Gabarito da Terceira Prova MAT0206 – Análise Real MAP0216 – Introdução à Análise Real

Prof. Daniel Victor Tausk 29/06/2012

Questão 1. (valor 2,5 pontos) Seja $f: I \to \mathbb{R}$ uma função, onde $I \subset \mathbb{R}$ é um intervalo. Mostre que se f é contínua e $f(I) \subset \mathbb{Q}$ então f é constante.

Solução. Como f é contínua e seu domínio é um intervalo, segue (do teorema do valor intermediário ou, mais precisamente, do resultado do Exercício 6 da lista 10) que sua imagem f(I) também é um intervalo. Mas um intervalo contido em $\mathbb Q$ tem no máximo um ponto (já que $\mathbb R\setminus\mathbb Q$ é denso em $\mathbb R$) e portanto f é constante.

Questão 2. (valor 2,5 pontos) Sejam $f:D\to\mathbb{R},\ g:E\to\mathbb{R}$ funções, com $D,E\subset\mathbb{R}$ e $f(D)\subset E$. Mostre que se f e g são uniformemente contínuas então $g\circ f:D\to\mathbb{R}$ é uniformemente contínua.

Solução. Seja dado $\varepsilon > 0$. Como g é uniformemente contínua, existe $\eta > 0$ tal que, para quaisquer $y_1, y_2 \in E$:

$$|y_1 - y_2| < \eta \Longrightarrow |g(y_1) - g(y_2)| < \varepsilon.$$

Como f é uniformemente contínua, a partir de $\eta>0$ obtemos $\delta>0$ tal que, para quaisquer $x_2,x_2\in D$:

$$|x_1 - x_2| < \delta \Longrightarrow |f(x_1) - f(x_2)| < \eta.$$

Daí, para quaisquer $x_1, x_2 \in D$, temos:

$$|x_1 - x_2| < \delta \Longrightarrow |f(x_1) - f(x_2)| < \eta \Longrightarrow |(g \circ f)(x_1) - (g \circ f)(x_2)| < \varepsilon.$$

Questão 3. Sejam $D \subset \mathbb{R}$ e $f: D \to \mathbb{R}$ uma função. Seja $a \in D'$ um ponto de acumulação de D e suponha que o limite $\lim_{x\to a} f(x)$ exista e seja igual a $L \in \mathbb{R}$. Mostre que se F é um subconjunto fechado de \mathbb{R} tal que $f(D) \subset F$ então $L \in F$.

Solução 1. Como a é um ponto de acumulação de D, existe uma seqüência $(x_n)_{n\geq 1}$ em $D\setminus\{a\}$ que converge para a. Daí, como $\lim_{x\to a}f(x)=L$, segue que:

$$\lim_{n \to +\infty} f(x_n) = L.$$

 $\lim_{n\to +\infty}f(x_n)=L.$ Mas $f(x_n)\in F$ para todo $n\in \mathbb{N}^*$ e F é fechado, donde segue que $L\in F$.

Solução 2. Supondo por absurdo que $L \notin F$, então L não é ponto de aderência de F e portanto existe $\varepsilon > 0$ tal que $|L - \varepsilon, L + \varepsilon| \cap F = \emptyset$. A partir desse $\varepsilon > 0$, obtemos $\delta > 0$ tal que, para todo $x \in D$, temos:

$$0 < |x - a| < \delta \Longrightarrow |f(x) - L| < \varepsilon.$$

Como a é ponto de acumulação de D, existe $x \in D \cap [a - \delta, a + \delta]$ com $x \neq a$. Daí $x \in D$ e $0 < |x-a| < \delta$, donde $|f(x) - L| < \varepsilon$, ou seja, $f(x) \in [L-\varepsilon, L+\varepsilon]$. Mas isso implica que $f(x) \notin F$, contradizendo o fato que $f(D) \subset F$.

Questão 4. (valor 2,5 pontos) Seja D um subconjunto discreto e fechado de \mathbb{R} . Mostre que todo subconjunto de D é fechado.

Solução. Seja $S \subset D$. Mostremos que S é fechado. Para isso, tomemos $x \in \mathbb{R}$ com $x \notin S$ e mostremos que x não é ponto de aderência de S, ou seja, que existe $\varepsilon > 0$ tal que $]x - \varepsilon, x + \varepsilon[$ é disjunto de S. Temos $x \in D$ ou $x \notin D$. Se $x \notin D$ então, como D é fechado, existe $\varepsilon > 0$ tal que $]x - \varepsilon, x + \varepsilon[$ é disjunto de D; mas $S \subset D$ e portanto $]x - \varepsilon, x + \varepsilon[$ é disjunto de S. Se $x \in D$ então, como D é discreto, temos que x é isolado em D, ou seja, existe $\varepsilon > 0$ tal que $]x - \varepsilon, x + \varepsilon[\cap D = \{x\}$. Como $S \subset D$, temos $|x - \varepsilon, x + \varepsilon| \cap S \subset \{x\}$ e, como $x \notin S$, temos que $|x - \varepsilon, x + \varepsilon| \cap S = \emptyset$.