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1. THE MATHEMATICAL FORMALISM OF A NON RELATIVISTIC GENERIC
PHYSICAL THEORY

Let me start by explaining how I think the mathematical formalism of a
generic non relativistic' and deterministic physical theory should look like.

The first ingredient should be a phase space X which should be thought
of as the set of all possible states of some (closed) system, which I shall
call the system under study. Mathematically, X should be a set endowed
with some additional structure. A point z € X should be thought of as a
description of the state of the system at a generic instant of time?. Also,
we need a rule that assigns to each nonnegative® real number ¢ a morphism
Ui : X — X of the phase space X; we assume that Uy o Ug = U, for all
t,s > 0 and that Uy is the identity map of X. The interpretation of U; is the
following: if the system is at a state x € X at some instant {5 € R then the
system will be at the state Uy(z) at the instant o 4 ¢. We call the family of
maps (U)e>0 the evolution law. For example, in classical mechanics, X is a
symplectic manifold and Uy is the flow of a Hamiltonian vector field (i.e., the
symplectic gradient of a smooth real-valued Hamiltonian function on X).

Of course, a theory with just a phase space X and an evolution law
(Ut)¢>0 cannot be considered a physical theory, since it does not say anything
about results of experiments. So, we need an additional ingredient: if € is
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1By non relativistic I mean that it is assumed the existence of an absolute (observer-
independent) time flow.

2It is not assumed that human beings should have an intuitive understanding of how
x describes the system. For instance, we can imagine a planet populated by blind people
that study classical mechanics and vector calculus, but they consider the space R? to be
a weird abstraction coined by the local mathematicians. On the other hand, it should be
clear that z is to be interpreted as some sort of description of the system itself, not of
someone’s knowledge about the system.

31 will assume that U; is defined only for nonnegative ¢, although in most physical
theories Uy is defined for every real number ¢. Notice that it is conceivable, in principle,
that two different states z,z" € X be lead to the same state U(z) = U(x’) after a time
t, i.e., that the map U; be not injective (but this would make the physical theory non
reversible). Also, in some cases, the domain of U; may not be the entire phase space X.
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an experimental arrengement, there should be an associated map fg with
domain* X such that, for each 2 € X, fe(x) is the result obtained from the
experiment with experimental arrangement €, when the system under study
is at the state x. In classical mechanics, fg is usually a smooth real-valued
map on the symplectic manifold X.

So far, I have considered only deterministic physical theories, but a simple
adaptation allows us to consider also non deterministic theories (at least, the
kind of reasonable non deterministic physical theory that can be described in
terms of probabilities). We just have to replace the (deterministic) evolution
law (Uy)e>0 by a stochastic evolution law:

U : P(X)— P(X), t>0,

where P(X) denotes the set of all probability measures in (some fixed o-
algebra of subsets of ) X; again, we assume that U;olds = Uy, for all t,s > 0
and that Uy is the identity map of P(X). The interpretation of U is the
following: if at an instant ¢9 € R the state of the system is x € X then the
state of the system at the instant to + ¢ is unknowable at time ¢y, but it is
random with probability measure U;(d,), where 0, denotes the probability
measure concentrated at z (i.e., 6, ({z}) = 1)°.

In the case of non deterministic physical theories, it is possible that the
interaction between the system under study and the experimental appara-
tus of some experimental arrangement € be also non deterministic; thus, the
value of the map fg at a state x € X will not be the result of the exper-
iment, but a probability measure on the set of all possible results for the
experiment. It is also conceivable that, although the evolution law (U;):>0
is non deterministic, the interaction of the system under study with a given
experimental apparatus is so well-behaved that fe(x) is really just the result
of the experiment (not a probability measure). What is not reasonable is
the other way around: a deterministic evolution law (U)i>0 coupled with
a stochastic (i.e., probability measure-valued) map fe. Why is this not
reasonable? Because we could in principle use the physical theory under

4The counter-domain of fe is usually taken to be the set R of real numbers, but it is
not really important that the values of f¢ be numbers at all; fe(x) is just something that
describes the result of the experiment. In fact, if we focuss on real-life experiments, it can
always be assumed that the image of the map f¢ is a finite set.

5If we start with a deterministic evolution law (Ut)t>o0 then, for each ¢t > 0, we can
define a map Uy : P(X) — P(X) by setting Us (P)(S) = P(U; ' (5)), for every P € P(X)
and every (measurable) subset S of X. The study of ({;):>0 can be useful even in the de-
terministic case, since it is usually impossible for humans to have perfect knowledge about
the state of a system. If the family of maps (U;):>0 has not arisen from a deterministic
evolution law (U;);>0 via such procedure then we are dealing with a truly indeterministic
physical theory.
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consideration to study the system consisting of both the original system un-
der study and the experimental apparatus®; this would give us a “larger”
phase space X with (deterministic) evolution law (U¢)>0. The result of the
experiment should then be completely determined by the state of the system
under study « € X and by the state of the experimental apparatus. In other
words: where would the randomness in the result of the experiment come
from, if the evolution law is assumed to be deterministic?”

2. THE STANDARD MATHEMATICAL FORMALISM OF QUANTUM
MECHANICS

The standard mathematical formalism of Quantum Mechanics is precisely
of that unreasonable type explained at the end of the previous section. The
phase space X is a complex Hilbert space® H. The evolution law (U;);>0 is a
one-parameter group of unitary operators, namely, Uy = exp (—% tH ), where
H is a (usually unbounded) self-adjoint Hamiltonian operator on H. So,
the evolution law is deterministic. What about the results of experiments?
Given an experimental arrangement € (of a certain type), one can associate
to it a self-adjoint operator” Ag on H. The possible results of the experiment
are the eigenvalues of Ag and, assuming that the state of the system is a
unit vector v € ‘H, the probability that the result of the experiment be the
eigenvalue A € R is ||P\(v)||?, where Py : H — H denotes the operator of
orthogonal projection onto the eigenspace of Ag corresponding to A.

There is nothing unreasonable about a non deterministic physical theory.
But, as remarked at the end of the previous section, it is unreasonable to
have a deterministic evolution law coupled with a stochastic map that tells
the results of experiments. What is going on? It seems that the most
reasonable answer is that the vector ¥ € H is not a complete description of
the state of the system under study.

6l am assuming here that the study of the experimental apparatus can be done without
considering types of physical interactions that fall beyond the scope of the physical theory
we are considering.

"One possible answer to this question is: the randomness comes from our lack of
knowledge of the microscopic state of the experimental apparatus €. But, if this is the
case, we should have a deterministic map fe at least in the idealized situation where the
experimental apparatus is described down to the microscopic level.

8To be more precise, X should be the projectivization (H\{0})/C* of the Hilbert space
‘H. Namely, a state ¢ € H \ {0} is identical to the state ¢t if ¢ is any nonzero complex
number.

91 will assume that A¢ (is bounded and) has finite spectrum (see footnote 4). In this
case, the spectrum of A¢ consists only of eigenvalues and the Hilbert space H is the
orthogonal direct sum of the corresponding eigenspaces.
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3. THE MATHEMATICAL FORMALISM OF BOHM’S THEORY

In Bohm’s theory, the phase space corresponding to a system of n particles

is the cartesian product:
X =R> x H,

where H is the complex Hilbert space'? L? (R3") of complex-valued square
integrable maps on R3". An element of X is an ordered pair (q,), where
q=(q1,--.,qn) is an n-tuple of elements of R? (the positions of the particles)
and ¥ € H is the wave function of the standard quantum formalism. The
evolution law U; : X — X is defined as follows: given (go,%0) € X and
setting (q(t),w(t)) = U(qo, o) then ¢(t) = exp ( — %tH) -1 and q is the
solution of the Cauchy problem (I am omitting the masses of the particles'?):

(3.1) /(1) = m(W), a(0) = @,

where H denotes a self-adjoint Hamiltonian operator on H, J(z) denotes
the imaginary part of a complex number z and Vv denotes the gradient of
a map .

Now, to an experimental arrangement €, one can associate a (determin-
istic!) map fe: X — R. For some experimental arrangements, there exists
also a self-adjoint operator A¢ on H with the following property: given a
unit vector ¢ € H and a real number A, the integral of || over the set:

(3.2) {qeR* : fe(q,v) = A}

is equal to || P\()||?, where, as before, Py : H — H denotes the operator
of orthogonal projection onto the eigenspace of A¢ corresponding to A (set
Py, = 0 if X is not an eigenvalue of A¢). Such integral is, of course, the
probability of the set (3.2) with respect to the probability measure whose
density is |¢|2. So, in this formalism, the randomness of the result of the
experiment is only apparent: loosely speaking, it reflects ignorance on the
value of ¢. The unreasonable aspect of the standard quantum formalism has
disappeared.

3.1. Remark. It is possible that two different experimental arrangements
¢, ¢’ (with different associated functions fg, fe) correspond to the same
self-adjoint operator Ag = Ag. Therefore it is not possible to talk about
the “value of the observable associated to the self-adjoint operator A when
the system is at the state (¢,v) € X” (such value would be fe(q, ) for the

10Again, it would be more accurate to consider the projectivization of the Hilbert space
(see footnote 8).

11Alternatively7 we can consider the gradient in (3.1) to be relative to a Riemannian
metric that is scaled according to the masses of the particles. Observe that in a mathe-
matically precise formulation we must impose some suitable regularity conditions on g
to guarantee that the Cauchy problem (3.1) satisfies the hypotheses of some theorem
that establishes existence and uniqueness for solutions of first order ordinary differential
equations.
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experimental arrangement €, but fe (g, ) for the experimental arrangement
¢’). This explains how Bohm’s theory escapes from the so called no hidden
variables theorems.

3.2. Remark. Another attractive aspect of the mathematical formalism of
Bohm'’s theory is the possibility of defining a forgetful map that receives the
state of a system and returns the state of a subsystem (forgetting about
the rest of the system). In classical mechanics, the phase space of a system
of n particles (with no constraints) is R3" x R3"; given k < n, we have a
projection map:
R3n % R?)n N R3k % RSk

that forgets about the positions and momentums of n—k of those n particles.
In the standard quantum formalism, we can’t define a forgetful map:

L2(R3n) N LQ(R3k)
on the entire phase space L?(R3"). Such a forgetful map can be defined only
in the set:

(33)  {ved:ypelPR™), ¢e PR} c AR,
where:
Y@ R 2 R* < R¥H 5 (¢,4) — ¢(9)(q) € C;

the forgetful map takes'? ¢ ®1) to 1. On the other hand, in Bohm’s theory,
we have a forgetful map defined by!'3:

R x LA(R*) 5 ((¢,9), @) — (q,9(-,q)) € R3* x L*(R?*),

where (g, G) € R3* xR3("%) = R3"_ What is so great about a forgetful map?
It allows us to study the effect of the experimental apparatus on the system
under study: if X denotes the phase space corresponding to the system
under study and X denotes the (“larger”) phase space that describes both
the system under study and some experimental apparatus then we can use
the evolution law (Uy);>0 in X to find out the final state Z € X of the pair
consisting of the system under study and the experimental apparatus; then
we can apply the forgetful map X — X to Z to obtain the state z € X of
the system under study after the experiment. In the standard mathematical
formalism of Quantum Mechanics, the state T is usually outside the domain
(3.3) of the forgetful map (i.e., the system under study and the experimental
apparatus are entangled), so we can’t go back!* to z € X.

12Gareful readers will notice that the map ¥ ® 1/3 — 1) is not well-defined, because if ¢
is a nonzero complex number then (cy) ® (% 1/?) =YR® 1/7 But this is not really a problem,
because we should actually be working with the projectivization of the Hilbert spaces (see
footnote 8).

13T6 be precise, if ¥ € L?(R?"), it may not be the case that W(-,§) is in L?(R>*)
for all § € R*™ % but by Fubini’s theorem, we have U(-,q) € L? (]R‘%) for almost every
Gge R},

147t is for this reason that the standard mathematical formalism of Quantum Mechanics
needs the so called projection postulate that tells us what happens to the system under
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study after the experimental procedure is completed. The projection postulate makes
the standard mathematical formalism of Quantum Mechanics weird, because no one can
explain precisely what types of physical processes make the system abandon the standard
evolution law (U;)¢>0 and evolve according to the projection postulate.



