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Given (real or complex) inner product spaces H1 and H2, we can en-
dow their (algebraic) tensor product H1 ⊗H2 with a unique inner product
satisyfing

〈x1 ⊗ x2, y1 ⊗ y2〉 = 〈x1, y1〉〈x2, y2〉,
for all x1, y1 ∈ H1 and all x2, y2 ∈ H2. When H1 and H2 are Hilbert
spaces, the product H1 ⊗ H2 is not in general complete and we define the
Hilbert space tensor product H1⊗̂H2 of H1 and H2 to be the completion
of the algebraic tensor product H1 ⊗ H2. Now let (X,A, µ) be a measure
space and consider the Hilbert space L2(X,A, µ) of (real or complex valued)
measurable quadratic integrable functions f on X, modulo the equivalence
relation of µ-almost everywhere equality, endowed with the inner product
defined by

〈f, g〉 =

∫
X
fḡ dµ,

for all f, g ∈ L2(X,A, µ). It is well-known that if (X,A, µ) and (Y,B, ν) are
σ-finite measure spaces, then the Hilbert space tensor product

(1) L2(X,A, µ)⊗̂L2(Y,B, ν)

is naturally isometrically identified with the space L2(X × Y,A⊗B, µ⊗ ν),
where A⊗B denotes the product σ-algebra on X×Y and µ⊗ν the product
measure on A ⊗ B. The identification of the Hilbert space tensor product
(1) with the space L2(X × Y,A ⊗ B, µ ⊗ ν) carries, for all f ∈ L2(X,A, µ)
and g ∈ L2(Y,B, ν), the tensor product f ⊗ g to the mapping (also denoted
by f ⊗ g) defined by:

(2) (f ⊗ g)(x, y) = f(x)g(y), for all x ∈ X, y ∈ Y .

The goal of this note is to investigate what happens with the tensor
product (1) when the measure spaces involved are not σ-finite. In this
case, the product σ-algebra A ⊗ B is still well-defined (as the smallest σ-
algebra which makes the projections measurable or, alternatively, the σ-
algebra generated by the rectangles A × B with A ∈ A, B ∈ B) but the
meaning of the product measure µ ⊗ ν is not so clear. In general, there
always exists a measure ρ : A⊗ B → [0,+∞] satisfying the condition

(3) ρ(A×B) = µ(A)ν(B), for all A ∈ A, B ∈ B,
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but such measure is not always unique and Fubini’s Theorem might not
hold. As usual, we adopt here the convention 0 · (+∞) = (+∞) · 0 = 0
for the product in the extended real line. A measure ρ satisfying (3) can,
for instance, be defined by setting, for each C ∈ A ⊗ B, the value of ρ(C)
to be equal to the infimum of the sums

∑∞
n=1 µ(An)ν(Bn), where (An)n≥1

is a sequence in A, (Bn)n≥1 is a sequence in B and C is contained in the
union

⋃∞
n=1(An×Bn). In what follows we assume that ρ satisfies the weaker

condition

(4) ρ(A×B) = µ(A)ν(B), for all A ∈ A, B ∈ B such that

µ(A) < +∞ and ν(B) < +∞,

which is sufficient for the results we are going to prove. Obviously, condition
(4) implies that the equality ρ(A × B) = µ(A)ν(B) also holds when A is a
σ-finite subset of X and B is a σ-finite subset of Y ; by a σ-finite subset we
mean a countable union of measurable sets with finite measure. A measure
space is called semi-finite if every measurable subset with infinite measure
contains a measurable subset with finite positive measure. It is easy to show
that this implies actually that every measurable subset with infinite measure
contains measurable subsets with arbitrarily large finite measure1. Thus, if
(X,A, µ) and (Y,B, ν) are semi-finite, we have that condition (4) implies
that the equality ρ(A × B) = µ(A)ν(B) holds if both µ(A) and ν(B) are
positive. However, under (4), it might happen for instance that µ(A) = 0,
B ∈ B is not σ-finite and ρ(A × B) is not zero, so that (3) does not hold
(see Example 4).

Let us recall the following simple fact that will be used freely throughout
the remainder of the text: if C ⊂ ℘(X) is a collection of subsets of X, A is
the σ-algebra of subsets of X generated by C and X ′ is a subset of X then,
denoting by C|X′ the collection

{
C∩X ′ : C ∈ C

}
, we have that the σ-algebra

of subsets of X ′ generated by C|X′ is equal to A|X′ . It follows that if A is a σ-
algebra of subsets of X, B is a σ-algebra of subsets of Y , X ′ is a subset of X
and Y ′ is a subset of Y , then (A⊗B)|X′×Y ′ = (A|X′)⊗(B|Y ′). In particular,
if X ′ ∈ A and Y ′ ∈ B, then (A⊗B)∩℘(X ′×Y ′) =

(
A∩℘(X ′)

)
⊗
(
B∩℘(Y ′)

)
.

Keeping this observation in mind, it follows that if X ′ is a σ-finite subset
of X, Y ′ is a σ-finite subset of Y , and the measure ρ on A ⊗ B satisfies
(4), then the restriction of ρ to (A⊗B)∩ ℘(X ′ × Y ′) is equal to the unique
product measure of the restriction of µ to A ∩ ℘(X ′) with the restriction
of ν to B ∩ ℘(Y ′). For the product of σ-finite measure spaces Fubini’s
Theorem holds and hence, for ρ satisfying (4), Fubini’s Theorem also holds
for measurable maps f on X × Y whose support (i.e., the set of points in
which f is not zero) is contained in a product X ′ × Y ′ of σ-finite subsets.

1If A is a measurable subset with infinite measure such that the supremum k of the
measures of measurable subsets of A with finite measure is finite, then using countable
unions we can obtain a measurable subset B of A whose measure is exactly k. But then
A\B would be a measurable subset with infinite measure, all of whose measurable subsets
of finite measure have null measure.
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Noting that every element of an L2 space has σ-finite support, we obtain
that for f ∈ L2(X,A, µ) and g ∈ L2(Y,B, ν), the mapping f ⊗ g defined by
(2) has support contained in the product of σ-finite subsets. Hence Fubini’s
Theorem can be applied to conclude that f⊗g is square integrable and that
the equality

〈f1 ⊗ g1, f2 ⊗ g2〉 =

∫
X×Y

(f1 ⊗ g1)(f2 ⊗ g2) dρ

=
(∫

X
f1f̄2 dµ

)(∫
Y
g1ḡ2 dν

)
= 〈f1, f2〉〈g1, g2〉

holds for all f1, f2 ∈ L2(X,A, µ) and all g1, g2 ∈ L2(Y,B, ν).
Consider now the bilinear mapping

(5) L2(X,A, µ)×L2(Y,B, ν) 3 (f, g) 7−→ f⊗g ∈ H ⊂ L2(X×Y,A⊗B, ρ),

whereH denotes the linear span of the image of such mapping. The standard
argument showing that (5) satisfies the universal property of an algebraic
tensor product works fine for non σ-finite spaces: namely, given a linearly
independent finite sequence (fi)

n
i=1 in L2(X,A, µ) and a linearly independent

finite sequence (gj)
m
j=1 in L2(Y,B, ν), we have to check that the finite family

(fi ⊗ gj)1≤i≤n, 1≤j≤m

is also linearly independent. Assuming that a linear combination

h =
n∑

i=1

m∑
j=1

cijfi ⊗ gj

is zero ρ-almost everywhere, we have to show that cij = 0 for all i and j.
Let C ∈ A⊗B be the set of points in which h is not zero, so that ρ(C) = 0.
Since C is contained in a product of σ-finite subsets, we can apply Fubini’s
Theorem to the characteristic function of C and conclude that the fiber
Cx =

{
y ∈ Y : (x, y) ∈ C

}
has zero ν-measure for µ-almost all x ∈ X. It

then follows from the linear independence of (gj)
m
j=1 that

∑n
i=1 cijfi(x) = 0

for µ-almost all x ∈ X and all j and hence the linear independence of (fi)
n
i=1

implies that cij = 0 for all i and j.
We have thus proven the following result.

Proposition 1. Let (X,A, µ) and (Y,B, ν) be measure spaces and ρ be
a measure on the product σ-algebra A ⊗ B satisfying (4). If, for f in
L2(X,A, µ) and g in L2(Y,B, ν), we identify the element f⊗g of the Hilbert
space tensor product (1) with the element f⊗g of L2(X×Y,A⊗B, ρ) defined
by (2), then we obtain a linear isometric embedding

(6) L2(X,A, µ)⊗̂L2(Y,B, ν) ↪→ L2(X × Y,A⊗ B, ρ)

of the Hilbert space tensor product L2(X,A, µ)⊗̂L2(Y,B, ν) into the Hilbert
space L2(X × Y,A⊗ B, ρ). �
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Let us now investigate conditions under which the embedding (6) is sur-
jective. Given a measure ρ, we say that a measurable set C1 is ρ-almost
contained in a measurable set C2 if ρ(C1 \ C2) = 0.

Theorem 2. Under the assumptions of Proposition 1, the isometric embed-
ding (6) is surjective if and only if every C ∈ A ⊗ B with ρ(C) < +∞ is
ρ-almost contained in a product of σ-finite subsets.

Proof. Assume that every set with finite ρ-measure is ρ-almost contained
in a product of σ-finite subsets. We check that the range of (6) contains
all characteristic functions of sets with finite ρ-measure. Since such char-
acteristic functions span a dense subspace, the conclusion will follow. Let
C ∈ A ⊗ B be given with ρ(C) < +∞. Removing a subset of C with
ρ-measure zero does not change the equivalence class of the characteristic
function of C, so we can assume that C is contained in a product X ′ × Y ′,
where X ′ ∈ A and Y ′ ∈ B are σ-finite. Standard approximation results now
imply that for every ε > 0 there exists a set R which equals a disjoint union⋃n

i=1(Ai × Bi), where each Ai ∈ A has finite µ-measure, each Bi ∈ B has
finite ν-measure and ρ(C 4 R) < ε, where C 4 R denotes the symmetric
difference of C and R. It follows that the characteristic function of R is
in the range of (6) and the distance between the characteristic function of
R and the characteristic function of C is less than

√
ε. To prove the con-

verse, note that the set of functions in L2(X × Y,A ⊗ B, ρ) whose support
is ρ-almost contained in a product of σ-finite subsets is a closed subspace of
L2(X×Y,A⊗B, ρ) containing all products f ⊗ g, with f ∈ L2(X,A, µ) and
g ∈ L2(Y,B, ν). Assuming that (6) is surjective we then obtain that every
function in L2(X×Y,A⊗B, ρ) has support ρ-almost contained in a product
of σ-finite subsets; in particular, this holds for characteristic functions of
sets of finite ρ-measure. �

Corollary 3. Under the assumptions of Proposition 1, we have that the
embedding (6) is surjective if and only if the following condition holds: for
every set C in A⊗B with ρ(C) < +∞, if ρ

(
C ∩ (A×B)

)
= 0 for all A ∈ A

and all B ∈ B with µ(A) < +∞ and ν(B) < +∞, then ρ(C) = 0.

Proof. Consider the σ-ideal J in A⊗B consisting of sets that are contained
in a product of σ-finite subsets. It is easy to see that the condition in the
statement of the corollary is equivalent to the following: for every C ∈ A⊗B
with ρ(C) < +∞, if ρ(C ∩ I) = 0 for all I ∈ J , then ρ(C) = 0. Obviously,
if every C ∈ A ⊗ B with ρ(C) < +∞ is ρ-almost contained in an element
of J , then this condition holds. To prove the converse, let C ∈ A⊗ B with
ρ(C) < +∞ be fixed and let us check that C is ρ-almost contained in an
element of J . Setting

k = sup
{
ρ(C ∩ I) : I ∈ J

}
≤ ρ(C) < +∞,

the fact that J is closed under countable unions readily implies that the
supremum is actually a maximum, i.e., that there exists I ∈ J such that



TENSOR PRODUCTS OF L2 SPACES 5

ρ(C ∩ I) equals k. Now it follows easily that C ′ = C \ I is such that
ρ(C ′ ∩ J) = 0 for all J ∈ J and hence that ρ(C ′) = 0. �

Now we look for examples in which the embedding (6) is not surjective.
It is easy to find such examples if only condition (4) is required to hold.

Example 4. Let X = Y = [0, 1], A = B be the Borel σ-algebra of [0, 1] and
µ, ν denote the measures defined by

µ(A) =
∣∣A \ {0}∣∣ and ν(B) = |B|,

for all A ∈ A, B ∈ B, where |C| ∈ [0,+∞] denotes the number of elements
of a set C. The product σ-algebra A⊗B is just the Borel σ-algebra of [0, 1]2.
We define a measure ρ on A⊗ B by setting

ρ(C) =
∣∣C \ ({0} × [0, 1]

)∣∣+ m(C0),

for all C ∈ A ⊗ B, where C0 =
{
y ∈ [0, 1] : (0, y) ∈ C

}
and m denotes

Lebesgue measure. We have that condition (4) holds, but (3) fails with
A = {0} and B = [0, 1]. Using Corollary 3 we see that the embedding (6)
is not surjective: namely, setting C = {0} × [0, 1] we have ρ(C) = 1 and
ρ
(
C ∩ (A×B)

)
= 0, for all finite subsets A and B of [0, 1].

An example where the stronger condition (3) is satisfied is a little harder
to find. Given a set X, a σ-algebra A of subsets of X and a subset H of X,
we denote by A[H] the σ-algebra of subsets of X generated by A∪ {H}. It
is easy to check that:

A[H] =
{

(A1 ∩H) ∪ (A2 \H) : A1, A2 ∈ A
}
.

Example 5. Let X = Y = [0, 1] and A be the Borel σ-algebra of [0, 1]. Let
H be a subset of [0, 1] whose inner Lebesgue measure is zero and whose outer
Lebesgue measure is 1; equivalently, every Borel subset contained in H and
every Borel subset contained in [0, 1] \ H have null Lebesgue measure (for
instance, using transfinite recursion one can construct a Bernstein subset
H of [0, 1], i.e., a set H such that both H and [0, 1] \ H intersect every
uncountable Borel subset of [0, 1]). Set B = A[H] and consider the measures
µ and ν defined by

µ(A) = |A \H| and ν(B) = |B|,
for all A ∈ A and all B ∈ B. If m denotes Lebesgue measure, then we obtain
a measure θ on B by setting

θ
(
(A1 ∩H) ∪ (A2 \H)

)
= m(A1),

for all A1, A2 ∈ A. Namely, if (A1 ∩H) ∪ (A2 \H) = (A′1 ∩H) ∪ (A′2 \H)
and A1, A

′
1, A2, A

′
2 ∈ A, then the symmetric difference A1 4 A′1 is disjoint

from H and hence m(A14A′1) = 0. Note that θ is an extension of Lebesgue
measure on A. Denote by d : [0, 1] → [0, 1]2 the diagonal inclusion defined
by d(x) = (x, x), for all x ∈ [0, 1]. We define a measure ρ on A ⊗ B by
setting

ρ(C) =
∣∣C \ (H × [0, 1]

)∣∣+ θ
(
d−1[C]

)
,
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for all C ∈ A ⊗ B. Note that, since d :
(
[0, 1],B

)
→
(
[0, 1]2,A ⊗ B

)
is

measurable, we have that d−1[C] is in B, for all C ∈ A⊗B, so that θ
(
d−1[C]

)
is well-defined. We claim that condition (3) holds. To prove the claim, let
A ∈ A, B ∈ B and set C = A×B. Note that

∣∣C \ (H × [0, 1]
)∣∣ = µ(A)ν(B)

and that if µ(A)ν(B) < +∞, then either B is finite or A is contained in H, in
which case θ

(
d−1[C]

)
= θ(A∩B) = 0. Now we use Corollary 3 to show that

the embedding (6) is not surjective. Set C = d[H] = d
[
[0, 1]

]
∩
(
[0, 1]×H

)
.

Since the image of d is a Borel subset of [0, 1]2 and thus an element of
A ⊗ A, it follows that C is in A ⊗ B. Moreover, ρ(C) = θ(H) = 1. To see
that ρ

(
C ∩ (A × B)

)
= 0, for all A ∈ A and B ∈ B with µ(A) < +∞ and

ν(B) < +∞, simply note that ρ
(
C ∩ (A×B)

)
= θ(H ∩A∩B) = 0, because

B is finite.
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