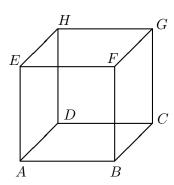
Q1. Considere as seguintes afirmações:

- (I) se $r, s \subset E^3$ forem retas com vetores diretores \vec{v} e \vec{w} , respectivamente, e se $P \in r$ e $Q \in s$ forem tais que d(P,Q) = d(r,s), então $\overrightarrow{PQ} \cdot \vec{v} = 0$ e $\overrightarrow{PQ} \cdot \vec{w} = 0$;
- (II) se $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in V^3$ for uma tripla linearmente dependente de vetores e se o par \vec{v}_1, \vec{v}_2 for linearmente independente, então existirão $\alpha, \beta \in \mathbb{R}$ tais que $\vec{v}_3 = \alpha \vec{v}_1 + \beta \vec{v}_2$;
- (III) para qualquer orientação do espaço e para quaisquer $\vec{v}, \vec{w} \in V^3$, vale que $(\vec{v} + \vec{w}) \cdot (\vec{v} \wedge \vec{w}) = 0$.

Assinale a alternativa correta:

- (a) apenas as afirmações (I) e (III) são verdadeiras;
- (b) apenas as afirmações (II) e (III) são verdadeiras;
- (c) todas as afirmações são verdadeiras;
- (d) apenas as afirmações (I) e (II) são verdadeiras;
- (e) apenas a afirmação (I) é verdadeira.

Q2. Considere no espaço E^3 um cubo cujos vértices são A, B, C, D, E, F, G, H, em que ABCD, ADHE e ABFE são faces desse cubo, como ilustrado na figura abaixo:



Considere a base $\mathcal{B} = \{\overrightarrow{FD}, \overrightarrow{DB}, \overrightarrow{CH}\}$ de V^3 . Se P for o ponto médio do segmento BH, então $[\overrightarrow{AP}]_{\mathcal{B}}$ será igual a:

- (a) $(\frac{1}{2}, 2, -1);$
- (b) $\left(-\frac{3}{2}, -2, -1\right)$;
- (c) $(\frac{1}{2}, \frac{1}{2}, 1)$;
- (d) $(\frac{1}{2}, -2, -1);$
- (e) $\left(-\frac{3}{2}, 2, \frac{1}{2}\right)$

Q3. Seja \mathcal{B} uma base ortonormal de V^3 e considere os vetores:

$$\vec{v} = (1, 2, -1)_{\mathcal{B}}, \quad \vec{w} = (1, 4, -2)_{\mathcal{B}} \quad e \quad \vec{z} = (3, 1, 2)_{\mathcal{B}}.$$

Suponha que $\vec{z}=\vec{z}_1+\vec{z}_2$, em que o vetor \vec{z}_1 é uma combinação linear de \vec{v} e \vec{w} e o vetor \vec{z}_2 é ortogonal a \vec{v} e a \vec{w} . A soma das coordenadas do vetor \vec{z}_1 na base \mathcal{B} é igual a:

- (a) 5;
- (b) -4;
- (c) -3;
- (d) 6;
- (e) 3.

Q4. Seja $\Sigma = (O, \mathcal{B})$ um sistema de coordenadas em E^3 , em que \mathcal{B} é uma base ortonormal de V^3 . Considere os pontos:

$$A = (2, 1, -1)_{\Sigma}, \quad B = (1, 1, 3)_{\Sigma} \quad e \quad C = (1, 3, 4)_{\Sigma}.$$

Temos que a área do triângulo de vértices $A, B \in C$ é igual a:

- (a) 4;
- (b) $\frac{1}{2}\sqrt{63}$;
- (c) $\frac{1}{2}\sqrt{69}$;
- (d) $\frac{9}{2}$;
- (e) $\frac{1}{2}\sqrt{31}$.

Q5. Sejam $A,B,C\in E^3$ pontos não colineares. Denote por P o ponto do segmento BC tal que $d(B,P)=\frac{1}{3}d(B,C)$ e por Q o ponto do segmento AC tal que $d(A,Q)=\frac{1}{3}d(A,C)$. Seja X o ponto de encontro dos segmentos AP e BQ. Se

$$\lambda = \frac{d(A, X)}{d(A, P)}$$
 e $\mu = \frac{d(B, X)}{d(B, Q)}$,

então:

- (a) $\lambda = \frac{1}{5} e \mu = \frac{1}{5};$
- (b) $\lambda = \frac{1}{5} e \mu = \frac{2}{5}$;
- (c) $\lambda = \frac{4}{5} e \mu = \frac{3}{5}$;
- (d) $\lambda = \frac{2}{5} e \mu = \frac{2}{5}$;
- (e) $\lambda = \frac{3}{5} e \mu = \frac{3}{5}$.

Q6. Considere fixada uma orientação do espaço e sejam $\vec{v}, \vec{w}, \vec{z} \in V^3$ vetores tais que:

$$[\vec{v}, \vec{w}, \vec{z}\,] = 4.$$

Temos que $[\vec{v} + \vec{w} + \vec{z}, \vec{w} - \vec{z}, 2\vec{v} + \vec{z}]$ é igual a:

- (a) 12;
- (b) -6;
- (c) 0;
- (d) 6;
- (e) -12.

Q7. Sejam $\pi \subset E^3$ um plano e $\Sigma_{\pi} = (O, \mathcal{B}_{\pi})$ um sistema de coordenadas em π , em que \mathcal{B}_{π} é ortonormal. Considere a elipse em π dada pela equação

$$16x^2 + 25y^2 - 64x - 50y = 311$$

no sistema Σ_{π} . Os focos dessa elipse são:

- (a) $(2,-3)_{\Sigma_{\pi}} \in (2,5)_{\Sigma_{\pi}}$;
- (b) $(0,1)_{\Sigma_{\pi}} e(4,1)_{\Sigma_{\pi}}$;
- (c) $(1,1)_{\Sigma_{\pi}} e(3,1)_{\Sigma_{\pi}}$;
- (d) $(-1,1)_{\Sigma_{\pi}} e(5,1)_{\Sigma_{\pi}}$;
- (e) $(2,-2)_{\Sigma_{\pi}}$ e $(2,4)_{\Sigma_{\pi}}$.

Q8. Seja $\Sigma=(O,\mathcal{B})$ um sistema de coordenadas em E^3 . Seja $a\in\mathbb{R}$ e considere o plano π dado pela equação geral

$$\pi: x - ay + 3z = 5$$

no sistema Σ . Temos que a reta

$$r: X = (-1, 3, 2)_{\Sigma} + \lambda(4, 1, 3)_{\mathcal{B}}, \quad \lambda \in \mathbb{R}$$

será paralela ao plano π se, e somente se:

- (a) a = 6;
- (b) a = 8;
- (c) a = 10;
- (d) a = 13;
- (e) a = -5.

Q9. Seja $\Sigma=(O,\mathcal{B})$ um sistema de coordenadas em E^3 , em que \mathcal{B} é uma base ortonormal de V^3 . Seja $P=(1,3,2)_\Sigma$ e considere o plano π dado pela equação geral

$$\pi: 2x - y + 4z = 6$$

no sistema Σ . Se $Q \in \pi$ for tal que o vetor \overrightarrow{PQ} seja ortogonal a π , então a distância entre P e Q será igual a:

- (a) $\frac{1}{21}$;
- (b) $\frac{5}{\sqrt{21}}$;
- (c) $\frac{3}{\sqrt{21}}$;
- (d) $\frac{7}{\sqrt{21}}$;
- (e) $\frac{1}{\sqrt{21}}$.

Q10. Seja $\Sigma = (O, \mathcal{B})$ um sistema de coordenadas em E^3 , em que \mathcal{B} é uma base ortonormal de V^3 . Considere as retas:

$$r: X = (-1, 1, 1)_{\Sigma} + \lambda(0, 2, 1)_{\mathcal{B}}, \quad \lambda \in \mathbb{R}$$
 e

$$s: X = (0, 1, 1)_{\Sigma} + \lambda(1, -1, 1)_{\mathcal{B}}, \quad \lambda \in \mathbb{R}.$$

Se $P=(x_1,y_1,z_1)_\Sigma$ e $Q=(x_2,y_2,z_2)_\Sigma$ forem tais que $P\in r,\ Q\in s$ e d(P,Q)=d(r,s), então $x_1+y_1+z_1+x_2+y_2+z_2$ será igual a:

- (a) $\frac{10}{7}$;
- (b) $\frac{20}{7}$;
- (c) $\frac{1}{14}$;
- (d) 3;
- (e) $\frac{3}{14}$.