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Let H be a Hilbert space and T : H → H be a linear operator. For each
Hilbert basis (ei)i∈I of H we consider the sum:

(1)
∑
i∈I
〈T (ei), ei〉.

If T is positive then it is well-known that (1) is independent of the Hilbert
basis and it is called the trace of T . A bounded operator T is said to be
trace class if |T | (i.e., the square root of T ∗T ) has finite trace. It is also
well-known that if T is trace class then the sum (1) is finite and independent
of the Hilbert basis; in this case, the trace of T is also defined as the value
of (1).

It is easy to find examples of bounded operators that are not trace class
but for which the sum (1) is finite for some Hilbert basis ofH. For example, if
T : `2(Z)→ `2(Z) is the shift operator and (ei)i∈Z is the canonical Hilbert
basis of `2(Z) then 〈T (ei), ei〉 = 〈ei+1, ei〉 = 0 for all i ∈ Z and yet T is
unitary, so that |T | is the identity and T is not trace class. If the Hilbert
space is real it is also easy to find examples of unitary operators T which
are antisymmetric, so that 〈T (x), x〉 = 0 for all x ∈ H and the sum (1) is
zero for every Hilbert basis. For instance, pick any real Hilbert space H and
define T : H⊕H → H⊕H by T (x, y) = (−y, x), for all x, y ∈ H.

Here’s a reasonable question: if H is a complex Hilbert space and T is
a bounded operator on H such that the sum (1) is finite for every Hilbert
basis, is it true that T is trace class? I think most people believe the answer
to be “yes”, though I wasn’t able to find a published proof. So here we
provide a simple proof of this fact.

The sum (1) is understood as the limit of the net of all sums of finite
subfamilies of the family of its terms. Finiteness of such sum is equivalent
to the finiteness of the sum of the absolute values of its terms. We note
that if H is a separable infinite-dimensional Hilbert space then one can
index Hilbert bases of H using the natural numbers and in that case one
could also ask if the (not necessarily absolute) convergence of the series∑∞

n=0〈T (en), en〉 for every Hilbert basis implies that T is trace class. But
this follows trivially from the result we prove below, as the reordering of a
Hilbert basis is also a Hilbert basis, so that

∑∞
n=0〈T (en), en〉 must converge

absolutely.
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Definition 1. A linear operator T on a Hilbert space H is said to be a finite
trace operator if the sum (1) is finite for every Hilbert basis of H.

Note that T is finite trace if and only if∑
i∈I

∣∣〈T (ei), ei〉
∣∣ < +∞,

for every Hilbert basis (ei)i∈I of H.

Theorem 2. If H is a complex Hilbert space then every bounded operator
T on H that is finite trace is also trace class.

If T is a bounded operator on H we can write T = T1 + iT2, with T1 and
T2 both self-adjoint by setting T1 = 1

2(T +T ∗) and T2 = 1
2i(T −T

∗). It then
follows that 〈T1(x), x〉 and 〈T2(x), x〉 are respectively the real and imaginary
part of the complex number 〈T (x), x〉, so that∣∣〈T1(x), x〉

∣∣ ≤ ∣∣〈T (x), x〉
∣∣, ∣∣〈T2(x), x〉

∣∣ ≤ ∣∣〈T (x), x〉
∣∣,

for all x ∈ H. Hence if T is finite trace then both T1 and T2 are finite trace.
As linear combinations of trace class operators are trace class, it follows that
it is sufficient to prove Theorem 2 in case T is self-adjoint.

We will show first that a self-adjoint finite trace operator must be com-
pact. Given a closed subspace V of H, we denote by PV : H → V the
orthogonal projection.

Lemma 3. A bounded operator T on a Hilbert space H is compact if and
only if for every ε > 0 there exists a finite-dimensional subspace V of H
such that ‖PV ⊥ ◦ T |V ⊥‖ < ε.

Proof. Recall that a bounded operator on a Hilbert space is compact if
and only if it belongs to the operator-norm closure of the space of finite
rank operators. Thus, if T is compact we can find a finite rank operator
S : H → H with ‖T − S‖ < ε. If V denotes the image of S we obtain:

‖PV ⊥ ◦ T |V ⊥‖ = ‖PV ⊥ ◦ (T − S)|V ⊥‖ ≤ ‖T − S‖ < ε.

Conversely, if for every ε > 0 we can find a finite-dimensional subspace V of
H with ‖PV ⊥ ◦ T |V ⊥‖ < ε then

T = (PV + PV ⊥) ◦ T ◦ (PV + PV ⊥) = S + PV ⊥ ◦ T ◦ PV ⊥ ,

where S = PV ◦T ◦ (PV +PV ⊥) +PV ⊥ ◦T ◦PV is a finite rank operator and:

‖PV ⊥ ◦ T ◦ PV ⊥‖ = ‖PV ⊥ ◦ T |V ⊥‖ < ε.

This proves that T is compact. �

Recall that if T : H → H is self-adjoint then

‖T‖ = sup
{∣∣〈T (x), x〉

∣∣ : ‖x‖ ≤ 1, x ∈ H
}

and in particular

‖PV ◦ T |V ‖ = sup
{∣∣〈T (x), x〉

∣∣ : ‖x‖ ≤ 1, x ∈ V
}

for every closed subspace V of H.
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Lemma 4. If T is a self-adjoint finite trace operator on H then T is com-
pact.

Proof. If T is not compact, Lemma 3 yields ε > 0 such that

‖PV ⊥ ◦ T |V ⊥‖ = sup
{∣∣〈T (x), x〉

∣∣ : ‖x‖ ≤ 1, x ∈ V ⊥
}
> ε,

for every finite-dimensional subspace V of H. Setting V = {0} we obtain a
unit vector e1 ∈ H with

∣∣〈T (e1), e1〉
∣∣ > ε. Given an orthonormal sequence

(ei)
n
i=1 we let V be the span of

{
ei : i = 1, . . . , n

}
and we obtain a unit

vector en+1 ∈ V ⊥ with
∣∣〈T (en+1), en+1〉

∣∣ > ε. Thus by recursion we obtain

an infinite orthonormal sequence (en)n≥1 with
∣∣〈T (en), en〉

∣∣ > ε for all n ≥ 1.
This contradicts the assumption that T is finite trace as every orthonormal
family is contained in a Hilbert basis. �

Proof of Theorem 2. As discussed before we can assume that T is self-adjoint
and thus Lemma 4 implies that T is compact. The Spectral Theorem for
self-adjoint compact operators then yields a Hilbert basis (ei)i∈I of H con-
sisting of eigenvectors of T with corresponding eigenvalues (λi)i∈I . Clearly
ei is an eigenvector of |T | with eigenvalue |λi| and hence the trace of |T | is
given by the sum∑

i∈I
〈|T |(ei), ei〉 =

∑
i∈I
|λi| =

∑
i∈I

∣∣〈T (ei), ei〉
∣∣

which must be finite since T is finite trace. �

Remark 5. As discussed in the beginning, Theorem 2 does not hold if the
Hilbert space H is real, since 〈T (x), x〉 = 0 holds for all x ∈ H if T is
antisymmetric. Nevertheless, our proof of Theorem 2 does work in case T is
self-adjoint and thus we conclude that if T is a bounded finite trace operator
on a real Hilbert space then T = T1+T2, with T1 self-adjoint trace class and
T2 antisymmetric. Namely, simply set T1 = 1

2(T + T ∗) and T2 = 1
2(T − T ∗).

Appendix A. Unbounded operators

The assumption in Theorem 2 that the operator T be bounded is not really
necessary. Namely, we will prove below that a finite trace linear operator
T : H → H must be bounded. We need a few simple lemmas.

Lemma 6. Let X and Y be Banach spaces and let T : X → Y be a linear
operator. If α ◦ T is bounded for every bounded linear functional α ∈ Y ∗

then T is bounded.

Proof. Follows easily from the Closed Graph Theorem (or from the fact
that the image of the unit ball of X under T is weakly bounded and thus
bounded). �

Lemma 7. Let X and Y be Banach spaces and let T : X → Y be a linear
operator. If X0 is a closed subspace of X with finite codimension and if T |X0

is bounded then T is bounded.
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Proof. Write X = X0⊕X1 with X1 finite-dimensional (and hence closed). If
P0 and P1 are the projections corresponding to the direct sum decomposition
X = X0 ⊕ X1 then T = T ◦ P0 + T ◦ P1, with both T ◦ P0 and T ◦ P1

bounded. �

Lemma 8. If H is a complex Hilbert space and T : H → H is a bounded
operator then:

sup
{∣∣〈T (x), x〉

∣∣ : ‖x‖ ≤ 1, x ∈ H
}
≥ 1

2
‖T‖.

Proof. Set T1 = 1
2(T + T ∗) and T2 = 1

2i(T − T ∗), so that T1 and T2 are
self-adjoint and T = T1 + iT2. To conclude the proof, note that

sup
{∣∣〈T (x), x〉

∣∣ : ‖x‖ ≤ 1, x ∈ H
}

≥ sup
{∣∣〈Tj(x), x〉

∣∣ : ‖x‖ ≤ 1, x ∈ H
}

= ‖Tj‖,

for j = 1, 2 and that ‖T‖ ≤ ‖T1‖+ ‖T2‖. �

Corollary 9. If H is a complex Hilbert space and T : H → H is an un-
bounded linear operator then:

sup
{∣∣〈T (x), x〉

∣∣ : ‖x‖ ≤ 1, x ∈ H
}

= +∞.

Proof. Let M > 0 and pick x ∈ H with ‖x‖ = 1 and ‖T (x)‖ ≥ M . Now
choose y ∈ H with ‖y‖ = 1 and

∣∣〈T (x), y〉
∣∣ = ‖T (x)‖. If V is the subspace

spanned by x and y then PV ◦ T |V is a bounded operator such that:

‖PV ◦ T |V ‖ ≥
∣∣〈T (x), y〉

∣∣ ≥M.

Lemma 8 now yields

sup
{∣∣〈T (z), z〉

∣∣ : ‖z‖ ≤ 1, z ∈ H
}

≥ sup
{∣∣〈T (z), z〉

∣∣ : ‖z‖ ≤ 1, z ∈ V
}
≥ M

2
. �

Lemma 10. Let H be a Hilbert space and let T : H → H be an unbounded
linear operator. If there exists a closed subspace V of H contained in the
kernel of T such that T [V ⊥] ⊂ V then T is not finite trace.

Proof. Since T annihilates V we have T = T ◦ PV ⊥ and therefore the re-
striction T |V ⊥ : V ⊥ → V must be unbounded. By Lemma 6 there exists
v ∈ V such that the linear functional α : V ⊥ 3 x 7→ 〈T (x), v〉 is unbounded.
We can assume ‖v‖ = 1. We will construct by recursion a linearly indepen-
dent sequence (xn)n≥1 in V ⊥ such that the vectors en = xn + v, n ≥ 1, are
pairwise orthogonal and∣∣〈T (en), en〉

∣∣ = |α(xn)| ≥ ‖en‖2 = ‖xn‖2 + 1,

for all n ≥ 1. One then obtains that T is not finite trace by considering
a Hilbert basis of H containing the orthonormal sequence en

‖en‖ , n ≥ 1. To

construct the sequence (xn)n≥1, start with x1 ∈ V ⊥ such that ‖x1‖ = 1 and
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|α(x1)| ≥ 2. Given linearly independent vectors x1, . . . , xn ∈ V ⊥, note that
the linear map

y 7−→
(
〈y, x1〉, . . . , 〈y, xn〉

)
defined on the linear span W of x1, . . . , xn is an isomorphism and obtain
y ∈W with 〈y, xi〉 = −1, for i = 1, . . . , n. We will now define xn+1 = y + z
with z ∈ W⊥ ∩ V ⊥ an appropriately chosen unit vector. The fact that
y ∈ W and z ∈ W⊥ is nonzero ensures that xn+1 6∈ W and thus that
(xi)

n+1
i=1 is linearly independent. Moreover, for i = 1, . . . , n, we have:

〈en+1, ei〉 = 〈xn+1, xi〉+ 1 = 〈y, xi〉+ 1 = 0.

Finally, we need that |α(xn+1)| ≥ ‖xn+1‖2 + 1 = ‖y‖2 + 2 and this will hold
if z is chosen with:

|α(z)| ≥ |α(y)|+ ‖y‖2 + 2.

To see that this is possible simply note that Lemma 7 implies that the
restriction of α to W⊥ ∩ V ⊥ must be unbounded. �

Theorem 11. If H is a complex Hilbert space then every finite trace linear
operator T on H is bounded.

Proof. Assume that T is unbounded. If for every finite-dimensional subspace
V ofH we have that PV ⊥ ◦T |V ⊥ is unbounded then arguing as in the proof of
Lemma 4 and using Corollary 9 we obtain an orthonormal sequence (en)n≥1
in H with

∣∣〈T (en), en〉
∣∣ ≥ 1, for all n ≥ 1, which contradicts the fact that T

is finite trace. Now assume that there exists a finite dimensional subspace
V of H such that PV ⊥ ◦T |V ⊥ is bounded. Since every Hilbert basis of V ⊥ is
contained in a Hilbert basis of H, we easily see that PV ⊥ ◦T |V ⊥ : V ⊥ → V ⊥

is finite trace and thus, by Theorem 2, it is trace class. This implies that
also PV ⊥ ◦T ◦PV ⊥ : H → H is trace class and in particular it is finite trace.
We have

T = T ◦ PV + T ◦ PV ⊥ = T ◦ PV + PV ⊥ ◦ T ◦ PV ⊥ + PV ◦ T ◦ PV ⊥ .

Since T ◦ PV is a finite rank bounded operator it is trace class and thus
T ′ = PV ◦T ◦PV ⊥ must be finite trace. But T ′ must be unbounded and this
contradicts Lemma 10. �

Though Theorem 2 really requires a complex Hilbert space, it turns out
that Theorem 11 does hold in the real case. Namely, there are two points in
the proof of Theorem 11 that use the fact that the Hilbert space is complex.
First when we use Corollary 9 and second when we use Theorem 2 two
conclude that PV ⊥ ◦ T |V ⊥ is trace class. If H is real, we cannot apply
Theorem 2 but as mentioned in Remark 5 we obtain that PV ⊥ ◦ T |V ⊥ is
the sum of trace class self-adjoint operator with an antisymmetric operator.
It then follows that also PV ⊥ ◦ T ◦ PV ⊥ is the sum of a trace class self-
adjoint operator with an antisymmetric operator and thus we can conclude
that PV ⊥ ◦ T ◦ PV ⊥ is finite trace, as in the proof of Theorem 11. As for
Corollary 9, though Lemma 8 does not hold in the real case it is possible to
prove Corollary 9 directly in the real case.
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Lemma 12. Let T be a linear operator on a real Hilbert space H. If

sup
{∣∣〈T (x), x〉

∣∣ : ‖x‖ ≤ 1, x ∈ H
}

is finite then T is bounded.

Proof. Let c = sup
{∣∣〈T (x), x〉

∣∣ : ‖x‖ ≤ 1, x ∈ H
}

. Consider the bilinear
form B on H defined by B(x, y) = 〈T (x), y〉, for all x, y ∈ H. Set

B1(x, y) =
1

2

(
B(x, y) +B(y, x)

)
, B2(x, y) =

1

2

(
B(x, y)−B(y, x)

)
,

for all x, y ∈ H, so that B = B1 +B2, B1 is a symmetric bilinear form and
B2 is an antisymmetric bilinear form. If V is a finite-dimensional subspace
of H then there exists a self-adjoint operator S : V → V with

B1(x, y) = 〈S(x), y〉,
for all x, y ∈ V . Thus

‖S‖ = sup
{
|B1(x, x)| : ‖x‖ ≤ 1, x ∈ V

}
= sup

{
|B(x, x)| : ‖x‖ ≤ 1, x ∈ V

}
≤ c

and therefore |B1(x, y)| ≤ c, for all x, y ∈ V with ‖x‖ ≤ 1, ‖y‖ ≤ 1.
Since V is arbitrary, we conclude that |B1(x, y)| ≤ c, for all x, y ∈ H with
‖x‖ ≤ 1, ‖y‖ ≤ 1. This implies that there exists a bounded self-adjoint
operator T1 : H → H with B1(x, y) = 〈T1(x), y〉, for all x, y ∈ H. Setting
T2 = T−T1, we obtain that T2 must be antisymmetric and therefore bounded
by the Closed Graph Theorem. Hence T is bounded. �
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