O TEOREMA DE RADON-NIKODYM

DANIEL V. TAUSK

Se (X,\mathcal{A},μ) é um espaço de medida e $f:X\to [0,+\infty]$ é uma função mensurável não negativa então vimos que:

$$\mu_f(E) = \int_E f \, \mathrm{d}\mu, \quad E \in \mathcal{A},$$

define uma medida no espaço mensurável (X, \mathcal{A}) . A medida μ_f é também denotada por $\int f \, \mathrm{d}\mu$ e é chamada a integral indefinida de f com respeito a μ . Note que se $E \in \mathcal{A}$ e $\mu(E) = 0$ então a restrição da medida μ à σ -álgebra $\mathcal{A}|_E$ é identicamente nula e portanto $\int_E f \, \mathrm{d}\mu = 0$, i.e., $\mu_f(E) = 0$ sempre que $\mu(E) = 0$.

1. **Definição.** Dadas medidas $\mu : \mathcal{A} \to [0, +\infty]$, $\nu : \mathcal{A} \to [0, +\infty]$ definidas na mesma σ -álgebra \mathcal{A} então dizemos que ν é absolutamente contínua com respeito a μ e escrevemos $\nu \ll \mu$ se para todo $E \in \mathcal{A}$, temos que $\mu(E) = 0$ implica $\nu(E) = 0$.

Temos então que se $f:X\to [0,+\infty]$ é uma função mensurável então $\mu_f\ll \mu.$

Exercício 1. Sejam (X, \mathcal{A}) um espaço mensurável tal que $\{x\} \in \mathcal{A}$, para todo $x \in X$. Sejam $\mu : \mathcal{A} \to [0, +\infty]$ a medida de contagem e $\nu : \mathcal{A} \to [0, +\infty]$ uma medida não nula tal que $\nu(\{x\}) = 0$, para todo $x \in X$. (Por exemplo, podemos tomar $X = \mathbb{R}$ e ν igual à medida de Lebesgue.) Mostre que $\nu \ll \mu$, mas que não existe uma função mensurável $f : X \to [0, +\infty]$ tal que $\nu = \mu_f$. (sugestão: se $\nu = \mu_f$ então $\nu(\{x\}) = \mu_f(\{x\}) = f(x)$, para todo $x \in X$.)

Exercício 2. Seja (X, \mathcal{A}, μ) um espaço de medida e suponha que μ seja σ -finita. Se $f: X \to [0, +\infty[$ é uma função mensurável não negativa finita, mostre que a medida μ_f também é σ -finita. (sugestão: se $X = \bigcup_{k=1}^{\infty} X_k \cos \mu(X_k) < +\infty$, considere os conjuntos da forma $X_k \cap [f \leq n]$.)

Exercício 3. Seja (X, \mathcal{A}, μ) um espaço de medida e seja $f: X \to [0, +\infty]$ uma função mensurável não negativa. Dada uma função mensurável $g: X \to \overline{\mathbb{R}}$, mostre que g é quase integrável com respeito a μ_f se e somente se gf é quase integrável com respeito a μ e que, caso essas funções sejam de fato quase integráveis, então:

$$\int_X g \, \mathrm{d}\mu_f = \int_X g f \, \mathrm{d}\mu.$$

Date: 15 de junho de 2011.

(sugestão: considere primeiramente o caso em que g é simples, mensurável e não negativa. Depois, considere o caso em que g é mensurável não negativa e escreva $g_n \nearrow g$, sendo cada g_n simples, mensurável, não negativa. Finalmente, escreva $g = g^+ - g^-$.)

Exercício 4. Seja (X, \mathcal{A}, μ) um espaço de medida. Um bloco infinito para μ é um conjunto mensurável $B \in \mathcal{A}$ tal que $\mu(B) = +\infty$ e tal que qualquer subconjunto mensurável de B tem medida infinita ou nula. A medida μ é dita livre de blocos se não possui blocos infinitos. Mostre que toda medida σ -finita é livre de blocos. (sugestão: se $X = \bigcup_{k=1}^{\infty} X_k$ com $\mu(X_k) < +\infty$, considere os conjuntos da forma $X_k \cap B$.)

Exercício 5. Seja (X, \mathcal{A}, μ) um espaço de medida. Dadas funções quase integráveis $f: X \to \overline{\mathbb{R}}, \ g: X \to \overline{\mathbb{R}}$, mostre que se f = g μ -quase sempre então:

(1)
$$\int_{E} f \, \mathrm{d}\mu = \int_{E} g \, \mathrm{d}\mu,$$

para todo $E \in \mathcal{A}$. Mostre também que se μ é livre de blocos (o que ocorre, por exemplo, se μ for σ -finita) então vale a recíproca: se (1) vale para todo $E \in \mathcal{A}$ então f = g μ -quase sempre. (sugestão para a recíproca: suponha por absurdo que $[f \neq g]$ tenha medida positiva. Trocando os papéis de f e g, se necessário, podemos supor então que [f > g] tem medida positiva. Escreva esse conjunto como união dos conjuntos:

$$\begin{split} [f>g] \cap [|f| \leq n] \cap [|g| \leq n], \quad n=1,2,\dots \\ [f=+\infty] \cap [|g| \leq n], \quad n=1,2,\dots \\ [|f| \leq n] \cap [g=-\infty], \quad n=1,2,\dots \\ [f=+\infty] \cap [g=-\infty]. \end{split}$$

Algum desses conjuntos tem medida positiva. Escolha um subconjunto mensurável E desse conjunto de medida positiva que tenha medida positiva e finita. Mostre que $\int_E f \,\mathrm{d}\mu > \int_E g \,\mathrm{d}\mu$. Observe que no caso em que f e g são limitadas em E temos $\int_E f \,\mathrm{d}\mu - \int_E g \,\mathrm{d}\mu = \int_E (f-g) \,\mathrm{d}\mu$.)

- 2. **Teorema** (Radon–Nikodym). Seja (X, \mathcal{A}, μ) um espaço de medida e suponha que μ seja σ -finita. Dada uma medida $\nu : \mathcal{A} \to [0, +\infty]$ absolutamente contínua com respeito a μ então:
 - (a) se ν é σ -finita então existe uma função mensurável não negativa finita $f: X \to [0, +\infty[$ tal que $\nu = \mu_f;$
 - (b) existe uma função mensurável não negativa $f: X \to [0, +\infty]$ tal que $\nu = \mu_f$.

A demonstração do Teorema 2 será dada mais adiante.

3. **Definição.** Uma função f como na tese do Teorema 2 é chamada uma derivada de Radon-Nikodym de ν com respeito a μ e é denotada por $\frac{d\nu}{d\mu}$.

Em virtude do resultado do Exercício 5, a derivada de Radon–Nikodym $\frac{\mathrm{d}\nu}{\mathrm{d}\mu}$ é "quase" única. Mais precisamente: consideramos o conjunto das funções mensuráveis não negativas $f:X\to [0,+\infty]$ munido da relação de equivalência:

$$f \sim g \iff f = g \mu$$
-quase sempre.

As possíveis derivadas de Radon–Nikodym $\frac{\mathrm{d}\nu}{\mathrm{d}\mu}$ constituem precisamente uma classe de equivalência de \sim . Poderíamos então definir $\frac{\mathrm{d}\nu}{\mathrm{d}\mu}$ como sendo a classe de equivalência formada por todas as funções mensuráveis não negativas f tais que $\nu = \mu_f$. É usual, no entanto, confundir uma tal classe de equivalência com algum de seus representantes e tratar a derivada de Radon–Nikodym como se fosse uma função.

Note que, usando a noção de derivada de Radon–Nikodym, o resultado do Exercício 3 nos diz que se $g:X\to\overline{\mathbb{R}}$ é uma função mensurável então:

$$\int_X g \, \mathrm{d}\nu = \int_X g \frac{\mathrm{d}\nu}{\mathrm{d}\mu} \, \mathrm{d}\mu,$$

sendo que o lado esquerdo da igualdade está bem definido se e somente se o lado direito estiver.

Exercício 6. Sejam (X, \mathcal{A}) um espaço mensurável e sejam $\mu : \mathcal{A} \to [0, +\infty]$, $\nu : \mathcal{A} \to [0, +\infty]$ medidas. Suponha que μ seja σ -finita e que $\nu \ll \mu$. Dado $Y \in \mathcal{A}$, denote por μ' a restrição de μ a $\mathcal{A}|_Y$ e por ν' a restrição de ν a $\mathcal{A}|_Y$. Mostre que μ' é σ -finita, que $\nu' \ll \mu'$ e que a derivada de Radon–Nikodym $\frac{\mathrm{d}\nu'}{\mathrm{d}\mu'}$ é igual à restrição de $\frac{\mathrm{d}\nu}{\mathrm{d}\mu}$ a Y.

Exercício 7. Sejam (X, \mathcal{A}) um espaço mensurável e sejam $\mu : \mathcal{A} \to [0, +\infty]$, $\nu : \mathcal{A} \to [0, +\infty]$, $\rho : \mathcal{A} \to [0, +\infty]$ medidas tais que $\rho \ll \nu$ e $\nu \ll \mu$. Mostre que $\rho \ll \mu$. Além do mais, se μ e ν são σ -finitas, mostre que:

$$\frac{\mathrm{d}\rho}{\mathrm{d}\mu} = \frac{\mathrm{d}\rho}{\mathrm{d}\nu} \frac{\mathrm{d}\nu}{\mathrm{d}\mu},$$

ou, mais precisamente: se f é uma derivada de Radon–Nikodym de ν com respeito a μ e g é uma derivada de Radon–Nikodym de ρ com respeito a ν então fg é uma derivada de Radon–Nikodym de ρ com respeito a μ .

Exercício 8. Assuma que o item (a) do Teorema 2 já tenha sido demonstrado para medidas finitas μ , ν e demonstre o item (a) do Teorema 2. (sugestão: mostre que podemos escrever X como uma união disjunta $\bigcup_{n=1}^{\infty} X_n$ de conjuntos mensuráveis X_n tais que $\mu(X_n) < +\infty$ e $\nu(X_n) < +\infty$. Denote por μ^n , ν^n , respectivamente, a restrição de μ e de ν a $\mathcal{A}|_{X_n}$. Se $f_n: X_n \to [0, +\infty[$ é uma derivada de Radon–Nikodym de ν^n com respeito a μ^n , defina $f: X \to [0, +\infty[$ tal que $f|_{X_n} = f_n$, para todo $n \ge 1$ e mostre que f é uma derivada de Radon–Nikodym de ν com respeito a μ .)

Exercício 9. Assuma que o item (b) do Teorema 2 já tenha sido demonstrado no caso em que a medida μ é finita e demonstre o item (b) do Teorema 2.

(sugestão: escreva X como uma união disjunta $\bigcup_{n=1}^{\infty} X_n$ de conjuntos mensuráveis X_n tais que $\mu(X_n) < +\infty$ e proceda da mesma forma que você o fez no Exercício 8.)

Exercício 10. Assuma que o item (a) do Teorema 2 já tenha sido demonstrado e demonstre o item (b). (sugestão: em vista do resultado do Exercício 9, é suficiente considerar o caso em que a medida μ é finita. Para cada inteiro positivo k, seja (P_k, N_k) uma decomposição de Hahn para a medida com sinal $\nu - k\mu$. Sejam $P = \bigcap_{k=1}^{\infty} P_k$ e $N = \bigcup_{k=1}^{\infty} N_k$. Note que $X = P \cup N$ e $P \cap N = \emptyset$. Verifique que se E é um subconjunto mensurável de P então $\nu(E) = +\infty$ se $\mu(E) > 0$. Verifique também que a restrição de ν a $\mathcal{A}|_N$ é σ -finita. Seja $f: N \to [0, +\infty[$ uma derivada de Radon–Nikodym da restrição de ν a $\mathcal{A}|_N$ com respeito à restrição de μ a $\mathcal{A}|_N$. Estenda f para K colocando o valor $+\infty$ em K0 e verifique que você obteve uma derivada de Radon–Nikodym de ν com respeito a μ .)

4. **Definição.** Seja (X, \mathcal{A}) um espaço mensurável e sejam $\mu : \mathcal{A} \to [0, +\infty]$, $\nu : \mathcal{A} \to [0, +\infty]$ medidas. Dizemos que μ e ν são mutuamente singulares e escrevemos $\mu \perp \nu$ se existem conjuntos mensuráveis $A, B \in \mathcal{A}$ tais que $X = A \cup B, A \cap B = \emptyset, \mu(A) = 0$ e $\nu(B) = 0$.

Exercício 11. Mostre que se $\mu \perp \nu$ e $\nu \ll \mu$ então $\nu = 0$.

5. **Teorema** (decomposição de Lebesgue). Seja (X, A) um espaço mensurável e sejam $\mu : A \to [0, +\infty]$, $\nu : A \to [0, +\infty]$ medidas σ -finitas. Então existe um único par (ν_a, ν_s) de medidas definidas em A tais que $\nu = \nu_a + \nu_s$, $\nu_a \ll \mu$ e $\nu_s \perp \mu$.

Observe que a σ -finitude de ν implica a σ -finitude das medidas ν_a e ν_s .

6. **Definição.** O par (ν_a, ν_s) cuja existência é garantida pelo Teorema 5 é dito uma decomposição de Lebesgue de ν com respeito a μ .

A demonstração do Teorema 5 será dada mais adiante.

Exercício 12. Seja (X, \mathcal{A}, μ) um espaço de medida. Sejam (ν_a, ν_s) , (ν'_a, ν'_s) pares de medidas definidas em \mathcal{A} tais que:

$$\nu_{\rm a} + \nu_{\rm s} = \nu_{\rm a}' + \nu_{\rm s}',$$

 $\nu_{\rm a}\ll\mu,\,\nu_{\rm a}'\ll\mu,\,\nu_{\rm s}\perp\mu$ e $\nu_{\rm s}'\perp\mu.$ Mostre que $\nu_{\rm a}=\nu_{\rm a}'$ e $\nu_{\rm s}=\nu_{\rm s}'.$ (sugestão: sejam $A,\,B,\,A',\,B'$ conjuntos mensuráveis tais que $X=A\cup B=A'\cup B',\,A\cap B=A'\cap B'=\emptyset,\,\mu(A)=\mu(A')=0$ e $\nu_{\rm s}(B)=\nu_{\rm s}'(B')=0.$ Se $A_1=A\cup A'$ e $B_1=B\cap B'$ então $X=A_1\cup B_1,\,A_1\cap B_1=\emptyset,\,\mu(A_1)=0$ e $\nu_{\rm s}(B_1)=\nu_{\rm s}'(B_1)=0.$ Mostre que $\nu_{\rm a}(E)=\nu_{\rm a}'(E)$ e $\nu_{\rm s}(E)=\nu_{\rm s}'(E)$ para qualquer subconjunto mensurável E de A_1 e para qualquer subconjunto mensurável E de $B_1.$)

Exercício 13. Suponha que a existência da decomposição de Lebesgue (ν_a, ν_s) tenha sido demonstrada quando as medidas μ e ν são finitas e demonstre a existência da decomposição de Lebesgue para medidas σ -finitas. (sugestão:

escreva X como uma união disjunta $\bigcup_{n=1}^{\infty} X_n$ de conjuntos mensuráveis X_n tais que $\mu(X_n) < +\infty$ e $\nu(X_n) < +\infty$. Sejam μ^n , ν^n , respectivamente, as restrições de μ e ν a $\mathcal{A}|_{X_n}$. Seja (ν_a^n, ν_s^n) a decomposição de Lebesgue de ν^n com respeito a μ^n e defina $\nu_a : \mathcal{A} \to [0, +\infty]$, $\nu_s : \mathcal{A} \to [0, +\infty]$ fazendo:

$$\nu_{\mathbf{a}}(E) = \sum_{n=1}^{\infty} \nu_{\mathbf{a}}^n(E \cap X_n), \quad \nu_{\mathbf{s}}(E) = \sum_{n=1}^{\infty} \nu_{\mathbf{s}}^n(E \cap X_n),$$

para todo $E \in \mathcal{A}$.)

Exercício 14. Seja (X, \mathcal{A}) um espaço mensurável e sejam $\mu : \mathcal{A} \to [0, \infty]$, $\nu : \mathcal{A} \to [0, +\infty]$ medidas. Seja \mathfrak{F} o conjunto de todas as funções mensuráveis não negativas $f : X \to [0, +\infty]$ tais que:

$$\int_{E} f \, \mathrm{d}\mu \le \nu(E),$$

para todo $E \in \mathcal{A}$.

(a) Mostre que se $f, g \in \mathfrak{F}$ então a função $f \vee g : X \to [0, +\infty]$ definida por:

$$(f \lor g)(x) = \max\{f(x), g(x)\}, \quad x \in X,$$

pertence a \mathfrak{F} . (sugestão: dado $E \in \mathcal{A}$, escreva $E = E_1 \cup E_2$, onde:

$$E_1 = E \cap [f \ge g], \quad E_2 = E \cap [f < g].$$

Note que $f \vee g$ coincide com f em E_1 e coincide com g em E_2 .)

(b) Seja

$$c = \sup \left\{ \int_{\mathcal{X}} f \, \mathrm{d}\mu : f \in \mathfrak{F} \right\} \in [0, +\infty].$$

(note que a função nula está em \mathfrak{F} , de modo que c é o supremo de um conjunto não vazio.) Mostre que existe $f \in \mathfrak{F}$ tal que:

$$\int_X f \, \mathrm{d}\mu = c.$$

(sugestão: seja $(f_n)_{n>1}$ uma seqüência em \mathfrak{F} tal que:

$$\lim_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu = c.$$

Trocando f_n por $f_1 \vee \ldots \vee f_n$ e usando o resultado do item (a), vemos que pode-se supor que a seqüência $(f_n)_{n\geq 1}$ é pontualmente crescente. Seja f tal que $f_n \nearrow f$ e use o Teorema da convergência monotônica.)

(c) Se a medida ν é finita, mostre que podemos encontrar uma função f como no item (b) tomando valores em $[0,+\infty[$. (sugestão: temos $c \leq \nu(X) < +\infty$ e portanto f é finita μ -quase sempre. Troque o valor de f por zero no conjunto de medida nula $[f=+\infty]$.)

Demonstração dos Teoremas 2 e 5. Note que a unicidade da decomposição de Lebesgue já foi demonstrada no Exercício 12. Além do mais, em vista dos resultados dos Exercícios 8, 10 e 13, podemos supor que as medidas μ e ν são finitas. Sejam \mathfrak{F} , c e f como no Exercício 14. Como a medida ν é finita, note que $c \leq \nu(X)$ é finito e que podemos supor que f é finita. Seja $\mu_f = \int f \, \mathrm{d}\mu$ e para cada inteiro positivo k, considere uma decomposição de Hahn (P_k, N_k) para a medida com sinal $\nu - \mu_f - \frac{1}{k}\mu$. Vamos mostrar que $\mu(P_k) = 0$. Considere a função:

$$\phi_k = f + \frac{1}{k} \, \chi_{P_k}.$$

Afirmamos que $\phi_k \in \mathfrak{F}$. De fato, dado $E \in \mathcal{A}$ então:

$$\int_{E \cap P_k} \phi_k \, \mathrm{d}\mu = \mu_f(E \cap P_k) + \frac{1}{k} \mu(E \cap P_k) \le \nu(E \cap P_k),$$

já que:

$$\left(\nu - \mu_f - \frac{1}{k}\mu\right)(E \cap P_k) \ge 0.$$

Além do mais:

$$\int_{E \cap N_k} \phi_k \, \mathrm{d}\mu = \mu_f(E \cap N_k) \le \nu(E \cap N_k),$$

já que $f \in \mathfrak{F}$. Então:

$$\int_{E} \phi_k \, \mathrm{d}\mu = \int_{E \cap P_k} \phi_k \, \mathrm{d}\mu + \int_{E \cap N_k} \phi_k \, \mathrm{d}\mu \le \nu(E \cap P_k) + \nu(E \cap N_k) = \nu(E).$$

Já que $\phi_k \in \mathfrak{F}$, temos que:

$$\int_{X} \phi_k \, \mathrm{d}\mu \le c,$$

ou seja:

$$\mu_f(X) + \frac{1}{k}\mu(P_k) = c + \frac{1}{k}\mu(P_k) \le c.$$

Como c é finito, concluímos que $\mu(P_k) = 0$. Sejam:

$$A = \bigcup_{k=1}^{\infty} P_k, \quad B = \bigcap_{k=1}^{\infty} N_k.$$

Daí $X = A \cup B$ e $A \cap B = \emptyset$. Temos $\mu(A) = 0$. Além do mais, como $B \subset N_k$ temos:

$$\nu(B) \le \mu_f(B) + \frac{1}{k}\mu(B),$$

para todo inteiro positivo k e portanto $\nu(B) = \mu_f(B)$. Sejam $\nu_a = \mu_f$ e $\nu_s = \nu - \mu_f$. Temos que ν_a e ν_s são medidas (sem sinal) e $\nu = \nu_a + \nu_s$. Obviamente, $\nu_a \ll \mu$. Como $\mu(A) = 0$ e $\nu_s(B) = 0$, temos que $\mu \perp \nu_s$. Isso completa a demonstração do Teorema 5. Agora, se assumimos que $\nu \ll \mu$ então $(\nu,0)$ e (ν_a,ν_s) são ambas decomposições de Lebesgue de ν com respeito a μ e portanto $\nu = \nu_a = \mu_f$, completando a demonstração do Teorema 2.

Exercício 15. Seja (X, \mathcal{A}, μ) um espaço de medida e suponha que μ seja σ -finita. Mostre que se $(A_i)_{i\in I}$ é uma família de conjuntos mensuráveis dois a dois disjuntos então o conjunto:

$$\{i \in I : \mu(A_i) > 0\}$$

é enumerável. (sugestão: escreva $X=\bigcup_{k=1}^\infty X_k,$ com $\mu(X_k)<+\infty$ e note que:

$$\{i \in I : \mu(A_i) > 0\} = \bigcup_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \{i \in I : \mu(A_i \cap X_k) \ge \frac{1}{n}\}.$$

Observe que $\mu(A_i \cap X_k) \geq \frac{1}{n}$ para no máximo um número finito de índices $i \in I$.)

Exercício 16. Mostre que o Teorema 5 vale também sem a hipótese de que a medida μ seja σ -finita, i.e., que se μ e ν são medidas e ν é σ -finita então existe um (único) par de medidas (ν_a, ν_s) tal que $\nu = \nu_a + \nu_s$, $\nu_a \ll \mu$ e $\nu_s \perp \mu$. (sugestão: use o Lema de Zorn para mostrar que existe um elemento maximal dentre os subconjuntos \mathcal{E} de \mathcal{A} que satisfazem as três seguintes condições: (i) os elementos de \mathcal{E} são dois a dois disjuntos, (ii) $\mu(E) = 0$ para todo $E \in \mathcal{E}$, (iii) $\nu(E) > 0$ para todo $E \in \mathcal{E}$. Pelo resultado do Exercício 15, \mathcal{E} é enumerável. Sejam $A = \bigcup_{E \in \mathcal{E}} E$ e $B = X \setminus A$. Defina:

$$\nu_{\mathbf{a}}(E) = \nu(E \cap B), \quad \nu_{\mathbf{s}}(E) = \nu(E \cap A), \quad E \in \mathcal{A}.$$

Note que $\mu(A) = 0$ e $\nu_s(B) = 0$ e conclua que $\nu_s \perp \mu$. Para mostrar que $\nu_a \ll \mu$, note que se existisse $E \in \mathcal{A}$ com $\mu(E) = 0$ e $\nu(E \cap B) > 0$ então $\mathcal{E} \cup \{E \cap B\}$ seria uma extensão própria de \mathcal{E} satisfazendo (i), (ii) e (iii).)

Exercício 17. Seja (X, \mathcal{A}) um espaço mensurável tal que $\{x\} \in \mathcal{A}$ para todo $x \in X$. Sejam $\nu : \mathcal{A} \to [0, +\infty]$ a medida de contagem e $\mu : \mathcal{A} \to [0, +\infty]$ uma medida não nula tal que $\mu(\{x\}) = 0$ para todo $x \in X$. (Por exemplo, podemos tomar $X = \mathbb{R}$ e μ igual à medida de Lebesgue.) Mostre que não existe um par de medidas (ν_a, ν_s) tal que $\nu = \nu_a + \nu_s$, $\nu_a \ll \mu$ e $\nu_s \perp \mu$. (sugestão: mostre que $\nu_s(\{x\}) = 1$ para todo $x \in X$. Se existisse uma partição $A \cup B$ de X com $\mu(A) = 0$ e $\nu_s(B) = 0$ então B seria vazio e A seria igual a X.)