A UNIFORM LAW OF LARGE NUMBERS

DANIEL V. TAUSK

In what follows all random objects are assumed to be defined on a fixed probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and the probability distribution of a random object Y (i.e., the push-forward of \mathbb{P} by Y) will be denoted by \mathbb{P}_Y . The real finite-dimensional vector space V appearing in the statements below will be assumed to be endowed with an arbitrary fixed norm $\|\cdot\|$ and with the corresponding topology. Recall that a topological space is called *separable* if it admits a countable dense subset and *first countable* if every point admits a countable fundamental system of neighborhoods. It holds that every metrizable space is first countable and every compact metrizable space is separable.

Proposition 1 (uniform strong law). Let $(\mathcal{Y}, \mathcal{B})$ be a measurable space, K be a compact separable and first countable topological space and $g : \mathcal{Y} \times K \to V$ be a map taking values in a real finite-dimensional vector space V. Let $(Y_n)_{n\geq 1}$ be an independent and identically distributed sequence of \mathcal{Y} -valued random objects and assume that the following conditions hold:

- (a) for \mathbb{P}_{Y_1} -almost every $y \in \mathcal{Y}$, the map $K \ni \theta \mapsto g(y,\theta) \in V$ is continuous;
- (b) for all $\theta \in K$, the map $\mathcal{Y} \ni y \mapsto g(y, \theta) \in V$ is measurable;
- (c) there exists a measurable function $h : \mathcal{Y} \to [0, +\infty[$ such that the expected value $E(h(Y_1))$ is finite and such that, for \mathbb{P}_{Y_1} -almost every $y \in \mathcal{Y}$, we have $\|g(y, \theta)\| \leq h(y)$ for every $\theta \in K$.

Under such conditions, we have that for \mathbb{P} -almost every $\omega \in \Omega$ the equality

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} g(Y_i(\omega), \theta) = E(g(Y_1, \theta))$$

holds for every $\theta \in K$, with the limit being uniform in θ .

Proof. By replacing \mathcal{Y} with a subset of \mathbb{P}_{Y_1} -probability 1 and restricting all Y_n to a subset of Ω with \mathbb{P} -probability 1, we can assume that conditions (a) and (c) hold with "for \mathbb{P}_{Y_1} -almost every $y \in \mathcal{Y}$ " replaced with "for every $y \in \mathcal{Y}$ ". Given a nonempty open subset U of K and $\theta \in K$, we define a map $H_{U,\theta}: \mathcal{Y} \to [0, +\infty]$ by setting

(1)
$$H_{U,\theta}(y) = \sup_{\theta' \in U} \|g(y,\theta') - g(y,\theta)\|,$$

Date: May 15th, 2024.

for all $y \in \mathcal{Y}$. Note that $H_{U,\theta} \leq 2h$ and that the function $H_{U,\theta}$ is measurable since, by the continuity of $g(y, \cdot)$, one can take the supremum in (1) over a countable dense subset of U. Given $\theta \in K$ and a decreasing countable fundamental system of open neighborhoods $(U_k)_{k\geq 1}$ of θ , the continuity of $g(y, \cdot)$ implies that $(H_{U_k,\theta})_{k\geq 1}$ converges pointwise to zero and therefore the Dominated Convergence Theorem yields $\lim_{k\to+\infty} E(H_{U_k,\theta}(Y_1)) = 0$. Moreover, the continuity of $g(y, \cdot)$ and the Dominated Convergence Theorem also yield that the map $K \ni \theta \mapsto E(g(Y_1, \theta)) \in V$ is continuous.

Now let $\varepsilon > 0$ be fixed. To prove the proposition, it is sufficient to show that, for \mathbb{P} -almost every $\omega \in \Omega$, we have

$$\left\|\frac{1}{n}\left[\sum_{i=1}^{n}g(Y_{i}(\omega),\theta)\right]-E(g(Y_{1},\theta))\right\|<\varepsilon,$$

for all $\theta \in K$ and for $n \geq 1$ sufficiently large (keep in mind that one will be able to choose the set of \mathbb{P} -probability 1 for which this holds independently of $\varepsilon > 0$ since it is sufficient to consider countably many $\varepsilon > 0$). By the observations in the beginning of the proof, each $\theta \in K$ has an open neighborhood $U(\theta)$ such that

(2)
$$E(H_{U(\theta),\theta}(Y_1)) < \varepsilon$$

and

(3)
$$\left\| E(g(Y_1,\theta')) - E(g(Y_1,\theta)) \right\| < \varepsilon,$$

for all $\theta' \in U(\theta)$. Since K is compact, we can find a finite subset F of K such that $K = \bigcup_{\theta \in F} U(\theta)$. By the Strong Law of Large Numbers, for P-almost every $\omega \in \Omega$, the conditions

(4)
$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} H_{U(\theta),\theta} (Y_i(\omega)) = E (H_{U(\theta),\theta}(Y_1)).$$

(5)
$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} g(Y_i(\omega), \theta) = E(g(Y_1, \theta))$$

hold for all $\theta \in F$. Let $\omega \in \Omega$ for which (4) and (5) are satisfied for all $\theta \in F$ be fixed, so that

(6)
$$\left\|\frac{1}{n}\left[\sum_{i=1}^{n}H_{U(\theta),\theta}(Y_{i}(\omega))\right]-E(H_{U(\theta),\theta}(Y_{1}))\right\|<\varepsilon,$$

(7)
$$\left\|\frac{1}{n}\left[\sum_{i=1}^{n}g(Y_{i}(\omega),\theta)\right] - E(g(Y_{1},\theta))\right\| < \varepsilon,$$

for all $\theta \in F$ and for $n \geq 1$ sufficiently large. Now let $n \geq 1$ be fixed such that (6) and (7) hold for all $\theta \in F$. For arbitrary $\theta' \in K$, we pick $\theta \in F$

with $\theta' \in U(\theta)$ and using (2), (6) and the definition of $H_{U(\theta),\theta}$ we obtain:

(8)
$$\left\| \frac{1}{n} \left[\sum_{i=1}^{n} g(Y_i(\omega), \theta') \right] - \frac{1}{n} \left[\sum_{i=1}^{n} g(Y_i(\omega), \theta) \right] \right\| \le \frac{1}{n} \sum_{i=1}^{n} H_{U(\theta), \theta}(Y_i(\omega)) < E(H_{U(\theta), \theta}(Y_1)) + \varepsilon < 2\varepsilon.$$

Finally from (3), (7) and (8) we get

$$\left\|\frac{1}{n}\left[\sum_{i=1}^{n}g(Y_{i}(\omega),\theta')\right] - E(g(Y_{1},\theta'))\right\| < 2\varepsilon + \varepsilon + \varepsilon = 4\varepsilon,$$

g the proof.

concluding the proof.

Corollary 2 (uniform weak law). Under the assumptions of Proposition 1, we have that the sequence of functions

$$S_n(\omega) = \sup_{\theta \in K} \left\| \frac{1}{n} \left[\sum_{i=1}^n g(Y_i(\omega), \theta) \right] - E(g(Y_1, \theta)) \right\|, \quad \omega \in \Omega$$

converges to zero in probability.

Proof. As in the proof of Proposition 1 we obtain (by possibly deleting a subset of \mathbb{P} -probability zero from Ω) that the functions S_n are measurable because by continuity one can replace the supremum over K in the definition of S_n with the supremum over a countable dense subset of K. By Proposition 1, the sequence $(S_n)_{n\geq 1}$ converges almost surely to zero and hence it also converges in probability to zero.

Example 3. Assumption (c) in the statement of Proposition 1 is really necessary. Namely, consider the set of positive integers endowed with the discrete topology and let $K = \{1, 2, \ldots\} \cup \{\infty\}$ denote its one-point compactification. A map $g: \mathcal{Y} \times K \to V$ satisfying assumptions (a) and (b) in the statement of Proposition 1 is determined by a sequence $(g_m)_{m\geq 1}$ of measurable maps $g_m: \mathcal{Y} \to V$ that converges pointwise to a map $g_\infty: \mathcal{Y} \to V$. We set $V = \mathbb{R}$ and we let $\mathcal{Y} = [0, 1]$ be endowed with its Borel σ -algebra and g_m be equal to m times the indicator function of the interval $]0, \frac{1}{m}]$ (so that $g_\infty = 0$). Let $(Y_n)_{n\geq 1}$ be an independent sequence of random variables with a uniform distribution in [0, 1]. We have $E(g_m(Y_1)) = 1$ for all $m \geq 1$. Given $n \geq 1$ and $\omega \in \Omega$, we can take $m \geq 1$ such that $\frac{1}{m}$ is less than every nonzero element of the finite set $\{Y_1(\omega), \ldots, Y_n(\omega)\}$ so that $\sum_{i=1}^n g_m(Y_i(\omega)) = 0$. Hence

(9)
$$\sup_{m \in K} \left| \frac{1}{n} \left[\sum_{i=1}^{n} g_m(Y_i(\omega)) \right] - E(g_m(Y_1)) \right| \ge 1,$$

for all $n \ge 1$ and all $\omega \in \Omega$ and we conclude that not even the thesis of the uniform weak law of large numbers (Corollary 2) holds.

In the statement of Proposition 1, if K is not compact we might in some cases be able to find a first countable compactification \overline{K} of K such that $g(y, \cdot)$ admits a continuous extension to \overline{K} for \mathbb{P}_{Y_1} -almost every $y \in \mathcal{Y}$. In this case all assumptions of Proposition 1 will be valid for the extension of g to $\mathcal{Y} \times \overline{K}$ and hence the thesis of the proposition will hold. Note that the desired extension of g will always exist if we let \overline{K} be the Stone–Čech compactification of K, but Stone–Čech compactifications are typically not first countable. Below we show that Proposition 1 does not hold in general if K is not compact.

Example 4. Let V, \mathcal{Y} and $(Y_n)_{n\geq 1}$ be as in Example 3 and let K be the set of positive integers endowed with the discrete topology. A map $g: \mathcal{Y} \times K \to V$ satisfying assumptions (a) and (b) in the statement of Proposition 1 is then determined by a sequence $(g_m)_{m\geq 1}$ of measurable maps $g_m: [0,1] \to \mathbb{R}$ and assumption (c) is also satisfied for instance if the sequence $(g_m)_{m\geq 1}$ is uniformly bounded. Since the Banach space C([0,1]) of continuous real-valued functions on [0,1] endowed with the supremum norm is separable, we can pick g_m such that the set $\{g_m: m\geq 1\}$ is dense in the unit ball of C([0,1]). Given $n\geq 1$ and $\omega\in\Omega$, we can for any $\varepsilon>0$ find a continuous map $g: [0,1] \to [0,1]$ such that $|g(Y_i(\omega))| < \varepsilon$ for all $i=1,\ldots,n$ and such that $E(g(Y_1)) > 1 - \varepsilon$. Thus, there exists $m\geq 1$ such that such inequalities hold with $g = g_m$. Hence inequality (9) is satisfied for all $n\geq 1$ and all $\omega\in\Omega$ so that again not even the thesis of the uniform weak law of large numbers holds.

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE SÃO PAULO, BRAZIL Email address: tausk@ime.usp.br URL: http://www.ime.usp.br/~tausk