Q1. Seja $\mathcal B$ uma base ortonormal de V^3 e considere os vetores:

$$\vec{v} = (1, -1, 0)_{\mathcal{B}}$$
 e $\vec{w} = (2, 1, 3)_{\mathcal{B}}$.

Suponha que $\vec{w} = \vec{w_1} + \vec{w_2}$, em que $\vec{w_1}$ é paralelo a \vec{v} e $\vec{w_2}$ é ortogonal a \vec{v} . A soma das coordenadas do vetor $\vec{w_2}$ na base \mathcal{B} é igual a:

- (a) -4;
- (b) 3;
- (c) 6;
- (d) -3;
- (e) 5.
- **Q2.** Seja $\Sigma = (O, \mathcal{B})$ um sistema de coordenadas em E^3 . Seja $a \in \mathbb{R}$ e considere os planos π_1 e π_2 dados pelas equações gerais

$$\pi_1: 2x - y + 3z = 5$$
 e $\pi_2: 6x - 3y + az = 12$

no sistema Σ . Temos que os planos π_1 e π_2 serão paralelos se, e somente se:

- (a) a = 0;
- (b) a = 9;
- (c) a = 10;
- (d) a = 3;
- (e) a = -5.
- **Q3.** Seja $\Sigma = (O, \mathcal{B})$ um sistema de coordenadas em E^3 , em que \mathcal{B} é uma base ortonormal de V^3 . Considere os planos π_1 , π_2 e π_3 dados pelas equações gerais

 $\pi_1: 2x + 3y + 6z = 1$, $\pi_2: x + y + z = 3$ e $\pi_3: x - 2y + z = 0$

no sistema Σ . Seja $P=(x,y,z)_{\Sigma}$ um ponto em $\pi_2\cap\pi_3$ tal que $d(P,\pi_1)=1$ e tal que 2x+3y+6z>0. Temos que y+z é igual a:

- (a) $\frac{3}{4}$;
- (b) $\frac{1}{2}$;
- (c) $\frac{1}{4}$;
- (d) $\frac{5}{4}$;
- (e) $-\frac{9}{4}$.

Q4. Sejam $\pi \subset E^3$ um plano e $\Sigma_{\pi} = (O, \mathcal{B}_{\pi})$ um sistema de coordenadas em π , em que \mathcal{B}_{π} é ortonormal. Considere a parábola em π dada pela equação

$$x^2 - 2x - 8y + 25 = 0$$

no sistema Σ_{π} . Se $x,y\in\mathbb{R}$ forem tais que $(x,y)_{\Sigma_{\pi}}$ seja o foco dessa parábola, então x+y será igual a:

- (a) 4;
- (b) -2;
- (c) $\frac{3}{4}$;
- (d) 6;
- (e) $\frac{5}{2}$.

Q5. Considere as seguintes afirmações:

(I) existe um único par ordenado (x, y) de números reais tal que:

$$3x^2 + y^2 - 12x - 6y + 21 = 0;$$

- (II) se $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in V^3$ for uma tripla linearmente dependente de vetores não nulos, então existirão $\alpha, \beta \in \mathbb{R}$ tais que $\vec{v}_3 = \alpha \vec{v}_1 + \beta \vec{v}_2$;
- (III) para qualquer orientação do espaço e para quaisquer $\vec{v}, \vec{w} \in V^3$, vale que $\|\vec{v} \wedge \vec{w}\| = \|\vec{v}\| \|\vec{w}\|$ se, e somente se, $\vec{v} \cdot \vec{w} = 0$.

Assinale a alternativa correta:

- (a) apenas a afirmação (I) é verdadeira;
- (b) todas as afirmações são verdadeiras;
- (c) apenas as afirmações (II) e (III) são verdadeiras;
- (d) apenas a afirmação (III) é verdadeira;
- (e) apenas as afirmações (I) e (III) são verdadeiras.

Q6. Sejam $A,B,C\in E^3$ pontos não colineares. Denote por P o ponto do segmento BC tal que $d(B,P)=\frac{1}{3}d(B,C)$ e por Q o ponto do segmento AC tal que $d(A,Q)=\frac{1}{4}d(A,C)$. Seja X o ponto de encontro dos segmentos AP e BQ. Se

$$\lambda = \frac{d(A, X)}{d(A, P)}$$
 e $\mu = \frac{d(B, X)}{d(B, Q)}$,

então:

- (a) $\lambda = \frac{1}{2} e \mu = \frac{3}{4};$
- (b) $\lambda = \frac{1}{3} e \mu = \frac{1}{2}$;
- (c) $\lambda = \frac{1}{2} e \mu = \frac{1}{2}$;
- (d) $\lambda = \frac{1}{2} e \mu = \frac{2}{3}$;
- (e) $\lambda = \frac{1}{3} e \mu = \frac{2}{3}$.

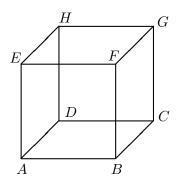
Q7. Seja $\Sigma = (O, \mathcal{B})$ um sistema de coordenadas em E^3 , em que \mathcal{B} é uma base ortonormal de V^3 . Considere os pontos:

$$A = (1,1,-1)_{\Sigma}, \quad B = (0,1,1)_{\Sigma}, \quad C = (1,2,1)_{\Sigma} \quad \mathrm{e} \quad D = (0,0,3)_{\Sigma}.$$

Temos que o volume do tetraedro de vértices A, B, C e D é igual a:

- (a) $\frac{2}{3}$;
- (b) $\frac{1}{2}$;
- (c) 1;
- (d) 4;
- (e) $\frac{1}{3}$.

Q8. Considere no espaço E^3 um cubo cujos vértices são A, B, C, D, E, F, G, H, em que ABCD, ADHE e ABFE são faces desse cubo, como ilustrado na figura abaixo:



Considere a base $\mathcal{B}=\{\overrightarrow{HB},\overrightarrow{AG},\overrightarrow{BC}\}$ de V^3 . Se P for o ponto médio do segmento CG, então $[\overrightarrow{AP}]_{\mathcal{B}}$ será igual a:

- (a) $\left(\frac{1}{4}, \frac{1}{4}, -\frac{1}{2}\right)$;
- (b) $\left(-\frac{1}{4}, \frac{3}{4}, \frac{3}{2}\right)$;
- (c) $(\frac{3}{4}, \frac{1}{2}, \frac{1}{4});$ (d) $(\frac{1}{4}, \frac{3}{4}, \frac{1}{2});$ (e) $(\frac{1}{2}, \frac{3}{2}, \frac{3}{4}).$

Q9. Seja $\Sigma = (O, \mathcal{B})$ um sistema de coordenadas em E^3 , em que \mathcal{B} é uma base ortonormal de V^3 . Considere as retas r e s dadas pelas equações simétricas

$$r: \frac{x-1}{2} = y = \frac{z-1}{3}$$
 e $s: 2x+1 = y-2 = \frac{z+1}{2}$

no sistema $\Sigma.$ Temos que a distância entre r e s é igual a:

- (a) $\sqrt{38}$;
- (b) $\frac{13}{\sqrt{38}}$;
- (c) $\frac{7}{\sqrt{38}}$; (d) $\frac{9}{\sqrt{38}}$;
- (e) $\frac{21}{\sqrt{38}}$.

Q10. Sejam $\vec{e}_1, \vec{e}_2, \vec{e}_3 \in V^3$ vetores unitários tais que a medida do ângulo entre \vec{e}_1 e \vec{e}_2 seja igual a $\frac{\pi}{4}$, a medida do ângulo entre \vec{e}_1 e \vec{e}_3 seja igual a $\frac{\pi}{3}$ e a medida do ângulo entre \vec{e}_2 e \vec{e}_3 seja igual a $\frac{\pi}{6}$. Se $\vec{v} = \vec{e}_1 + \vec{e}_2 + \vec{e}_3$, então $\|\vec{v}\|^2$ será igual a:

- (a) $\frac{1}{2}(7+\sqrt{2}+\sqrt{3})$;
- (b) $\sqrt{3}$;
- (c) $4 + \sqrt{2} + \sqrt{3}$;
- (d) 3;
- (e) $3 + \sqrt{2} + \sqrt{3}$.