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Resumo.

1. Introduction

Let (X,A, µ) be a measure space, i.e., X is a set, A is a σ-algebra of
subsets of X and µ : A → [0,+∞] is a countably additive set function with
µ(∅) = 0. Given a measurable function f : X → IR and p ∈ [1,+∞[ we set:

‖f‖p =
(∫

X
|f |p dµ

) 1
p ∈ [0,+∞],

and:

‖f‖∞ = inf
{
c ∈ [0,+∞] : |f | ≤ c, µ-almost everywhere

}
∈ [0,+∞].

We denote byM(X,A) the real vector space of measurable real valued maps
on X and by M(X,A, µ) the quotient of M(X,A) by the subspace of µ-
almost everywhere vanishing maps. As usual, for p ∈ [1,+∞], Lp(X,A, µ)
will denote the subspace ofM(X,A, µ) consisting of classes of maps f with
‖f‖p < +∞; under a (very standard) abuse of terminology, we will say that
f is in Lp(X,A, µ) meaning that the class of maps almost everywhere equal
to f is in Lp(X,A, µ). The vector space Lp(X,A, µ) becomes a Banach space
when endowed with the norm ‖ · ‖p. Given p, q ∈ ]1,+∞[ with 1

p + 1
q = 1

then the well-known Riesz Representation Theorem states that the (q, p)-
Riesz map:

Lq(X,A, µ) 3 g 7−→ αg ∈ Lp(X,A, µ)∗,(1.1)

where

αg(f) =

∫
X
fg dµ, f ∈ Lp(X,A, µ)(1.2)

is a linear isometry, where Lp(X,A, µ)∗ denotes the topological dual space
of Lp(X,A, µ). If q = 1 and p = +∞ then the map (1.1) is an isometric
immersion but it is not surjective even for fairly simple measure spaces
(X,A, µ). If, on the other hand, q = +∞ and p = 1 then the map (1.1) is
well-known to be a linear isometry in the case where (X,A, µ) is σ-finite,
i.e., if X can be covered by a countable number of sets of finite measure.
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In this article we are concerned about studying general conditions on the
measure space (X,A, µ) under which the Riesz map:

(1.3) L∞(X,A, µ) 3 g 7−→ αg ∈ L1(X,A, µ)∗

with αg defined as in (1.2), is a linear isometry. Observe that if X is an
arbitrary set, A = ℘(X) is the σ-algebra of all subsets of X and µ is the
counting measure µ(A) = number of elements of A, then the Riesz map
(1.3) is an isometry; however, if X is uncountable, (X,A, µ) is not σ-finite.
Thus, σ-finiteness of the space is not a necessary condition for the Riesz
map to be an isometry. In [1] a sufficient condition for the Riesz map to be
an isometry which is weaker than σ-finiteness (and is satisfied by counting
measures) is presented. The condition is that the space X should admit a
decomposition; in [1] a decomposition for X is a partition X =

⋃
i∈I Xi of

X into pairwise disjoint measurable sets Xi with µ(Xi) < +∞ for all i ∈ I
satisfying the following property: if A is a subset of X with A ∩ Xi ∈ A
and µ(A ∩ Xi) = 0 for all i ∈ I then A is measurable and µ(A) = 0. For
instance, if A = ℘(X) and µ is the counting measure then X =

⋃
x∈X{x} is

a decomposition for X.

2. Infinite Blocks

Definition 2.1. Let (X,A, µ) be a measure space. A measurable subset
B ∈ A is called an infinite block for µ if µ(B) = +∞ and µ(A) ∈ {0,+∞}
for every A ∈ A contained in B. If there are no infinite blocks for µ then
we call µ a block-free measure.

A subset of X will be called σ-finite for µ if it is equal to the union of a
countable family of sets of finite measure µ. The intersection of a σ-finite
set with an infinite block has measure zero. Note that if f is in Lp(X,A, µ)
with p < +∞ then the set f−1

(
IR \ {0}

)
is σ-finite because:

f−1
(
IR \ {0}

)
=

∞⋃
n=1

{
x ∈ X : |f(x)| ≥ 1

n

}
;

thus f |B = 0 almost everywhere, if B is an infinite block.

Lemma 2.2. The Riesz map (1.3) is injective if and only if µ is block-free;
in this case, (1.3) is an isometric immersion.

Demonstração. If B ⊂ X is an infinite block then αg = 0, where g = χB 6= 0
is the characteristic function of B; thus (1.3) is not injective. Now assume
that µ is block-free. Given g ∈ L∞(X,A, µ) then clearly ‖αg‖ ≤ ‖g‖∞.
Moreover, given c > 0 with c < ‖g‖∞, we can find a measurable set A
contained in the set

{
x ∈ X : |g(x)| ≥ c

}
with 0 < µ(A) < +∞. Thus

f =
(
sign(g)

)
χA is a nonzero element of L1(X,A, µ) with:

αg(f) ≥ c‖f‖1,
which proves that ‖αg‖ ≥ ‖g‖∞. Hence (1.3) is a (injective) isometric
immersion. �
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In some spaces one can “factor out” the infinite blocks, i.e., write X as a
disjoint union X = X0∪X∞, where X∞ is an infinite block and X0 contains
no infinite blocks. This is not always possible, as the following example
shows.

Example 2.3. Let X be the rectangle [0, 1]2. We define A ⊂ X to be
measurable if the line Ay =

{
x ∈ [0, 1] : (x, y) ∈ A

}
is Lebesgue measurable

for every y ∈ [0, 1]. The measure µ(A) is defined as follows. If Ay is non
empty for only a countable number of values of y ∈ [0, 1] then we set:

µ(A) =
∑
y∈[0,1]

m(Ay),

where m denotes the Lebesgue measure on IR; otherwise, we set µ(A) = +∞.
Observe that each column {x} × [0, 1], x ∈ [0, 1], is an infinite block. We
claim that X cannot be written as a disjoint union X = X0 ∪ X∞, where
X∞ is an infinite block and X0 does not contain infinite blocks. Namely,
if X∞ is an infinite block then m(Xy

∞) = 0 for all y ∈ [0, 1] and thus there
exists a point a(y) ∈ [0, 1] \Xy

∞; therefore B =
{(
a(y), y

)
: y ∈ [0, 1]

}
is an

infinite block disjoint from X∞.

Example 2.3 shows that “factoring out” is not the right way to get rid of
the infinite blocks. The right way is to “fix” the measure µ by defining a
“block-free” version of µ as follows; set:

(2.1) µbf(A) = sup
{
µ(E) : E ⊂ A, E ∈ A and µ(E) < +∞

}
,

for all A ∈ A. Obviously µbf(A) ≤ µ(A), for all A ∈ A and µbf(A) = 0 if
and only if either µ(A) = 0 or A is an infinite block. Moreover, we have the
following:

Lemma 2.4. The set function µbf : A → [0,+∞] defined in (2.1) has the
following properties:

(a) given A ∈ A, there exists a σ-finite subset E for µ contained in A
with µbf(A) = µ(E);

(b) if A ∈ A does not contain infinite blocks for µ (in particular, if A is
σ-finite for µ) then µ(A) = µbf(A);

(c) µbf is a block-free measure;
(d) if A ∈ A is σ-finite for µbf then A can be written as a disjoint union

A = A0 ∪A∞, A0, A∞ ∈ A, with A0 σ-finite for µ and µbf(A∞) = 0
(so that either µ(A∞) = 0 or A∞ is an infinite block for µ).

Demonstração.

• Proof of (a).
By the definition of µbf there exists a sequence (En)n≥1 of subsets of A

of finite measure with limn→∞ µ(En) = µbf(A). Set E =
⋃∞
n=1En; then

E is a σ-finite subset of A with µ(E) = limn→∞ µ(E1 ∪ . . . ∪ En). The
conclusion follows by observing that µ(En) ≤ µ(E1∪ . . .∪En) ≤ µbf(A),
for all n ≥ 1.
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• Proof of (b).
If µbf(A) = +∞ then also µ(A) = +∞. Assume that µbf(A) < +∞.

Let E be a measurable subset of A with µ(E) = µbf(A). If E′ is a
measurable subset of A \ E with finite measure then:

µbf(A) = µ(E) ≤ µ(E) + µ(E′) = µ(E ∪ E′) ≤ µbf(A),

so that µ(E′) = 0. Since A \ E is not an infinite block, it must be
µ(A \ E) = 0. Hence µ(A) = µ(E) = µbf(A).

• Proof of (c).
We prove that µbf is countably additive. Let (An)n≥1 be a sequence

of pairwise disjoint measurable sets and let E be a σ-finite subset of
A =

⋃∞
n=1An with µ(E) = µbf(A); for each n ≥ 1, let En be a σ-finite

subset of An with µ(En) = µbf(An). Then, keeping in mind the simple
fact that the set function µbf is monotonically increasing we have:

∞∑
n=1

µbf(An) =

∞∑
n=1

µ(En) = µ
( ∞⋃
n=1

En

)
= µbf

( ∞⋃
n=1

En

)
≤ µbf(A) = µ(E)

=

∞∑
n=1

µ(E ∩An) =

∞∑
n=1

µbf(E ∩An) ≤
∞∑
n=1

µbf(An).

In order to prove that µbf is block-free, observe that if µbf(A) = +∞
for some A ∈ A then there exists a measurable subset E of A with
0 < µ(E) < +∞; hence µbf(E) = µ(E) < +∞ and A is not an infinite
block for µbf .

• Proof of (d).
Write A =

⋃∞
n=1An, with µbf(An) < +∞ for all n ≥ 1. For each

n there exists a measurable subset En of An with µ(En) = µbf(An).
Thus µbf(En) = µbf(An) and µbf(An \En) = 0. Set A0 =

⋃∞
n=1En and

A∞ = A \ A0. Then A0 is σ-finite for µ and A∞ ⊂
⋃∞
n=1(An \ En), so

that µbf(A∞) = 0. �

Definition 2.5. The measure µbf : A → [0,+∞] defined in (2.1) is called
the block-free version of the measure µ : A → [0,+∞].

Since the measure µbf is absolutely continuous with respect to µ, the
identity map ofM(X,A) induces a linear mapM(X,A, µ)→M(X,A, µbf);
moreover, since µbf ≤ µ such map takes Lp(X,A, µ) to Lp(X,A, µbf) and
thus we obtain a canonical map:

(2.2) Lp(X,A, µ) −→ Lp(X,A, µbf),

for all p ∈ [1,+∞].

Lemma 2.6. The map (2.2) is an isometry for p < +∞.
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Demonstração. If f is in Lp(X,A, µ) then the set f−1
(
IR\{0}

)
is σ-finite for

µ and thus, by item (b) of Lemma 2.4, µ and µbf coincide on all measurable
subsets of f−1

(
IR \ {0}

)
. This proves that:∫
X
|f |p dµ =

∫
X
|f |p dµbf ,

i.e., (2.2) is an isometric immersion. In order to prove that (2.2) is surjective
we fix f ∈ Lp(X,A, µbf) and we exhibit an element of Lp(X,A, µ) that
is equal µbf -almost everywhere to f . Since f−1

(
IR \ {0}

)
is σ-finite for

µbf , item (d) of Lemma 2.4 allows us to write f−1
(
IR \ {0}

)
= A0 ∪ A∞

with A0, A∞ ∈ A, A0 ∩ A∞ = ∅, A0 σ-finite for µ and µbf(A∞) = 0.
Thus fχA0

= f µbf -almost everywhere and, since µ and µbf coincide on all

measurable subsets of A0, we have
∫
X |fχA0

|p dµ =
∫
X |f |

p dµbf < +∞ and

hence fχA0
∈ Lp(X,A, µ). �

Recall that if E and E′ are Banach spaces then a bounded linear map
q : E → E′ is called a quotient map if it is surjective and:

‖q(x)‖ = inf
{
‖y‖ : y ∈ E, q(y) = q(x)

}
,

for all x ∈ E. Alternatively, q is a quotient map if it induces a linear isometry
from the quotient Banach space E/Ker(q) onto E′.

Lemma 2.7. The map (2.2) is a quotient map for p = +∞ and the nonzero
elements of its kernel are the maps f ∈ L∞(X,A, µ) such that f−1

(
IR\{0}

)
is an infinite block.

Demonstração. Let f ∈ L∞(X,A, µbf) be fixed and let c be the norm of f in
L∞(X,A, µbf). We define f0 : X → IR by setting f0(x) = f(x) if |f(x)| ≤ c
and f0(x) = 0 otherwise. Then f0 ∈ L∞(X,A, µ) and f = f0 µbf -almost
everywhere. Thus f0 is mapped by (2.2) into f , which proves that (2.2) is
surjective. We will now prove that the norm of f0 in L∞(X,A, µ) is equal to
c and that for every f1 ∈ L∞(X,A, µ) with f = f1 µbf -almost everywhere
the norm of f1 in L∞(X,A, µ) is greater than or equal to c. This will imply
that (2.2) is a quotient map. For any ε > 0 we have:

µbf

({
x ∈ X : |f1(x)| > c− ε

})
= µbf

({
x ∈ X : |f(x)| > c− ε

})
> 0

and thus:

µ
({
x ∈ X : |f1(x)| > c− ε

})
≥ µbf

({
x ∈ X : |f1(x)| > c− ε

})
> 0.

This proves that the norm of f1 (and the norm of f0) in L∞(X,A, µ) is
greater than or equal to c. Finally, since |f0(x)| ≤ c for all x ∈ X, the norm
of f0 in L∞(X,A, µ) is indeed equal to c. �
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For p, q ∈ [1,+∞] with 1
p + 1

q = 1 we have a commutative diagram:

(2.3)

Lp(X,A, µ)∗ Lp(X,A, µbf)
∗oo

Lq(X,A, µ)

OO

// Lq(X,A, µbf)

OO

where the vertical arrows are the (q, p)-Riesz maps (1.1) for (X,A, µ) and
(X,A, µbf), the top horizontal arrow is the transpose of the map (2.2) and
the bottom horizontal arrow is the version of the map (2.2) for Lq. If
p, q ∈ ]1,+∞[ then (2.3) is just a commutative diagram of isometries. The
most interesting case for us is p = 1 and q = +∞; in this case we get a
commutative diagram:

(2.4)

L1(X,A, µ)∗

L∞(X,A, µ)

OO

// L∞(X,A, µbf)

ff

In diagram (2.4) the slanted arrow differs from the Riesz map of the space
(X,A, µbf) by an isometry; since µbf is block-free, the slanted arrow is an
isometric immersion. Therefore diagram (2.4) shows us how to factor the
Riesz map of the space (X,A, µ) into a isometric immersion (the slanted
arrow) and a quotient map (the horizontal arrow).

3. Full Measures

Recall that a measure space (X,A, µ) is called complete if every subset
of a measurable set of null measure is also measurable. If (X,A, µ) is an
arbitrary measure space then:

A =
{
A ∪N : A ∈ A and N contained in some M ∈ A with µ(M) = 0

}
is a σ-algebra containing A and µ extends in a unique way to a measure
µ̄ : A → [0,+∞] by setting µ̄(A ∪ N) = µ(A) when A ∈ A and N is
contained in some M ∈ A with µ(M) = 0. The measure space (X,A, µ̄) is
complete and it is called the completion of (X,A, µ). We have the following:

Lemma 3.1. If (X,A, µ̄) is the completion of (X,A, µ) then for every
p ∈ [1,+∞] the inclusion map of M(X,A) in M(X,A) induces a linear
isometry:

(3.1) Lp(X,A, µ) −→ Lp(X,A, µ̄).

Demonstração. Clearly (3.1) is an isometric immersion. Moreover, a stan-
dard argument using limits of simple functions shows that if f : X → IR
is measurable with respect to A then there exists a map f1 : X → IR that
is measurable with respect to A with f = f1 µ̄-almost everywhere. Hence
(3.1) is surjective. �
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For p, q ∈ [1,+∞] with 1
p + 1

q = 1 we have a commutative diagram:

(3.2)

Lp(X,A, µ)∗ Lp(X,A, µ̄)∗
∼=oo

Lq(X,A, µ)

OO

∼= // Lq(X,A, µ̄)

OO

where the vertical arrows are the (q, p)-Riesz maps (1.1) for (X,A, µ) and
(X,A, µ̄), the top horizontal arrow is the transpose of the map (3.1) and the
bottom horizontal arrow is the version of the map (3.1) for Lq.

In this section we study another type of “completion” for measure spaces
which is related to the Riesz Representation Theorem. We start with an
example where the Riesz map (1.1) is not surjective.

Example 3.2. Let X be an uncountable set and let A be the σ-algebra con-
sisting of all subsets of X that are either countable or have countable com-
plement. Let µ : A → [0,+∞] be the counting measure. Thus L1(X,A, µ)
is the space of maps f : X → IR with

∑
x∈X |f(x)| < +∞; note that this

condition implies that f−1
(
IR \ {0}

)
is countable. Let S be a subset of X

such that neither X \ S nor S is countable. Then α(f) =
∑

x∈S f(x) is a

bounded linear functional on L1(X,A, µ) with ‖α‖ = 1. We claim that α is
not on the image of the Riesz map (1.3). Namely, if g ∈ L∞(X,A, µ) and
αg = α then for every x ∈ X we have χ{x} ∈ L

1(X,A, µ) and:

g(x) = αg(χ{x}) = α(χ{x}) = χS(x),

so that g = χS . But χS is not measurable.

Observe that the lack of surjectivity of the Riesz map in Example 3.2
is caused by the bad choice of σ-algebra for the domain of the measure.
Indeed, note that the map g = χS has the property that α(f) =

∫
X fg dµ

for all f ∈ L1(X,A, µ), but the map g is not a valid representation for
the functional α because it is not measurable. Observe however that the
counting measure µ can be naturally extended to the σ-algebra ℘(X) of
all subsets of X. Such extension of µ does not change the space L1 but it
enlarges the space L∞ in such a way that the Riesz map (1.3) is an isometry.

Definition 3.3. A measure µ : A → [0,+∞] is called full if the following
property holds; given A ⊂ X such that A ∩ E ∈ A for all E ∈ A with
µ(E) < +∞ then A ∈ A.

Set:

Ae =
{
A ⊂ X : A ∩ E ∈ A, for all E ∈ A with µ(E) < +∞

}
;

obviously A ⊂ Ae. Now define µe : Ae → [0,+∞] by setting:

(3.3) µe(A) =

{
µ(A), for A ∈ A,
+∞, for A ∈ Ae not in A.

We have the following:
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Lemma 3.4. The map µe : Ae → [0,+∞] defined in (3.3) is a full measure.

Demonstração. In order to prove that µe is a measure it suffices to show
that if (An)n≥1 is a sequence of pairwise disjoint sets in Ae with An 6∈ A for
some n ≥ 1 then µe

(⋃∞
n=1An

)
= +∞. Assuming that µe

(⋃∞
n=1An

)
< +∞

we would have E =
⋃∞
n=1An ∈ A and µ(E) < +∞, which would imply

An ∩ E = An ∈ A, contradicting our assumption. We have proven that
µe is a measure. Now, if A ⊂ X is such that A ∩ E ∈ Ae for all E ∈ Ae

with µe(E) < +∞ then A ∩ E ∈ Ae for all E ∈ A with µ(E) < +∞; but
A ∩ E ∈ Ae implies A ∩ E = (A ∩ E) ∩ E ∈ A. Hence A ∈ Ae and µe is
full. �

Definition 3.5. The measure µe : Ae → [0,+∞] defined in (3.3) is called
the canonical full extension of the measure µ : A → [0,+∞].

Clearly if µ is full then Ae = A and µe = µ.

Lemma 3.6. A map f : X → IR is measurable with respect to Ae if and only
if fχE is measurable with respect to A, for every E ∈ A with µ(E) < +∞.

Demonstração. Simply observe that fχE is measurable with respect to A if

and only if f−1(B) ∩ E ∈ A for every Borel subset B of IR. �

Corollary 3.7. If f : X → IR is measurable with respect to Ae and E ⊂ X
is σ-finite for µ then fχE is measurable with respect to A.

Demonstração. Let (En)n≥1 be a sequence of sets of finite measure with
En ↗ E. Then limn→∞ fχEn = fχE and fχEn is measurable with respect
to A for all n ≥ 1. �

Proposition 3.8. For any g ∈ L∞(X,Ae, µe) we have fg ∈ L1(X,A, µ) for
all f ∈ L1(X,A, µ) and formula (1.2) defines a bounded linear functional
αg on L1(X,A, µ). Conversely, if g : X → IR is a map such that fg is in
L1(X,A, µ) for all f ∈ L1(X,A, µ) and such that (1.2) defines a bounded
linear functional αg on L1(X,A, µ) then g is in L∞

(
X,Ae, (µe)bf

)
and there

exists g1 ∈ L∞(X,Ae, µe) with αg = αg1.

Demonstração. Let g ∈ L∞(X,Ae, µe) be fixed. Given f ∈ L1(X,A, µ)
then the set E = f−1

(
IR \ {0}

)
is σ-finite for µ and thus fg = fgχE is

measurable with respect to A, by Corollary 3.7. Moreover, there exists
c ≥ 0 with |g| ≤ c µe-almost everywhere; but “µe-almost everywhere” is the
same as “µ-almost everywhere”, so that |fg| ≤ c|f | µ-almost everywhere
and thus fg is in L1(X,A, µ). Conversely, assume that g : X → IR is a map
such that fg is in L1(X,A, µ) for all f ∈ L1(X,A, µ) and such that (1.2)
defines a bounded linear functional αg on L1(X,A, µ). Given E ∈ A with
µ(E) < +∞ then χE is in L1(X,A, µ) and thus gχE is also in L1(X,A, µ);
it follows from Lemma 3.6 that g is measurable with respect to Ae. Now set
c = ‖αg‖ and let us prove that |g| ≤ c (µe)bf -almost everywhere, so that g
is in L∞

(
X,Ae, (µe)bf

)
. It suffices to show that if E ∈ Ae is a subset of:

B =
{
x ∈ X : |g(x)| > c

}
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with µe(E) < +∞ then µe(E) = 0. Let such a set E be fixed. Then
E ∈ A and µ(E) < +∞, so that χE ∈ L

1(X,A, µ). The map sign(g) is in

L∞(X,Ae, µe) and thus
(
sign(g)

)
χE is in L1(X,A, µ). We have:

c µ(E) ≤
∫
X
|g|χE dµ = αg

[(
sign(g)

)
χE
]
≤ c
∥∥(sign(g)

)
χE
∥∥

1
= cµ(E);

thus
∫
X

(
|g| − c

)
χE dµ = 0 and µe(E) = µ(E) = 0.

In order to complete the proof, observe that by Lemma 2.7 the canonical
map (analogous to (2.2), with A and µ replaced with Ae and µe):

(3.4) L∞(X,Ae, µe) −→ L∞
(
X,Ae, (µe)bf

)
is surjective and therefore there exists g1 ∈ L∞(X,Ae, µe) that is mapped
by (3.4) to g. The commutativity of diagram (2.4) (with A and µ replaced
with Ae and µe) implies that αg is the same as αg1 , when considered as
linear functionals in L1(X,Ae, µe); but since every f ∈ L1(X,A, µ) can be
regarded as an element of L1(X,Ae, µe) (see (3.5) below), it follows that αg
and αg1 are also equal as linear functionals in L1(X,A, µ). �

Since the measure µe extends µ, there is for every p ∈ [1,+∞] a canonical
map:

(3.5) Lp(X,A, µ) −→ Lp(X,Ae, µe)

induced by the inclusion of M(X,A) into M(X,Ae).

Lemma 3.9. The canonical map (3.5) is an isometry for p < +∞ and an
isometric immersion for p = +∞.

Demonstração. Since µe extends µ it is clear that if f : X → IR is measurable
with respect to A then the p-norm of f computed using µ is the same as the
one computed using µe; thus (3.5) is an isometric immersion for all p. For
p < +∞ we claim that (3.5) is surjective. Namely, if f is in Lp(X,Ae, µe)
then the set E = f−1

(
IR \ {0}

)
is σ-finite for µ and hence, by Corollary 3.7,

f = fχE is measurable with respect to µ. Thus f is in Lp(X,A, µ). �

For p, q ∈ [1,+∞] with 1
p + 1

q = 1 we have a commutative diagram:

(3.6)

Lp(X,A, µ)∗ Lp(X,Ae, µe)
∗oo

Lq(X,A, µ)

OO

// Lq(X,Ae, µe)

OO

where the vertical arrows are the (q, p)-Riesz maps (1.1) for (X,A, µ) and
(X,Ae, µe), the top horizontal arrow is the transpose of the map (3.5) and
the bottom horizontal arrow is the version of the map (3.5) for Lq.

Lemma 3.10. Given a measure µ : A → [0,+∞], then:

(a) if µ is complete then µe is also complete;
(b) if µ is full then µbf is also full;
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(c) if µ is full and complete then µbf is also (full and) complete.

Demonstração.

• Proof of (a).
Given A ∈ Ae with µe(A) = 0 then A ∈ A and µ(A) = 0; thus, since

µ is complete, every subset of A is in A and hence also in Ae.

• Proof of (b).
Assume that A ∩ E is in A for every E ∈ A with µbf(E) < +∞.

Notice that µ(E) < +∞ implies µbf(E) = µ(E) < +∞, by item (b) of
Lemma 2.4; thus A ∩ E is in A for every E ∈ A with µ(E) < +∞ and
therefore, since µ is full, A is in A.

• Proof of (c).
Let B ∈ A be fixed with µbf(B) = 0. We claim that every subset

A of B is in A. If µ(B) = 0 this follows from the completeness of µ.
Otherwise, B is an infinite block for µ. Thus, for every E ∈ A with
µ(E) < +∞, we have µ(B ∩E) = 0; since A∩E is contained in B ∩E,
it follows that A ∩ E is in A, by the completeness of µ. Since µ is full,
we get that A is also in A. �

Definition 3.11. A measure µ : A → [0,+∞] is called perfect if it is
complete, full and block-free.

Given a measure µ : A → [0,+∞], we denote by µp : Ap → [0,+∞] the
block-free version of the canonical full extension of the completion of µ; in
symbols, µp =

(
(µ̄)e

)
bf

and Ap =
(
A
)

e
. It follows from Lemma 3.10 that

µp is a perfect measure.

Definition 3.12. The measure µp : Ap → [0,+∞] defined above is called
the perfect version of µ.

Remark 3.13. Given a measure space (X,A, µ) and a measurable subset
Y ∈ A, then the σ-algebra A and the measure µ can be restricted to Y
(see Remark 4.2 below), so that Y becomes itself a measure space. It is
easy to check that the operation of taking the completion, the operation of
taking the block-free version and the operation of taking the canonical full
extension all commute with the operation of restricting to Y . It follows that
also the operation of taking the perfect version commutes with the operation
of restricting to Y . In particular, when µ(Y ) < +∞, then the restriction to
Y of the perfect version µp of µ is simply the completion of the restriction
of µ to Y (since for finite measures, taking the perfect version is the same
as taking the completion).

Obviously the σ-algebra Ap contains A and the inclusion map ofM(X,A)
in M(X,Ap) induces, for every p ∈ [1,+∞], a linear map:

(3.7) Lp(X,A, µ) −→ Lp(X,Ap, µp)
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which is just the composite of the maps (3.1), (3.5) and (2.2). Thus, we
have the following:

Lemma 3.14. The map (3.7) is an isometry for p < +∞.

Demonstração. It follows from Lemmas 3.1, 3.9 and 2.6. �

Combining the commutative diagrams (3.2), (3.6) and (2.3) we obtain a
new commutative diagram:

(3.8)

Lp(X,A, µ)∗ Lp(X,Ap, µp)
∗oo

Lq(X,A, µ)

OO

// Lq(X,Ap, µp)

OO

where the vertical arrows are the (q, p)-Riesz maps (1.1) for (X,A, µ) and
(X,Ap, µp), the top horizontal arrow is the transpose of the map (3.7) and
the bottom horizontal arrow is the version of the map (3.7) for Lq.

For perfect measures the Riesz map (1.3) is always an isometric immersion
(recall Lemma 2.2) and it has the “best chances” of being surjective. In
Section 4 we will present a perfect measure space for which the Riesz map is
not surjective. When we switch from a measure µ to its perfect version µp
we do not change (up to a natural isometric identification) the Lp spaces for
p < +∞ and we make the L∞ space more suitable for the bijectivity of the
Riesz map; we get rid of the kernel of the Riesz map by taking a quotient
of L∞ (recall Lemma 2.7) and we extend L∞ to the largest possible space
of maps g that correspond to functionals αg on L1 (recall Proposition 3.8).

4. A Strong Counter-Example to the Bijectivity of the Riesz
Map

Given sets C1, C2 and a subset A of X = C1 × C2 then for each y ∈ C2

we denote by Ay the line
{
x ∈ C1 : (x, y) ∈ A

}
and for each x ∈ C1 we

denote by Ax the column
{
y ∈ C2 : (x, y) ∈ A

}
. Assume that both C1 and

C2 are uncountable. Let A denote the σ-algebra consisting of those subsets
A of X such that:

• either Ay or C1 \Ay is countable, for all y ∈ C2;
• either Ax or C2 \Ax is countable, for all x ∈ C1.

Given x ∈ C1, y ∈ C2 we define µx : A → {0, 1}, µy : A → {0, 1} by setting:

µx(A) =

{
0, if Ax is countable,

1, if C2 \Ax is countable,

µy(A) =

{
0, if Ay is countable,

1, if C1 \Ay is countable,



NOTES ON THE RIESZ REPRESENTATION THEOREM 12

for all A ∈ A. Finally, we consider the measure µ : A → [0,+∞] defined by:

µ(A) =
∑
x∈C1

µx(A) +
∑
y∈C2

µy(A),

for all A ∈ A.

Lemma 4.1. The measure µ defined above is perfect.

Demonstração.

• µ is complete.
Given A ∈ A with µ(A) = 0 then Ax and Ay are countable for all

x ∈ C1, y ∈ C2. Thus, if B is a subset of A, then Bx and By are also
countable for all x ∈ C1, y ∈ C2. It follows that B is in A.

• µ is full.
Let A ⊂ X be such that A ∩ E ∈ A for all E ∈ A with µ(E) < +∞.

Note that for all y ∈ C2 we have E = C1×{y} ∈ A and µ(E) = 1. Thus
A ∩ E is in A and (A ∩ E)y = Ay is either countable or has countable
complement in C1. Similarly, by setting E = {x} × C2 we can show
that Ax is either countable or has countable complement in C2, for all
x ∈ C1. Hence A ∈ A.

• µ is block-free.
If A ∈ A is such that µ(A) = +∞ then either there exists x ∈ C1 with

µx(A) = 1 or there exists y ∈ C2 with µy(A) = 1. If µx(A) = 1 then
{x}×Ax is a subset of A with µ

(
{x}×Ax

)
= 1; similarly, if µy(A) = 1

then Ay × {y} is a subset of A with µ
(
Ay × {y}

)
= 1. Hence A is not

an infinite block. �

Remark 4.2. In what follows we use the following simple fact. If (X ′,A′, µ′)
is an arbitrary measure space and A is a measurable subset of X ′ then we
can regard A itself as a measure space endowed with the σ-algebra consisting
of elements of A′ contained in A and the measure obtained by restricting
µ′. For any p ∈ [1,+∞] the space Lp(A) corresponding to the measure
space A can be (isometrically) identified with the subspace of Lp(X ′,A′, µ′)
consisting of maps that vanish outside A.

Lemma 4.3. If the Riesz map (1.3) of the space (X,A, µ) defined above is
an isomorphism then there exists a subset R of X = C1 × C2 such that Ry

is countable for all y ∈ C2 and C2 \Rx is countable for all x ∈ C1.

Demonstração. Consider the measure ν : A → [0,+∞] defined by:

ν(A) =
∑
x∈C1

µx(A),

for all A ∈ A. Since ν(A) ≤ µ(A), for all A ∈ A, integration with respect
to ν defines a bounded linear functional on L1(X,A, µ); more explicitly, the
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map α(f) =
∫
X f dν is a linear functional on L1(X,A, µ) with ‖α‖ ≤ 1.

If the Riesz map of the space (X,A, µ) is an isomorphism then there must
exist g ∈ L∞(X,A, µ) with αg = α. Let y ∈ C2 be fixed and consider the
line Xy = C1×{y}. The Riesz map L∞(Xy)→ L1(Xy)∗ of the space Xy is
injective and it carries g|Xy to the restriction of α to the space L1(Xy) (see
Remark 4.2). Since ν(Xy) = 0, the functional α vanishes on L1(Xy) and
thus the injectivity of the Riesz map of Xy implies that g|Xy = 0 µ-almost
everywhere. In particular, if R = g−1(1) then Ry is countable. Let now
x ∈ C1 be fixed and let us consider the restriction of α to L1(Xx). Note that
ν and µ coincide on all measurable subsets of Xx, so that α(f) =

∫
X f dµ,

for f ∈ L1(Xx). Again, the Riesz map of the space Xx is injective, which
implies that g|Xx = 1 µ-almost everywhere. Hence the set Rx has countable
complement in C2. This concludes the proof. �

Proposition 4.4. If C1 and C2 are uncountable sets then the following
conditions are equivalent:

• |C1| = |C2| = ℵ1;
• there exists a subset R of C1 × C2 such that Ry and C2 \ Rx are

countable for all x ∈ C1, y ∈ C2.

Demonstração. If |C1| = |C2| = ℵ1 then we may assume that C1 = C2 = ℵ1.
The set R can thus be defined by R =

{
(x, y) ∈ ℵ1×ℵ1 : x ∈ y

}
. Conversely,

assume that we are given a subset R of C1 × C2 such that Ry and C2 \ Rx
are countable for all x ∈ C1, y ∈ C2. Since C1 is uncountable, there exists a
subset A of C1 with |A| = ℵ1. We have

⋂
x∈ARx = ∅; namely, y ∈

⋂
x∈ARx

would imply A ⊂ Ry, contradicting the assumption that Ry is countable.
Thus:

C2 =
⋃
x∈A

(C2 \Rx);

since C2 \ Rx is countable for all x ∈ C1, we obtain |C2| ≤ ℵ1 · ℵ0 = ℵ1,
proving that |C2| = ℵ1. Now observe that C1 =

⋃
y∈C2

Ry; namely, for

x ∈ C1 the set C2 \ Rx is countable, so that there exists y ∈ Rx and thus
x ∈ Ry. Since Ry is countable for all y ∈ C2, we have |C1| ≤ ℵ1 · ℵ0 = ℵ1

and hence |C1| = ℵ1. �

Corollary 4.5. If C1 and C2 are uncountable and either C1 or C2 has
cardinality greater than ℵ1 then the Riesz map (1.3) of the space (X,A, µ)
is not an isomorphism.

Demonstração. It follows directly from Lemma 4.3 and Proposition 4.4. �

5. Essential Decompositions

Definition 5.1. Let (X,A, µ) be a measure space. A family (Xi)i∈I of
measurable subsets of X is called essentially disjoint if µ(Xi ∩ Xj) = 0,
for all i, j ∈ I with i 6= j. An essential decomposition for (X,A, µ) is an
essentially disjoint family (Xi)i∈I of measurable subsets of X satisfying the
following properties:
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• 0 < µ(Xi) < +∞, for all i ∈ I;
• if A ∈ A, µ(A) < +∞ and µ(A∩Xi) = 0 for all i ∈ I then µ(A) = 0.

An essential decomposition (Xi)i∈I for (X,A, µ) in which the sets Xi are
pairwise disjoint is called a decomposition for (X,A, µ).

Remark 5.2. It is easy to check that if (Xi)i∈I is an essential decomposition
(resp., a decomposition) for (X,A, µ) then (Xi)i∈I is also an essential de-
composition (resp., a decomposition) for the spaces (X,A, µ̄), (X,A, µbf),
(X,Ae, µe) and (X,Ap, µp) (in order to check that if (Xi)i∈I is an essential
decomposition for (X,A, µ) then it is also an essential decomposition for
(X,A, µbf), notice that if A ∈ A and if µbf(A ∩Xi) = 0 for all i ∈ I then,
for every E ⊂ A with E ∈ A and µ(E) < +∞ we have:

µ(E ∩Xi) = µbf(E ∩Xi) = 0,

so that µ(E) = 0; this proves that µbf(A) = 0).

Clearly, if (Ai)i∈I is a countable essentially disjoint family of measurable
subsets of X then µ

(⋃
i∈I Ai

)
=
∑

i∈I µ(Ai).

Lemma 5.3. Let (Xi)i∈I be an essentially disjoint family of measurable
subsets of X. If A ∈ A is σ-finite for µ then the set:{

i ∈ I : µ(A ∩Xi) > 0
}

is countable.

Demonstração. Let us first consider the case in which µ(A) < +∞. Then,
for any ε > 0, the set

{
i ∈ I : µ(A ∩Xi) ≥ ε

}
is finite; otherwise, it would

contain an infinite countable set I ′ which would imply:

µ(A) ≥ µ
( ⋃
i∈I′

(A ∩Xi)
)

=
∑
i∈I′

µ(A ∩Xi) = +∞.

Since: {
i ∈ I : µ(A ∩Xi) > 0

}
=
∞⋃
k=1

{
i ∈ I : µ(A ∩Xi) ≥ 1

k

}
,

it follows that
{
i ∈ I : µ(A ∩Xi) > 0

}
is countable. Assume now that A is

σ-finite, so that A =
⋃∞
k=1Ak, with µ(Ak) < +∞, for all k ≥ 1. We have:{

i ∈ I : µ(A ∩Xi) > 0
}

=
∞⋃
k=1

{
i ∈ I : µ(Ak ∩Xi) > 0

}
,

which proves that
{
i ∈ I : µ(A ∩Xi) > 0

}
is countable. �

Corollary 5.4. Let (Xi)i∈I be an essential decomposition for (X,A, µ). If
A ∈ A is σ-finite for µ then:

(a) we can write A = A1∪A0, with A1, A0 ∈ A disjoint measurable sets,
A1 contained in the union of a countable subfamily of (Xi)i∈I and
µ(A0) = 0;



NOTES ON THE RIESZ REPRESENTATION THEOREM 15

(b) µ(A) =
∑

i∈I µ(A ∩Xi).

Demonstração. Set I ′ =
{
i ∈ I : µ(A ∩ Xi) > 0

}
, A1 =

⋃
i∈I′(A ∩ Xi)

and A0 = A \ A1. We know that I ′ is countable and thus item (a) will be
established once we show that µ(A0) = 0. We claim that µ(A0∩Xi) = 0 for
all i ∈ I; namely, for i ∈ I ′, the set A0∩Xi is empty and for i ∈ I \I ′ the set
A0 ∩Xi is contained in A∩Xi and thus has null measure. This implies that
every measurable subset of A0 with finite measure has null measure; since
A0 is σ-finite, we have µ(A0) = 0. This concludes the proof of item (a). To
prove item (b) observe that:

µ(A) = µ(A1) =
∑
i∈I′

µ(A ∩Xi) =
∑
i∈I

µ(A ∩Xi). �

Lemma 5.5. Let (Xi)i∈I be an essential decomposition for (X,A, µ). Then:

(a) for any A ∈ A, we have µbf(A) =
∑

i∈I µ(A ∩Xi);
(b) if µ is complete and full then a set A ⊂ X is measurable if and only

if A ∩Xi is measurable for all i ∈ I.

Demonstração.

• Proof of (a).
Let E ⊂ A be a σ-finite set for µ with µbf(A) = µ(E) (recall item (a)

of Lemma 2.4). By item (b) of Corollary 5.4 we have:

(5.1) µbf(A) = µ(E) =
∑
i∈I

µ(E ∩Xi).

If µbf(A) = +∞ then (5.1) implies:

+∞ =
∑
i∈I

µ(E ∩Xi) ≤
∑
i∈I

µ(A ∩Xi),

so that µbf(A) = +∞ =
∑

i∈I µ(A ∩Xi). Assume that µbf(A) < +∞.

Then µbf(A \ E) = µbf(A) − µbf(E) = 0. Thus µ
(
(A \ E) ∩ Xi

)
= 0,

which implies µ(A ∩ Xi) = µ(E ∩ Xi), for all i ∈ I. The conclusion
follows from (5.1).

• Proof of (b).
If A ⊂ X is measurable then obviously A ∩Xi is measurable for all

i ∈ I. Conversely, assume that A∩Xi is measurable for all i ∈ I. Since
µ is full, in order to prove the measurability of A, it suffices to show
that A ∩ E is measurable for every E ∈ A with µ(E) < +∞. By item
(a) of Corollary 5.4 we can write E = E1∪E0, with E1, E0 ∈ A disjoint,
E1 ⊂

⋃
i∈I′ Xi for some countable subset I ′ of I and µ(E0) = 0. Now:

A ∩ E1 =
⋃
i∈I′

(
(A ∩Xi) ∩ E1

)
,
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which implies that A∩E1 is measurable. Moreover, since µ is complete,
A ∩ E0 is also measurable and hence A ∩ E = (A ∩ E1) ∪ (A ∩ E0) is
measurable. �

Corollary 5.6. Let (Xi)i∈I be an essential decomposition for (X,A, µ). If
µ is perfect then A consists of those subsets A of X such that A ∩Xi is in
A for all i ∈ I and the measure µ is given by µ(A) =

∑
i∈I µ(A ∩Xi). �

Proposition 5.7. Any measure space (X,A, µ) admits an essential decom-
position. Moreover, any essentially disjoint family (Xi)i∈I of measurable
sets of positive finite measure can be extended to an essential decomposition
for (X,A, µ).

Demonstração. Let Λ denote the collection of all subsets C of A such that:

• µ(A) ∈ ]0,+∞[, for all A ∈ C;
• µ(A1 ∩A2) = 0, for all A1, A2 ∈ C with A1 6= A2.

If Λ is partially ordered by inclusion then clearly every chain in Λ has an
upper bound. Thus, Zorn’s Lemma gives us a maximal element C of Λ.
Note that if A ∈ A, µ(A) < +∞ and µ(A ∩ A′) = 0 for all A′ ∈ C then
µ(A) = 0; otherwise, C∪{A} would be an element of Λ containing C properly.
It follows that the elements of C constitute an essential decomposition for
(X,A, µ). Finally, if (Xi)i∈I is an essentially disjoint family of measurable
sets of positive finite measure then the set C0 =

{
Xi : i ∈ I

}
is in Λ and one

can again use Zorn’s Lemma to obtain a maximal element C of Λ containing
the set C0. �

Lemma 5.8. A measure space (X,A, µ) admits an essential decomposition
(Xi)i∈I with I finite if and only if µbf(X) < +∞.

Demonstração. If (Xi)i∈I is an essential decomposition for (X,A, µ) with I
finite then, by item (a) of Lemma 5.5, we have µbf(X) =

∑
i∈I µ(Xi) < +∞.

Conversely, if µbf(X) < +∞ then by item (d) of Lemma 2.4 we can write
X = X0∪X∞, with X0, X∞ ∈ A disjoint, X0 σ-finite for µ and µbf(X∞) = 0.
Note that µ(X0) = µbf(X0) = µbf(X) < +∞. If µbf(X) = 0 then every
measurable subset of X with finite measure has null measure; this implies
that the empty family is an essential decomposition for (X,A, µ). On the
other hand, if µbf(X) > 0 then the unitary family consisting solely of the set
X0 is an essential decomposition for (X,A, µ); namely, if A ∈ A has finite
measure and µ(A ∩X0) = 0 then µ(A ∩X∞) = 0 and hence µ(A) = 0. �

Proposition 5.9. If µbf(X) = +∞ then, for any two essential decomposi-
tions (Xi)i∈I , (Yj)j∈J for (X,A, µ), we have |I| = |J |, i.e., the sets I and J
have the same cardinality.

Demonstração. Note that by Lemma 5.8 the sets I and J are both infinite.
For each j ∈ J we set:

Ij =
{
i ∈ I : µ(Yj ∩Xi) > 0

}
.
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By Lemma 5.3 the set Ij is countable. Now, for each i ∈ I we have µ(Xi) > 0
and µ(Xi) < +∞ so that there must exist j ∈ J with µ(Yj ∩Xi) > 0, i.e.,
i ∈ Ij . We have shown that I =

⋃
j∈J Ij , which implies that:

|I| ≤ |J | · ℵ0 = |J |.

Similarly, we have |J | ≤ |I| and hence |I| = |J |. �

Definition 5.10. If µbf(X) = +∞ then the dimension of the measure
space (X,A, µ) is defined by dim(X,A, µ) = |I|, where (Xi)i∈I is an arbi-
trary essential decomposition for (X,A, µ). If µbf(X) < +∞ then we set
dim(X,A, µ) = 1 if µbf(X) > 0 and dim(X,A, µ) = 0 if µbf(X) = 0.

Lemma 5.11. We have dim(X,A, µ) ≤ ℵ0 if and only if X is σ-finite for
the measure µbf .

Demonstração. Assume that dim(X,A, µ) ≤ ℵ0. If dim(X,A, µ) < ℵ0 then
µbf(X) is finite. If dim(X,A, µ) = ℵ0 then there exists an essential decom-
position (Xi)i∈I for (X,A, µ) with I infinite and countable. For each i ∈ I
we have µbf(Xi) = µ(Xi) < +∞ and by item (a) of Lemma 5.5 we obtain
µbf

(
X \

⋃
i∈I Xi

)
= 0. Thus X is σ-finite for µbf . Conversely, assume that

X is σ-finite for µbf . If µbf(X) < +∞ then the dimension of (X,A, µ) is
finite. Assume that µbf(X) = +∞. By item (d) of Lemma 2.4 we can write
X = X0∪X∞, with X0, X∞ ∈ A disjoint, X0 σ-finite for µ and µbf(X∞) = 0.
Since X0 is σ-finite for µ we can write X0 =

⋃∞
n=1Xn, where (Xn)n≥1 is

a sequence of pairwise disjoint measurable sets of positive finite measure.
We claim that (Xn)n≥1 is an essential decomposition for (X,A, µ). Namely,
if A ∈ A has finite measure and µ(A ∩ Xn) = 0 for all n ≥ 1 then also
µ(A ∩X∞) = 0 and thus µ(A) = 0. Hence dim(X,A, µ) = ℵ0. �

Definition 5.12. Let (Xi)i∈I be an essential decomposition for (X,A, µ). A
family (X ′i)i∈I of measurable subsets of X with X ′i ⊂ Xi and µ(Xi \X ′i) = 0
for all i ∈ I is called a refinement of the essential decomposition (Xi)i∈I .

Clearly a refinement of an essential decomposition is again an essential
decomposition. Moreover, a refinement (X ′′i )i∈I of a refinement (X ′i)i∈I of
an essential decomposition (Xi)i∈I is a refinement of (Xi)i∈I .

Lemma 5.13. If (X,A, µ) admits a decomposition (Xi)i∈I then every es-
sential decomposition (Yj)j∈J for (X,A, µ) can be refined to a decomposition
for (X,A, µ).

Demonstração. For each j ∈ J , we set:

Ij =
{
i ∈ I : µ(Yj ∩Xi) > 0

}
,

and for each i ∈ I we set:

Ji =
{
j ∈ J : µ(Yj ∩Xi) > 0

}
.
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By Lemma 5.3 the sets Ij and Ji are countable, for all i ∈ I, j ∈ J . For
each j ∈ J we consider the set:

Y 1
j =

⋃
i∈Ij

(Yj ∩Xi);

arguing as in the proof of Corollary 5.4 we obtain that µ(Yj \ Y 1
j ) = 0, for

all j ∈ J . Thus (Y 1
j )j∈J is a refinement of (Yj)j∈J . We claim that for all

j ∈ J we have:

(5.2)
{
k ∈ J : Y 1

k ∩ Y 1
j 6= ∅

}
⊂
⋃
i∈Ij

Ji;

namely, assume that Y 1
k ∩ Y 1

j 6= ∅ for some k, j ∈ J . Since Y 1
k ⊂

⋃
i∈Ik Xi,

Y 1
j ⊂

⋃
i∈Ij Xi and since the sets Xi are pairwise disjoint, there must exist

i ∈ Ij ∩ Ik. Thus i ∈ Ij and k ∈ Ji, proving the claim. Now (5.2) implies
that the set

{
k ∈ J : Y 1

k ∩ Y 1
j 6= ∅

}
is countable and thus:

Zj =
⋃
k∈J
k 6=j

(Y 1
k ∩ Y 1

j )

has null measure, for all j ∈ J . Therefore, setting Y ′j = Y 1
j \Zj for all j ∈ J ,

we obtain a refinement (Y ′j )j∈J of (Y 1
j )j∈J ; clearly, the sets Y ′j are pairwise

disjoint. Hence (Y ′j )j∈J is a decomposition that refines (Yj)j∈J . �

Proposition 5.14. Let (X,A, µ) be a measure space. If dim(X,A, µ) ≤ ℵ1

then X admits a decomposition.

Demonstração. Let (Xi)i∈I be an essential decomposition for X. Since |I| ≤
ℵ1, we can well-order the index set I so that for all i ∈ I the initial segment{
j ∈ I : j < i

}
is countable. For all i ∈ I, set:

Yi = Xi \
⋃
j<i

(Xi ∩Xj).

Then µ(Xi \Yi) = 0 and thus (Yi)i∈I is a refinement of (Xi)i∈I . Clearly, the
sets Yi, i ∈ I, are pairwise disjoint. �

6. Sums and Quotients

Given a family (Xi)i∈I of sets we denote by
∑

i∈I Xi their disjoint union
defined by: ∑

i∈I
Xi =

⋃
i∈I

(
{i} ×Xi

)
;

to simplify the notation, except in situations in which it may be confusing,
we identify each x ∈ Xi with (i, x), so that Xi is thought of as a subset of∑

i∈I Xi.
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Definition 6.1. Let (Xi,Ai, µi)i∈I be a family of measure spaces. The
external sum: ∑

i∈I
(Xi,Ai, µi)

of such family is the measure space (X,A, µ) defined as follows; we set
X =

∑
i∈I Xi,

A =
{
A ⊂ X : A ∩Xi ∈ Ai, for all i ∈ I

}
,

and:
µ(A) =

∑
i∈I

µi(A ∩Xi),

for all A ∈ A.

Note that if A ⊂ Xi then A ∈ A if and only if A ∈ Ai and in this case
µ(A) = µi(A). Moreover, if µi(Xi) ∈ ]0,+∞[ for all i ∈ I then the family
(Xi)i∈I is a decomposition for the external sum (X,A, µ) =

∑
i∈I(Xi,Ai, µi).

Remark 6.2. If (X,A, µ) =
∑

i∈I(Xi,Ai, µi) then clearly a map f defined
on X is measurable if and only if f |Xi is measurable for all i ∈ I.

Lemma 6.3. Let (Xi,Ai, µi)i∈I be a family of measure spaces and let:

(X,A, µ) =
∑
i∈I

(Xi,Ai, µi)

denote its external sum. Then:

(a) if each µi is complete then µ is complete;
(b) if each µi is full then µ is full;
(c) if each µi is block-free then µ is block-free;
(d) if each µi is perfect then µ is perfect.

Demonstração.

• Proof of (a).
Let A ∈ A be fixed with µ(A) = 0. Given B ⊂ A then A ∩Xi ∈ Ai,

µi(A∩Xi) = 0 and B ∩Xi ⊂ A∩Xi, for all i ∈ I. Since µi is complete
it follows that B ∩Xi ∈ Ai for all i ∈ I and hence B ∈ A.

• Proof of (b).
Let A ⊂ X be given and assume that A ∩ E ∈ A, for all E ∈ A with

µ(E) < +∞. Let i ∈ I be fixed. If E ∈ Ai and µi(E) < +∞ then E ∈ A
and µ(E) = µi(E) < +∞, so that A ∩ E ∈ A and (A ∩Xi) ∩ E ∈ Ai.
Since µi is full, it follows that A ∩ Xi is in Ai for all i ∈ I and hence
A ∈ A.

• Proof of (c).
Let A ∈ A be given with µ(A) = +∞. Thus µi(A ∩ Xi) > 0 for

some i ∈ I. If µi(A ∩ Xi) < +∞ then A is not an infinite block. If
µi(A ∩ Xi) = +∞ then, since µi is block-free, there exists E ∈ Ai
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contained in A ∩Xi with µi(E) ∈ ]0,+∞[, proving again that A is not
an infinite block.

• Proof of (d).
It follows from (a), (b) and (c). �

Let (Ei)i∈I be a family of Banach spaces. For v = (vi)i∈I ∈
∏
i∈I Ei and

p ∈ [1,+∞] we define the Lp-type norm of v by:

‖v‖p =
(∑
i∈I
‖vi‖p

) 1
p
, if p < +∞, and ‖v‖∞ = sup

i∈I
‖vi‖.

The Lp-type (external) direct sum of the family (Ei)i∈I is defined by:⊕
i∈I

p

Ei =
{
v ∈

∏
i∈I

Ei : ‖v‖p < +∞
}
.

It is easy to check that
⊕ p

i∈IEi is a subspace of
∏
i∈I Ei and that it becomes

a Banach space when endowed with the norm ‖ · ‖p. Note that if p < +∞
then for v ∈

⊕ p

i∈IEi we have vi = 0 except for a countable number of indices
i ∈ I.

Lemma 6.4. Given p, q ∈ [1,+∞] with 1
p + 1

q = 1 then for every bounded

linear functional α on
⊕ p

i∈IEi the family (α|Ei)i∈I is in
⊕ q

i∈IE
∗
i ; moreover,

if p < +∞ then α(v) =
∑

i∈I α(vi) for all v = (vi)i∈I ∈
⊕ p

i∈IEi and the
map:

(6.1)
(⊕
i∈I

p

Ei

)∗
3 α 7−→

(
α|Ei)i∈I ∈

⊕
i∈I

q

E∗i ;

is a linear isometry.

Demonstração. Use the same standard arguments that are used to prove the
Riesz Representation Theorem for counting measures. �

Lemma 6.5. If (Xi,Ai, µi)i∈I is a family of measure spaces then, for all
p ∈ [1,+∞], the map:

(6.2) Lp
(∑

i∈I(Xi,Ai, µi)
)
3 f 7−→ (f |Xi)i∈I ∈

⊕
i∈I

p

Lp(Xi,Ai, µi)

is a linear isometry.

Demonstração. If f :
∑

i∈I Xi → IR is a measurable map then it can be
easily checked that:

‖f‖p =
∥∥(‖f |Xi‖p)i∈I∥∥p.

The conclusion follows from Remark 6.2. �
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If p ∈ [1,+∞[, q ∈ ]1,+∞] and 1
p + 1

q = 1 then the composition of the

transpose of the linear isometry (6.2) with the linear isometry (6.1) gives us
a linear isometry:

(6.3)
⊕
i∈I

q

Lp(Xi,Ai, µi)∗ 3 (αi)i∈I 7−→ α ∈ Lp
(∑

i∈I(Xi,Ai, µi)
)∗
,

where (Xi,Ai, µi)i∈I is an arbitrary family of measure spaces and α is defined
by α(f) =

∑
i∈I αi(f |Xi), for all f ∈ Lp

(∑
i∈I(Xi,Ai, µi)

)
. We also have a

commutative diagram:

(6.4)

Lp
(∑

i∈I(Xi,Ai, µi)
)∗ ⊕ q

i∈IL
p(Xi,Ai, µi)∗∼=

oo

Lq
(∑

i∈I(Xi,Ai, µi)
)

OO

∼=
//
⊕ q

i∈IL
q(Xi,Ai, µi)

OO

where the top horizontal arrow is the map (6.3), the bottom horizontal
arrow is the version of the map (6.2) for Lq, the left vertical arrow is the
(q, p)-Riesz map (1.1) for the space

∑
i∈I(Xi,Ai, µi) and the right vertical

arrow is given by the (q, p)-Riesz map (1.1) for the space (Xi,Ai, µi) on each
coordinate.

Remark 6.6. It follows from the commutativity of diagram (6.4) that if for
each space (Xi,Ai, µi) the (q, p)-Riesz map is an isometry then also for the
external sum

∑
i∈I(Xi,Ai, µi) the (q, p)-Riesz map is an isometry.

Definition 6.7. Given a measure space (X,A, µ) and a map φ : X → X ′

taking values in a set X ′ then the σ-algebra

φ∗A =
{
A ⊂ X ′ : φ−1(A) ∈ A

}
of subsets of X ′ is called co-induced by φ. If A′ is a σ-algebra of subsets of
X ′ contained in φ∗A then the measure (φ∗µ) : A′ → [0,+∞] defined by:

(φ∗µ)(A) = µ
(
φ−1(A)

)
, A ∈ A′

is called co-induced by φ on A′. If (X ′,A′, µ′) is a measure space then a
map φ : X → X ′ is called measure preserving if A′ ⊂ φ∗A and µ′ = φ∗µ; if,
in addition, we have A′ = φ∗A then we call φ a quotient map. A bijective
quotient map φ : X → X ′ is called an isomorphism.

Note that an isomorphism from (X,A, µ) to (X ′,A′, µ′) is a bijective map
φ : X → X ′ such that, for all A ⊂ X, φ(A) ∈ A′ if and only if A ∈ A, and,
in this case, µ′

(
φ(A)

)
= µ(A).

Remark 6.8. If φ : X → X ′ is a quotient map then clearly a map f defined
on X ′ is measurable if and only if the composition f ◦ φ is measurable.

Lemma 6.9. Given measure spaces (X,A, µ), (X ′,A′, µ′) and a measure
preserving map φ : X → X ′ then for all p ∈ [1,+∞], the map induced by φ
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on Lp:

(6.5) Lp(X ′,A′, µ′) 3 f 7−→ f ◦ φ ∈ Lp(X,A, µ)

is an isometric immersion. Moreover, if φ is a quotient map and µ is
complete then the image of (6.5) consists of those maps g ∈ Lp(X,A, µ)
for which there exists a map f : X ′ → IR such that f ◦ φ = g µ-almost
everywhere.

Demonstração. To prove the first part of the statement, simply observe that:

‖f ◦ φ‖p = ‖f‖p,

for any measurable map f : X ′ → IR. The second part of the statement
follows from the equality above and from Remark 6.8, keeping in mind the
following fact: if µ is complete, g : X → IR is measurable and f ◦ φ = g
µ-almost everywhere then f ◦ φ is measurable. �

Given p, q ∈ [1,+∞] with 1
p+ 1

q = 1, measure spaces (X,A, µ), (X ′,A′, µ′)
and a measure preserving map φ : X → X ′ then we have a commutative
diagram:

(6.6)

Lp(X ′,A′, µ′)∗ Lp(X,A, µ)∗oo

Lq(X ′,A′, µ′)

OO

// Lq(X,A, µ)

OO

where the vertical arrows are the (q, p)-Riesz maps (1.1) for (X ′,A′, µ′) and
(X,A, µ), the top horizontal arrow is the transpose of the map induced by
φ on Lp and the bottom horizontal arrow is the map induced by φ on Lq.

If (X,A, µ) is a measure space and ∼ is an equivalence relation on X then
we have a canonical map q : X → X/∼ and we may endow the quotient set
X/∼ with the σ-algebra q∗A and the measure q∗µ co-induced by q, so that
the map q becomes a quotient map in the sense of Definition 6.7.

Recall that a measurable subset of a measure space can be naturally
regarded as a measure space (see Remark 4.2).

Lemma 6.10. Let φ : X → X ′ be a quotient map, where (X,A, µ) and
(X ′,A′, µ′) are measure spaces. Then φ(X) is a measurable subset of X ′

whose complement has null measure. Moreover, if ∼ is the equivalence re-
lation on X induced by φ, i.e.:

x ∼ y ⇐⇒ φ(x) = φ(y), x, y ∈ X,

and the quotient set X/∼ is endowed with the σ-algebra and measure co-
induced by the canonical map q : X → X/∼ then φ induces an isomorphism
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φ : (X/∼)→ φ(X) such that the diagram:

X
φ

%%
q

��
X/∼

∼=

φ

// φ(X)

commutes.

Demonstração. We have φ(X) ∈ A′ because φ−1
(
φ(X)

)
= X is in A.

Moreover, since the inverse image of X ′ \ φ(X) by φ is empty we have
µ′
(
X ′ \ φ(X)

)
= 0. The fact that φ is an isomorphism follows straight

forwardly from Definition 6.7. �

Proposition 6.11. Let (Xi,Ai, µi) be a family of complete measure spaces
such that 0 < µi(Xi) < +∞ for all i ∈ I. Let ∼ be an equivalence relation
on
∑

i∈I Xi satisfying the following property:

(∗) for all i, j ∈ I with i 6= j the set
{
x ∈ Xi : x ∼ y, for some y ∈ Xj

}
has null measure and for all i ∈ I and all x, y ∈ Xi we have x ∼ y
if and only if x = y.

Set X =
(∑

i∈I Xi

)
/∼ and let A and µ be respectively the σ-algebra and

the measure co-induced on X by the canonical map q :
∑

i∈I Xi → X. Then

(X,A, µ) is a perfect measure space,
(
q(Xi)

)
i∈I is an essential decomposition

for X and q|Xi : Xi → q(Xi) is an isomorphism for all i ∈ I. Moreover, for
p < +∞, the map:

Lp(X,A, µ) 7−→ Lp
(∑

i∈I(Xi,Ai, µi)
)

induced by q on Lp is an isometry.

Demonstração. We divide the proof into several steps.

Step 1. For A ⊂ X we have A ∈ A if and only if q−1(A) ∩Xi ∈ Ai, for
all i ∈ I; in this case, µ(A) =

∑
i∈I µi

(
q−1(A) ∩Xi

)
.

This follows directly from the definitions of quotient maps and exter-
nal sums.

Step 2. The measure µ is complete.
Let A ∈ A be fixed with µ(A) = 0 and let A′ be a subset of A.

Then q−1(A) ∩ Xi is in Ai and µi
(
q−1(A) ∩ Xi

)
= 0 for all i ∈ I.

Since q−1(A′) ∩ Xi ⊂ q−1(A) ∩ Xi and µi is complete, it follows that
q−1(A′) ∩Xi ∈ Ai for all i ∈ I and hence A′ ∈ A.

Step 3. For all i ∈ I, a subset E of q(Xi) is in A if and only if q−1(E)∩Xi

is in Ai; in this case, µ(E) = µi
(
q−1(E) ∩Xi

)
.

By step 1, it suffices to show that for j 6= i we have q−1(E)∩Xj ∈ Aj
and µj

(
q−1(E) ∩Xj

)
= 0. Note that:

q−1(E) ∩Xj ⊂ q−1
(
q(Xi)

)
∩Xj =

{
x ∈ Xj : x ∼ y, for some y ∈ Xi

}
.
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The conclusion follows from the completeness of the measure µj and
from property (∗) of the equivalence relation ∼.

Step 4. For all i ∈ I, q(Xi) is in A and q|Xi : Xi → q(Xi) is an iso-
morphism.

Property (∗) implies that q|Xi : Xi → q(Xi) is bijective. The fact
that q(Xi) is in A and q|Xi : Xi → q(Xi) is an isomorphism follows then
from step 3.

Step 5. For A ⊂ X, we have A ∈ A if and only if A ∩ q(Xi) ∈ A, for all
i ∈ I; in this case µ(A) =

∑
i∈I µ

(
A ∩ q(Xi)

)
.

For i ∈ I, note that:

q−1
(
A ∩ q(Xi)

)
∩Xi = q−1(A) ∩Xi;

thus, by step 3, A ∩ q(Xi) ∈ A if and only if q−1(A) ∩Xi ∈ Ai and, in
this case, µ

(
A∩ q(Xi)

)
= µi

(
q−1(A)∩Xi). The conclusion follows from

step 1.

Step 6. The family
(
q(Xi)

)
i∈I is an essential decomposition for X.

By step 4, for all i ∈ I, q(Xi) is in A and µ
(
q(Xi)

)
= µi(Xi), so that

µ
(
q(Xi)

)
is positive and finite. Moreover, if A ∈ A and µ

(
A∩q(Xi)

)
= 0

for all i ∈ I then, by step 5, µ(A) =
∑

i∈I µ
(
A ∩ q(Xi)

)
= 0.

Step 7. The measure µ is full.
Let A ⊂ X be given and assume that A ∩ E ∈ A for all E ∈ A with

µ(E) < +∞. By Step 4, q(Xi) ∈ A and µ
(
q(Xi)

)
= µi(Xi) < +∞, for

all i ∈ I. Thus A ∩ q(Xi) ∈ A for all i ∈ I and hence A ∈ A, by step 5.

Step 8. The measure µ is block-free.
Let A ∈ A be given with µ(A) = +∞. By step 5 we have:

µ(A) =
∑
i∈I

µ
(
A ∩ q(Xi)

)
and thus µ

(
A∩q(Xi)

)
> 0 for some i ∈ I. But µ

(
A∩q(Xi)

)
≤ µ

(
q(Xi)

)
and, by step 4, µ

(
q(Xi)

)
= µi(Xi) < +∞, proving that A is not an

infinite block for µ.

Step 9. For p < +∞, the map induced by q on Lp is an isometry.
By Lemma 6.3, the space

∑
i∈I(Xi,Ai, µi) is complete and thus, by

Lemma 6.9, it suffices to prove the following assertion: for every map
g in Lp

(∑
i∈I(Xi,Ai, µi)

)
there exists a map f : X → IR such that

f ◦ q = g almost everywhere. By Lemma 6.5, the family (g|Xi)i∈I is in⊕ p

i∈IL
p(Xi,Ai, µi) and, in particular, the set:

I ′ = I \
{
i ∈ I : g|Xi = 0 almost everywhere

}
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is countable. For i ∈ I ′ we set:

Yi = Xi \
⋃
j∈I′
j 6=i

{
x ∈ Xi : x ∼ y, for some y ∈ Xj

}
,

so that µi(Xi \ Yi) = 0 for all i ∈ I ′ and the sets q(Yi), i ∈ I ′, are
pairwise disjoint. Consider the map f : X → IR such that f ◦q|Yi = g|Yi
for all i ∈ I ′ and such that f vanishes outside

⋃
i∈I′ q(Yi). Let us show

that f ◦ q|Xi = g|Xi almost everywhere for all i ∈ I; this will imply that
f◦q = g almost everywhere and conclude the proof. If i ∈ I ′ then f◦q|Xi
and g|Xi are equal on Yi and µ(Xi \ Yi) = 0, so that f ◦ q|Xi = g|Xi
almost everywhere. If i ∈ I and i 6∈ I ′ then g|Xi = 0 almost everywhere
and f ◦ q|Xi vanishes outside the set:⋃

j∈I′

{
x ∈ Xi : x ∼ y, for some y ∈ Xj

}
.

Hence f ◦ q|Xi = g|Xi almost everywhere. �

Proposition 6.12. Let (X,A, µ) be a perfect measure space and let (Xi)i∈I
be an essential decomposition for X. For each i ∈ I, let Ai denote the σ-
algebra of all elements of A contained in Xi and let µi denote the measure on
Ai obtained by the restriction of µ, so that (Xi,Ai, µi) is a complete measure
space with 0 < µi(Xi) < +∞; consider the external sum

∑
i∈I(Xi,Ai, µi).

Let φ :
∑

i∈I Xi → X be the canonical map whose restriction to each Xi

is equal to the inclusion map Xi → X. Then φ is a quotient map and
the equivalence relation ∼ induced on X by φ satisfies property (∗) in the
statement of Proposition 6.11.

Demonstração. To prove that φ is a quotient map it suffices to show that for
all A ⊂ X we have A ∈ A if and only if A∩Xi ∈ A, for all i ∈ I and, in this
case, µ(A) =

∑
i∈I µ(A∩Xi). But this it precisely the content of Lemma 5.5,

since µbf = µ. Finally, the fact that the equivalence relation ∼ satisfies
property (∗) follows from the definition of essential decomposition. �

Corollary 6.13. Under the conditions and notations of the statement of
Proposition 6.12, assume that the quotient set

(∑
i∈I Xi

)
/∼ is endowed with

the σ-algebra and the measure co-induced by the canonical map

q :
∑
i∈I

Xi −→
(∑
i∈I

Xi

)/
∼.

Then the map φ induces an isomorphism φ :
(∑

i∈I Xi

)
/∼ → φ

(∑
i∈I Xi

)
such that the diagram:∑

i∈I Xi

q

��

φ

))(∑
i∈I Xi

)
/∼

∼=

φ

// φ
(∑

i∈I Xi

)
⊂ X
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commutes and φ
(∑

i∈I Xi

)
is a measurable subset of X whose complement

has null measure.

Demonstração. It follows from Lemma 6.10. �

Corollary 6.14. Under the conditions and notations of the statement of
Proposition 6.12, for all p ∈ [1,+∞[ the map:

(6.7) Lp(X,A, µ) −→ Lp
(∑

i∈I(Xi,Ai, µi)
)

induced by φ on Lp is an isometry.

Demonstração. As in Corollary 6.13, we consider the maps q and φ. By
Proposition 6.11, the map induced by q on Lp:

Lp
((∑

i∈I Xi

)
/∼
)
−→ Lp

(∑
i∈I(Xi,Ai, µi)

)
is an isometry. Moreover, since φ is an isomorphism, the map induced by φ
on Lp:

Lp
(
φ
(∑

i∈I Xi

))
−→ Lp

((∑
i∈I Xi

)
/∼
)

is an isometry. Finally, since the complement of φ
(∑

i∈I Xi

)
in X has null

measure we have:

Lp
(
φ
(∑

i∈I Xi

))
= Lp(X,A, µ).

The conclusion follows. �

Remark 6.15. In Corollary 6.14 we actually don’t need the hypothesis that
the measure µ be perfect. Namely, if (Xi)i∈I is an essential decomposition
for (X,A, µ) and µp is the perfect version of µ then (Xi)i∈I is also an essential
decomposition for (X,Ap, µp) (see Remark 5.2) and the restriction of µp to
Xi is the completion µi of µi (see Remark 3.13). Corollary 6.14 then says
that, for p ∈ [1,+∞[, the map:

(6.8) Lp(X,Ap, µp) −→ Lp
(∑

i∈I(Xi,Ai, µi)
)

induced by φ is an isometry. But, keeping in mind that
∑

i∈I(Xi,Ai, µi) is
the completion of

∑
i∈I(Xi,Ai, µi), Lemmas 3.1 and 3.14 give us isometries:

(6.9)
Lp
(∑

i∈I(Xi,Ai, µi)
) ∼= Lp

(∑
i∈I(Xi,Ai, µi)

)
,

Lp(X,A, µ) ∼= Lp(X,Ap, µp),

and the map (6.7) differs from the map (6.8) by the isometries (6.9), so that
(6.7) is also an isometry.

The composition of the map (6.7) with the linear isometry (6.2) is given
by:

(6.10) Lp(X,A, µ) 3 f 7−→ (f |Xi)i∈I ∈
⊕
i∈I

p

Lp(Xi,Ai, µi).
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For p < +∞, the map (6.10) is a linear isometry and for p = +∞, (6.10)
is, in general, just an isometric immersion. The commutativity of diagrams
(6.4) and (6.6) gives us a new commutative diagram:

(6.11)

Lp(X,A, µ)∗
⊕ q

i∈IL
p(Xi,Ai, µi)∗∼=

oo

Lq(X,A, µ) //

OO

⊕ q

i∈IL
q(Xi,Ai, µi)

∼=

OO

for all p ∈ [1,+∞[, q ∈ ]1,+∞] with 1
p + 1

q = 1, where the top horizontal

arrow is the composition of the map (6.3) with the transpose of the map
(6.7), the bottom horizontal arrow is the version of the map (6.10) for Lq,
the left vertical arrow is the (q, p)-Riesz map (1.1) for the space (X,A, µ)
and the right vertical arrow is given by the (q, p)-Riesz map (1.1) for the
space (Xi,Ai, µi) on each coordinate. Note that, since µi(Xi) < +∞ for all
i ∈ I, the right vertical arrow on diagram (6.11) is an isometry, by the Riesz
Representation Theorem for spaces of finite measure.

Proposition 6.16. If p, q ∈ ]1,+∞[ and 1
p + 1

q = 1 then, for any measure

space (X,A, µ), the (q, p)-Riesz map (1.1) is a linear isometry.

Demonstração. By Lemma 3.14 and by the commutativity of diagram (3.8)
we may replace µ by its perfect version µp. Thus, we may assume that µ
is perfect. Since p, q < +∞, Corollary 6.14 implies that both horizontal
arrows on diagram (6.11) are linear isometries. The conclusion follows. �

Proposition 6.17. If a perfect measure space (X,A, µ) admits a decompo-
sition (Xi)i∈I then its Riesz map (1.3) is a linear isometry.

Demonstração. If (Xi)i∈I is a decomposition for (X,A, µ) then the map φ
appearing on the statement of Proposition 6.12 is injective and hence the
map q on the statement of Corollary 6.13 is simply the identity map of∑

i∈I Xi. Thus φ = φ is an isomorphism from
∑

i∈I Xi onto a measurable
subset of X whose complement has null measure. This proves that the map
induced by φ on L∞ is a linear isometry and thus both horizontal arrows
of diagram (6.11) are linear isometries for p = 1, q = +∞. The conclusion
follows. �

Corollary 6.18. Let (X,A, µ) be a perfect measure space. If

dim(X,A, µ) ≤ ℵ1

then the Riesz map (1.3) of X is a linear isometry.

Demonstração. It follows from Proposition 5.14. �

Commutative diagram (6.11) allows us to see exactly what’s the obstacle
for the bijectivity of the Riesz map (1.3) of a perfect measure space (X,A, µ).
Namely, the Riesz map (1.3) of (X,A, µ) is a linear isometry if and only if
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the bottom horizontal arrow of diagram (6.11) is surjective. Thus, we have
the following:

Lemma 6.19. Let (X,A, µ) be a perfect measure space and let (Xi)i∈I be
an essential decomposition for X. For q = +∞, the image of the bot-
tom horizontal arrow of diagram (6.11) consists of the families (fi)i∈I in⊕∞

i∈IL
∞(Xi,Ai, µi) for which there exists a map f : X → IR such that

f |Xi = fi almost everywhere, for all i ∈ I. In particular, the Riesz map (1.3)
of (X,A, µ) is a linear isometry if and only if the following condition holds:
given a family (fi)i∈I in

∏
i∈I L

∞(Xi,Ai, µi) with supi∈I ‖fi‖∞ < +∞ then
there exists a map f : X → IR with f |Xi = fi almost everywhere, for all
i ∈ I. �

We have now the following:

Proposition 6.20. Let (X,A, µ) be a perfect measure space with

dim(X,A, µ) ≤ 2ℵ0 .

Then the Riesz map (1.3) of X is a linear isometry if and only if X admits
a decomposition.

Demonstração. If X admits a decomposition then its Riesz map is a linear
isometry, by Proposition 6.17. Now assume that the Riesz map of X is a
linear isometry and let (Xi)i∈I be an essential decomposition for X. Since
|I| is less than or equal to the continuum, we can find an injective map
c : I → [0, 1]. For all i ∈ I, let fi ∈ L∞(Xi,Ai, µi) be the constant map
equal to c(i). By Lemma 6.19, there exists a map f : X → IR such that
f |Xi = c(i) almost everywhere, for all i ∈ I. Set Yi = Xi ∩ f−1

(
c(i)
)
, so

that µ(Xi \Yi) = 0. Thus (Yi)i∈I is a refinement of (Xi)i∈I . For i 6= j, since
c(i) 6= c(j), we have Yi ∩ Yj = ∅ and hence (Yi)i∈I is a decomposition for
X. �

7. Some Examples

In this section we give a few examples that illustrate the relations between
several of the concepts introduced in the earlier sections.

Example 7.1. Let X be an uncountable set and let A be the σ-algebra
consisting of those subsets of X which are either countable or have countable
complement in X. Let S be a subset of X that is not in A. Define a measure
µ : A → [0,+∞] by taking, for each A ∈ A, µ(A) to be the number of
elements of A ∩ S. Notice that if A ∈ A has countable complement in X
then A ∩ S = S \ (X \ A) is uncountable and therefore µ(A) = +∞. The
measure µ is clearly complete, since if A ∈ A has null measure then A is
countable and therefore every subset of A is in A. The measure µ is also
block-free, since if A ∈ A is such that µ(A) = +∞ then A ∩ S is an infinite
set and, for every x ∈ A ∩ S, the unitary set {x} is a measurable subset of
A with µ

(
{x}
)

= 1. The measure µ is not full; moreover, we claim that the
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σ-algebra Ae coincides with the set ℘(X) of all subsets of X. Namely, if
A ∈ ℘(X) is an arbitrary subset of X and if E ∈ A has finite measure then
E is countable and therefore A ∩ E is also countable, so that A ∩ E ∈ A.
Now consider the canonical full extension µe : ℘(X) → [0,+∞] of µ. We
claim that the set X \ S is an infinite block for µe. Namely, since X \ S is
not in A, we have µe(X \ S) = +∞. Now, given a subset A of X \ S, if A
is not countable then A cannot be in A (since the complement of A in X
contains S and therefore cannot be countable), so that µe(A) = +∞. If A is
countable then A ∈ A and since A∩S is empty, we have µe(A) = µ(A) = 0.

Example 7.1 illustrates the fact that the canonical full extension of a (com-
plete) block-free measure is not in general block-free. It also illustrates the
fact that the block-free version of the canonical full extension of a measure
is not in general the same as the canonical full extension of the block-free
version of that measure, i.e., (µbf)e 6= (µe)bf (even when both (µbf)e and
(µe)bf are defined in the same σ-algebra).

Example 7.2. Let Λ be an arbitrary uncountable set and set X = [0, 1]×Λ.
Consider the σ-algebra A consisting of all subsets A of X such that the λ-th
line:

Aλ =
{
x ∈ [0, 1] : (x, λ) ∈ A

}
is a Borel subset of [0, 1], for all λ ∈ Λ. Define a measure µ : A → [0,+∞] as
follows: if A ∈ A has an uncountable number of nonempty lines (i.e., if the
set of those λ ∈ Λ with Aλ 6= ∅ is uncountable) set µ(A) = +∞; otherwise,
set:

µ(A) =
∑
λ∈Λ

m(Aλ),

where m denotes Lebesgue measure. The measure µ is not block-free; na-
mely, if A ∈ A has an uncountable number of nonempty lines and if all the
lines of A have zero Lebesgue measure then A is an infinite block for µ.
The measure µ is full; namely, given A ∈ Ae then for every λ ∈ Λ the set
[0, 1]× {λ} ∈ A has finite measure and therefore:

A ∩
(
[0, 1]× {λ}

)
∈ A.

But the λ-th line of A ∩
(
[0, 1]× {λ}

)
is equal to the λ-th line Aλ of A and

therefore Aλ is a Borel subset of [0, 1] for all λ ∈ Λ, i.e., A ∈ A. The measure
µ is not complete and the completion µ̄ : A → [0,+∞] of µ is defined in the
σ-algebra A consisting of those subsets A ⊂ X such that Aλ is a Lebesgue
measurable subset of [0, 1] for all λ ∈ Λ and such that the set:

(7.1)
{
λ ∈ Λ : Aλ is not Borel

}
is countable. Namely, if A ∈ A then A = B ∪N , with N ⊂ M , B,M ∈ A
and µ(M) = 0. For all λ ∈ Λ, Aλ = Bλ ∪ Nλ, with Nλ ⊂ Mλ, Bλ, Mλ

are Borel sets and Mλ has null Lebesgue measure, so that Aλ is Lebesgue
measurable. Moreover, the set (7.1) is contained in the set:

(7.2)
{
λ ∈ Λ : Mλ 6= ∅

}
,
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which is countable, since µ(M) is finite. Conversely, if all the lines of A are
Lebesgue measurable and if the set (7.1) is countable then one can assemble
subsets B, N , M of X such that, for all λ ∈ Λ, Aλ = Bλ ∪Nλ, Nλ ⊂ Mλ,
Bλ, Mλ are Borel subsets of [0, 1], Mλ has null Lebesgue measure and it is
empty whenever Aλ is Borel. Then A = B ∪N , N ⊂ M , and B, M are in
A. The set (7.2) is equal to the set (7.1), so that the set (7.2) is countable,
µ(M) = 0 and A is in A. We claim that the measure µ̄ is not full. First,
observe that if E ∈ A is such that µ̄(E) < +∞ then E has a countable
number of nonempty lines; namely, if E has an uncountable number of
nonempty lines, let E0 contain exactly one point from each line of E. Then
E0 ∈ A, E0 ⊂ E and µ̄(E0) = µ(E0) = +∞, so that µ̄(E) = +∞. Now
let S be a Lebesgue measurable subset of [0, 1] that is not Borel. The set
A = S × Λ is not in A. We claim that A is in

(
A
)

e
. Namely, if E ∈ A

is such that µ̄(E) < +∞ then E has only a countable number of nonempty
lines and therefore A∩E has only a countable number of lines that are not
Borel (since it has only a countable number of nonempty lines). Moreover,
all the lines of A ∩ E are Lebesgue measurable and hence A ∩ E is in A.

Example 7.2 illustrates the fact that the completion of a full measure
may not be full and that the canonical full extension of the completion of a
measure may not coincide with the completion of the canonical full extension
of that measure, i.e., it can happen that (µ̄)e 6= (µe).

For the examples that follow we consider the following setup. Let (Y,B, ν)
be a measure space with ν a non zero finite measure and let B′ be a σ-algebra
of subsets of Y contained in B. Let Λ be an arbitrary uncountable set and
set X = Y × Λ. Let A be the σ-algebra of subsets of X consisting of those
A ⊂ X such that the λ-th line:

Aλ =
{
y ∈ Y : (y, λ) ∈ A

}
is in B, for all λ ∈ Λ. In A we define a measure µ : A → [0,+∞] by setting:

µ(A) =
∑
λ∈Λ

ν(Aλ),

for all A ∈ A. Notice that (X,A, µ) is isomorphic to the external sum:∑
λ∈Λ

(Y,B, ν);

since ν (being finite) is full and block-free, it follows from Lemma 6.3 that µ
is also full and block-free and that it is perfect if ν is complete. Moreover, it
follows from Remark 6.6 that the (∞, 1)-Riesz map for the space (X,A, µ)
is an isometry. Let A′ be the σ-algebra of subsets of X consisting of those
A ∈ A such that the set:

(7.3)
{
λ ∈ Λ : Aλ 6∈ B′

}
is countable. Denote by µ′ the restriction of µ to A′. The measure µ′ is
block-free, since given A ∈ A′ with µ′(A) = +∞, there exists λ ∈ Λ with
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ν(Aλ) > 0, so that Aλ × {λ} is a subset of A with Aλ × {λ} ∈ A′ and
µ′
(
Aλ × {λ}

)
= ν(Aλ) ∈ ]0,+∞[. We claim that:

(7.4) (A′)e ⊂ A,
i.e., the σ-algebra (A′)e in which the canonical full extension of µ′ is defined
is contained in A. Namely, given A ∈ (A′)e, then for each λ ∈ Λ the set
Y × {λ} is in A′ and µ′

(
Y × {λ}

)
= ν(Y ) < +∞, so that A ∩

(
Y × {λ}

)
is

in A′ and in particular the λ-th line of A ∩
(
Y × {λ}

)
is in B. But the λ-th

line of A ∩
(
Y × {λ}

)
is Aλ and this proves that A is in A.

We also observe that both for µ and µ′ the family
(
Y × {λ}

)
λ∈Λ

is a
decomposition.

In each of the following two examples we consider the set up just described
and we make a few extra assumptions about the space (Y,B, ν) and the σ-
algebra B′.

Example 7.3. Assume that the restriction of ν to B′ is complete. We claim
that:

(A′)e = A.
Namely, by (7.4) it suffices to check that A ⊂ (A′)e. Let A ∈ A and let
E ∈ A′ be such that:

µ′(E) = µ(E) =
∑
λ∈Λ

ν(Eλ) < +∞.

Obviously, A ∩ E ∈ A. If λ ∈ Λ does not belong to the countable set:{
λ ∈ Λ : ν(Eλ) > 0

}
∪
{
λ ∈ Λ : Eλ 6∈ B′

}
,

then (A ∩ E)λ = Aλ ∩ Eλ is a subset of Eλ, where Eλ ∈ B′ and ν(Eλ) = 0.
The completeness of ν|B′ thus implies that (A ∩E)λ is in B′, so that A ∩E
is in A′ and A is in (A′)e. Notice that, if B′ is not B itself, then also A′ is
not A itself and we have thus proven that the measure µ′ is not full.

If the measure ν is complete then the measure µ′ is also complete; namely,
given A ∈ A′ with µ′(A) = µ(A) = 0 and given B contained in A then B
is in A (as remarked earlier, the completeness of ν implies the completeness
of µ) and, by the completeness of ν|B′ and from the fact that ν(Aλ) = 0 for
all λ ∈ Λ, the set: {

λ ∈ Λ : Bλ 6∈ B′
}

is contained in the countable set:{
λ ∈ Λ : Aλ 6∈ B′

}
,

so that B is in A′. Now assume that the following condition holds:

(•) for every U ∈ B, there exists U1 ∈ B′ such that ν(U 4 U1) = 0.

Here U4U1 denotes the symmetric difference (U \U1)∪ (U1 \U). It follows
easily from condition (•) that for all A ∈ A there exists A1 ∈ A′ such that
µ(A4 A1) = 0; namely, simply assemble A1 in such a way that, for each
λ ∈ Λ, the λ-th line Aλ1 of A1 is in B′ and such that ν(Aλ4Aλ1) = 0. Now,
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a standard argument using limits of simple functions shows that given a
map f : X → IR that is measurable with respect to A there exists a map
f1 : X → IR that is measurable with respect to A′ and such that f = f1

µ-almost everywhere. Thus, just like in the proof of Lemma 3.1, it follows
that the inclusion map of M(X,A′) in M(X,A) induces a linear isometry:

Lp(X,A′, µ′) −→ Lp(X,A, µ),

for all p ∈ [1,+∞]. As remarked earlier, the (∞, 1)-Riesz map of the space
(X,A, µ) is an isometry and, using a commutative diagram:

L1(X,A′, µ′)∗ L1(X,A, µ)∗
∼=oo

L∞(X,A′, µ′)

OO

∼= // L∞(X,A, µ)

OO

we conclude that the (∞, 1)-Riesz map of the space (X,A′, µ′) is also an
isometry.

Concrete examples in which both ν and ν|B′ are complete, B′ 6= B, and
in which condition (•) is satisfied are not hard to find. One possibility is
the following: assume Y is uncountable, let B consist of sets that are either
countable or have countable complement in Y , let ν give measure zero to
countable sets and measure 1 to sets having countable complement and let
B′ = {∅, Y }. Another possibility is the following: let κ1, κ2 be infinite
cardinals with κ1 < κ2, assume that the cardinality |Y | of Y is greater than
κ2, let B consist of sets B with |B| ≤ κ2 or |Y \ B| ≤ κ2, ν be such that
ν(B) = 0 if |B| ≤ κ2, ν(B) = 1 if |Y \B| ≤ κ2, and B′ consist of sets B with
|B| ≤ κ1 or |Y \B| ≤ κ1.

Example 7.3 illustrates the fact that a measure need not be full in order for
its (∞, 1)-Riesz map to be an isometry. This might look a little surprising,
since the (∞, 1)-Riesz map corresponding to the canonical full extension
of a measure is an extension of the (∞, 1)-Riesz map corresponding to the
original measure. So, if the (∞, 1)-Riesz map of the original measure is an
isometry, what happens to its extension? It turns out that such extension
is not injective (and the canonical full extension of the original measure is
not block-free).

Example 7.4. Let us now assume that the measure space (Y,B, ν) and the
σ-algebra B′ satisfy the following condition:

(••) for every U ∈ B \ B′, there exists U0 ∈ B′ with ν(U0) = 0 and
U ∩ U0 6∈ B′.

Let us show that the measure µ′ is full. Let A ∈ (A′)e be given. We know
(see (7.4)) that A is in A. Let us show that the set (7.3) is countable.
Assemble a set E ⊂ X satisfying the following property: for each λ ∈ Λ, if
Aλ is in B′, set Eλ = ∅; if Aλ is not in B′, use (••) in order to find Eλ ∈ B′



NOTES ON THE RIESZ REPRESENTATION THEOREM 33

with ν(Eλ) = 0 and Aλ ∩Eλ 6∈ B′. Then E is in A′ and µ′(E) = 0; since A
is in (A′)e, we must have A ∩ E ∈ A′ and therefore the set:

(7.5)
{
λ ∈ Λ : (A ∩ E)λ = Aλ ∩ Eλ 6∈ B′

}
must be countable. But, from our construction, the set (7.5) coincides with
the set (7.3).

Denote by B′ the σ-algebra in which the completion of the measure ν|B′
is defined. Assume that:

(i) B is not contained in B′;
(ii) every U ∈ B with ν(U) = 0 is in B′.

We will show that the (∞, 1)-Riesz map of the measure space (X,A′, µ′) is
not surjective. Let S ∈ B be such that S 6∈ B′. Define a measure ρ in the
σ-algebra A′ by setting:

ρ(A) =
∑
λ∈Λ

ν(Aλ ∩ S),

for all A ∈ A′. Since ρ(A) ≤ µ′(A) for all A ∈ A′, the map:

α : L1(X,A′, µ′) 3 f 7−→
∫
X
f dρ ∈ IR

is a bounded linear functional with ‖α‖ ≤ 1. Assume by contradiction that
there exists g ∈ L∞(X,A′, µ′) such that:

α(f) = αg(f)
def
=

∫
X
fg dµ′,

for all f ∈ L1(X,A′, µ′). For each λ ∈ Λ, we define maps1:

iλ : L1(Y,B, ν) −→ L1(X,A′, µ′),
rλ : L∞(X,A′, µ′) −→ L∞(Y,B, ν),

as follows; rλ is just given by composition on the right with the measurable
map:

(Y,B, ν) 3 y 7−→ (y, λ) ∈ (X,A′, µ′).
The map iλ carries f ∈ L1(Y,B, ν) to the map iλ(f) ∈ L1(X,A′, µ′) that
vanishes outside the line Y × {λ} and such that iλ(f)(y, λ) = f(y), for all
y ∈ Y . It is easily seen that the diagram:

(7.6)

L1(Y,B, ν)∗ L1(X,A′, µ′)∗
i∗λoo

L∞(Y,B, ν)

OO

L∞(X,A′, µ′)

OO

rλ
oo

1A more informal (perhaps easier to understand) description of what we are about
to do is the following: identify (Y,B, ν) with the λ-th line Y × {λ} of (X,A′, µ′) and
identify L1(Y,B, ν) with a subspace of L1(X,A′, µ′) as explained in Remark 4.2. Under
such identifications, the map iλ is just inclusion and the map rλ takes L∞ maps defined
in X to their restriction to the λ-th line.
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in which the vertical arrows are (∞, 1)-Riesz maps is commutative. The
map rλ carries g ∈ L∞(X,A′, µ′) to the map:

(7.7) rλ(g) : Y 3 y 7−→ g(y, λ) ∈ IR

which is in L∞(Y,B, ν). We claim that the map (7.7) is ν-almost everywhere
equal to the characteristic function χS . Since α = αg, the commutativity of
diagram (7.6) implies that the linear functional:

α ◦ iλ = αg ◦ iλ = i∗λ(αg) ∈ L1(Y,B, ν)∗

corresponds by the (∞, 1)-Riesz map of the space (Y,B, ν) to the map (7.7).
But it is easy to see that:

(α ◦ iλ)(f) =

∫
S
f dν =

∫
Y
fχS dν,

for all f ∈ L1(Y,B, ν), so that the (∞, 1)-Riesz map of the space (Y,B, ν)
also carries χS to α ◦ iλ. The claim that (7.7) is ν-almost everywhere equal
to χS then follows from the injectivity of such Riesz map. Now, denoting

by g−1(1)λ the λ-th line of the set g−1(1) (which is the same as the set in
which the map (7.7) takes the value 1), we conclude that the sets:

(7.8) S \ g−1(1)λ, g−1(1)λ \ S,

(are in B and) have measure zero with respect to ν, for all λ ∈ Λ. It follows
from assumption (ii) that the sets (7.8) are in B′. Now, since g−1(1) is in
A′, there exists λ ∈ Λ such that the line g−1(1)λ is in B′ and therefore:

S =
[
g−1(1)λ \

(
g−1(1)λ \ S

)]
∪
(
S \ g−1(1)λ

)
is in B′, contradicting our assumptions. Thus the bounded linear functional
α ∈ L1(X,A′, µ′)∗ is not in the image of the (∞, 1)-Riesz map of the space
(X,A′, µ′).

Let us now present a concrete example of a measure space (Y,B, ν) and
of a σ-algebra B′ satisfying (••), (i) and (ii). Let:

Y = [0, 1]× {0, 1},

B be the σ-algebra consisting of all sets of the form:

(7.9)
(
B0 × {0}

)
∪
(
B1 × {1}

)
,

with B0, B1 ⊂ [0, 1] Lebesgue measurable. Let the measure ν of the set (7.9)
be equal to the sum of the Lebesgue measures of B0 and B1. Let B′ consist
of the sets of the form (7.9) with B0, B1 Lebesgue measurable and B0 = B1.
In order to prove property (••), let U ∈ B \ B′ be of the form (7.9); then
B0 6= B1 and there exists x ∈ B0 4 B1. The set U0 = {x} × {0, 1} is in B′,
ν(U0) = 0 and U ∩ U0 is not in B′. It is easy to see that the σ-algebra B′
consists of the sets of the form (7.9) with B0, B1 Lebesgue measurable and
such that B04B1 has Lebesgue measure equal to zero. Thus, B′ is properly
contained in B and every element of B having measure zero is in B′.
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Example 7.4 shows that in Proposition 6.17 the hypothesis that the me-
asure be complete is important. Namely, the measure µ′ is full, block-free,
admits a decomposition, but its (∞, 1)-Riesz map is not an isometry. This
is somewhat surprising, since by completing a measure we do not change its
Riesz map. What happens here is that the completion of µ′ is not full and
the (∞, 1)-Riesz map of the perfect version (µ′)p of µ′ is a proper exten-
sion2 of the (∞, 1)-Riesz map of µ′. Clearly, the (∞, 1)-Riesz map of (µ′)p
is an isometry, by Proposition 6.17, since (µ′)p admits a decomposition (see
Remark 5.2).
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