about
taking derivatives of one variable with respect to another variable and we
write equalities such as

~v =
d~r

dt
, ~F =

d~p

dt
,

dK

dt
= ~F · ~v,

and so on. Instead of taking the derivative of the kinetic energy K with
respect to time, we could choose to take, say, the derivative of kinetic energy
with respect to the scalar velocity v and this yields:

dK

dv
= mv = p.

As we discussed in Subsection 3.3, talking about “taking the derivative of
a function with respect to a given variable” does not make sense: a function
has a derivative, period, no variables have to be specified. In Section 4 we
gave some meaning to the idea of “taking the partial derivative of a function
with respect to a variable”, but the “variable” there was merely a symbol
that served as a mnemonic for a positive integer: we write something like ∂f

∂t
instead of ∂2f because the symbol t is easier to remember than the number
2. Also, talking about “taking the derivative of the variable y with respect
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to the variable x” is meaningless if x and y are syntactic variables. Namely,
at a given point in the presentation of a mathematical argument, syntactic
variables have just one value (fixed by some previous “let” construction). It
might happen that we have a relation like y = x2 + x (this is the case, for
instance, after we say “let x, y ∈ R and assume that y = x2 + x”), but no
functions are defined by a relation like that since x has only one value. If
x = 1 and y = 2, then it is true that y = x2 + x, but it is also true that
y = x4 + x5.

5.1. A precise formulation for the concept of dynamical variable.
In what follows, we give a rigorous mathematical foundation for the kind
of talk that normally appears in Physics books about “a variable being a
function of another variable” and “taking the derivative of one variable with
respect to another variable”. The motivation behind our formulation is the
following: in a Physics problem, the system that one wants to study can
be in a variety of different states and, for each state, a dynamical variable
that represents a property of the system will assume a certain value. We
then consider a certain set S which we call the state space (i.e., the set of all
possible states for the system) and the dynamical variables will be mappings
defined in S.

Definition 5.1. Let S be a set. A real-valued dynamical variable on the state
space S is a function x : S→ R. More generally, given an arbitrary set M , an
M -valued dynamical variable on the state space S is a function x : S → M .
For example, we can talk about vector-valued dynamical variables by taking
M = Rn or by taking M to be some vector space.

Now we can give precise meaning to the idea that a variable can be a
function of another variable.

Definition 5.2. Let S, M and N be sets, x : S → M be an M -valued
dynamical variable on the state space S and f : M → N be a function.
The composition f ◦ x : S → N is then an N -valued dynamical variable on
the state space S and it will be denoted simply by f(x). We say that an
N -valued dynamical variable y : S → N on the state space S is a function
of x if there exists a function f : M → N such that y = f(x) (i.e., such that
y = f ◦ x).

Note that if y is a function of x in the sense defined above, then there
exists a unique function f defined on the image of x such that y = f(x).
The image of x is, of course, the set of all possible values assumed by x. We
can have also y = f(x) for a function f whose domain contains — but it is
not necessarily equal to — the image of x, but then the condition y = f(x)
says nothing about the values that f assumes outside of the image of x. It
is easy to see that y is a function of x if and only if, for every pair of states
σ1, σ2 ∈ S, if x(σ1) = x(σ2), then y(σ1) = y(σ2).
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Now, given real-valued dynamical variables x and y on the same state
space, we can make sense of the derivative dy

dx of y with respect to x. We

choose our definition in such a way that dy
dx is also a dynamical variable.

Definition 5.3. Let x and y be real-valued dynamical variables on the same
state space S. Assume that the image of x is an interval13 I ⊂ R and that y
is a function of x. Let f : I → R be the unique function such that y = f(x).
If f is differentiable on I, we define the derivative of y with respect to x to
be the real-valued dynamical variable on the state space S given by:

dy

dx
= f ′(x) = f ′ ◦ x

More generally, it could happen that f is not differentiable at all points
of I, so that the domain of the derivative f ′ is a subset of I. The domain
of dy

dx = f ′(x) would then be the subset of S consisting of those states σ ∈ S
such that f is differentiable at the point x(σ). In this case, dy

dx is going to
be a real-valued dynamical variable in a state space smaller than S.

With this definition of derivative, one readily checks that the following
version of the chain rule holds.

Proposition 5.4 (chain rule). Let x, y and z be real-valued dynamical
variables on the same state space. Assume that y is a function of x, z is a
function of y and that the derivatives dy

dx and dz
dy exist. Then z is a function

of x, the derivative dz
dx exists and:

(20)
dz

dx
=

dz

dy

dy

dx
.

Proof. Note that if y = g(x) and z = f(y), then z = (f ◦ g)(x). Now apply
the standard chain rule for the composition f ◦ g. �

In the righthand side of equality (20), the product of the dynamical vari-

ables dz
dy and dy

dx is understood in the way that a product of functions is

normally understood, namely, the pointwise product. More generally, one
can operate with dynamical variables in the normal way that one operates
with functions, using pointwise defined operations. Thus, for instance, if x
and y are real-valued dynamical variables on the same state space S, one
can form the real-valued dynamical variable x3y + x sin(xy2) on S; more
explicitly, we have(

x3y + x sin(xy2)
)
(σ) = [x(σ)]3y(σ) + x(σ) sin

(
x(σ)[y(σ)]2

)
,

for all σ ∈ S.
Like the chain rule, other standard rules of Calculus (like the rule for

derivatives of sums and products) can be readily shown to hold for dynamical

13More generally, it would be sufficient for the image of x to be a subset of R with no
isolated points.
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variables. Also, higher order derivatives are readily adaptable to the context
of dynamical variables.

We note that when doing Calculus with dynamical variables, the choice
of state space S is largely irrelevant, only the relations between the variables
matter. For instance, if you want to formalize the implication

y = x2 + x3 =⇒ dy

dx
= 2x+ 3x2

using dynamical variables x and y, you could take the state space S to be
the real line R, the real-valued dynamical variable x : R → R to be the
identity map and then you would define y = x2 + x3. You could also set

S =
{

(t, t2 + t3) : t ∈ R
}
⊂ R2

and take x : S → R and y : S → R to be the restriction to S of the first
and second projections of R2, respectively. This also leads to y = x2 + x3.
The second choice is more elegant and it handles the variables x and y in
a more symmetric way than the first choice, but both work just as well. In
general, all you need is a sufficiently rich state space S that can represent
all the relevant relations between dynamical variables that you need. One
possibility that always works is to take S to be a subset of some cartesian
product, so that each element of S is a family containing all the possible
joint values of the dynamical variables at a state.

Remark 5.5. In terms of the terminology of Subsection 2.5, a dynamical
variable is a mathematical object (it is a function) and a syntactic variable
is a syntactic object (it is a symbol). However, we talk about dynamical
variables like we talk about any object: using words and symbols. When we
say “let f be the function defined by . . . ”, we have a syntactic variable f
which is a symbol that points to a mathematical object that is a function.
Likewise, when we say that “x is a dynamical variable” we have a symbol
x which is a syntactic variable that points to the mathematical object that
is a dynamical variable. Using the convention discussed in Subsection 2.5
for quotation marks, we should say that “f is a function”, while ““f” is
a syntactic variable” and that “x is a dynamical variable”, while ““x” is
a syntactic variable”. Note that if x is a real-valued dynamical variable,
then the value of the syntactic variable “x” is not a real number, but the
dynamical variable x, which is a function. What we normally think as the
“value of a dynamical variable x” would be the value x(σ) that the function
x takes at some state σ ∈ S; that value is indeed a real number.

Remark 5.6. There is another way to make sense of the notation dy
dx that

does not use dynamical variables. We could take x to be a syntactic variable
and y to be a symbol that works as an abbreviation of some term in which
the variable x is free. For instance, y could be an abbreviation for x2 + x or
for f(x). Then dy

dx could be understood as an instance of the notation (10).

Unfortunately, this strategy for interpreting dy
dx has some shortcomings when

compared to the one that uses dynamical variables. For instance, if x and y
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are dynamical variables and if y = f(x) with f an injective function, then dx
dy

becomes a notation for the derivative of the inverse function of f (composed
with y), which is what we would like dx

dy to mean. On the other hand, if y is

merely an abbreviation for a term containing the syntactic variable x, then
dx
dy is meaningless.

Remark 5.7. The use of dynamical variables yields a solution to the problems
we had in Subsection 3.4 to interpret the standard notation for indefinite
integrals. Namely, given dynamical variables x and y such that y is a func-
tion of x, we can understand the indefinite integral

∫
y dx as denoting the

following set of dynamical variables{
F (x) : F a primitive of f

}
,

where f is the function defined in the image of x such that y = f(x). This
formalism also works nicely to provide a precise meaning for the computa-
tions in which one uses substitutions of variables to calculate an indefinite
integral.

5.2. Random variables. If you know anything about probability theory,
then you have probably realized that what we have called dynamical vari-
ables is very similar to what is normally called a random variable. In proba-
bility theory, a real-valued random variable in a probability space is a mea-
surable real-valued function defined on that probability space. A probability
space is like our state space S, but rather than being just a set it carries a
probability measure14. We normally think that a probability space models
a system in which the states are random, either because the states are going
to be obtained as outcomes of independently reproducible experiments ex-
hibiting statistical regularities or because we want to model some situation
in which the state is unknown and the probabilities are related to subjective
uncertainties. In any case, the randomness of the states contaminates the
values of the dynamical variables and then we call them random variables.
In probability theory, random variables are usually denoted by uppercase
letters such as X : S → R and Y : S → R and a relation like Y = f ◦X is
normally denoted as Y = f(X), like we did in Definition 5.2.

14A probability measure on a set S is a mapping P : A → [0, 1] such that P (S) = 1 and
P (
⋃∞

n=1En) =
∑∞

n=1 P (En), for every sequence (En)n≥1 of mutually disjoint elements of
A. The set A is a nonempty collection of subsets of S such that the union of an arbitrary
sequence of elements of A is in A and the complement of an arbitrary element of A is
in A. The collection A is then called a σ-algebra of subsets of S. A real-valued function
defined on S is said to be measurable if the inverse image of every interval belongs to
A. For discrete probability theory, one can normally take A simply to be the collection
of all subsets of S, so that every function is measurable. In general, the σ-algebra is
important due to technical reasons that you will learn in courses about Lebesgue measure
and measure theory.
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5.3. Multivariable calculus and partial derivatives. Dynamical vari-
ables can also easily be used for multivariable calculus. We give now the
relevant definitions.

Definition 5.8. Let x1 : S→M1, . . . , xn : S→Mn be dynamical variables
in the same state space S. We denote by (x1, . . . , xn) : S→ M1 × · · · ×Mn

the dynamical variable defined by

(x1, . . . , xn)(σ) =
(
x1(σ), . . . , xn(σ)

)
∈M1 × · · · ×Mn,

for all σ ∈ S.

For example, if x1, . . . , xn are real-valued dynamical variables, then
(x1, . . . , xn) is an Rn-valued dynamical variable.

Definition 5.9. We say that a dynamical variable y : S→ N is a function
of the dynamical variables x1 : S→M1, . . . , xn : S→Mn if y is a function
of (x1, . . . , xn), i.e., if there exists a function f : M1 × · · · ×Mn → N such
that:

y = f(x1, . . . , xn) = f ◦ (x1, . . . , xn).

Clearly, if y is a function of x1, . . . , xn, then there exists a unique function
f defined in the image of (x1, . . . , xn) such that y = f(x1, . . . , xn). The image
of (x1, . . . , xn) is a subset of the product M1 × · · · ×Mn. Note that y is a
function of x1, . . . , xn if and only if for all σ1, σ2 ∈ S, if xi(σ1) = xi(σ2) for
all i = 1, . . . , n, then y(σ1) = y(σ2). It follows that the condition that y be a
function of x1, . . . , xn is independent of the chosen ordering for the sequence
x1, . . . , xn, though the function f itself does depend on that ordering.

When y is a function of x1, . . . , xn, we can define the partial derivatives
∂y
∂xi

, i = 1, . . . , n, as follows: let f be the function defined in the image of

(x1, . . . , xn) such that y = f(x1, . . . , xn) and set

(21)
∂y

∂xi
= (∂if)(x1, . . . , xn), i = 1, . . . , n,

provided that the partial derivative ∂if exists15. Though f depends on the
chosen ordering of x1, . . . , xn, the partial derivative ∂y

∂xi
doesn’t. In Sub-

section 5.4 below we will give a more general definition of partial derivative
for which the independence of ordering is manifest, as no such ordering is
mentioned.

We note that in the case of a partial derivative of a dynamical variable y
with respect to a dynamical variable xi, the result does not depend only on

15It is also relevant that the domain of f — which is the image of (x1, . . . , xn) — is such
that the relevant limit that defines the partial derivative ∂if makes sense. This happens,
for instance, if such domain is open. The condition that the image of (x1, . . . , xn) is such
that the limit involved in the partial derivative ∂if makes sense can be understood as
the condition that the variables x1, . . . , xn be “sufficiently independent”. For example, if
n = 2 and x2 is a function of x1, then the image of (x1, x2) will be merely a line in the
plane and then the partial derivatives of a function f defined in that line will normally
not make sense.
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y and xi, but also on the other dynamical variables xj involved; namely, the

partial derivative ∂y
∂xi

measures the rate of change of y when xi varies and
the other variables xj are kept fixed. If you pick another set of variables to
be kept fixed, the rate of change of y will be different. For example, assume
that y = x1+x2 and x̄2 = x1−x2. If the fixed variable is x2, then the partial
derivative ∂y

∂x1
is equal to 1. On the other hand, we have y = 2x1 − x̄2, so

that if x̄2 is the fixed variable, we obtain that the partial derivative ∂y
∂x1

is

equal to 2. Thus, the standard notation ∂y
∂xi

is somewhat unfortunate, as
it makes the varying variable xi explicit, but it conceals the fixed variables
xj , j 6= i, which are also relevant for the value of the partial derivative. In
practice, however, the set of fixed variables is usually clear from context.

We can now state a multivariable version of the chain rule.

Proposition 5.10 (multivariable chain rule). Let x1, . . . , xn, y1, . . . , ym, z
be real-valued dynamical variables on the same state space. Let j = 1, . . . , n
be given. Assume that:

(i) yi is a function of x1, . . . , xn, for all i = 1, . . . ,m;

(ii) the partial derivatives ∂yi
∂xj

exist, for all i = 1, . . . ,m;

(iii) the image of (y1, . . . , ym) is an open subset of Rm;
(iv) z = f(y1, . . . , ym), for a differentiable function f defined in the image

of (y1, . . . , ym).

Then z is a function of x1, . . . , xn, the partial derivative ∂z
∂xj

exists and it

is given by:

(22)
∂z

∂xj
=

m∑
i=1

∂z

∂yi

∂yi
∂xj

.

Proof. We have

(23) (y1, . . . , ym) = g(x1, . . . , xn),

for a certain function g defined in the image of (x1, . . . , xn) and taking values
in Rm. Then:

z = (f ◦ g)(x1, . . . , xn).

Now apply the standard multivariable chain rule for the composition of f
with g. �
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Unfortunately, the assumptions of Proposition 5.10 will almost never be
satisfied if n < m. For instance, if n < m and the function g in (23) is
of class C1 then the image of g is never going to be an open subset of
Rm and thus assumption (iii) is not going to be satisfied. The following
slight generalization of the statement of the proposition takes care of this
problem: we consider a state space S in which all the dynamical variables in
the statement are defined and a subset S′ of S. In the assumptions (i) and
(ii), the variables should be restricted to S′; more explicitly, assumptions (i)
and (ii) should be replaced by:

(i’) yi|S′ is a function of x1|S′ , . . . , xn|S′ , for all i = 1, . . . ,m;
(ii’) the partial derivative of the restriction yi|S′ with respect to the re-

striction xj |S′ exists, for all i = 1, . . . ,m.

The new thesis is that z|S′ is a function of x1|S′ , . . . , xn|S′ and that the partial
derivative of z|S′ with respect to xj |S′ exists. Moreover, in equality (22) the
appropriate restrictions to S′ should be considered, i.e., (22) becomes:

∂z|S′
∂xj |S′

=

m∑
i=1

∂z

∂yi

∣∣∣
S′
∂yi|S′
∂xj |S′

.

This is probably looking too abstract and ugly, so let us see in a con-
crete example how this generalization of Proposition 5.10 works in practice.

Imagine that we have a force field ~F over physical space, so that the force
~F is written as a function of the coordinates (x, y, z) of a point of physical
space (with respect to some fixed coordinate system). Imagine also that we
have a particle flying around, so that the coordinates (x, y, z) of the position
of the particle are written as functions of time t. Now, for each t, we have

a force (given by the force field ~F ) acting at the particle and we would like
to talk about the time derivative of that force. Using our formalism of dy-
namical variables, we could for instance take the state space S to be R4 and
the dynamical variables t, x, y and z to be the four projections of R4 onto

R. The force field ~F can now be thought as a dynamical variable over the
state space S that is a function of x, y and z, so it makes sense to talk about

the partial derivatives ∂ ~F
∂x , ∂ ~F

∂y and ∂ ~F
∂z . Note that the image of (x, y, z) is

simply R3, which is an open subset of R3. Here the variables x, y and z
are independent and we are not capturing the idea that x, y and z become
a function of t when the trajectory of a particle is specified. Let now S′ be
the subset of S = R4 which is what is usually called the worldline of the
particle, i.e., it is the set of spacetime points in which the particle is present.
The restriction of (x, y, z) to S′ is now a function of the restriction of t to S′
and this function is precisely the time parametrization of the trajectory of

the particle. The restriction of ~F to S′ is then a function of the restriction
of t to S′ and (with the appropriate differentiability assumptions) we can

now calculate the derivative of ~F |S′ with respect to t|S′ using the chain rule
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obtaining:

d~F |S′
dt|S′

=
∂ ~F

∂x

∣∣∣
S′

dx|S′
dt|S′

+
∂ ~F

∂y

∣∣∣
S′

dy|S′
dt|S′

+
∂ ~F

∂z

∣∣∣
S′

dz|S′
dt|S′

.

Allowing for some abuse of notation, we drop the annoying restrictions to
S′ and use the more familiar notation:

d~F

dt
=
∂ ~F

∂x

dx

dt
+
∂ ~F

∂y

dy

dt
+
∂ ~F

∂z

dz

dt
.

5.4. The general definition of partial derivative. The style of pre-
sentation of this subsection might be too abstract for the typical Calculus
student. The discussion of partial derivatives involving dynamical variables
presented so far is sufficient for most practical purposes. This subsection is
for those that enjoy generality and elegance.

Definition 5.11. Let F be an arbitrary set of dynamical variables defined
on the same state space S. We say that a dynamical variable y defined on
S is a function of the elements of F if for all σ1, σ2 ∈ S, we have that if
x(σ1) = x(σ2) for all x ∈ F , then y(σ1) = y(σ2).

Definition 5.11 is a generalization of Definition 5.9 to the case when the
set F = {x1, . . . , xn} is not necessarily finite.

Definition 5.12. Let F be an arbitrary set of dynamical variables defined
on the same state space S. For each σ ∈ S, we set:

S(σ;F) =
{
τ ∈ S : x(τ) = x(σ), for all x ∈ F

}
.

In words, S(σ;F) is the set of states in which all the variables belonging
to F take the same values as they take at σ. When we move inside of
S(σ;F), we are varying the states while keeping the values of the variables
x belonging to F fixed. It is easy to see that if a dynamical variable y is
a function of the elements of the set of dynamical variables F ∪ {x}, then
for all σ ∈ S, the restriction y|S(σ;F) of y to S(σ;F) is a function of the
restriction x|S(σ;F) of x to S(σ;F).

We are now ready to give our general definition of partial derivative.

Definition 5.13. Let x and y be real-valued dynamical variables on a state
space S and F be an arbitrary set of dynamical variables on S. Assume
that:

(i) y is a function of the elements of F ∪ {x};
(ii) for every σ ∈ S, the image Iσ of the restriction of x to S(σ;F) has

no isolated points;
(iii) for every σ ∈ S, the unique function fσ : Iσ → R such that

y|S(σ;F) = fσ(x|S(σ;F))

is differentiable.
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Under these conditions, the partial derivative of y with respect to x keeping
F fixed is the real-valued dynamical variable

[ ∂y
∂x

]
F on S defined by[∂y

∂x

]
F

(σ) = f ′σ
(
x(σ)

)
,

for all σ ∈ S.

This definition generalizes (21). Namely, if x1, . . . , xn are distinct dy-
namical variables on the state space S and if y is a function of the dynamical
variables x1, . . . , xn, then what we call ∂y

∂xi
in (21) is the same as

[ ∂y
∂xi

]
F in

the terminology of Definition 5.13, with F =
{
xj : j = 1, . . . , n, j 6= i

}
. The

advantage of Definition 5.13 is that it does not require a choice of variable
ordering for x1, . . . , xn and that it works with infinite sets of fixed variables.

Departamento de Matemática,
Universidade de São Paulo, Brazil
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