NOTAS PARA O CURSO DE OPERADORES LINEARES

DANIEL V. TAUSK

1. ÍNDICE DE CURVAS PLANAS

1.1. **Definição.** Dado um ponto $p \in \mathbb{R}^2 \setminus \{0\}$ então um *ângulo* (ou *coorde-nada ângular*) para p é um número real $\theta \in \mathbb{R}$ tal que:

$$(1.1) p = ||p||(\cos \theta, \sin \theta),$$

onde $\|\cdot\|$ denota a norma Euclideana em \mathbb{R}^2 . Se U é um subconjunto de $\mathbb{R}^2 \setminus \{0\}$ então uma função angulo em U é uma função contínua $\theta: U \to \mathbb{R}$ tal que $\theta(p)$ é um angulo para p, para todo $p \in U$. Mais geralmente, se Λ é um espaço topológico e $\phi: \Lambda \to \mathbb{R}^2 \setminus \{0\}$ é uma função contínua então uma função angulo ao longo de ϕ (ou, uma função angulo para ϕ) é uma função contínua $\theta: \Lambda \to \mathbb{R}$ tal que $\theta(p)$ é um angulo para $\phi(p)$, para todo $p \in U$.

Note que se $p=(x,y)\in\mathbb{R}^2\backslash\{0\}$ então a igualdade (1.1) pode ser reescrita como:

$$x = (x^2 + y^2)^{\frac{1}{2}} \cos \theta, \quad y = (x^2 + y^2)^{\frac{1}{2}} \sin \theta.$$

Claramente, se $\theta \in \mathbb{R}$ é um ângulo para $p \in \mathbb{R}^2 \setminus \{0\}$ então $\theta' \in \mathbb{R}$ será um outro ângulo para p se e somente se $\theta' = \theta + 2k\pi$, para algum $k \in \mathbb{Z}$. Além do mais, fixado $\theta_0 \in \mathbb{R}$, então cada $p \in \mathbb{R}^2 \setminus \{0\}$ admite um único ângulo θ no intervalo $[\theta_0, \theta_0 + 2\pi[$.

1.2. **Lema.** Seja Λ um espaço topológico conexo e $\phi: \Lambda \to \mathbb{R}^2 \setminus \{0\}$ uma função contínua. Se $\theta_1: \Lambda \to \mathbb{R}$, $\theta_2: \Lambda \to \mathbb{R}$ são ambas funções ângulo ao longo de ϕ então existe $k \in \mathbb{Z}$ com $\theta_2(\lambda) = \theta_1(\lambda) + 2k\pi$, para todo $\lambda \in \Lambda$.

Demonstração. Para cada $\lambda \in \Lambda$, temos que $\theta_1(\lambda)$ e $\theta_2(\lambda)$ são ambos ângulos para o ponto $\phi(\lambda)$ e portanto existe $k(\lambda) \in \mathbb{Z}$ com $\theta_1(\lambda) = \theta_2(\lambda) + 2k(\lambda)\pi$; temos:

$$k(\lambda) = \frac{\theta_1(\lambda) - \theta_2(\lambda)}{2\pi}$$

e portanto $k : \Lambda \to \mathbb{Z}$ é uma função contínua. Como Λ é conexo, a imagem de k deve ser um intervalo contido em \mathbb{Z} , o que prova que k é constante. \square

1.3. Corolário. Se U é um subconjunto conexo de $\mathbb{R}^2 \setminus \{0\}$ então, dadas duas funções ângulo $\theta_1 : U \to \mathbb{R}$ e $\theta_2 : U \to \mathbb{R}$, existe $k \in \mathbb{Z}$ tal que $\theta_2(p) = \theta_1(p) + 2k\pi$, para todo $p \in U$.

Demonstração. Tome $\Lambda=U$ e $\phi:U\to\mathbb{R}^2\setminus\{0\}$ igual à aplicação inclusão no Lema 1.2. $\hfill\Box$

Date: 5 de janeiro de 2005.

- 1.4. Observação. Claramente, se $\theta: U \to \mathbb{R}$ é uma função ângulo definida num subconjunto U de $\mathbb{R}^2 \setminus \{0\}$ e se $\phi: \Lambda \to \mathbb{R}^2 \setminus \{0\}$ é uma função contínua com imagem em U então $\theta \circ \phi$ é uma função ângulo ao longo de ϕ .
- 1.5. Observação. Se $U=S^1$ denota o círculo unitário de centro na origem em \mathbb{R}^2 então não existe uma função ângulo em U. De fato, se $\theta:S^1\to\mathbb{R}$ fosse uma função ângulo então $\theta\circ\gamma:[0,2\pi]\to\mathbb{R}$ seria uma função ângulo ao longo da curva contínua $\gamma:[0,2\pi]\ni t\mapsto (\cos t, \sin t)$. Como $\tilde{\theta}(t)=t$ é também uma função ângulo para γ , o Lema 1.2 implica que $\theta\circ\gamma-\tilde{\theta}$ é constante; mas $(\theta\circ\gamma)(0)=(\theta\circ\gamma)(2\pi)$, enquanto $\tilde{\theta}(0)\neq\tilde{\theta}(2\pi)$.
- 1.6. **Lema.** Seja $\theta_0 \in \mathbb{R}$ e considere o conjunto:

$$A_{\theta_0} = \mathbb{R}^2 \setminus \{(t\cos\theta_0, t\sin\theta_0) : t \ge 0\}.$$

Existe uma única função ângulo θ em A_{θ_0} tomando valores no intervalo $]\theta_0, \theta_0 + 2\pi[$; essa função ângulo é de classe C^{∞} .

Demonstração. É claro que cada $p \in A_{\theta_0}$ admite um único ângulo no intervalo $]\theta_0, \theta_0 + 2\pi[$; devemos apenas mostrar que a função ângulo obtida dessa maneira é de classe C^{∞} . Para isso, considere a função:

$$(1.2)]0, +\infty[\times]\theta_0, \theta_0 + 2\pi[\ni (\rho, \theta) \longmapsto (\rho \cos \theta, \rho \sin \theta) \in A_{\theta_0}.$$

Claramente a função (1.2) é bijetora e de classe C^{∞} . Um cálculo simples mostra que sua matriz Jacobiana é inversível em todo ponto e portanto (1.2) é um difeomorfismo C^{∞} , pelo Teorema da Função Inversa. A função ângulo desejada é simplesmente a segunda coordenada da inversa de (1.2).

- 1.7. Corolário. Dado $p \in \mathbb{R}^2 \setminus \{0\}$, existe uma função ângulo de classe C^{∞} definida numa vizinhança aberta de p em $\mathbb{R}^2 \setminus \{0\}$.
- 1.8. Corolário. Toda função ângulo θ num subconjunto aberto U de $\mathbb{R}^2 \setminus \{0\}$ é de classe C^{∞} .

 $\begin{array}{lll} Demonstração. \ \mbox{Em vista do Corolário 1.3, duas funções ângulo definidas} \\ \mbox{numa bola aberta de centro } p \mbox{ contida em } U \mbox{ devem diferir por uma constante.} \\ \mbox{A conclusão segue do Corolário 1.7.} \\ \mbox{} \mbox{} \end{array}$

1.9. Corolário. Se $\gamma:[a,b]\to\mathbb{R}^2$ é uma curva de classe C^k (resp., uma curva de classe C^k por partes) então toda função ângulo $\theta:[a,b]\to\mathbb{R}$ para γ é de classe C^k (resp., de classe C^k por partes).

Demonstração. Dado $[c,d] \subset [a,b]$ então $\theta|_{[c,d]}$ é uma função ângulo para $\gamma|_{[c,d]}$; é suficiente portanto considerar o caso em que γ é de classe C^k . Fixado $t \in [a,b]$, existe pelo Corolário 1.7 uma função ângulo $\tilde{\theta}: U \to \mathbb{R}$ de classe C^{∞} definida numa vizinhança aberta U de $\gamma(t)$ em $\mathbb{R}^2 \setminus \{0\}$; daí, existe uma vizinhança [c,d] de t em [a,b] com $\gamma([c,d]) \subset U$. Como $\theta|_{[c,d]}$ e $\tilde{\theta} \circ \gamma|_{[c,d]}$ são ambas funções ângulo para $\gamma|_{[c,d]}$, segue que elas diferem por uma constante (Lema 1.2). Logo $\theta|_{[c,d]}$ é de classe C^k .

1.10. **Lema.** Toda curva contínua $\gamma:[a,b]\to\mathbb{R}^2\setminus\{0\}$ admite uma função ângulo.

Demonstração. Em vista do Corolário 1.7 e da continuidade de γ , todo $t \in [a,b]$ possui uma vizinhança aberta I_t relativamente a [a,b] tal que $\gamma(I_t)$ está contido no domínio de uma função ângulo. A cobertura aberta $[a,b] = \bigcup_{t \in [a,b]} I_t$ do compacto [a,b] admite um número de Lebesgue $\delta > 0$, i.e., todo subconjunto de [a,b] com diâmetro menor que δ está contido em algum I_t . Seja:

$$a = t_0 < t_1 < \dots < t_n = b$$

uma partição de [a,b] com $t_i-t_{i-1}<\delta$, para $i=1,\ldots,n$. Então para cada i existe uma função ângulo cujo domínio contém $\gamma([t_{i-1},t_i])$ e portanto, pela Observação 1.4, existe uma função ângulo $\theta_i:[t_{i-1},t_i]\to\mathbb{R}$ para $\gamma|_{[t_{i-1},t_i]}$. Para completar a demonstração, construiremos para cada $i=1,\ldots,n$ uma função ângulo $\tilde{\theta}_i:[a,t_i]\to\mathbb{R}$ para $\gamma|_{[a,t_i]}$; usamos indução em i. Para i=1, definimos $\tilde{\theta}_1=\theta_1$. Suponha que $\tilde{\theta}_i$ é uma função ângulo para $\gamma|_{[a,t_i]}$, para algum $i=1,\ldots,n-1$; vamos estender $\tilde{\theta}_i$ a uma função ângulo $\tilde{\theta}_{i+1}$ para $\gamma|_{[a,t_{i+1}]}$. Como $\tilde{\theta}_i(t_i)$ e $\theta_{i+1}(t_i)$ são ambos ângulos para o ponto $\gamma(t_i)$, vemos que existe $k\in\mathbb{Z}$ com $\tilde{\theta}_i(t_i)-\theta_{i+1}(t_i)=2k\pi$; uma função ângulo $\tilde{\theta}_{i+1}$ ao longo de $\gamma|_{[a,t_{i+1}]}$ é obtida fazendo:

$$\tilde{\theta}_{i+1}|_{[a,t_i]} = \tilde{\theta}_i, \quad \tilde{\theta}_{i+1}|_{[t_i,t_{i+1}]} = \theta_{i+1} + 2k\pi.$$

1.11. **Definição.** Seja $\gamma:[a,b]\to\mathbb{R}^2\setminus\{0\}$ uma curva contínua e fechada (i.e., $\gamma(a)=\gamma(b)$). O *índice* de γ é definido por:

$$\operatorname{ind}(\gamma) = \frac{\theta(b) - \theta(a)}{2\pi} \in \mathbb{Z},$$

onde $\theta: [a, b] \to \mathbb{R}$ é uma função ângulo para γ .

Em vista do Lema 1.10 toda curva contínua admite uma função ângulo θ e em vista do Lema 1.2 o inteiro $\frac{1}{2\pi}(\theta(b) - \theta(a))$ não depende da escolha de θ . Logo o índice de γ está de fato bem definido. Como não há nada de especial a respeito da origem, introduzimos a seguinte:

1.12. **Definição.** Seja $p \in \mathbb{R}^2$ um ponto qualquer e $\gamma : [a, b] \to \mathbb{R}^2$ uma curva contínua e fechada que não passa por p. O *índice de* γ *em torno de* p é definido como o índice da curva $[a, b] \ni t \mapsto \gamma(t) - p$, ou seja:

$$\operatorname{ind}(\gamma, p) = \operatorname{ind}(\gamma - p).$$

Claramente, $\operatorname{ind}(\gamma, 0) = \operatorname{ind}(\gamma)$.

1.13. **Lema.** Se $H:[a,b]\times[c,d]\to\mathbb{R}^2\setminus\{0\}$ é uma função contínua então existe uma função ângulo ao longo de H.

Demonstração. Para todo (t, s) pertencente ao retângulo $R = [a, b] \times [c, d]$, o ponto H(t, s) possui uma vizinhança aonde está definida uma função ângulo (Corolário 1.7); daí, como H é contínua, existe uma vizinhança aberta $V_{(t,s)}$

de (t,s) relativamente a R tal que $H(V_{(t,s)})$ está contido no domínio de uma função ângulo. A cobertura aberta $R = \bigcup_{(t,s) \in R} V_{(t,s)}$ do compacto R admite um número de Lebesgue $\delta > 0$, i.e., todo subconjunto de R com diâmetro menor que δ está contido em algum $V_{(t,s)}$. Consideremos partições:

$$a = t_0 < t_1 < \dots < t_n = b, \quad c = s_0 < s_1 < \dots < s_m = d$$

dos intervalos [a,b] e [c,d] respectivamente, de modo que cada retângulo $R_{ij} = [t_{i-1},t_i] \times [s_{j-1},s_j]$ possui diâmetro menor que δ , para $i=1,\ldots,n,$ $j=1,\ldots,m$. Como $H(R_{ij})$ está contido no domínio de uma função ângulo, existe uma função ângulo $\theta_{ij}:R_{ij}\to\mathbb{R}$ ao longo de $H|_{R_{ij}}$ (Observação 1.4). Considere os mn retângulos R_{ij} ordenados da seguinte forma:

(1.3)
$$R_{11}, R_{12}, \ldots, R_{1m}, R_{21}, R_{22}, \ldots, R_{2m}, \ldots, R_{n1}, \ldots, R_{nm};$$
 denote por R^1, R^2, \ldots, R^u , a lista formada pelos retângulos R_{ij} ordenados como em (1.3), onde $u = mn$. Denote também por $\theta^1, \theta^2, \ldots, \theta^u$ a cor-

como em (1.3), onde u = mn. Denote também por θ^1 , θ^2 , ..., θ^u a correspondente ordenação para as funções ângulo θ_{ij} . Para cada $\alpha = 1, ..., u$ defina:

$$\widetilde{R}_{\alpha} = R^1 \cup \cdots \cup R^{\alpha}$$
.

Nós contruiremos usando indução em α uma função ângulo $\tilde{\theta}_{\alpha}: \tilde{R}_{\alpha} \to \mathbb{R}$ para $H|_{\tilde{R}_{\alpha}}$. Para $\alpha=1$, defina $\tilde{\theta}_{1}=\theta^{1}$. Supondo que $\tilde{\theta}_{\alpha}$ já foi construída para um certo $\alpha=1,\ldots,u-1$, definiremos $\tilde{\theta}_{\alpha+1}$ estendendo $\tilde{\theta}_{\alpha}$. Note que $\tilde{\theta}_{\alpha}$ e $\theta^{\alpha+1}$ ambas restringem-se a funções ângulo para $H|_{\tilde{R}_{\alpha}\cap R^{\alpha+1}}$. Além do mais a interseção $\tilde{R}_{\alpha}\cap R^{\alpha+1}$ é conexa (ela é igual a um segmento de reta ou à união de dois segmentos de reta com um vértice comum). Segue do Lema 1.2 que existe $k\in\mathbb{Z}$ tal que:

$$\tilde{\theta}_{\alpha}|_{\tilde{R}_{\alpha} \cap R^{\alpha+1}} = \theta^{\alpha+1}|_{\tilde{R}_{\alpha} \cap R^{\alpha+1}} + 2k\pi.$$

A função ângulo $\tilde{\theta}_{\alpha+1}:\widetilde{R}_{\alpha+1}\to\mathbb{R}$ é obtida fazendo¹:

$$\tilde{\theta}_{\alpha+1}|_{\tilde{R}_{\alpha}} = \tilde{\theta}_{\alpha}, \quad \tilde{\theta}_{\alpha+1}|_{R^{\alpha+1}} = \theta^{\alpha+1}|_{R^{\alpha+1}} + 2k\pi.$$

- 1.14. **Definição.** Seja U um subconjunto de \mathbb{R}^n e sejam $\gamma:[a,b] \to U$, $\mu:[a,b] \to U$ curvas contínuas fechadas em U. Dizemos que γ e μ são homotópicas em U como curvas fechadas se existe uma função contínua $H:[a,b] \times [0,1] \to U$ (chamada uma homotopia de curvas fechadas de γ para μ) tal que:
 - $H(s,0) = \gamma(s)$, para todo $s \in [a,b]$;
 - $H(s,1) = \mu(s)$, para todo $s \in [a,b]$;
 - H(a,t) = H(b,t), para todo $t \in [0,1]$.

¹Para justificar a continuidade da função obtida, usa-se o seguinte resultado geral de topologia: se X, Y são espaços topológicos, $f: X \to Y$ é uma função e se $F_1, \ldots, F_r \subset X$ são fechados que cobrem X e tais que a restrição de f a cada F_i é contínua então f é contínua.

É fácil ver que, fixado $U \subset \mathbb{R}^n$, a relação definida por:

$$\gamma \sim \mu \Longleftrightarrow \gamma$$
e μ são homotópicas em U como curvas fechadas

é uma relação de equivalência no conjunto das curvas contínuas fechadas no conjunto U.

1.15. **Exemplo.** Se U é um subconjunto convexo de \mathbb{R}^n então quaisquer curvas contínuas fechadas $\gamma:[a,b]\to U,\ \mu:[a,b]\to U$ são homotópicas em U como curvas fechadas; de fato, uma homotopia é obtida definindo:

$$H(s,t) = (1-t)\gamma(s) + t\mu(s),$$

para todos $s \in [a, b], t \in [0, 1].$

1.16. **Lema.** Seja $p \in \mathbb{R}^2$ e sejam $\gamma : [a,b] \to \mathbb{R}^2$, $\mu : [a,b] \to \mathbb{R}^2$ curvas contínuas fechadas que não passam por p. Se γ e μ são homotópicas como curvas fechadas em $\mathbb{R}^2 \setminus \{p\}$ então $\operatorname{ind}(\gamma, p) = \operatorname{ind}(\mu, p)$.

Demonstração. Seja $H:[a,b]\times[0,1]\to\mathbb{R}^2\setminus\{p\}$ uma homotopia de curvas fechadas de γ para μ e seja $\theta:[a,b]\times[0,1]\to\mathbb{R}$ uma função ângulo ao longo de H-p. Temos que as funções:

$$[0,1] \ni t \longmapsto \theta(a,t) \in \mathbb{R}, \quad [0,1] \ni t \longmapsto \theta(b,t) \in \mathbb{R},$$

são ambas funções ângulo para a curva $[0,1] \ni t \mapsto H(a,t) - p = H(b,t) - p$; daí, pelo Lema 1.2, existe um inteiro $k \in \mathbb{Z}$ tal que:

(1.4)
$$\theta(b,t) = \theta(a,t) + 2k\pi,$$

para todo $t \in [0,1]$. Por outro lado, $[a,b] \ni s \mapsto \theta(s,0)$ é uma função ângulo ao longo de $\gamma - p$ e $[a,b] \ni s \mapsto \theta(s,1)$ é uma função ângulo ao longo de $\mu - p$; logo:

$$\operatorname{ind}(\gamma, p) = \frac{1}{2\pi} (\theta(b, 0) - \theta(a, 0)), \quad \operatorname{ind}(\mu, p) = \frac{1}{2\pi} (\theta(b, 1) - \theta(a, 1)).$$

Segue então de (1.4) que ind $(\gamma, p) = \text{ind}(\mu, p) = k$.

- 1.17. **Definição.** Seja U um subconjunto de \mathbb{R}^n . Uma curva contínua fechada $\gamma:[a,b]\to U$ é dita contrátil em U se γ é homotópica em U como curva fechada a uma curva constante.
- 1.18. Corolário. Sejam $p \in \mathbb{R}^2$ e $\gamma : [a,b] \to \mathbb{R}^2$ uma curva contínua fechada que não passa por p. Se γ é contrátil em $\mathbb{R}^2 \setminus \{p\}$ então $\operatorname{ind}(\gamma,p) = 0$.

Demonstração. Basta observar que uma curva constante em $\mathbb{R}^2 \setminus \{p\}$ tem índice zero em torno de p.

1.19. **Corolário.** Sejam $p \in \mathbb{R}^2$ e $\gamma : [a,b] \to \mathbb{R}^2$ uma curva contínua fechada que não passa por p. Se B é uma bola de centro p disjunta da imagem de γ então $\operatorname{ind}(\gamma,p) = \operatorname{ind}(\gamma,q)$ para todo $q \in B$.

Demonstração. Claramente:

$$\operatorname{ind}(\gamma, q) = \operatorname{ind}(\gamma - q, 0) = \operatorname{ind}(\gamma + p - q, p).$$

Além do mais:

$$[a,b] \times [0,1] \ni (s,t) \longmapsto \gamma(s) + t(p-q) \in \mathbb{R}^2 \setminus \{p\}$$

é uma homotopia de curvas fechadas de γ para $\gamma+p-q$ em $\mathbb{R}^2\setminus\{p\}$; o fato que $\gamma(s)+t(p-q)\neq p$, para todos $s\in[a,b],\,t\in[0,1]$ segue da observação que $p-t(p-q)\in B$ e $\gamma(s)\not\in B$, para todos s,t. O Lema 1.16 implica então que ind $(\gamma,p)=\operatorname{ind}(\gamma+p-q,p)$.

1.20. Corolário. Seja $\gamma:[a,b] \to \mathbb{R}^2$ uma curva contínua fechada. Então a função $p \mapsto \operatorname{ind}(\gamma,p) \in \mathbb{Z}$ é constante em cada componente conexa do complementar da imagem de γ em \mathbb{R}^2 .

Demonstração. Segue do Corolário 1.19 que a função:

$$\mathbb{R}^2 \setminus \operatorname{Im}(\gamma) \ni p \longmapsto \operatorname{ind}(\gamma, p) \in \mathbb{Z}$$

é localmente constante e portanto contínua. Como $\mathbb Z$ não contém intervalos com mais de um ponto, essa função deve ser constante em cada componente conexa de seu domínio. \Box

1.21. Corolário. Se $\gamma:[a,b]\to\mathbb{R}^2$ é uma curva contínua fechada então o conjunto:

(1.5)
$$\operatorname{Im}(\gamma) \cup \left\{ p \in \mathbb{R}^2 \setminus \operatorname{Im}(\gamma) : \operatorname{ind}(\gamma, p) \neq 0 \right\}$$

é compacto.

Demonstração. O complementar do conjunto (1.5) é igual a:

$$\{p \in \mathbb{R}^2 \setminus \operatorname{Im}(\gamma) : \operatorname{ind}(\gamma, p) = 0\};$$

segue do Corolário 1.19 que tal conjunto é aberto e portanto (1.5) é fechado. Se B é uma bola que contém a imagem de γ então para todo $p \in \mathbb{R}^2 \setminus B$ a curva γ é contrátil em $\mathbb{R}^2 \setminus \{p\}$ (veja Exemplo 1.15); logo $\operatorname{ind}(\gamma, p) = 0$, para todo $p \in \mathbb{R}^2 \setminus B$. Isso prova que (1.5) está contido em B e é portanto compacto.

1.22. **Lema.** Sejam $p \in \mathbb{R}^2$ um ponto, U uma vizinhança convexa de p em \mathbb{R}^2 e $\gamma: [a,b] \to U$, $\mu: [a,b] \to U$ curvas contínuas fechadas que não passam por p. Então γ e μ são homotópicas como curvas fechadas em $U \setminus \{p\}$ se e somente se $\operatorname{ind}(\gamma,p) = \operatorname{ind}(\mu,p)$.

Demonstração. Claramente, se γ e μ são homotópicas como curvas fechadas em $U\setminus\{p\}$ então $\operatorname{ind}(\gamma,p)=\operatorname{ind}(\mu,p)$, pelo Lema 1.16. Reciprocamente, suponha que $\operatorname{ind}(\gamma,p)=\operatorname{ind}(\mu,p)$. É fácil ver que γ e μ são homotópicas como curvas fechadas em $U\setminus\{p\}$ se e somente se $\gamma-p$ e $\mu-p$ são homotópicas como curvas fechadas em

$$(U-p)\setminus\{0\}=\left\{q-p:q\in U\right\}\setminus\{0\}.$$

Podemos então supor sem perda de generalidade que p=0. Seja $\varepsilon>0$ tal que o disco fechado de centro na origem e raio ε está contido em U. Considere as curvas fechadas:

$$\tilde{\gamma}(s) = \varepsilon \frac{\gamma(s)}{\|\gamma(s)\|}, \quad \tilde{\mu}(s) = \varepsilon \frac{\mu(s)}{\|\mu(s)\|}, \quad s \in [a, b].$$

É fácil ver que:

$$[a,b] \times [0,1] \ni (t,s) \longmapsto (1-t)\gamma(s) + t\tilde{\gamma}(s),$$
$$[a,b] \times [0,1] \ni (t,s) \longmapsto (1-t)\mu(s) + t\tilde{\mu}(s)$$

são homotopias de curvas fechadas em $U \setminus \{0\}$ de γ para $\tilde{\gamma}$ e de μ para $\tilde{\mu}$, respectivamente. Para completar a demonstração, vamos mostrar que $\tilde{\gamma}$ e $\tilde{\mu}$ são homotópicas como curvas fechadas em $U \setminus \{0\}$. Sejam $\theta_0 : [a,b] \to \mathbb{R}$ e $\theta_1 : [a,b] \to \mathbb{R}$ funções ângulo para as curvas $\tilde{\gamma}$ e $\tilde{\mu}$ respectivamente; obviamente, θ_0 e θ_1 também são funções ângulo respectivamente para γ e μ . Seja $n = \operatorname{ind}(\gamma) = \operatorname{ind}(\mu)$; temos:

(1.6)
$$\theta_0(b) - \theta_0(a) = \theta_1(b) - \theta_1(a) = 2\pi n.$$

Definimos $\theta: [a,b] \times [0,1] \to \mathbb{R}$ fazendo $\theta(s,t) = (1-t)\theta_0(s) + t\theta_1(s)$, para todos $s \in [a,b]$, $t \in [0,1]$. Segue de (1.6) que:

$$\theta(b,t) - \theta(a,t) = 2\pi n,$$

para todo $t \in [0, 1]$. Portanto:

$$[a,b] \times [0,1] \ni (s,t) \longmapsto \varepsilon (\cos \theta(s,t), \sin \theta(s,t))$$

é uma homotopia de curvas fechadas em $U \setminus \{0\}$ de $\tilde{\gamma}$ para $\tilde{\mu}$.

2. 1-formas e integrais de linha

Nesta seção denotaremos por E um espaço de Banach fixado sobre o corpo $\mathbb{K}=\mathbb{R}$ ou $\mathbb{K}=\mathbb{C}.$

- 2.1. **Definição.** Seja U um subconjunto de \mathbb{R}^n . Uma 1-forma a valores em E definida em U é uma aplicação $\omega: U \to \operatorname{Lin}(\mathbb{R}^n, E)$, onde $\operatorname{Lin}(\mathbb{R}^n, E)$ denota o espaço das aplicações \mathbb{R} -lineares $T: \mathbb{R}^n \to E$.
- 2.2. **Exemplo.** Seja $f: U \to E$ uma aplicação diferenciável definida num aberto $U \subset \mathbb{R}^n$. A diferencial $\mathrm{d} f: U \to \mathrm{Lin}(\mathbb{R}^n, E)$ de f é uma 1-forma a valores em E definida em U.

Denotamos por $dx_1, \ldots, dx_n \in \operatorname{Lin}(\mathbb{R}^n, \mathbb{R}) = \mathbb{R}^{n*}$ a base canônica do espaço dual de \mathbb{R}^n ; mais explicitamente, definimos:

$$\mathrm{d}x_i \cdot v = v_i,$$

para $i=1,\ldots,n$ e todo $v\in\mathbb{R}^n$. Se a é um elemento do espaço de Banach E e se $\alpha:\mathbb{R}^n\to\mathbb{K}$ é uma aplicação linear então o produto $a\alpha\in\mathrm{Lin}(\mathbb{R}^n,E)$ é definido de forma natural fazendo:

$$(a\alpha)(v) = a\alpha(v),$$

para todo $v \in \mathbb{R}^n$. Se $\alpha : U \to \text{Lin}(\mathbb{R}^n, \mathbb{K})$ é uma 1-forma a valores em \mathbb{K} e se $a : U \to E$ é uma função a valores em E então obtemos uma 1-forma $a\alpha$ a valores em E fazendo:

$$(a\alpha)(x) = a(x)\alpha(x),$$

para todo $x \in U$. É fácil ver que toda aplicação linear $T \in \text{Lin}(\mathbb{R}^n, E)$ se escreve de modo único na forma:

$$(2.1) T = \sum_{i=1}^{n} a_i \mathrm{d}x_i,$$

com $a_i \in E$, i = 1, ..., n; de fato, basta tomar $a_i = T(e_i)$, i = 1, ..., n, onde $e_1, ..., e_n$ denota a base canônica de \mathbb{R}^n . Similarmente, uma 1-forma $\omega : U \to \operatorname{Lin}(\mathbb{R}^n, E)$ a valores em E pode ser escrita de modo único na forma:

(2.2)
$$\omega = \sum_{i=1}^{n} a_i dx_i,$$

onde $a_i: U \to E$ são funções a valores em E. Claramente ω é de classe C^k se e somente se as funções a_i são todas de classe C^k . Em (2.2) identificamos o funcional linear $\mathrm{d}x_i \in \mathbb{R}^{n*}$ com a 1-forma constante que associa a cada ponto de \mathbb{R}^n o *i*-ésimo vetor da base canônica de \mathbb{R}^{n*} . Se $f: U \to E$ é uma função diferenciável definida num aberto $U \subset \mathbb{R}^n$ então claramente:

$$\mathrm{d}f = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \, \mathrm{d}x_i,$$

onde $\frac{\partial f}{\partial x_i}(x) = \mathrm{d}f(x) \cdot e_i \in E$ denota a *i*-ésima derivada parcial da função f no ponto x. A notação d x_i utilizada acima é justificada da seguinte forma: a 1-forma constante d x_i coincide com a diferencial da *i*-ésima função coordenada $\mathbb{R}^n \ni x \mapsto x_i \in \mathbb{R}$.

2.3. **Definição.** Seja U um aberto de \mathbb{R}^n . Uma 1-forma contínua ω a valores em E definida em U é dita exata se existe uma função $f:U\to E$ de classe C^1 tal que $\mathrm{d} f=\omega$. Uma 1-forma ω de classe C^1 a valores em E definida em E é dita E fechada se

$$\frac{\partial a_i}{\partial x_j} = \frac{\partial a_j}{\partial x_i},$$

para todos i, j = 1, ..., n, onde $\omega = \sum_{i=1}^{n} a_i dx_i$.

Segue do Teorema de Schwarz² que toda 1-forma exata de classe C^1 é fechada.

 $^{^2{\}rm O}$ Teorema de Schwarz para uma função fa valores em E pode ser demonstrado aplicando o Teorema de Schwarz para funções a valores reais sobre as funções $\lambda\circ f,$ onde λ é um funcional linear contínuo arbitrário em E.

2.4. **Definição.** Seja $\omega: U \to \operatorname{Lin}(\mathbb{R}^n, E)$ uma 1-forma contínua definida num subconjunto U de \mathbb{R}^n e seja $\gamma: [a,b] \to \mathbb{R}^n$ uma curva de classe C^1 por partes com imagem contida em U. A integral de linha $\int_{\mathbb{R}} \omega$ é definida por:

(2.3)
$$\int_{\gamma} \omega = \int_{a}^{b} \omega(\gamma(t)) \cdot \gamma'(t) dt \in E.$$

A integral que aparece do lado direito da igualdade em (2.3) pode ser entendida no sentido de *Bochner* (veja [1] para detalhes); como trata-se apenas da integral de uma função contínua por partes num intervalo fechado, é possível também utilizar uma teoria de integração mais simples, no espírito de Riemann (veja, por exemplo, [2]).

Seja $\gamma:[a,b]\to\mathbb{R}^n$ uma curva de classe C^1 por partes; dada uma função crescente (resp., decrescente) $\sigma:[c,d]\to[a,b]$ sobrejetora de classe C^1 por partes então a curva $\gamma\circ\sigma$ é dita uma reparametrização positiva (resp., negativa) de γ . Se $\gamma:[a,b]\to\mathbb{R}^n$ e $\mu:[c,d]\to\mathbb{R}^n$ são curvas contínuas tais que $\gamma(b)=\mu(c)$ então a concatenação $\gamma\cdot\mu$ da curva γ com a curva μ é a curva $\gamma\cdot\mu:[a,d-c+b]\to\mathbb{R}^n$ definida por:

$$(\gamma \cdot \mu)(t) = \begin{cases} \gamma(t), & \text{se } t \in [a, b], \\ \mu(t - b + c), & \text{se } t \in [b, d - c + b]. \end{cases}$$

Obviamente se γ e μ são de classe C^k por partes então a curva concatenada $\gamma \cdot \mu$ também é de classe C^k por partes. Note também que a operação de concatenação de curvas é associativa. Se $\gamma : [a,b] \to \mathbb{R}^n$ é uma curva contínua então denotamos por $\gamma^{-1} : [a,b] \to \mathbb{R}^n$ a curva definida por:

$$\gamma^{-1}(t) = \gamma(a+b-t),$$

para todo $t \in [a,b]$. Obviamente se γ é de classe C^k (resp., de classe C^k por partes) então γ^{-1} também é de classe C^k (resp., de classe C^k por partes). Se $x,y \in \mathbb{R}^n$ são pontos então o símbolo [x,y] será usado (com uma pequena ambigüidade) para denotar tanto o segmento de reta

$$[x,y] = \{(1-t)x + ty : t \in [0,1]\}$$

como o caminho retilíneo

$$[0,1] \ni t \longmapsto (1-t)x + ty \in \mathbb{R}^n$$

que tem o segmento de reta (2.4) como imagem. Note que:

$$[x,y]^{-1} = [y,x].$$

Dados pontos $x, y, z \in \mathbb{R}^n$ então o caminho triangular de vértices $x, y \in z$ é a curva $\Delta(x, y, z)$ obtida pela concatenação dos caminhos retilíneos [x, y], [y, z] e [z, x]. Enunciamos abaixo algumas propriedades simples das integrais de linha que seguem diretamente de propriedades elementares da integração de funções contínuas por partes em intervalos:

- se ω é uma 1-forma contínua a valores em E cujo domínio contém a imagem de uma curva $\gamma:[a,b]\to\mathbb{R}^n$ de classe C^1 por partes e se $\gamma\circ\sigma$ é uma reparametrização positiva (resp., negativa) de γ então a integral $\int_{\gamma\circ\sigma}\omega$ é igual a $\int_{\gamma}\omega$ (resp, igual a $-\int_{\gamma}\omega$) em particular, temos $\int_{\gamma^{-1}}\omega=-\int_{\gamma}\omega$;
- se ω é uma 1-forma contínua a valores em E cujo domínio contém as imagens de curvas $\gamma:[a,b]\to\mathbb{R}^n,\ \mu:[c,d]\to\mathbb{R}^n$ de classe C^1 por partes tais que $\gamma(b)=\mu(c)$ então $\int_{\gamma\cdot\mu}\omega=\int_{\gamma}\omega+\int_{\mu}\omega;$ se ω é uma 1-forma contínua a valores em E cujo domínio contém
- se ω é uma 1-forma contínua a valores em E cujo domínio contém segmentos de reta [x,y], [y,z] e [z,x] e se os pontos $x,y,z\in\mathbb{R}^n$ são colineares então a integral de ω no caminho triangular $\Delta(x,y,z)$ é nula.
- 2.5. **Exemplo.** Seja $f:U\to E$ uma função de classe C^1 definida num aberto $U\subset\mathbb{R}^n$ e seja $\gamma:[a,b]\to U$ uma curva de classe C^1 por partes. Então:

$$\int_{\gamma} df = \int_{a}^{b} df (\gamma(t)) \cdot \gamma'(t) dt = \int_{a}^{b} (f \circ \gamma)'(t) dt = f(\gamma(b)) - f(\gamma(a)).$$

Precisaremos de um resultado que nos permitirá fazer diferenciações sob o sinal de integral. O leitor que não tem familiaridade com integral de Bochner pode ignorar os Lemas 2.6 e 2.7 a seguir e estudar os Lemas 2.8 e 2.10 em vez.

- 2.6. **Lema.** Seja $(\Omega, \mathcal{A}, \mu)$ um espaço de medida completo, X um espaço topológico que satisfaz o primeiro axioma da enumerabilidade, $x_0 \in X$ um ponto e $f: \Omega \times X \to E$ uma aplicação tal que:
 - para todo $x \in X$, a aplicação $\Omega \ni \vartheta \mapsto f(\vartheta, x) \in E$ é Bochner integrável;
 - para todo $\vartheta \in \Omega$, a aplicação $X \ni x \mapsto f(\vartheta, x) \in E$ é contínua no ponto x_0 ;
 - existe uma função integrável $\phi: \Omega \to [0, +\infty]$ e uma vizinhança V de x_0 tal que $||f(\vartheta, x)|| \le \phi(\vartheta)$, para todos $\vartheta \in \Omega$ e todos $x \in V$ com $x \ne x_0$.

Então a aplicação $X \ni x \mapsto \int_{\Omega} f(\vartheta, x) d\mu(\vartheta) \in E$ é contínua no ponto x_0 .

Demonstração. Veja [1, Corollary 4.2].

- 2.7. **Lema.** Seja $(\Omega, \mathcal{A}, \mu)$ um espaço de medida completo, U um aberto de \mathbb{R}^n e $f: \Omega \times U \to E$ uma função tal que:
 - para todo $x \in U$, a aplicação $\Omega \ni \vartheta \mapsto f(\vartheta, x) \in E$ é Bochner integrável;
 - para todo $\vartheta \in \Omega$, a aplicação $U \ni x \mapsto f(\vartheta, x) \in E$ é de classe C^1 ;
 - para todo $x_0 \in U$ existe uma função integrável $\phi: \Omega \to [0, +\infty]$ e uma vizinhança V de x_0 em U tal que $\left\|\frac{\partial f}{\partial x}(\vartheta, x)\right\| \leq \phi(\vartheta)$, para todos $\vartheta \in \Omega$ e todos $x \in V$ com $x \neq x_0$.

Então a aplicação $g:U\ni x\mapsto \int_\Omega f(\vartheta,x)\,\mathrm{d}\mu(\vartheta)\in E$ é de classe C^1 e sua diferencial é dada por:

(2.5)
$$dg(x) = \int_{\Omega} \frac{\partial f}{\partial x}(\vartheta, x) d\mu(\vartheta) \in Lin(\mathbb{R}^n, E),$$

para todo $x \in U$.

Demonstração. Veja [1, Corollary 4.8].

- 2.8. **Lema.** Seja $f:[a,b]\times X\to E$ uma função contínua, onde X é um espaço topológico. Então a aplicação $X\ni x\mapsto \int_a^b f(t,x)\,\mathrm{d}t\in E$ é contínua.
- 2.9. Observação. Se X satisfaz o primeiro axioma da enumerabilidade então o Lema 2.8 segue do Lema 2.6 tomando $\Omega = [a, b]$, V uma vizinhança de um ponto $x_0 \in X$ tal que f é limitada em $[a, b] \times V$ e ϕ uma função constante.

Demonstração do Lema 2.8. Seja $x_0 \in X$ fixado. Como f é contínua e [a,b] é compacto, a continuidade de f é uniforme com relação à variável $t \in [a,b]$; mais precisamente, para todo $\varepsilon > 0$, existe uma vizinhança V de x_0 em X tal que $||f(t,x) - f(t,x_0)|| < \frac{\varepsilon}{b-a}$, para todo $t \in [a,b]$ e todo $t \in V$. Logo:

$$\left\| \int_a^b f(t,x) \, \mathrm{d}t - \int_a^b f(t,x_0) \, \mathrm{d}t \right\| \le \int_a^b \|f(t,x) - f(t,x_0)\| \, \mathrm{d}t \le \varepsilon,$$
 para todo $x \in V$.

2.10. **Lema.** Seja $f:[a,b] \times U \to E$ uma função contínua, onde U é um aberto de \mathbb{R}^n . Suponha que para todo $t \in [a,b]$ a função $U \ni x \mapsto f(t,x) \in E$ é diferenciável e que a função $\frac{\partial f}{\partial x}:[a,b] \times U \to \text{Lin}(\mathbb{R}^n,E)$ é contínua. Então a função $g:U\ni x\mapsto \int_a^b f(t,x)\,\mathrm{d}t\in E$ é de classe C^1 e sua diferencial é dada por:

(2.6)
$$dg(x) = \int_a^b \frac{\partial f}{\partial x}(t, x) dt \in \operatorname{Lin}(\mathbb{R}^n, E),$$

para todo $x \in U$.

Demonstração 1. Utilize o Lema 2.7 com $\Omega = [a,b]$, V uma vizinhança de um ponto $x_0 \in U$ tal que $\frac{\partial f}{\partial x}$ é limitada em $[a,b] \times V$ e ϕ uma função constante.

Demonstração 2. Seja $x \in U$ fixado e seja $T = \int_a^b \frac{\partial f}{\partial x}(t,x) \, \mathrm{d}t \in \mathrm{Lin}(\mathbb{R}^n,E)$. Vamos mostrar que g é diferenciável no ponto $x \in U$ e que $\mathrm{d}g(x) = T$. Uma vez estabelecida a igualdade (2.6), a continuidade de $\mathrm{d}g$ seguirá do Lema 2.8. Devemos verificar que:

$$\lim_{h \to 0} \frac{g(x+h) - g(x) - T(h)}{\|h\|} = 0.$$

Temos:

$$g(x+h) - g(x) - T(h) = \int_a^b f(t,x+h) - f(t,x) - \frac{\partial f}{\partial x}(t,x) \cdot h \, \mathrm{d}t.$$

Aplicando a desigualdade do valor médio para a função:

$$U \ni y \mapsto f(t,y) - \frac{\partial f}{\partial x}(t,x) \cdot y \in E$$

no segmento [x, x + h] obtemos:

$$(2.7) \quad ||f(t,x+h) - f(t,x) - \frac{\partial f}{\partial x}(t,x) \cdot h|| \le ||\frac{\partial f}{\partial x}(t,x+\theta h) - \frac{\partial f}{\partial x}(t,x)|| ||h||,$$

para algum $\theta \in]0,1[$. Como a função $\frac{\partial f}{\partial x}$ é contínua e [a,b] é compacto, a continuidade de $\frac{\partial f}{\partial x}$ é uniforme em relação à variável $t \in [a,b]$; mais precisamente, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que $\left\| \frac{\partial f}{\partial x}(t,y) - \frac{\partial f}{\partial x}(t,x) \right\| < \frac{\varepsilon}{b-a}$, para todo $t \in [a,b]$ e todo $y \in U$ com $\|y-x\| < \delta$. Podemos supor também que a bola aberta de centro x e raio δ está contida em U; daí (2.7) nos dá:

$$||f(t,x+h) - f(t,x) - \frac{\partial f}{\partial x}(t,x) \cdot h|| \le \frac{\varepsilon}{b-a} ||h||,$$

para todo h com $\|h\| < \delta$ e portanto:

$$||g(x+h) - g(x) - T(h)|| \le \varepsilon ||h||.$$

2.11. **Lema.** Toda 1-forma fechada $\omega: U \to \operatorname{Lin}(\mathbb{R}^n, E)$ de classe C^1 definida num subconjunto aberto e convexo U de \mathbb{R}^n é exata.

Demonstração. Escreva $\omega = \sum_{i=1}^n a_i \mathrm{d} x_i$, onde $a_i : U \to E, \ i=1,\dots,n$, são funções de classe C^1 ; por hipótese, $\frac{\partial a_i}{\partial x_j} = \frac{\partial a_j}{\partial x_i}$, para todos $i,j=1,\dots,n$. Fixamos um ponto arbitrário $x^0 \in U$ e definimos uma função $f:U \to E$ fazendo:

$$f(x) = \int_{[x^0, x]} \omega = \int_0^1 \omega (x^0 + t(x - x^0)) \cdot (x - x^0) dt$$
$$= \sum_{i=1}^n \int_0^1 a_i (x^0 + t(x - x^0)) (x_i - x_i^0) dt,$$

para todo $x \in U$. Segue do Lema 2.10 que f é de classe C^1 ; além do mais, dado $j = 1, \ldots, n$, a derivada parcial $\frac{\partial f}{\partial x_j}(x)$ é calculada da seguinte forma:

$$\frac{\partial f}{\partial x_j}(x) = \int_0^1 a_j (x^0 + t(x - x^0)) dt + \sum_{i=1}^n \int_0^1 t \frac{\partial a_i}{\partial x_j} (x^0 + t(x - x^0)) (x_i - x_i^0) dt$$

$$= \int_0^1 a_j (x^0 + t(x - x^0)) dt + \sum_{i=1}^n \int_0^1 t \frac{\partial a_j}{\partial x_i} (x^0 + t(x - x^0)) (x_i - x_i^0) dt.$$

Daí:

$$\frac{\partial f}{\partial x_j}(x) = \int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} \left[t a_j \left(x^0 + t(x - x^0) \right) \right] \mathrm{d}t;$$

concluímos então que $\frac{\partial f}{\partial x_j}(x)=a_j(x)$, para todo $j=1,\ldots,n$ e para todo $x\in U$.

- 2.12. **Proposição.** Seja $\omega: U \to \operatorname{Lin}(\mathbb{R}^n, E)$ uma 1-forma contínua definida num subconjunto aberto U de \mathbb{R}^n . As seguintes afirmações são equivalentes:
 - (1) ω é exata;
 - (2) a integral $\int_{\gamma} \omega$ depende apenas das extremidades de γ , i.e., para quaisquer curvas $\gamma, \mu : [a,b] \to U$ de classe C^1 por partes com as mesmas extremidades (i.e., $\gamma(a) = \mu(a)$ e $\gamma(b) = \mu(b)$) vale $\int_{\gamma} \omega = \int_{\mu} \omega$;
 - (3) para toda curva fechada $\gamma:[a,b] \to U$ de classe C^1 por partes a integral $\int_{\Sigma} \omega$ é nula;

se U é convexo então as afirmações acima são também equivalentes a:

(4) a integral $\int_{\gamma} \omega$ é nula para todo caminho triangular γ com vértices em U.

Demonstração.

 $(1)\Rightarrow(2)$. Segue do Exemplo 2.5.

 $(2)\Rightarrow(3)$. Se $\gamma:[a,b]\to U$ é uma curva fechada então a integral de ω em γ deve coincidir com a integral de ω na curva constante igual a $\gamma(a)$.

(3) \Rightarrow (2). Se $\gamma:[a,b]\to U$ e $\mu:[a,b]\to U$ tem as mesmas extremidades então a curva $\lambda=\gamma\cdot\mu^{-1}$ é fechada e portanto $0=\int_\lambda\omega=\int_\gamma\omega-\int_\mu\omega.$

 $(2)\Rightarrow(1)$. É fácil ver que ω é exata em U se e somente se ω é exata em cada componente conexa de U; podemos supor portanto que o aberto U é conexo. Segue daí que U também é conexo por arcos de classe C^1 por partes. Seja $x_0 \in U$ fixado. Definimos $f: U \to E$ fazendo $f(x) = \int_{\gamma} \omega$, onde $\gamma: [a,b] \to U$ é uma curva arbitrária de classe C^1 por partes com $\gamma(a) = x_0$ e $\gamma(b) = x$. O fato que $\int_{\gamma} \omega$ depende somente das extremidades de γ implica que a função f está bem definida. Sejam $x \in U$ e $h \in \mathbb{R}^n$ fixados; vamos mostrar que:

$$\lim_{t \to 0} \frac{f(x+th) - f(x)}{t} = \omega(x) \cdot h.$$

De fato, o valor de f(x+th) pode ser computado integrando ω na curva obtida pela concatenação de γ com o segmento [x,x+th] e portanto:

(2.8)
$$\frac{f(x+th) - f(x)}{t} = \frac{1}{t} \int_{[x,x+th]} \omega = \frac{1}{t} \int_0^t \omega(x+sh) \cdot h \, \mathrm{d}s;$$

daí:

$$\lim_{t \to 0} \frac{f(x+th) - f(x)}{t} = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \int_0^t \omega(x+sh) \cdot h \, \mathrm{d}s = \omega(x) \cdot h.$$

Em particular, se $\omega = \sum_{i=1}^n a_i \mathrm{d} x_i$ então $\frac{\partial f}{\partial x_i} = a_i$, para $i = 1, \dots, n$. Isso mostra que f é de classe C^1 , já que as funções $a_i : U \to E$ são contínuas; além do mais, $\mathrm{d} f = \omega$.

 $(3) \Rightarrow (4)$. Trivial.

 $(4)\Rightarrow(1)$. Análoga à demonstração de $(2)\Rightarrow(1)$, definindo $f(x)=\int_{[x_0,x]}\omega$, para todo $x\in U$. A primeira igualdade em (2.8) é justificada pelo fato que a integral de ω no caminho triangular $\Delta(x_0,x+th,x)$ é nula.

2.13. **Definição.** Seja U um subconjunto de \mathbb{R}^n e sejam $\gamma:[a,b] \to U$, $\mu:[a,b] \to U$ curvas contínuas com as mesmas extremidades. Dizemos que γ e μ são homotópicas em U com extremos fixos se existe uma função contínua $H:[a,b] \times [0,1] \to U$ (chamada uma homotopia com extremos fixos de γ para μ) tal que:

- $H(s,0) = \gamma(s)$, para todo $s \in [a,b]$;
- $H(s,1) = \mu(s)$, para todo $s \in [a,b]$;
- H(a,t) = H(a,0) e H(b,t) = H(b,0), para todo $t \in [0,1]$.

2.14. **Proposição.** Seja $\omega: U \to \operatorname{Lin}(\mathbb{R}^n, E)$ uma 1-forma fechada de classe C^1 definida num aberto U de \mathbb{R}^n . Suponha que duas curvas $\gamma, \mu: [a,b] \to U$ de classe C^1 por partes sejam homotópicas em U como curvas fechadas (Definição 1.14) ou sejam homotópicas em U com extremos fixos. Então $\int_{\gamma} \omega = \int_{\mu} \omega$.

Demonstração. Seja $H:[a,b]\times[0,1]\to U$ uma homotopia (de curvas fechadas ou com extremos fixos) de γ para μ . Como ω é fechada, sabemos que a restrição de ω a qualquer bola aberta contida em U é exata (Lema 2.11). Seja $(B_{\alpha})_{\alpha\in\Lambda}$ uma família de bolas abertas com $U=\bigcup_{\alpha\in\Lambda}B_{\alpha}$ e seja $\delta>0$ um número de Lebesgue para a cobertura aberta $(H^{-1}(B_{\alpha}))_{\alpha\in\Lambda}$ do compacto $[a,b]\times[0,1]$; isso significa que todo subconjunto de $[a,b]\times[0,1]$ com diâmetro menor que δ está contido em algum $H^{-1}(B_{\alpha})$. Escolha agora partições $a=t_0< t_1<\dots< t_k=b$ e $0=s_0< s_1<\dots< s_l=1$ dos intervalos [a,b] e [0,1] respectivamente, de modo que cada retângulo $[t_{i-1},t_i]\times[s_{j-1},s_j],\ i=1,\dots,k,\ j=1,\dots,l,$ tenha diâmetro menor que δ ; em particular, $H([t_{i-1},t_i]\times[s_{j-1},s_j])$ está contido em alguma bola aberta contida em U, para todos i,j. Para cada $i=1,\dots,k$ e cada $j=0,\dots,l$, consideramos a curva \mathfrak{h}_{ij} definida por:

$$\mathfrak{h}_{ij} = \begin{cases} [H(t_{i-1}, s_j), H(t_i, s_j)], & \text{se } j = 1, \dots, l-1, \\ \gamma|_{[t_{i-1}, t_i]}, & \text{se } j = 0, \\ \mu|_{[t_{i-1}, t_i]}, & \text{se } j = l. \end{cases}$$

Para cada i = 0, ..., k e cada j = 1, ..., l, denotamos por \mathfrak{v}_{ij} o caminho retilíneo $[H(t_i, s_{j-1}), H(t_i, s_j)]$. Defina curvas ρ , $\tilde{\rho}$ fazendo:

$$\rho = \mathfrak{v}_{01} \cdot \mathfrak{v}_{02} \cdots \mathfrak{v}_{0l}, \quad \tilde{\rho} = \mathfrak{v}_{k1} \cdot \mathfrak{v}_{k2} \cdots \mathfrak{v}_{kl}.$$

Para cada i = 1, ..., k, j = 1, ..., l, considere a curva R_{ij} definida por:

$$R_{ij} = \mathfrak{h}_{i(j-1)} \cdot \mathfrak{v}_{ij} \cdot (\mathfrak{h}_{ij})^{-1} \cdot (\mathfrak{v}_{(i-1)j})^{-1}.$$

Temos que R_{ij} é uma curva fechada de classe C^1 por partes cuja imagem está contida numa bola aberta contida em U; como ω é exata nessa bola,

segue que $\int_{R_{ij}}\omega=0$ para todos $i=1,\ldots,k,\,j=1,\ldots,l$ (Proposição 2.12). Além do mais:

$$0 = \sum_{i=1}^{k} \sum_{j=1}^{l} \int_{R_{ij}} \omega = \sum_{i=1}^{k} \int_{\mathfrak{h}_{i0}} \omega + \sum_{j=1}^{l} \int_{\mathfrak{v}_{kj}} \omega - \sum_{i=1}^{k} \int_{\mathfrak{h}_{il}} \omega - \sum_{j=1}^{l} \int_{\mathfrak{v}_{0j}} \omega$$
$$= \int_{\gamma} \omega + \int_{\tilde{\rho}} \omega - \int_{\mu} \omega - \int_{\rho} \omega.$$

Se H é uma homotopia com extremos fixos então ρ e $\tilde{\rho}$ são curvas constantes; se H é uma homotopia de curvas fechadas então $\rho = \tilde{\rho}$. Em qualquer caso, temos $\int_{\tilde{\rho}} \omega - \int_{\rho} \omega = 0$ e portanto $\int_{\gamma} \omega = \int_{\mu} \omega$.

2.15. Corolário. Se $\omega: U \to \operatorname{Lin}(\mathbb{R}^n, E)$ é uma 1-forma fechada de classe C^1 definida num aberto U de \mathbb{R}^n e se $\gamma: [a,b] \to U$ é uma curva fechada de classe C^1 por partes que é contrátil em U então $\int_{\gamma} \omega = 0$.

Recorde que um subconjunto U de \mathbb{R}^n é dito simplesmente conexo se toda curva contínua fechada $\gamma:[a,b]\to U$ é contrátil em U. Segue do Exemplo 1.15 que todo subconjunto convexo de \mathbb{R}^n é simplesmente conexo.

2.16. Corolário. Toda 1-forma fechada $\omega: U \to \operatorname{Lin}(\mathbb{R}^n, E)$ de classe C^1 num aberto simplesmente conexo U é exata.

Demonstração. Segue da Proposição 2.12 e do Corolário 2.15.

2.1. 1-formas em $\mathbb{C}^{\mathbf{n}}$. Identifiquemos o espaço \mathbb{C}^n com \mathbb{R}^{2n} através do isomorfismo:

$$(2.9) \mathbb{C}^n \ni (z_1, \dots, z_n) \longmapsto (x_1, \dots, x_n, y_1, \dots, y_n) \in \mathbb{R}^{2n},$$

onde $z_j = x_j + iy_j$, para j = 1, ..., n. Usaremos a notação:

$$(2.10) dx_1, \dots, dx_n, dy_1, \dots, dy_n$$

para a base canônica do espaço $\mathbb{R}^{2n^*} \cong \operatorname{Lin}(\mathbb{C}^n, \mathbb{R})$, em vez da notação $\mathrm{d}x_j$, $j=1,\ldots,2n$, utilizada no restante da Seção 2. Se e_1,\ldots,e_n denota a \mathbb{C} -base canônica de \mathbb{C}^n então, de acordo com a identificação (2.9), a \mathbb{R} -base canônica de $\mathbb{C}^n \cong \mathbb{R}^{2n}$ é:

$$e_1,\ldots,e_n,ie_1,\ldots,ie_n.$$

Dada uma função diferenciável $f:U\to E$ definida num aberto U de \mathbb{C}^n então as derivadas parciais de f num ponto $z\in U$ serão denotadas por:

$$\frac{\partial f}{\partial x_1}(z), \dots, \frac{\partial f}{\partial x_n}(z), \frac{\partial f}{\partial y_1}(z), \dots, \frac{\partial f}{\partial y_n}(z),$$

de modo que:

(2.11)
$$\frac{\partial f}{\partial x_j}(z) = \mathrm{d}f(z) \cdot e_j, \quad \frac{\partial f}{\partial y_j}(z) = \mathrm{d}f(z) \cdot (ie_j), \quad j = 1, \dots, n.$$

Claramente:

$$df = \sum_{j=1}^{n} \frac{\partial f}{\partial x_j} dx_j + \sum_{j=1}^{n} \frac{\partial f}{\partial y_j} dy_j.$$

Considere o espaço $\operatorname{Lin}(\mathbb{C}^n,\mathbb{C})$ das aplicações \mathbb{R} -lineares $T:\mathbb{C}^n\to\mathbb{C}$; o espaço $\operatorname{Lin}(\mathbb{C}^n,\mathbb{C})$ torna-se um espaço vetorial complexo se definirmos:

$$(2.12) (cT)(v) \stackrel{\text{def}}{=} cT(v),$$

para todos $c \in \mathbb{C}$, $T \in \text{Lin}(\mathbb{C}^n, \mathbb{C})$, $v \in \mathbb{C}^n$. É fácil ver que (2.10) também é uma \mathbb{C} -base para o espaço vetorial complexo $\text{Lin}(\mathbb{C}^n, \mathbb{C})$. Definindo:

$$dz_j = dx_j + i dy_j, \quad d\bar{z}_j = dx_j - i dy_j, \quad j = 1, \dots, n$$

então:

$$dz_1, \ldots, dz_n, d\bar{z}_1, \ldots, d\bar{z}_n$$

é uma outra \mathbb{C} -base para o espaço vetorial complexo $\operatorname{Lin}(\mathbb{C}^n,\mathbb{C})$. Note que $\mathrm{d}z_j$ (resp., $\mathrm{d}\bar{z}_j$) é nada mais que a diferencial da aplicação $\mathbb{C}^n\ni z\mapsto z_j\in\mathbb{C}$ (resp., da aplicação $\mathbb{C}^n\ni z\mapsto \bar{z}_j\in\mathbb{C}$).

Suponhamos agora que $\mathbb{K} = \mathbb{C}$, i.e., que o espaço de Banach E fixado no início da Seção 2 é complexo. Se $\mathrm{Lin}(\mathbb{C}^n, E)$ denota o espaço das aplicações \mathbb{R} -lineares $T: \mathbb{C}^n \to E$ então, de modo idêntico a (2.1), cada $T \in \mathrm{Lin}(\mathbb{C}^n, E)$ escreve-se de modo único na forma:

(2.13)
$$T = \sum_{j=1}^{n} a_j \, dx_j + \sum_{j=1}^{n} b_j \, dy_j,$$

com $a_j, b_j \in E, j = 1, ..., n$. Afirmamos que é possível escrever cada aplicação $T \in \text{Lin}(\mathbb{C}^n, E)$ também de modo único na forma:

(2.14)
$$T = \sum_{j=1}^{n} a'_{j} dz_{j} + \sum_{j=1}^{n} b'_{j} d\bar{z}_{j},$$

com $a'_j, b'_j \in E$, j = 1, ..., n; de fato, a existência da decomposição (2.14) segue da existência da decomposição (2.13) e das igualdades:

$$dx_j = \frac{1}{2}(dz_j + d\bar{z}_j), \quad dy_j = \frac{1}{2i}(dz_j - d\bar{z}_j), \quad j = 1, \dots, n.$$

A unicidade da decomposição (2.14) é obtida observando que a igualdade (2.14) implica que os coeficientes a_j' , b_j' são dados por:

$$(2.15) \ a'_j = \frac{1}{2} (T(e_j) - iT(ie_j)), \quad b'_j = \frac{1}{2} (T(e_j) + iT(ie_j)), \quad j = 1, \dots, n.$$

A vantagem da decomposição (2.14) sobre a decomposição (2.13) é que a decomposição (2.14) nos permite distinguir facilmente quais aplicações $T \in \text{Lin}(\mathbb{C}^n, E)$ são \mathbb{C} -lineares. Vamos estudar mais a fundo essa situação. O espaço $\text{Lin}(\mathbb{C}^n, E)$ também torna-se um espaço vetorial complexo se definirmos a multiplicação por escalares complexos como em (2.12). O espaço

 $\operatorname{Lin}(\mathbb{C}^n, E)$ possui dois subespaços vetorias complexos importantes: o espaço das aplicações \mathbb{C} -lineares:

$$\operatorname{Lin}_{\mathbb{C}}(\mathbb{C}^{n}, E) \stackrel{\text{def}}{=} \{ T \in \operatorname{Lin}(\mathbb{C}^{n}, E) : T(cv) = c \, T(v),$$
 para todos $c \in \mathbb{C}, v \in \mathbb{C}^{n} \},$

e o espaço das aplicações lineares conjugadas:

$$\operatorname{Lin}_{\bar{\mathbb{C}}}(\mathbb{C}^n, E) \stackrel{\text{def}}{=} \big\{ T \in \operatorname{Lin}(\mathbb{C}^n, E) : T(cv) = \bar{c} \, T(v), \\ \text{para todos } c \in \mathbb{C}, \, v \in \mathbb{C}^n \big\}.$$

É fácil ver que $\operatorname{Lin}(\mathbb{C}^n, E)$ é igual à soma direta dos subespaços $\operatorname{Lin}_{\mathbb{C}}(\mathbb{C}^n, E)$ e $\operatorname{Lin}_{\bar{\mathbb{C}}}(\mathbb{C}^n, E)$. Temos que $\mathrm{d}z_1, \ldots, \mathrm{d}z_n$ é uma \mathbb{C} -base para o espaço $\operatorname{Lin}_{\bar{\mathbb{C}}}(\mathbb{C}^n, \mathbb{C})$ e $\mathrm{d}\bar{z}_1, \ldots, \mathrm{d}\bar{z}_n$ é uma \mathbb{C} -base para o espaço $\operatorname{Lin}_{\bar{\mathbb{C}}}(\mathbb{C}^n, \mathbb{C})$. Além do mais, se uma aplicação $T \in \operatorname{Lin}(\mathbb{C}^n, E)$ é decomposta como em (2.14) então T é \mathbb{C} -linear (resp., linear conjugada) se e somente se $b'_j = 0$ (resp., $a'_j = 0$), para todo $j = 1, \ldots, n$.

Obviamente as decomposições (2.13) e (2.14) possuem análogos para 1formas a valores em E definidas em subconjuntos de \mathbb{C}^n ; mais explicitamente, se $\omega: U \to \operatorname{Lin}(\mathbb{C}^n, E)$ é uma 1-forma a valores em E definida num subconjunto U de \mathbb{C}^n então podemos escrever:

$$\omega = \sum_{j=1}^{n} a_j \, dx_j + \sum_{j=1}^{n} b_j \, dy_j = \sum_{j=1}^{n} a'_j \, dz_j + \sum_{j=1}^{n} b'_j \, d\bar{z}_j,$$

onde $a_j: U \to E, b_j: U \to E, a'_j: U \to E, b'_j: U \to E$ são funções unicamente determinadas pela 1-forma ω . Temos que ω é de classe C^k se e somente se as funções a_j e b_j são de classe C^k , para $j=1,\ldots,n$; similarmente ω é de classe C^k se e somente se as funções a'_j e b'_j são de classe C^k , para $j=1,\ldots,n$. Se $f:U\to E$ é uma função diferenciável num aberto U de \mathbb{C}^n então a 1-forma df a valores em E pode ser escrita de modo único como combinação de d z_j , d \bar{z}_j , $j=1,\ldots,n$; os coeficientes podem ser calculados usando a fórmula (2.15). Essa observação motiva a seguinte definição:

$$\frac{\partial f}{\partial z_j} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial f}{\partial x_j} - i \frac{\partial f}{\partial y_j} \right), \quad \frac{\partial f}{\partial \bar{z}_j} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial f}{\partial x_j} + i \frac{\partial f}{\partial y_j} \right), \quad j = 1, \dots, n.$$

Temos então:

(2.16)
$$df = \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} dx_{j} + \sum_{j=1}^{n} \frac{\partial f}{\partial y_{j}} dy_{j} = \sum_{j=1}^{n} \frac{\partial f}{\partial z_{j}} dz_{j} + \sum_{j=1}^{n} \frac{\partial f}{\partial \bar{z}_{j}} d\bar{z}_{j}.$$

2.2. Funções Holomorfas. No que segue, E' e E denotarão dois espaços de Banach complexos fixados.

2.17. **Definição.** Seja $f: U \to E$ uma função definida num subconjunto aberto U de E'. Dizemos que f é holomorfa se f é de classe C^1 (no sentido real) e se para todo $z \in U$ a diferencial $df(z): E' \to E$ é \mathbb{C} -linear.

As seguintes propriedades das funções holomorfas seguem diretamente da Definição 2.17 e de teoremas básicos de cálculo diferencial em espaços de Banach:

- a soma de funções holomorfas é holomorfa;
- o produto de uma função holomorfa a valores em E por uma função holomorfa a valores em \mathbb{C} é uma função holomorfa a valores em E;
- a composta de funções holomorfas é holomorfa;
- se $E = \bigoplus_{j=1}^{n} E_j$ escreve-se como uma soma direta de subespaços fechados complexos E_j então uma função $f: U \to E$ é holomorfa se e somente se cada uma de suas coordenadas $f_j: U \to E_j$ é holomorfa.

Suponhamos agora que $E' = \mathbb{C}^n$. Tendo em mente a discussão da Subseção 2.1, temos que uma função $f: U \subset \mathbb{C}^n \to E$ de classe C^1 é holomorfa se e somente se $\mathrm{d}f(z) \in \mathrm{Lin}_{\mathbb{C}}(\mathbb{C}^n, E)$ para todo $z \in U$, i.e., se e somente se (veja (2.16)):

(2.17)
$$\frac{\partial f}{\partial \bar{z}_j} = 0, \quad j = 1, \dots, n.$$

Obviamente a igualdade (2.17) é equivalente a:

(2.18)
$$\frac{\partial f}{\partial y_j} = i \frac{\partial f}{\partial x_j}, \quad j = 1, \dots, n.$$

A igualdade (2.18) nos diz que $df(z) \cdot (ie_j) = i df(z) \cdot e_j$, j = 1, ..., n, para todo $z \in U$ (veja (2.11)); vemos novamente então que essa igualdade é equivalente à \mathbb{C} -linearidade de df(z).

2.18. Observação. As equações (2.17) (ou as equações (2.18)) são conhecidas como as equações de Cauchy–Riemann. Para colocar essas equações num formato mais familiar, suponha que E_0 é uma forma real fechada no espaço de Banach complexo E, i.e., E_0 é um subespaço real fechado³ de E tal que $E = E_0 \oplus iE_0$. Daí uma função $f: U \to E$ de classe C^1 pode ser decomposta de modo único em f = u + iv, com $u, v: U \to E_0$ funções de classe C^1 . Reescrevendo a igualdade (2.18) em termos de u e v obtemos:

$$\frac{\partial u}{\partial x_j} = \frac{\partial v}{\partial y_j}, \quad \frac{\partial v}{\partial x_j} = -\frac{\partial u}{\partial y_j}, \quad j = 1, \dots, n,$$

que são as clássicas equações de Cauchy-Riemann.

Vamos enunciar uma versão dos Lemas 2.7 e 2.10 para o contexto de funções holomorfas. O leitor não interessado em integral de Bochner pode ignorar o Lema 2.19 abaixo e considerar apenas o Lema 2.20 que o segue.

³Por exemplo, se $E = \mathbb{C}^n$ podemos tomar $E_0 = \mathbb{R}^n$.

2.19. Lema. Seja $(\Omega, \mathcal{A}, \mu)$ um espaço de medida completo, U um aberto de \mathbb{C}^n e $f: \Omega \times U \to E$ uma função tal que:

- para todo $z \in U$, a aplicação $\Omega \ni \vartheta \mapsto f(\vartheta,z) \in E$ é Bochner integrável;
- para todo $\vartheta \in \Omega$, a aplicação $U \ni z \mapsto f(\vartheta, z) \in E$ é holomorfa;
- para todo $z_0 \in U$ existe uma função integrável $\phi: \Omega \to [0, +\infty]$ e uma vizinhança V de z_0 em U tal que $\left\|\frac{\partial f}{\partial z}(\vartheta,z)\right\| \leq \phi(\vartheta)$, para todos $\vartheta \in \Omega \ e \ todos \ z \in V \ com \ z \neq z_0.$

Então a aplicação $g:U\ni z\mapsto \int_{\Omega}f(\vartheta,z)\,\mathrm{d}\mu(\vartheta)\in E$ é holomorfa e sua diferencial é dada por:

$$dg(z) = \int_{\Omega} \frac{\partial f}{\partial z}(\vartheta, z) d\mu(\vartheta) \in \operatorname{Lin}_{\mathbb{C}}(\mathbb{C}^n, E),$$

para todo $z \in U$.

Demonstração. Segue do Lema 2.7, observando que a fórmula (2.5) para a diferencial de g implica que a mesma é \mathbb{C} -linear.

2.20. Lema. Seja $f:[a,b]\times U\to E$ uma função contínua, onde U é um aberto de \mathbb{C}^n . Suponha que para todo $t \in [a,b]$ a função $U \ni z \mapsto f(t,z) \in E$ é holomorfa e que a função $\frac{\partial f}{\partial z}:[a,b]\times U\to \mathrm{Lin}_{\mathbb{C}}(\mathbb{C}^n,E)$ é contínua. Então a função $g:U\ni z\mapsto \int_a^b f(t,z)\,\mathrm{d}t\in E$ é holomorfa e sua diferencial é dada

$$dg(z) = \int_a^b \frac{\partial f}{\partial z}(t, z) dt \in \operatorname{Lin}_{\mathbb{C}}(\mathbb{C}^n, E),$$

para todo $z \in U$.

Demonstração. Segue do Lema 2.10, observando que a fórmula (2.6) para a diferencial de g implica que a mesma é \mathbb{C} -linear.

Vamos olhar mais de perto para o caso n=1. Escrevemos então x, y,z e \bar{z} no lugar de x_1, y_1, z_1 e \bar{z}_1 ; mais explicitamente, a base canônica de $\mathbb{R}^{2^*} \cong \operatorname{Lin}(\mathbb{C}, \mathbb{R})$ é denotada por $\mathrm{d}x$, $\mathrm{d}y$ e escrevemos $\mathrm{d}z = \mathrm{d}x + i\,\mathrm{d}y$ e $\mathrm{d}\bar{z}=\mathrm{d}x-i\,\mathrm{d}y$. Toda aplicação C-linear $T:\mathbb{C}\to E$ é da forma:

$$T(v) = av, \quad v \in \mathbb{C},$$

onde $a = T(1) \in E$; na verdade, a aplicação:

$$E \ni a \longmapsto a \, \mathrm{d}z \in \mathrm{Lin}_{\mathbb{C}}(\mathbb{C}, E)$$

é uma isometria de espaços de Banach complexos cuja inversa é dada por $\operatorname{Lin}_{\mathbb{C}}(\mathbb{C}, E) \ni T \mapsto T(1) \in E.$

- 2.21. **Lema.** Seja $f: U \to E$ uma aplicação definida num aberto $U \subset \mathbb{C}$. Dado um ponto $z \in U$ então são equivalentes:

 - f é diferenciável no ponto z e df(z) é ℂ-linear;
 existe o limite lim_{h→0} f(z+h)-f(z)/h em E.

Além do mais, quando uma (ou ambas) as condições acima são satisfeitas, então:

$$df(z) \cdot 1 = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} \in E.$$

Demonstração. Temos que f é diferenciável no ponto z com $\mathrm{d}f(z)$ uma aplicação \mathbb{C} -linear se e somente se existe $a\in E$ tal que:

(2.19)
$$\lim_{h \to 0} \frac{f(z+h) - f(z) - ah}{|h|} = 0.$$

Como as quantidades $\frac{h}{|h|}$ e $\frac{|h|}{h}$ são limitadas, a igualdade (2.19) é equivalente a:

(2.20)
$$\lim_{h \to 0} \frac{f(z+h) - f(z) - ah}{h} = 0.$$

Obviamente, (2.20) equivale a:

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = a \in E.$$

Quando $f:U\subset\mathbb{C}\to E$ é diferenciável num ponto $z\in U$ então o limite $\lim_{h\to 0}\frac{f(z+h)-f(z)}{h}$ será chamado a derivada de f no ponto z e será denotado por f'(z). Temos então:

(2.21)
$$f'(z) = df(z) \cdot 1,$$
$$df(z) = f'(z)dz.$$

Quando identificamos \mathbb{C} com \mathbb{R}^2 então os números complexos 1 e i correspondem respectivamente ao primeiro e ao segundo vetores da base canônica de \mathbb{R}^2 ; temos portanto:

(2.22)
$$\frac{\partial f}{\partial x}(z) = df(z) \cdot 1 = f'(z), \quad \frac{\partial f}{\partial y}(z) = df(z) \cdot i = if'(z),$$
$$\frac{\partial f}{\partial z}(z) = f'(z), \quad \frac{\partial f}{\partial \bar{z}}(z) = 0.$$

Do Lema 2.21 obtemos o seguinte:

2.22. Corolário. Uma aplicação $f:U\to E$ definida num aberto $U\subset \mathbb{C}$ é holomorfa se e somente se para todo $z\in U$ o limite:

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} \in E$$

existe e a função derivada $f': U \to E$ é contínua.

Veremos adiante no Teorema 4.21 que a simples existência da derivada f'(z) para todo $z \in U$ implica automaticamente na continuidade da função f'; poderíamos então definir que uma função $f: U \subset \mathbb{C} \to E$ é holomorfa quando o limite $\lim_{h\to 0} \frac{f(z+h)-f(z)}{h}$ existe para todo $z \in U$. No entanto, consideramos mais conveniente para o desenvolvimento da teoria supor a continuidade da função derivada f' na definição de holomorfia.

3. SÉRIES DE POTÊNCIAS

Nesta seção denotaremos por E um espaço de Banach fixado sobre o corpo $\mathbb{K}=\mathbb{R}$ ou $\mathbb{K}=\mathbb{C}.$

Uma série $\sum_{n=1}^{\infty} a_n$ de vetores de E é dita normalmente convergente se a série $\sum_{n=1}^{\infty} \|a_n\|$ é convergente. Temos que toda série normalmente convergente é convergente.

- 3.1. **Lema** (teste da raiz). Seja $(a_n)_{n>1}$ uma seqüência em E. Temos que:
 - se $\limsup_{n\to\infty} \|a_n\|^{\frac{1}{n}} < 1$ então a série $\sum_{n=1}^{\infty} a_n$ é normalmente convergente;
 - $se \lim \sup_{n\to\infty} \|a_n\|^{\frac{1}{n}} > 1$ então a série $\sum_{n=1}^{\infty} a_n$ não é convergente.

Demonstração. Suponha que $\limsup_{n\to\infty}\|a_n\|^{\frac{1}{n}}<1$. Seja $q\in\mathbb{R}$ com $\limsup_{n\to\infty}\|a_n\|^{\frac{1}{n}}< q<1$. Temos que $\|a_n\|^{\frac{1}{n}}< q$ para todo n suficientemente grande e portanto $\|a_n\|< q^n$, para todo n suficientemente grande. Como 0< q<1, a série $\sum_{n=1}^{\infty}q^n$ é convergente e portanto também a série $\sum_{n=1}^{\infty}\|a_n\|$ é convergente.

Suponha agora que $\limsup_{n\to\infty} \|a_n\|^{\frac{1}{n}} > 1$. Nesse caso, existem infinitos índices n tais que $\|a_n\|^{\frac{1}{n}} \ge 1$ e portanto existem infinitos índices n tais que $\|a_n\| \ge 1$. Logo a seqüência $(a_n)_{n\ge 1}$ não tende a zero e a série $\sum_{n=1}^{\infty} a_n$ não converge.

Se $(a_n)_{n\geq 0}$ é uma seqüência no espaço de Banach E e se $z_0\in \mathbb{K}$ então a série:

(3.1)
$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$

é chamada a série de potências centrada em z_0 com coeficientes $(a_n)_{n\geq 0}$; para séries de potências, usamos a convenção $0^0=1$, de modo que (3.1) converge (trivialmente) para a_0 quando $z=z_0$.

Vamos aplicar o teste da raiz à série de potências (3.1). Temos:

$$\limsup_{n \to \infty} \|a_n (z - z_0)^n\|^{\frac{1}{n}} = |z - z_0| \limsup_{n \to \infty} \|a_n\|^{\frac{1}{n}}.$$

Se definirmos:

(3.2)
$$R \stackrel{\text{def}}{=} \frac{1}{\limsup_{n \to \infty} \|a_n\|^{\frac{1}{n}}} \in [0, +\infty]$$

então a série (3.1) é normalmente convergente para $|z-z_0| < R$ e não é convergente para $|z-z_0| > R$. Dizemos então que R é o raio de convergência da série de potências (3.1). Observamos que na definição (3.2) foi utilizada a convenção $\frac{1}{0} = +\infty$ e $\frac{1}{+\infty} = 0$.

Na demonstração do próximo resultado precisaremos do seguinte:

- 3.2. Lema (teste M de Weierstrass). Seja X um conjunto e seja $(f_n)_{n\geq 1}$ uma seqüência de funções $f_n: X \to E$. Se existe uma seqüência $(M_n)_{n\geq 1}$ de números reais não negativos satisfazendo:
 - $||f_n(x)|| \le M_n$, para todos $x \in X$, $n \ge 1$,
 - $\sum_{n=1}^{\infty} M_n < +\infty$,

então a série $\sum_{n=1}^{\infty} f_n$ converge uniformemente para uma função $f: X \to E$.

Demonstração. O espaço das funções limitadas $f: X \to E$ munido da norma $||f||_{\sup} = \sup_{x \in X} ||f(x)||$ é um espaço de Banach. As hipóteses do lema garantem que a série $\sum_{n=1}^{\infty} f_n$ é normalmente convergente nesse espaço. A conclusão segue da observação que convergência na norma $||\cdot||_{\sup}$ é equivalente à convergência uniforme.

3.3. **Lema.** Se R denota o raio de convergência da série de potências (3.1) então para todo $r \in]0, R[$, a série (3.1) converge uniformemente no disco $\{z \in \mathbb{K} : |z-z_0| \leq r\}$.

Demonstração. Fazendo $z=z_0+r$ então $|z-z_0|< R$ e portanto a série (3.1) converge normalmente, i.e., $\sum_{n=0}^{\infty}\|a_n\|r^n<+\infty$. A convergência uniforme de (3.1) no disco em questão é obtida então do teste M de Weierstrass (Lema 3.2) fazendo $M_n=\|a_n\|r^n$.

- 3.4. Corolário. Se R denota o raio de convergência da série de potências (3.1) então a função $z \mapsto \sum_{n=0}^{\infty} a_n (z-z_0)^n \in E$ é contínua no disco aberto $\{z \in \mathbb{K} : |z-z_0| < R\}$.
- 3.5. **Lema** (diferenciação termo a termo). Sejam E', E espaços de Banach sobre \mathbb{K} , $U \subset E'$ um aberto convexo limitado e $(f_n)_{n\geq 1}$ uma seqüência de funções diferenciáveis $f_n: U \to E$, de modo que $(\mathrm{d}f_n)_{n\geq 1}$ converge uniformemente para uma função $g: U \to \mathrm{Lin}(E',E)$. Suponha que existe algum ponto $x_0 \in U$ para o qual a seqüencia $(f_n(x_0))_{n\geq 1}$ converge em E. Então $(f_n)_{n\geq 1}$ converge uniformemente para alguma função diferenciável $f: U \to E$ e $\mathrm{d}f = g$.

Demonstração. Sejam $x \in U, m, n \in \mathbb{N}$ fixados; como U é convexo, podemos aplicar a desigualdade do valor médio para a função $f_m - f_n$ no segmento $[x_0, x]$ obtendo:

$$\|(f_m(x) - f_n(x)) - (f_m(x_0) - f_n(x_0))\| \le \sup_{z \in [x_0, x]} \|df_m(z) - df_n(z)\| \|x - x_0\|.$$

Seja M>0 tal que $||x-x_0|| \leq M$ para todo $x\in U$. Como $(\mathrm{d}f_n)_{n\geq 1}$ é uniformemente convergente temos que, para todo $\varepsilon>0$, podemos encontrar $n_0\in\mathbb{N}$ tal que $\left\|\mathrm{d}f_m(z)-\mathrm{d}f_n(z)\right\|<\frac{\varepsilon}{2M}$ para todo $z\in U$ e todos $m,n\geq n_0$. Além do mais, como a seqüência $\left(f_n(x_0)\right)_{n\geq 1}$ é convergente em E, podemos supor também que $\left\|f_m(x_0)-f_n(x_0)\right\|<\frac{\varepsilon}{2}$ para todos $m,n\geq n_0$. Obtemos

então:

$$||f_m(x) - f_n(x)|| \le ||(f_m(x) - f_n(x)) - (f_m(x_0) - f_n(x_0))|| + ||f_m(x_0) - f_n(x_0)|| < \frac{\varepsilon}{2M}M + \frac{\varepsilon}{2} = \varepsilon,$$

para todo $x \in U$ e todos $m, n \ge n_0$. Mostramos então que a seqüência $(f_n)_{n\ge 1}$ é uniformemente de Cauchy e portanto converge uniformemente para uma função $f: U \to E$. Falta mostrar que f é diferenciável e que $\mathrm{d} f = g$. Fixe então $x \in U$ e vamos mostrar que f é diferenciável no ponto x e que $\mathrm{d} f(x) = g(x)$; para isso escrevemos:

$$f(x+h) = f(x) + g(x) \cdot h + r(h),$$

e tentamos mostrar que $\lim_{h\to 0} \frac{r(h)}{\|h\|} = 0$. Como f_n é diferenciável no ponto x, podemos escrever:

$$f_n(x+h) = f_n(x) + \mathrm{d}f_n(x) \cdot h + r_n(h),$$

com $\lim_{h\to 0} \frac{r_n(h)}{\|h\|} = 0$, para todo $n\in \mathbb{N}$. Como $f_n\to f$ e d $f_n\to g$ temos:

$$\lim_{n \to \infty} r_n(h) = r(h),$$

para todo $h \in E'$ com $x + h \in U$. Fixados $m, n \in \mathbb{N}$, considere a função $\phi: U \to E$ definida por:

$$\phi(z) = f_m(z) - f_n(z) - \mathrm{d}f_m(x) \cdot z + \mathrm{d}f_n(x) \cdot z, \quad z \in U \subset E';$$

para todo $h \in E'$ com $x + h \in U$ temos $\phi(x + h) - \phi(x) = r_m(h) - r_n(h)$ e aplicando a desigualdade do valor médio para ϕ no segmento $[x, x + h] \subset U$ obtemos:

$$||r_m(h) - r_n(h)|| \le \sup_{z \in [x, x+h]} ||d\phi(z)|| ||h||$$

$$= \sup_{z \in [x, x+h]} ||(df_m(z) - df_n(z)) - (df_m(x) - df_n(x))|| ||h||,$$

para todo $h \in E'$ com $x + h \in U$. Dado $\varepsilon > 0$, podemos encontrar $n_0 \in \mathbb{N}$ tal que $\|\mathrm{d} f_m(z) - \mathrm{d} f_n(z)\| < \frac{\varepsilon}{4}$ para todo $z \in U$ e todos $m, n \ge n_0$. Daí:

$$\left\| \left(\mathrm{d}f_m(z) - \mathrm{d}f_n(z) \right) - \left(\mathrm{d}f_m(x) - \mathrm{d}f_n(x) \right) \right\| \le \left\| \mathrm{d}f_m(z) - \mathrm{d}f_n(z) \right\|$$
$$+ \left\| \mathrm{d}f_m(x) - \mathrm{d}f_n(x) \right\| < \frac{\varepsilon}{2},$$

para todo $z \in U$ e portanto:

(3.4)
$$||r_m(h) - r_n(h)|| \le \frac{\varepsilon}{2} ||h||,$$

para todo $h \in E'$ com $x + h \in U$ e todos $m, n \ge n_0$. Fixando $h \in E'$, $n \ge n_0$ e fazendo $m \to +\infty$ em (3.4) obtemos (usando também (3.3)):

$$||r(h) - r_n(h)|| \le \frac{\varepsilon}{2} ||h||,$$

para todo $n \ge n_0$ e todo $h \in E'$ com $x + h \in U$. Fixe agora $n = n_0$; como $\lim_{h\to 0} \frac{r_n(h)}{\|h\|} = 0$, vemos que existe $\delta > 0$ tal que $\|h\| < \delta$ implica $\|r_n(h)\| \le \frac{\varepsilon}{2} \|h\|$. Daí $\|h\| < \delta$ implica:

$$||r(h)|| \le ||r(h) - r_n(h)|| + ||r_n(h)|| \le \frac{\varepsilon}{2}||h|| + \frac{\varepsilon}{2}||h|| = \varepsilon||h||.$$

Isso mostra que $\lim_{h\to 0} \frac{r(h)}{\|h\|} = 0$ e completa a demonstração.

3.6. Corolário. Sejam E', E espaços de Banach sobre \mathbb{K} , $U \subset E'$ um aberto e $(f_n)_{n\geq 1}$ uma seqüência de funções diferenciáveis $f_n: U \to E$ que converge pontualmente para uma função $f: U \to E$. Se $(\mathrm{d}f_n)_{n\geq 1}$ converge local-uniformemente⁴ para uma função $g: U \to \mathrm{Lin}(E', E)$ então f é diferenciável, $\mathrm{d}f = g$ e $f_n \to f$ local-uniformemente.

No que segue aplicamos o Corolário 3.6 no caso $E' = \mathbb{K}$; nesse caso, as diferenciais $\mathrm{d} f : U \to \mathrm{Lin}(\mathbb{K}, E)$ podem ser identificadas com as derivadas $f' : U \to E$ (veja Subseção 2.2 para o caso $\mathbb{K} = \mathbb{C}$).

3.7. **Proposição.** Suponha que a série de potências (3.1) tem raio de convergência positivo R. Então a função $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n \in E$ é de classe C^{∞} no disco aberto $\{z \in \mathbb{K} : |z-z_0| < R\}$; no caso $\mathbb{K} = \mathbb{C}$, a função f é holomorfa e possui todas as suas derivadas holomorfas nesse disco. A derivada de f é dada pela diferenciação formal termo a termo da série de potências (3.1):

(3.5)
$$f'(z) = \sum_{n=1}^{\infty} n a_n (z - z_0)^{n-1},$$

para todo $z \in \mathbb{K}$ com $|z - z_0| < R$.

Demonstração. O raio de convergência da série de potências que aparece do lado direito da igualdade em (3.5) é também igual a R. De fato, para todo $z \in \mathbb{K}$ esse série converge se e somente se a série $\sum_{n=1}^{\infty} na_n(z-z_0)^n$ converge; o raio de convergência dessa última é dado por:

$$\frac{1}{\limsup_{n \to \infty} \|na_n\|^{\frac{1}{n}}} = \frac{1}{\limsup_{n \to \infty} \|a_n\|^{\frac{1}{n}}} = R,$$

já que $n^{\frac{1}{n}} \to 1$. A função $f_n : \mathbb{K} \to E$ definida por:

$$f_n(z) = \sum_{k=0}^{n} a_k (z - z_0)^k, \quad z \in \mathbb{K},$$

é de classe C^1 (holomorfa, se $\mathbb{K}=\mathbb{C}$) e sua derivada é dada por:

$$f'_n(z) = \sum_{k=1}^n k a_k (z - z_0)^{k-1}, \quad z \in \mathbb{K}.$$

⁴Isso significa que todo ponto de U possui uma vizinhança onde $(\mathrm{d}f_n)_{n\geq 1}$ converge uniformemente.

Segue do Lema 3.3 que a seqüência $(f'_n)_{n\geq 1}$ converge local-uniformemente para a função:

$$g(z) = \sum_{n=1}^{\infty} na_n(z - z_0)^{n-1}, \quad |z - z_0| < R,$$

no disco $\{z \in \mathbb{K} : |z-z_0| < R\}$. Pelo Lema 3.5, a função f é diferenciável nesse disco e $\mathrm{d}f(z) \cdot v = g(z)v$, para todos $z,v \in \mathbb{K}$, com $|z-z_0| < R$. Note que a função g é contínua, pelo Corolário 3.4. Mostramos então que f é de classe C^1 (holomorfa, se $\mathbb{K} = \mathbb{C}$) e que sua derivada f' é dada por (3.5). Como f' é dada por uma série de potências com raio de convergência R, segue por indução que f é de classe C^{∞} e possui todas as suas derivadas holomorfas, no caso $\mathbb{K} = \mathbb{C}$.

3.8. **Definição.** Seja $z_0 \in \mathbb{K}$ e seja $f: U \to E$ uma função de classe C^{∞} definida numa vizinhança aberta U de z_0 em \mathbb{K} ; se $\mathbb{K} = \mathbb{C}$ supomos que f tem todas as suas derivadas holomorfas⁵ em U. A série de Taylor de f centrada no ponto z_0 é a série de potências:

$$\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(z_0) (z - z_0)^n,$$

onde $f^{(n)}$ denota a n-ésima derivada da função f e $f^{(0)} = f$.

No caso $\mathbb{K}=\mathbb{R}$, é perfeitamente possível que uma função de classe C^{∞} não seja igual à soma de sua série de Taylor centrada em z_0 em vizinhança alguma do ponto z_0 . No caso $\mathbb{K}=\mathbb{C}$, veremos adiante (Proposição 4.15) que toda função holomorfa é localmente dada pela soma de sua série de Taylor. No momento, podemos provar o seguinte:

3.9. Corolário (Taylor). Se a série de potências (3.1) tem raio de convergência positivo e se f é a função definida pela soma dessa série então:

$$a_n = \frac{1}{n!} f^{(n)}(z_0), \quad n = 0, 1, \dots;$$

em outras palavras, se f é dada pela soma de uma série de potências centrada no ponto z_0 então essa série coincide necessariamente com a série de Taylor de f centrada no ponto z_0 .

3.10. Corolário. Dadas seqüências $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$ em E, se a igualdade:

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n = \sum_{n=0}^{\infty} b_n (z - z_0)^n$$

é válida para todo z em uma vizinhança de z_0 em \mathbb{K} então $a_n = b_n$, para todo $n \geq 0$.

 $^{^5 \}mbox{Veremos}$ adiante (Lema 4.13) que uma função holomorfa tem todas as suas derivadas holomorfas.

4. Funções holomorfas num aberto de $\mathbb C$ tomando valores num espaço de Banach complexo

Nesta seção vamos estudar com mais profundidade a teoria de funções holomorfas $f:U\to E$, onde E é um espaço de Banach complexo e U é um aberto do plano complexo $\mathbb C$; esse estudo foi iniciado na Subseção 2.2. No que segue, E denotará sempre um espaço de Banach complexo fixado. Como na Subseção 2.2, identificamos $\mathbb C$ com $\mathbb R^2$ através do isomorfismo $\mathbb C \ni z=x+iy\mapsto (x,y)\in\mathbb R^2$; denotaremos por $\mathrm{d} x,\,\mathrm{d} y$ a base canônica de $\mathbb R^{2^*}\cong \mathrm{Lin}(\mathbb C,\mathbb R)$ e por $\mathrm{d} z,\,\mathrm{d} \bar z$ as 1-formas a valores complexos definidas por $\mathrm{d} z=\mathrm{d} x+i\,\mathrm{d} y,\,\mathrm{d} \bar z=\mathrm{d} x-i\,\mathrm{d} y.$ Se $f:U\to E$ é uma função contínua definida num subconjunto U de $\mathbb C$, estaremos interessados em integrais de linha da forma:

(4.1)
$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt,$$

onde $\gamma:[a,b]\to U$ é uma curva de classe C^1 por partes. Quando for conveniente, a integral de linha (4.1) será também denotada por $\int_{\gamma} f(w) \, \mathrm{d}w$, $\int_{\gamma} f(u) \, \mathrm{d}u$, etc.

Uma desigualdade simples que será útil em várias situações é a seguinte:

(4.2)
$$\left\| \int_{\gamma} f(z) \, \mathrm{d}z \right\| \le \sup_{z \in \mathrm{Im}(\gamma)} \|f(z)\| \cdot L(\gamma),$$

onde $\gamma:[a,b]\to U\subset\mathbb{C}$ é uma curva de classe C^1 por partes, $f:U\to E$ é uma função contínua e $L(\gamma)=\int_a^b\|\gamma'(t)\|\,\mathrm{d}t$ denota o comprimento de γ .

- 4.1. Observação. O seguinte fato segue facilmente da desigualdade (4.2): se $\gamma:[a,b]\to\mathbb{C}$ é uma curva de classe C^1 por partes e se $(f_n)_{n\geq 1}$ é uma seqüência de funções contínuas a valores em E que converge uniformemente na imagem de γ para uma função f então $\lim_{n\to\infty}\int_{\gamma}f_n(z)\,\mathrm{d}z=\int_{\gamma}f(z)\,\mathrm{d}z$.
- 4.2. Observação. Se $f:U\to E$ é uma função holomorfa num aberto U de $\mathbb C$ então:

$$\int_{\gamma} f'(z) dz \stackrel{(2.21)}{=} \int_{\gamma} df \stackrel{\text{Ex. 2.5}}{=} f(\gamma(b)) - f(\gamma(a)),$$

para toda curva $\gamma:[a,b]\to U$ de classe C^1 por partes.

Nos lemas abaixo, investigamos condições para que 1-formas do tipo $f\mathrm{d}z$ sejam fechadas ou exatas. As ferramentas desenvolvidas na Seção 2 nos fornecerão então ferramentas poderosas para o estudo de funções holomorfas no plano complexo.

4.3. **Lema.** Se $g:U\to E$ é uma função contínua num aberto U de $\mathbb C$ então a 1-forma $g\,\mathrm{d} z$ é exata se e somente se existe uma função holomorfa $f:U\to E$ tal que f'=g.

Demonstração. A 1-forma g dz = g dx + (ig) dy é exata se e somente se existe uma função $f: U \to E$ de classe C^1 tal que $\frac{\partial f}{\partial x} = g$ e $\frac{\partial f}{\partial y} = ig$. Mas isso é equivalente à condição de que f seja holomorfa e f' = g (veja (2.22)). \square

Se $g:U\to E$ é uma função contínua num aberto $U\subset\mathbb{C}$ e se $f:U\to E$ é uma função holomorfa com f'=g então dizemos que f é uma primitiva holomorfa para g. O Lema 4.3 nos diz então que g dz é exata se e somente se g admite uma primitiva holomorfa. Do Lema 4.3 e da Proposição 2.12 obtemos imediatamente o seguinte:

- 4.4. Corolário. Seja $g: U \to E$ uma função contínua definida num subconjunto aberto U de \mathbb{C} . As seguintes afirmações são equivalentes:
 - g admite uma primitiva holomorfa;
 - se γ é uma curva de classe C^1 por partes em U então a integral $\int_{\gamma} g(z) dz$ depende apenas das extremidades de γ ;
 - para toda curva fechada γ em U de classe C^1 por partes a integral $\int_{\gamma} g(z) dz$ é nula;
- se U é convexo então as afirmações acima são também equivalentes a:
 - a integral $\int_{\gamma} g(z) dz$ é nula para todo caminho triangular γ com vértices em U.
- 4.5. **Lema.** Se $f: U \to E$ é uma função de classe C^1 num aberto U de $\mathbb C$ então a 1-forma fdz é fechada se e somente se a função f é holomorfa.

Demonstração. Temos fdz = fdx + (if)dy e portanto a 1-forma fdz é fechada se e somente se:

$$\frac{\partial f}{\partial y} = \frac{\partial (if)}{\partial x},$$

ou seja, se e somente se $\frac{\partial f}{\partial y} = i \frac{\partial f}{\partial x}$. Mas essa é precisamente a condição para que f seja holomorfa (veja (2.18)).

Dos Lemas 4.3, 4.5, da Proposição 2.14 e dos Corolários 2.15 e 2.16 segue imediatamen
mte o seguinte:

- 4.6. Corolário. Se $f: U \to E$ é uma função holomorfa num aberto U de $\mathbb C$ então:
 - dadas curvas $\gamma, \mu : [a, b] \to U$ de classe C^1 por partes que são homotópicas em U como curvas fechadas ou com extremos fixos então $\int_{\gamma} f(z) dz = \int_{\mu} f(z) dz$;
 - se uma curva fechada $\gamma:[a,b]\to U$ de classe C^1 por partes é contrátil em U então $\int_{\gamma}f(z)\,\mathrm{d}z=0;$
 - se U é simplesmente conexo então f admite uma primitiva holomorfa. □

O segundo item do Corolário 4.6 é uma versão preliminar do Teorema de Cauchy; uma versão mais completa desse teorema será provada mais adiante nesta seção.

4.7. Exemplo. Vamos calcular o valor da integral

$$(4.3) \qquad \qquad \int_{\gamma} (z - z_0)^n \, \mathrm{d}z,$$

onde $z_0 \in \mathbb{C}$ é um ponto fixado, n é um número inteiro e $\gamma:[a,b] \to \mathbb{C}$ é uma curva fechada de classe C^1 por partes; se n < 0, supomos também que a curva γ não passa pelo ponto z_0 . Se $n \geq 0$ então a função $z \mapsto (z-z_0)^n$ é holomorfa em \mathbb{C} ; mas γ é obviamente contrátil em \mathbb{C} . Logo a integral (4.3) é nula (Corolário 4.6). Se $n \leq -1$ então a função $z \mapsto (z-z_0)^n$ não é holomorfa em \mathbb{C} , mas apenas em $\mathbb{C} \setminus \{z_0\}$; é perfeitamente possível que a curva γ não seja contrátil em $\mathbb{C} \setminus \{z_0\}$. Por outro lado, se $n \leq -2$ então $z \mapsto \frac{1}{n+1}(z-z_0)^{n+1}$ é uma primitiva holomorfa para $z \mapsto (z-z_0)^n$ e portanto concluímos novamente que a integral (4.3) é nula (Corolário 4.4). Resta considerar o caso n = -1. Esse caso é tratado no Lema 4.8 a seguir.

4.8. **Lema.** Se $\gamma:[a,b] \to \mathbb{C}$ é uma curva fechada de classe C^1 por partes que não passa por um certo ponto $z_0 \in \mathbb{C}$ então:

$$\frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}z}{z - z_0} = \operatorname{ind}(\gamma, z_0).$$

Demonstração. Seja $\theta:[a,b] \to \mathbb{R}$ uma função ângulo para a curva $\gamma-z_0$ (Lema 1.10); pelo Corolário 1.9, a função θ é de classe C^1 por partes. Se definimos:

$$\phi(t) = \ln |\gamma(t) - z_0| + i \theta(t), \quad t \in [a, b],$$

então $\phi: [a, b] \to \mathbb{C}$ é uma função de classe C^1 por partes e $z_0 + e^{\phi(t)} = \gamma(t)$, para todo $t \in [a, b]$. Logo:

$$\int_{\gamma} \frac{dz}{z - z_0} = \int_a^b \frac{\gamma'(t)}{\gamma(t) - z_0} dt = \int_a^b \frac{\phi'(t)e^{\phi(t)}}{e^{\phi(t)}} dt = \phi(b) - \phi(a).$$

Como $\phi(a)$ e $\phi(b)$ tem a mesma parte real, segue que:

$$\phi(b) - \phi(a) = i\theta(b) - i\theta(a) = (2\pi i)\operatorname{ind}(\gamma - z_0) = (2\pi i)\operatorname{ind}(\gamma, z_0). \quad \Box$$

- 4.9. **Notação.** Dado um ponto $z_0 \in \mathbb{C}$ e um escalar positivo r > 0 então denotamos por $\mathrm{B}(z_0,r)$ o disco aberto $\left\{z \in \mathbb{C}: |z-z_0| < r\right\}$ e por $\mathrm{B}[z_0,r]$ o disco fechado $\left\{z \in \mathbb{C}: |z-z_0| \le r\right\}$. Escreveremos $\int_{|z-z_0|=r} f(z) \,\mathrm{d}z$ para denotar a integral de $f\mathrm{d}z$ ao longo da curva $[0,2\pi] \ni t \mapsto z_0 + re^{it} \in \mathbb{C}$ cuja imagem é o círculo $\left\{z \in \mathbb{C}: |z-z_0|=r\right\}$.
- 4.10. **Lema** (fórmula integral de Cauchy primeira versão). Seja $f: U \to E$ uma função holomorfa num aberto $U \subset \mathbb{C}$. Se um disco fechado $B[z_0, R]$ está contido em U então vale a igualdade:

$$f(z) = \frac{1}{2\pi i} \int_{|w-z_0|=R} \frac{f(w)}{w-z} dw,$$

para todo z no disco aberto $B(z_0, R)$.

Demonstração. O círculo $|w-z_0|=R$ tem índice 1 em torno do ponto z_0 e portanto tem também índice 1 em torno de qualquer outro ponto z do disco aberto $B(z_0, R)$ (Corolário 1.20). Em vista do Lema 4.8 temos:

$$f(z) = \frac{1}{2\pi i} \int_{|w-z_0|=R} \frac{f(z)}{w-z} dw.$$

Para concluir a demonstração, é suficiente verificar que:

$$\int_{|w-z_0|=R} \frac{f(w) - f(z)}{w - z} \, \mathrm{d}w = 0,$$

para todo $z \in \mathrm{B}(z_0,R)$. Seja então $z \in \mathrm{B}(z_0,R)$ fixado e seja r>0 pequeno o suficiente tal que o disco $\mathrm{B}[z,r]$ esteja contido no disco $\mathrm{B}[z_0,R]$. Temos que os círculos $|w-z_0|=R$ e |w-z|=r tem ambos índice 1 em torno do ponto z; segue do Lema 1.22 que $|w-z_0|=R$ e |w-z|=r são homotópicos como curvas fechadas em $\mathrm{B}[z_0,R]\setminus\{z\}$ (e portanto também em $U\setminus\{z\}$). Como a função $w\mapsto \frac{f(w)-f(z)}{w-z}$ é holomorfa em $U\setminus\{z\}$, segue do Corolário 4.6 que:

(4.4)
$$\int_{|w-z_0|=R} \frac{f(w) - f(z)}{w - z} dw = \int_{|w-z|=r} \frac{f(w) - f(z)}{w - z} dw,$$

para todo r > 0 pequeno o suficiente para que $B[z, r] \subset B[z_0, R]$. Como a integral do lado direito da igualdade em (4.4) é independente de r para r > 0 suficientemente pequeno, a demonstração ficará concluída se mostrarmos que:

$$\lim_{r \to 0} \int_{|w-z|=r} \frac{f(w) - f(z)}{w - z} \, \mathrm{d}w = 0.$$

Como $\lim_{w\to z} \frac{f(w)-f(z)}{w-z} = f'(z)$, temos que:

$$\left\| \frac{f(w) - f(z)}{w - z} \right\| \le \|f'(z)\| + 1,$$

para w suficientemente próximo de z; logo:

$$\left\| \int_{|w-z|=r} \frac{f(w) - f(z)}{w - z} \, \mathrm{d}w \right\| \stackrel{(4.2)}{\leq} (\|f'(z)\| + 1) (2\pi r),$$

para todo r > 0 suficientemente pequeno. A conclusão segue.

Enunciamos a seguinte adaptação do Lema 2.8 para integrais da forma $\int_{\gamma} f(z) dz$.

4.11. **Lema.** Seja $f: U \times X \to E$ uma função contínua, onde U é um subconjunto de \mathbb{C} e X é um espaço topológico. Se $\gamma: [a,b] \to U$ é uma curva de classe C^1 por partes então a função $X \ni x \mapsto \int_{\gamma} f(z,x) dz \in E$ é contínua.

Demonstração. A curva γ pode ser escrita como uma justaposição de um número finito de curvas de classe C^1 ; podemos supor então sem perda de generalidade que γ é de classe C^1 . Nesse caso temos:

$$\int_{\gamma} f(z, x) dz = \int_{a}^{b} f(\gamma(t), x) \gamma'(t) dt,$$

e o integrando do lado direito da igualdade acima satisfaz as hipóteses do Lema 2.8. A conclusão segue.

Enunciamos agora um critério de derivação sob o sinal de integral que é conveniente para nossos presentes propósitos.

4.12. Lema. $Seja \ \gamma : [a,b] \rightarrow A \ uma \ curva \ de \ classe \ C^1 \ por \ partes \ e \ seja$ $f: A \times U \rightarrow E$ uma função contínua, onde A é um subconjunto arbitrário de \mathbb{C} e U é um subconjunto aberto de \mathbb{C} . Suponha que para todo $w \in A$ a função $U \ni z \mapsto f(w,z) \in E$ é holomorfa e que a função $\frac{\partial f}{\partial z} : A \times U \to E$ é contínua. Então a função $g : U \ni z \mapsto \int_{\gamma} f(w,z) \, \mathrm{d}w \in E$ é holomorfa e sua derivada é dada por:

$$g'(z) = \int_{\gamma} \frac{\partial f}{\partial z}(w, z) \, \mathrm{d}w \in E,$$

para todo $z \in U$.

Demonstração. A curva γ pode ser escrita como uma justaposição de um número finito de curvas de classe C^1 ; podemos supor então sem perda de generalidade que γ é de classe C^1 . Nesse caso temos:

$$g(z) = \int_a^b f(\gamma(t), z) \gamma'(t) dt, \quad z \in U,$$

e o integrando acima satisfaz as hipóteses do Lema 2.20. A conclusão segue.

4.13. Lema (fórmula integral de Cauchy para derivadas). Seja $f: U \to E$ uma função holomorfa num aberto $U \subset \mathbb{C}$. Então f é de classe C^{∞} e todas as suas derivadas $f^{(n)}: U \to E, n \geq 1$, são holomorfas. Além do mais, se um disco fechado $B[z_0, R]$ está contido em U então vale a igualdade:

(4.5)
$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{|w-z_0|=R} \frac{f(w)}{(w-z)^{n+1}} dw,$$

para todo z no disco aberto $B(z_0,R)$ e todo $n \geq 0$ (onde $f^{(0)} = f$, por convenção).

Demonstração. A fórmula (4.5) segue por indução em n, usando a fórmula integral de Cauchy (Lema 4.10) e o Lema 4.12 sobre derivação sob o sinal de integral. Segue então que f é de classe C^{∞} e que todas as suas derivadas são holomorfas.

4.14. Corolário (Morera). Se $f: U \to E$ é uma função contínua num aberto $U \subset \mathbb{C}$ e se a integral $\int_{\gamma} f(z) dz$ é nula para todo caminho triangular γ com vértices em U então f é holomorfa.

Demonstração. Como a tese do corolário é local, podemos supor sem perda de generalidade que U é uma bola aberta. Daí o Corolário 4.4 implica que f possui uma primitiva holomorfa; portanto, o Lema 4.13 implica que a função f também deve ser holomorfa.

4.15. **Proposição** (desenvolvimento em série). Seja $f: U \to E$ uma função holomorfa num aberto $U \subset \mathbb{C}$. Se um disco aberto $B(z_0, R)$ está contido em U então para todo $z \in B(z_0, R)$ vale a igualdade:

(4.6)
$$f(z) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(z_0) (z - z_0)^n.$$

Recorde que a série de potências que aparece do lado direito da igualdade em (4.6) é chamada a série de Taylor de f centrada no ponto z_0 (Definição 3.8). Observe que, pelo Corolário 3.9, se f é dada por uma série de potências $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ numa vizinhança de z_0 então necessariamente os coeficientes a_n coincidem com os coeficientes da série de Taylor de f centrada em z_0 .

Demonstração da Proposição 4.15. Seja $z \in B(z_0, R)$ fixado e seja r tal que $|z - z_0| < r < R$. Pela fórmula integral de Cauchy (Lema 4.10), temos:

$$f(z) = \frac{1}{2\pi i} \int_{|w-z_0|=r} \frac{f(w)}{w-z} dw.$$

Fixado w no círculo $|w-z_0|=r$ então o integrando acima pode ser desenvolvido em série da seguinte forma:

$$\frac{f(w)}{w-z} = \frac{f(w)}{(w-z_0) - (z-z_0)} = \frac{f(w)}{w-z_0} \frac{1}{1 - \frac{z-z_0}{w-z_0}} = \frac{f(w)}{w-z_0} \sum_{n=0}^{\infty} \left(\frac{z-z_0}{w-z_0}\right)^n;$$

a convergência da progressão geométrica acima é justificada pelo fato que $\left|\frac{z-z_0}{w-z_0}\right|=\frac{1}{r}|z-z_0|<1$. Concluímos então que:

(4.7)
$$\frac{f(w)}{w-z} = \sum_{n=0}^{\infty} \frac{f(w)}{(w-z_0)^{n+1}} (z-z_0)^n,$$

para todo w no círculo $|w-z_0|=r$. Vamos mostrar que a série do lado direito da igualdade em (4.7) converge uniformemente em w no disco $|w-z_0|=r$ (onde $z\in \mathrm{B}(z_0,r)$) é fixado). Se $M=\sup_{|w-z_0|=r}\|f(w)\|<+\infty$ então:

$$\left\| \frac{f(w)}{(w-z_0)^{n+1}} (z-z_0)^n \right\| \le \frac{M}{r} \left(\frac{|z-z_0|}{r} \right)^n;$$

como $\sum_{n=0}^{\infty} \left(\frac{|z-z_0|}{r}\right)^n < +\infty$, segue do teste M de Weierstrass (Lema 3.2) que a série em questão converge uniformemente. Podemos então integrar essa

série termo a termo no disco $|w-z_0|=r$ (veja Observação 4.1) obtendo:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

onde:

$$a_n = \frac{1}{2\pi i} \int_{|w-z_0|=r} \frac{f(w)}{(w-z_0)^{n+1}} dw, \quad n \ge 0.$$

Do Lema 4.13 segue que $a_n = \frac{1}{n!} f^{(n)}(z_0)$, provando (4.6).

4.16. Corolário. Se $f: U \to E$ é holomorfa num aberto $U \subset \mathbb{C}$ que contém um ponto z_0 então o raio de convergência da série de Taylor de f centrada no ponto z_0 é maior ou igual à distância do ponto z_0 ao complementar de U. Se $U = \mathbb{C}$ então a série de Taylor de f centrada em qualquer ponto $z_0 \in \mathbb{C}$ tem raio de convergência $+\infty$ e converge para f em todo o plano complexo.

4.17. **Corolário.** Se $f, g: U \to E$ são funções holomorfas num aberto conexo $U \subset \mathbb{C}$ e se existe $z_0 \in U$ tal que $f^{(n)}(z_0) = g^{(n)}(z_0)$ para todo $n \geq 0$ então f = g.

Demonstração. O conjunto:

$$\left\{z\in U: f^{(n)}(z)=g^{(n)}(z),\, \text{para todo } n\geq 0\right\}$$

é claramente fechado em U. A Proposição 4.15 implica que esse conjunto também é aberto. Pela nossa hipótese, o conjunto é não vazio e portanto deve coincidir com todo o conjunto U, já que U é conexo. \square

4.18. Corolário. Se $f,g:U\to E$ são funções holomorfas num aberto conexo $U\subset\mathbb{C}$ e se o conjunto:

$$\{z \in U : f(z) = g(z)\}$$

tem algum ponto de acumulação em U então f = g.

Demonstração. Seja h = f - g e seja $z_0 \in U$ um ponto de acumulação de $h^{-1}(0)$. Se h fosse não nula, existiria $k \in \mathbb{N}$ tal que $h^{(k)}(z_0) \neq 0$ (Corolário 4.17). Seja k o menor número natural tal que $h^{(k)}(z_0) \neq 0$. Daí, pela Proposição 4.15, temos $h(z) = (z - z_0)^k h_0(z)$, onde h_0 é a função holomorfa definida numa vizinhança de z_0 pela série (veja Proposição 3.7):

$$h_0(z) = \sum_{n=k}^{\infty} \frac{h^{(n)}(z_0)}{n!} (z - z_0)^{n-k}.$$

Como $h_0(z_0) \neq 0$, temos que h_0 é não nula numa vizinhança de z_0 ; logo z_0 é um zero isolado de h, contradizendo o fato que z_0 é um ponto de acumulação de $h^{-1}(0)$.

Uma função inteira a valores em E é uma função holomorfa $f: \mathbb{C} \to E$ cujo domínio é todo o plano complexo \mathbb{C} .

4.19. **Teorema** (Liouville). Toda função inteira limitada $f: \mathbb{C} \to E$ é constante.

Demonstração. Pela fórmula integral de Cauchy para derivadas (Lema 4.13), temos:

$$f^{(n)}(0) = \frac{n!}{2\pi i} \int_{|z|=R} \frac{f(z)}{z^{n+1}} dz,$$

para todo R>0. Seja $M=\sup_{z\in\mathbb{C}}\|f(z)\|.$ Usando a desigualdade (4.2), obtemos:

$$||f^{(n)}(0)|| \le n! \frac{M}{R^n},$$

para todo R > 0. Fazendo $R \to +\infty$, concluímos que $f^{(n)}(0) = 0$, para todo $n \ge 1$. Segue da fórmula de Taylor (Proposição 4.15) que f é constante. \square

- 4.20. **Teorema** (da singularidade removível). Sejam $U \subset \mathbb{C}$ um aberto, z_0 um ponto de U e $f: U \setminus \{z_0\} \to E$ uma função holomorfa. Se f é limitada em alguma vizinhança de z_0 então:
 - $o \ limite \ \lim_{z\to z_0} f(z) \ existe \ em \ E;$
 - definindo $f(z_0) = \lim_{z \to z_0} f(z)$ então f torna-se holomorfa em U.

Demonstração. Tratamos primeiro o caso em que $\lim_{z\to z_0} f(z) = 0$. Daí, definindo $f(z_0) = 0$, a função $f: U \to E$ torna-se contínua. Para mostrar que f é holomorfa, usamos o Teorema de Morera (Corolário 4.14). Seja B uma bola aberta de centro z_0 contida em U. É suficiente mostrar que $f|_B$ é holomorfa; para isso, mostramos que a integral $\int_{\gamma} f(z) dz$ é nula, para todo caminho triangular γ com vértices em B. Dados $z_1, z_2, z_3 \in B$ então:

$$\int_{\Delta(z_1, z_2, z_3)} f(z) dz = \int_{\Delta(z_0, z_1, z_2)} f(z) dz + \int_{\Delta(z_0, z_2, z_3)} f(z) dz + \int_{\Delta(z_0, z_3, z_1)} f(z) dz.$$

È portanto suficiente mostrar que:

(4.8)
$$\int_{\Delta(z_0, z_1, z_2)} f(z) \, \mathrm{d}z = 0,$$

para todos $z_1, z_2 \in B$. A integral em (4.8) é automaticamente nula se os pontos z_0, z_1, z_2 são colineares; suponhamos então que eles não o sejam. Dado $\varepsilon \in [0, 1]$ consideramos os pontos:

$$z_1^{\varepsilon} = z_0 + \varepsilon(z_1 - z_0) \in [z_0, z_1], \quad z_2^{\varepsilon} = z_0 + \varepsilon(z_2 - z_0) \in [z_0, z_2].$$

Seja Q a envoltória convexa do conjunto $\{z_1^{\varepsilon}, z_2^{\varepsilon}, z_1, z_2\}$; denotamos por ∂Q a curva obtida pela concatenação dos caminhos retilíneos $[z_1^{\varepsilon}, z_1], [z_1, z_2], [z_2, z_2^{\varepsilon}]$ e $[z_2^{\varepsilon}, z_1^{\varepsilon}]$. Temos:

$$\int_{\Delta(z_0, z_1, z_2)} f(z) dz = \int_{\Delta(z_0, z_1^{\varepsilon}, z_2^{\varepsilon})} f(z) dz + \int_{\partial Q} f(z) dz.$$

Seja $\mathfrak r$ a reta determinada pelos pontos z_1^{ε} e z_2^{ε} ; os pontos z_1^{ε} , z_2^{ε} , z_1 , z_2 estão todos no semi-plano fechado determinado por $\mathfrak r$ que não contém o ponto z_0 . Isso mostra que $z_0 \not\in Q$ e portanto $Q \subset B \setminus \{z_0\}$; logo a curva ∂Q é contrátil em $B \setminus \{z_0\}$. Como f é holomorfa em $B \setminus \{z_0\}$, o Corolário 4.6 implica que $\int_{\partial O} f(z) \, \mathrm{d}z = 0$; logo:

$$\int_{\Delta(z_0, z_1, z_2)} f(z) \, \mathrm{d}z = \int_{\Delta(z_0, z_1^{\varepsilon}, z_2^{\varepsilon})} f(z) \, \mathrm{d}z,$$

para todo $\varepsilon \in]0,1]$. Como f tem limite zero em z_0 e como o comprimento do caminho triangular $\Delta(z_0, z_1^{\varepsilon}, z_2^{\varepsilon})$ tende a zero quando $\varepsilon \to 0$, segue da desigualdade (4.2) que:

$$\lim_{\varepsilon \to 0} \int_{\Delta(z_0, z_1^{\varepsilon}, z_2^{\varepsilon})} f(z) \, \mathrm{d}z = 0.$$

Concluímos então que $\int_{\Delta(z_0,z_1,z_2)} f(z) dz = 0$, o que completa a demonstração do primeiro caso.

Tratemos agora o caso geral. Defina $g:U\setminus\{z_0\}\to E$ fazendo

$$g(z) = f(z)(z - z_0),$$

para todo $z \in U \setminus \{z_0\}$. Como f é limitada numa vizinhança de z_0 , temos que $\lim_{z\to z_0} g(z) = 0$ e portanto, definindo $g(z_0) = 0$, concluímos do primeiro caso que g é holomorfa em U. Segue da fórmula de Taylor (Proposição 4.15) que:

$$f(z) = \sum_{n=1}^{\infty} \frac{g^{(n)}(z_0)}{n!} (z - z_0)^{n-1},$$

para $z \neq z_0$ numa vizinhança de z_0 . A Proposição 3.7 implica então que:

$$\lim_{z \to z_0} f(z) = g'(z_0)$$

e que a função obtida definindo $f(z_0) = g'(z_0)$ é holomorfa numa vizinhança de z_0 .

4.21. **Teorema** (Goursat). Seja $f: U \to E$ uma função definida num aberto $U \subset \mathbb{C}$. Se para todo $z_0 \in U$ o limite $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$ existe em E então f é holomorfa.

Demonstração. É suficiente mostrar que $f|_B$ é holomorfa, para toda bola aberta B contida em U. Para isso, usaremos o Teorema de Morera (Corolário 4.14). Dados pontos $z_1, z_2, z_3 \in B$, denotaremos por $T(z_1, z_2, z_3)$ o triângulo de vértices z_1, z_2, z_3 , i.e., a envoltória convexa do conjunto $\{z_1, z_2, z_3\}$; escreveremos $\partial T(z_1, z_2, z_3)$ para denotar o caminho triangular $\Delta(z_1, z_2, z_3)$.

Sejam então $z_1, z_2, z_3 \in B$ pontos fixados e seja $T_0 = T(z_1, z_2, z_3)$; devemos mostrar que $\int_{\partial T_0} f(z) dz = 0$. Sejam:

$$T_0^{(a)} = T(z_1, z_{12}, z_{13}), \quad T_0^{(b)} = T(z_{12}, z_2, z_{23}),$$

 $T_0^{(c)} = T(z_{13}, z_{23}, z_{3}), \quad T_0^{(d)} = T(z_{12}, z_{23}, z_{13}),$

onde $z_{12} = \frac{1}{2}(z_1 + z_2)$, $z_{23} = \frac{1}{2}(z_2 + z_3)$ e $z_{13} = \frac{1}{2}(z_1 + z_3)$. É fácil ver que:

(4.9)
$$\int_{\partial T_0} f(z) dz = \int_{\partial T_0^{(a)}} f(z) dz + \int_{\partial T_0^{(b)}} f(z) dz + \int_{\partial T_0^{(c)}} f(z) dz + \int_{\partial T_0^{(d)}} f(z) dz.$$

Seja $T_1 \in \{T_0^{(a)}, T_0^{(b)}, T_0^{(c)}, T_0^{(d)}\}$ tal que a norma de $\int_{\partial T_1} f(z) dz$ é igual ao máximo das normas das quatro integrais que aparecem do lado direito da igualdade (4.9). Daí:

$$\left\| \int_{\partial T_0} f(z) \, \mathrm{d}z \right\| \le 4 \left\| \int_{\partial T_1} f(z) \, \mathrm{d}z \right\|;$$

além do mais:

$$L(\partial T_1) = \frac{1}{2} L(\partial T_0), \quad \operatorname{diam}(T_1) = \frac{1}{2} \operatorname{diam}(T_0), \quad T_1 \subset T_0,$$

onde diam (\cdot) denota o diâmetro de um conjunto. Repetindo sobre T_1 a construção que produziu o triângulo T_1 a partir do triângulo T_0 , obtemos um triângulo T_2 . Prosseguindo indutivamente, obtemos uma seqüência $(T_n)_{n\geq 0}$ de triângulos tal que:

$$\left\| \int_{\partial T_n} f(z) \, \mathrm{d}z \right\| \le 4 \left\| \int_{\partial T_{n+1}} f(z) \, \mathrm{d}z \right\|,$$

$$L(\partial T_{n+1}) = \frac{1}{2} L(\partial T_n), \quad \operatorname{diam}(T_{n+1}) = \frac{1}{2} \operatorname{diam}(T_n), \quad T_{n+1} \subset T_n,$$

para todo $n \ge 0$. Daí:

(4.11)
$$L(\partial T_n) = \frac{1}{2^n} L(\partial T_0), \quad \operatorname{diam}(T_n) = \frac{1}{2^n} \operatorname{diam}(T_0),$$

para todo $n \ge 0$. Como $(T_n)_{n\ge 0}$ é uma seqüêcia decrescente de compactos não vazios, existe um ponto $z_0 \in \bigcap_{n=0}^{\infty} T_n$. Por hipótese, o limite:

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

existe. Temos:

(4.12)
$$\int_{\partial T_n} f(z) dz = \int_{\partial T_n} [f(z) - f(z_0) - f'(z_0)(z - z_0)] dz,$$

já que a função $z\mapsto f(z_0)+f'(z_0)(z-z_0)$ é holomorfa em $\mathbb C$ e portanto tem integral nula em qualquer curva fechada. Para todo $\varepsilon>0$, existe $\delta>0$ tal que:

$$(4.13) ||f(z) - f(z_0) - f'(z_0)(z - z_0)|| \le \varepsilon |z - z_0|,$$

para todo z com $|z - z_0| < \delta$. Seja n grande o suficiente para que T_n tenha diâmetro menor que δ ; daí (4.12) e (4.13) nos dão:

$$\left\| \int_{\partial T_n} f(z) \, \mathrm{d}z \right\| \stackrel{(4.2)}{\leq} \varepsilon L(\partial T_n) \sup_{z \in T_n} |z - z_0| \leq \varepsilon L(\partial T_n) \, \mathrm{diam}(T_n).$$

De (4.10) e (4.11) vem:

$$\left\| \int_{\partial T_0} f(z) \, \mathrm{d}z \right\| \le \varepsilon L(\partial T_0) \, \mathrm{diam}(T_0).$$

Como $\varepsilon > 0$ é arbitrário, concluímos que $\int_{\partial T_0} f(z) dz = 0$.

A fórmula integral de Cauchy nos permite demonstrar teoremas melhores do aqueles apresentados até agora para derivação sob o sinal de integral. O leitor não interessado em integral de Bochner pode ignorar o Lema 4.22 abaixo e considerar apenas o Lema 4.23 e seus corolários.

4.22. **Lema.** Seja $(\Omega, \mathcal{A}, \mu)$ um espaço de medida completo, U um aberto de \mathbb{C} e $f: \Omega \times U \to E$ uma função tal que:

- para todo $z \in U$, a aplicação $\Omega \ni \vartheta \mapsto f(\vartheta, z) \in E$ é Bochner integrável;
- para todo $\vartheta \in \Omega$, a aplicação $U \ni z \mapsto f(\vartheta, z) \in E$ é holomorfa;
- para todo $z_0 \in U$ existe uma função integrável $\phi : \Omega \to [0, +\infty]$ e uma vizinhança V de z_0 em U tal que $||f(\vartheta, z)|| \le \phi(\vartheta)$, para todos $\vartheta \in \Omega$ e todos $z \in V$ com $z \ne z_0$.

Então para todo $z \in U$ a aplicação $\Omega \ni \vartheta \mapsto \frac{\partial f}{\partial z}(\vartheta, z) \in E$ é Bochner integrável, a aplicação $g: U \ni z \mapsto \int_{\Omega} f(\vartheta, z) \, \mathrm{d}\mu(\vartheta) \in E$ é holomorfa e a derivada de g é dada por:

$$g'(z) = \int_{\Omega} \frac{\partial f}{\partial z}(\vartheta, z) \, \mathrm{d}\mu(\vartheta) \in E,$$

para todo $z \in U$.

Demonstração. Vamos usar a fórmula integral de Cauchy para mostrar que f satisfaz as hipóteses do Lema 2.19. Seja $z_0 \in U$ fixado e sejam V e ϕ como no enunciado do lema. Seja R > 0 tal que o disco fechado $B[z_0, R]$ está contido em V. O Lema 4.13 nos dá:

$$\frac{\partial f}{\partial z}(\vartheta,z) = \frac{1}{2\pi i} \int_{|w-z_0|=R} \frac{f(\vartheta,w)}{(w-z)^2} \,\mathrm{d}w,$$

para todo $z \in B(z_0, R)$ e todo $\vartheta \in \Omega$. Se $z \in B\left[z_0, \frac{R}{2}\right]$ então, para todo w no círculo $|w - z_0| = R$, temos $|w - z| \ge \frac{R}{2}$ e portanto:

$$\left\| \frac{f(\vartheta, w)}{(w - z)^2} \right\| \le 4 \frac{\phi(\vartheta)}{R^2}.$$

Daí:

$$\left\| \frac{\partial f}{\partial z}(\vartheta, z) \right\| \stackrel{(4.2)}{\leq} 4 \frac{\phi(\vartheta)}{R},$$

para todo $z \in B\left[z_0, \frac{R}{2}\right]$ e todo $\vartheta \in \Omega$. A conclusão segue.

4.23. **Lema.** Seja $f: U \times X \to E$ uma função contínua, onde U é um aberto de \mathbb{C} e X é um espaço topológico. Se para todo $x \in X$ a função $U \ni z \mapsto f(z,x) \in E$ é holomorfa então a função $\frac{\partial f}{\partial z}: U \times X \to E$ é contínua.

Demonstração. Seja $B[z_0,R]$ um disco fechado contido em U. Pelo Lema 4.13, temos:

$$f(z,x) = \frac{1}{2\pi i} \int_{|w-z_0|=R} \frac{f(w,x)}{(w-z)^2} dw,$$

para todo $z \in B(z_0, R)$ e todo $x \in X$. Segue do Lema 4.11 que a restrição de f a $B(z_0, R) \times X$ é contínua. Como $z_0 \in U$ é arbitrário, a conclusão segue.

4.24. **Corolário.** Seja $f:[a,b] \times U \to E$ uma função contínua, onde U é um aberto de \mathbb{C} . Suponha que para todo $t \in [a,b]$ a função $U \ni z \mapsto f(t,z) \in E$ é holomorfa. Então a função $\frac{\partial f}{\partial z}:[a,b] \times U \to E$ é contínua, a função $g:U \ni z \mapsto \int_a^b f(t,z) \, \mathrm{d}t \in E$ é holomorfa e sua derivada é dada por:

$$g'(z) = \int_a^b \frac{\partial f}{\partial z}(t, z) dt \in E,$$

para todo $z \in U$.

Demonstração. Segue dos Lemas 4.23 e 2.20.

4.25. **Corolário.** Seja $\gamma:[a,b] \to A$ uma curva de classe C^1 por partes e seja $f:A\times U\to E$ uma função contínua, onde A é um subconjunto arbitrário de $\mathbb C$ e U é um subconjunto aberto de $\mathbb C$. Suponha que para todo $w\in A$ a função $U\ni z\mapsto f(w,z)\in E$ é holomorfa. Então a função $\frac{\partial f}{\partial z}:A\times U\to E$ é contínua, a função $g:U\ni z\mapsto \int_{\gamma}f(w,z)\,\mathrm{d}w\in E$ é holomorfa e sua derivada é dada por:

$$g'(z) = \int_{\gamma} \frac{\partial f}{\partial z}(w, z) \, \mathrm{d}w \in E,$$

para todo $z \in U$.

Demonstração. Segue dos Lemas 4.23 e 4.12.

5. O TEOREMA DE CAUCHY

Se $f:U\to E$ é uma função holomorfa definida num aberto $U\subset\mathbb{C}$ tomando valores num espaço de Banach complexo E e se $\gamma:[a,b]\to U$ é uma curva fechada de classe C^1 por partes que é contrátil em U então $\int_{\gamma} f(z)\,\mathrm{d}z=0$ (Corolário 4.6). No entanto, como se vê no Exemplo 5.1 a seguir, não é necessário que γ seja contrátil em U para que a integral $\int_{\mathbb{C}} f(z)\,\mathrm{d}z$ seja nula, para toda função holomorfa $f:U\to E$.

5.1. **Exemplo.** Sejam $p,q \in \mathbb{C}$ dois pontos distintos e seja $U = \mathbb{C} \setminus \{p,q\}$. Sejam γ , μ curvas de classe C^1 por partes em U tais que $\gamma(a) = \gamma(b) = \mu(a) = \mu(b)$ e tais que $\operatorname{ind}(\gamma,p) = \operatorname{ind}(\mu,q) = 1$ e $\operatorname{ind}(\gamma,q) = \operatorname{ind}(\mu,p) = 0$. É possível mostrar que a curva $\lambda = \gamma \cdot \mu \cdot \gamma^{-1} \cdot \mu^{-1}$ não é contrátil em U. No entanto, se $f: U \to E$ é uma função holomorfa arbitrária então:

$$\int_{\lambda} f(z) dz = \int_{\gamma} f(z) dz + \int_{\mu} f(z) dz - \int_{\gamma} f(z) dz - \int_{\mu} f(z) dz = 0.$$

Ocorre que a curva λ que aparece no Exemplo 5.1 é homologicamente nula (no sentido de homologia singular) em U; isso garante a nulidade da integral $\int_{\lambda} \omega$, para toda 1-forma fechada ω em U. Usando técnicas de topologia algébrica é possível mostrar que se U é um aberto de $\mathbb C$ e se $\gamma:[a,b]\to U$ é uma curva contínua fechada tal que $\operatorname{ind}(\gamma,p)=0$ para todo $p\in\mathbb C\setminus U$ então γ é homologicamente nula e portanto, se γ é de classe C^1 por partes, temos que $\int_{\gamma} \omega=0$, para toda 1-forma fechada ω em U. Nesta seção nós mostraremos que $\int_{\gamma} f(z) \, \mathrm{d}z=0$, para toda função holomorfa $f:U\to E$, desde que $\operatorname{ind}(\gamma,p)=0$, para todo $p\in\mathbb C\setminus U$.

A discussão acima tem apenas um papel de motivação. Nenhum resultado de topologia algébrica ou qualquer conceito ligado à teoria de homologia será usado no restante desta seção.

Para enunciar o Teorema de Cauchy em sua versão mais geral, precisamos da seguinte:

5.2. **Definição.** Uma cadeia de curvas fechadas em \mathbb{C} é uma seqüência finita $\gamma = (\gamma_1, \dots, \gamma_n)$, onde cada $\gamma_j : [a_j, b_j] \to \mathbb{C}$ é uma curva contínua e fechada. Dizemos que a cadeia γ é de classe C^k (resp., de classe C^k por partes) se cada curva γ_j é de classe C^k (resp., de classe C^k por partes). A imagem da cadeia γ é o conjunto:

$$\operatorname{Im}(\gamma) = \bigcup_{j=1}^{n} \operatorname{Im}(\gamma_{j}).$$

Se a imagem de γ está contida num subconjunto U de \mathbb{C} , diremos que γ é uma cadeia de curvas fechadas em U. Se $p \in \mathbb{C}$ é um ponto fora de $\mathrm{Im}(\gamma)$ então o *índice de* γ *em torno de* p é definido por:

$$\operatorname{ind}(\gamma, p) = \sum_{j=1}^{n} \operatorname{ind}(\gamma_j, p).$$

Se $\operatorname{Im}(\gamma) \subset U$ e se ω é uma 1-forma contínua em U a valores num espaço de Banach E então a integral de linha $\int_{\gamma} \omega$ é definida por:

$$\int_{\gamma} \omega = \sum_{j=1}^{n} \int_{\gamma_j} \omega.$$

O comprimento da cadeia γ é definido por:

$$L(\gamma) = \sum_{j=1}^{n} L(\gamma_j).$$

Vários resultados que demonstramos ao longo do texto para curvas fechadas podem ser generalizados de forma evidente para cadeias de curvas fechadas. Listamos a seguir tais resultados:

- Corolário 1.19;
- Corolário 1.20;
- Corolário 1.21;
- Lema 4.8;
- Lema 4.11;
- Lema 4.12;
- Corolário 4.25.

No que segue, E denotará sempre um espaço de Banach complexo.

5.3. **Proposição** (fórmula integral de Cauchy). Seja $f: U \to E$ uma função holomorfa definida num aberto $U \subset \mathbb{C}$ e seja γ uma cadeia de curvas fechadas de classe C^1 por partes em U tal que $\operatorname{ind}(\gamma, p) = 0$, para todo $p \in \mathbb{C} \setminus U$. Então:

(5.1)
$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - w} dz = \operatorname{ind}(\gamma, w) f(w),$$

para todo $w \in U \setminus \operatorname{Im}(\gamma)$.

Para demonstrar a Proposição 5.3, precisamos do seguinte:

5.4. **Lema.** Se $f: U \to E$ é uma função holomorfa num aberto $U \subset \mathbb{C}$ então a função $\phi: U \times U \to E$ definida por:

$$\phi(z,w) = \begin{cases} \frac{f(z) - f(w)}{z - w}, & \text{se } z \neq w, \\ f'(z), & \text{se } z = w, \end{cases}$$

é contínua.

Demonstração. A função ϕ é obviamente contínua no complementar da diagonal de $U \times U$. Vamos mostrar que ϕ é contínua num ponto da forma $(z_0, z_0), z_0 \in U$. Como f' é contínua em U, temos:

$$\lim_{z \to z_0} \phi(z, z) = \lim_{z \to z_0} f'(z) = f'(z_0) = \phi(z_0, z_0).$$

É suficiente mostrar então que:

$$\lim_{\substack{(z,w)\to(z_0,z_0)\\z\neq w}} \frac{f(z)-f(w)}{z-w} = f'(z_0).$$

Se z e w pertencem a uma bola de centro z_0 contida em U, aplicamos a desigualdade do valor médio para a função $U \ni u \mapsto f(u) - f'(z_0)u \in E$ no segmento [z, w] obtendo:

$$||f(z) - f(w) - f'(z_0)(z - w)|| \le \sup_{u \in [z,w]} ||f'(u) - f'(z_0)|| |z - w|.$$

A conclusão segue agora facilmente da continuidade de f'.

Demonstração da Proposição 5.3. Segue do Lema 4.8 que:

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{z - w} \, \mathrm{d}z = \mathrm{ind}(\gamma, w) f(w),$$

para todo $w \in U \setminus \text{Im}(\gamma)$. Para completar a demonstração, é suficiente mostrar então que:

$$\int_{\gamma} \frac{f(z) - f(w)}{z - w} \, \mathrm{d}z = 0,$$

para todo $w \in U \setminus \operatorname{Im}(\gamma)$. Seja $\phi: U \times U \to E$ a função definida no enunciado do Lema 5.4; sabemos que ϕ é contínua e que para todo $z \in U$, a função $U \ni w \mapsto \phi(z,w) \in E$ é holomorfa, pelo Teorema de Singularidade Removível (Teorema 4.20). Segue então do Corolário 4.25 que a função $g: U \to E$ definida por:

$$g(w) = \int_{\gamma} \phi(z, w) dz, \quad w \in U,$$

é holomorfa. Note que:

$$g(w) = \int_{\gamma} \frac{f(z) - f(w)}{z - w} dz,$$

para todo $w \in U \setminus \text{Im}(\gamma)$. Considere o conjunto:

$$K = \operatorname{Im}(\gamma) \cup \{ w \in \mathbb{C} \setminus \operatorname{Im}(\gamma) : \operatorname{ind}(\gamma, w) \neq 0 \};$$

segue do Corolário 1.21 que K é compacto. Pelas nossas hipóteses, K está contido em U. Note que:

(5.2)
$$g(w) = \int_{\gamma} \frac{f(z)}{z - w} \, \mathrm{d}z,$$

para todo $w \in U \setminus K$. Vamos estender g para todo o plano complexo $\mathbb C$ usando a igualdade (5.2) para definir g para $w \in \mathbb C \setminus U$. Temos então que a igualdade (5.2) vale para todo w no conjunto aberto $\mathbb C \setminus K$; o Corolário 4.25 nos garante que a restrição de g a $\mathbb C \setminus K$ é holomorfa. Como $g|_U$ também

é holomorfa, concluímos que $g:\mathbb{C}\to E$ é uma função inteira. Para $w\in\mathbb{C}$ fora do compacto K temos:

$$|g(w)| \stackrel{(4.2)}{\leq} L(\gamma) \sup_{z \in \operatorname{Im}(\gamma)} \frac{|f(z)|}{|z - w|}.$$

Segue daí que $\lim_{|w|\to\infty} g(w) = 0$. O Teorema de Liouville (Teorema 4.19) nos garante então que g é identicamente nula. Isso completa a demonstração.

Estamos em condições de provar agora o teorema principal desta seção.

5.5. **Teorema** (Cauchy). Seja $f: U \to E$ uma função holomorfa definida num aberto $U \subset \mathbb{C}$ e seja γ uma cadeia de curvas fechadas de classe C^1 por partes em U tal que $\operatorname{ind}(\gamma, p) = 0$, para todo $p \in \mathbb{C} \setminus U$. Então $\int_{\gamma} f(z) dz = 0$.

Demonstração. Como $\operatorname{Im}(\gamma)$ é compacta e U não é, existe um ponto w em U fora de $\operatorname{Im}(\gamma)$. Considere a função $g:U\to E$ definida por g(z)=f(z)(z-w), para todo $z\in U$. A Proposição 5.3 nos dá:

$$\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \frac{1}{2\pi i} \int_{\gamma} \frac{g(z)}{z - w} dz = \operatorname{ind}(\gamma, w) g(w) = 0.$$

6. ÁLGEBRAS DE BANACH

Começamos com a exposição de alguns conceitos puramente algébricos.

- 6.1. **Definição.** Uma álgebra sobre um corpo K é um K-espaço vetorial \mathfrak{A} munido de uma operação binária bilinear $\mathfrak{A} \times \mathfrak{A} \ni (T,S) \mapsto TS \in \mathfrak{A}$, chamada a multiplicação de \mathfrak{A} , que satisfaz as seguintes propriedades⁶:
 - $(T_1T_2)T_3 = T_1(T_2T_3)$, para todos $T_1, T_2, T_3 \in \mathfrak{A}$ (associatividade);
 - existe um elemento $\mathbf{1} \in \mathfrak{A}$ não nulo (chamado um *elemento neutro* para a multiplicação de \mathfrak{A}) tal que $\mathbf{1}T = T\mathbf{1} = T$, para todo $T \in \mathfrak{A}$.

Dizemos que a álgebra $\mathfrak A$ é comutativa quando a sua multiplicação for uma operação comutativa, i.e., se TS=ST, para todos $T,S\in \mathfrak A$.

Claramente, se $\mathbf{1}$ e $\mathbf{1}'$ são ambos elementos neutros para a multiplicação de \mathfrak{A} então $\mathbf{1} = \mathbf{11}' = \mathbf{1}'$; denotaremos então por $\mathbf{1}$ o (único) elemento neutro para a multiplicação de \mathfrak{A} e diremos que $\mathbf{1}$ é o elemento unidade de \mathfrak{A} .

6.2. **Definição.** Seja \mathfrak{A} uma álgebra e seja $T \in \mathfrak{A}$. Dizemos que $S \in \mathfrak{A}$ é um inverso à esquerda (resp., um inverso à direita) para T se $ST = \mathbf{1}$ (resp., se $TS = \mathbf{1}$). Quando existe um elemento $S \in \mathfrak{A}$ tal que $ST = TS = \mathbf{1}$, dizemos

⁶Usualmente o termo álgebra refere-se apenas a um espaço vetorial munido de uma multiplicação bilinear. Existem muitos exemplos importantes de álgebras cuja multiplicação não é associativa (como as álgebras de Lie e de Jordan) e de álgebras cuja multiplicação não tem elemento neutro (como as álgebras de convolução). No entanto, no nosso texto, todas as álgebras terão multiplicação associativa e com elemento neutro.

que T é inversível em $\mathfrak A$ ou que T é uma unidade de $\mathfrak A$. Denotamos por $\mathcal U(\mathfrak A)$ o conjunto dos elementos inversíveis de $\mathfrak A$, ou seja:

$$\mathcal{U}(\mathfrak{A}) \stackrel{\text{def}}{=} \{ T \in \mathfrak{A} : T \text{ \'e inversível} \}.$$

É perfeitamente possível que um elemento $T \in \mathfrak{A}$ possua um inverso lateral (i.e., um inverso à esquerda ou um inverso à direita), mas não seja inversível. Um elemento T de uma álgebra pode possuir vários inversos à esquerda (ou vários inversos à direita). Por outro lado, se $T \in \mathfrak{A}$ é inversível então existe um único $S \in \mathfrak{A}$ com TS = ST = 1; dizemos então que S é o elemento inverso de T e escrevemos $S = T^{-1}$. Essa última afirmação é um caso particular do seguinte:

6.3. Lema. Seja $\mathfrak A$ uma álgebra e seja $T \in \mathfrak A$. Se existem $S_1, S_2 \in \mathfrak A$ com $S_1T = TS_2 = \mathbf 1$ então $S_1 = S_2$; em particular, T é inversível.

Demonstração. Temos $S_2 = \mathbf{1}S_2 = (S_1T)S_2$ e portanto:

$$S_2 = S_1(TS_2) = S_1 \mathbf{1} = S_1.$$

É fácil ver que se T, S são elementos inversíveis de uma álgebra $\mathfrak A$ então TS é inversível e $(TS)^{-1}=S^{-1}T^{-1}$.

6.4. Corolário. Seja $\mathfrak A$ uma álgebra. Se $S,T\in \mathfrak A$ comutam (i.e., ST=TS) então ST é inversível se e somente se S e T são ambos inversíveis.

Demonstração. Basta mostrar que se o produto ST é inversível então S e T são ambos inversíveis. Seja $R \in \mathfrak{A}$ tal que $R(ST) = (ST)R = \mathbf{1}$. Daí RS é um inverso à esquerda para T e SR é um inverso à direita para T; segue então do Lema 6.3 que T é inversível. Similarmente, RT é um inverso à esquerda para S e TR é um inverso à direita para S e portanto S é inversível. \square

- 6.5. **Definição.** Uma álgebra com divisão é uma álgebra \mathfrak{A} tal que todo elemento não nulo de \mathfrak{A} é inversível, i.e., tal que $\mathcal{U}(\mathfrak{A}) = \mathfrak{A} \setminus \{0\}$.
- 6.6. **Definição.** Seja $\mathfrak A$ uma álgebra. Por uma subálgebra de $\mathfrak A$ entendemos um subespaço vetorial $\mathfrak A_0$ de $\mathfrak A$ tal que T $\mathbf 1 \in \mathfrak A_0$ e tal que $TS \in \mathfrak A_0$, para todos $T, S \in \mathfrak A_0$.

Claramente se \mathfrak{A}_0 é uma subálgebra de \mathfrak{A} então \mathfrak{A}_0 também é uma álgebra, com a multiplicação obtida pela restrição da multiplicação de \mathfrak{A} .

È fácil ver que a interseção de uma família arbitrária de subálgebras de \mathfrak{A} é novamente uma subálgebra de \mathfrak{A} ; dado um subconjunto arbitrário \mathcal{C} de \mathfrak{A} , podemos então definir a subálgebra gerada por \mathcal{C} em \mathfrak{A} como sendo a interseção de todas as subálgebras de \mathfrak{A} que contém \mathcal{C} . Obviamente, a subálgebra gerada por \mathcal{C} em \mathfrak{A} é a menor subálgebra de \mathfrak{A} que contém \mathcal{C} .

Se $\mathfrak A$ é uma álgebra e se $\mathfrak A_0$ é uma subálgebra de $\mathfrak A$ então observe que:

 $^{^7}$ É possível também considerar subálgebras \mathfrak{A}_0 de \mathfrak{A} que tem um elemento neutro $\mathbf{1}' \in \mathfrak{A}_0$ diferente do elemento neutro $\mathbf{1}$ de \mathfrak{A} . No nosso texto nós não admitiremos essa possibilidade.

- as subálgebras de \mathfrak{A}_0 são precisamente as subálgebras de \mathfrak{A} que estão contidas em \mathfrak{A}_0 ;
- se \mathcal{C} é um subconjunto arbitrário de \mathfrak{A}_0 então a subálgebra gerada por \mathcal{C} em \mathfrak{A}_0 coincide com a subálgebra gerada por \mathcal{C} em \mathfrak{A} .
- 6.7. **Definição.** Seja $\mathfrak A$ uma álgebra. Dado um elemento $T \in \mathfrak A$ então o centralizador de T em $\mathfrak A$ é o conjunto:

$$\mathfrak{z}_{\mathfrak{A}}(T) = \{ S \in \mathfrak{A} : ST = TS \}$$

de todos os elementos de \mathfrak{A} que comutam com T.

Deixamos a cargo do leitor a verificação do seguinte fato simples:

- 6.8. Lema. Se \mathfrak{A} é uma álgebra então o centralizador $\mathfrak{z}_{\mathfrak{A}}(T)$ de um elemento $T \in \mathfrak{A}$ é uma subálgebra de \mathfrak{A} com a seguinte propriedade: se $S \in \mathfrak{z}_{\mathfrak{A}}(T)$ e se S é inversível então $S^{-1} \in \mathfrak{z}_{\mathfrak{A}}(T)$.
- 6.9. Corolário. Seja $\mathfrak A$ uma álgebra e seja $\mathcal C\subset \mathfrak A$ tal que TS=ST, para todos $T,S\in \mathcal C$. Então a subálgebra gerada por $\mathcal C$ é uma álgebra comutativa.

Demonstração. Denote por \mathfrak{A}_0 a subálgebra gerada por \mathcal{C} em \mathfrak{A} . Dado $T \in \mathcal{C}$ então, pelo Lema 6.8, $\mathfrak{z}_{\mathfrak{A}}(T)$ é uma subálgebra de \mathfrak{A} ; como $\mathfrak{z}_{\mathfrak{A}}(T)$ contém \mathcal{C} , temos que $\mathfrak{A}_0 \subset \mathfrak{z}_{\mathfrak{A}}(T)$, para todo $T \in \mathcal{C}$. Mas isso significa que TS = ST, para todos $T \in \mathfrak{A}_0$ e $S \in \mathcal{C}$. Daí, para todo $T \in \mathfrak{A}_0$, o centralizador $\mathfrak{z}_{\mathfrak{A}}(T)$ é uma subálgebra de \mathfrak{A} que contém \mathcal{C} e portanto obtemos novamente que $\mathfrak{A}_0 \subset \mathfrak{z}_{\mathfrak{A}}(T)$. Concluímos então que TS = ST, para todos $T, S \in \mathfrak{A}_0$. \square

6.10. **Definição.** Sejam $\mathfrak{A}, \mathfrak{A}'$ álgebras. Um homomorfismo de \mathfrak{A} para \mathfrak{A}' é uma aplicação linear $\phi: \mathfrak{A} \to \mathfrak{A}'$ que leva o elemento unidade de \mathfrak{A} sobre o elemento unidade de \mathfrak{A}' e tal que $\phi(TS) = \phi(T)\phi(S)$, para todos $T, S \in \mathfrak{A}$. Um homomorfismo bijetor $\phi: \mathfrak{A} \to \mathfrak{A}'$ é dito um isomorfismo.

Claramente o inverso de um homomorfismo bijetor $\phi: \mathfrak{A} \to \mathfrak{A}'$ é também um homomorfismo.

6.11. **Lema.** Sejam \mathfrak{A} , \mathfrak{A}' álgebras. Se $\phi: \mathfrak{A} \to \mathfrak{A}'$ e $\psi: \mathfrak{A} \to \mathfrak{A}'$ são homomorfismos então o conjunto $\{T \in \mathfrak{A}: \phi(T) = \psi(T)\}$ dos pontos onde ϕ e ψ coincidem é uma subálgebra de \mathfrak{A} .

Demonstração. Trivial.

Um subconjunto $\mathcal C$ de uma álgebra $\mathfrak A$ é dito um conjunto de geradores para $\mathfrak A$ se a subálgebra gerada por $\mathcal C$ em $\mathfrak A$ coincide com $\mathfrak A$; de outro modo, $\mathcal C$ é um conjunto de geradores para $\mathfrak A$ se nenhuma subálgebra própria de $\mathfrak A$ contém $\mathcal C$.

6.12. Corolário. Sejam \mathfrak{A} , \mathfrak{A}' álgebras e seja \mathcal{C} um conjunto de geradores para \mathfrak{A} . Se dois homomorfismos $\phi: \mathfrak{A} \to \mathfrak{A}'$, $\psi: \mathfrak{A} \to \mathfrak{A}'$ coincidem em \mathcal{C} então $\phi = \psi$.

Demonstração. Pelo Lema 6.11, $\{T \in \mathfrak{A} : \phi(T) = \psi(T)\}$ é uma subálgebra de \mathfrak{A} que contém \mathcal{C} e portanto deve coincidir com \mathfrak{A} .

6.13. **Definição.** Seja $\mathfrak A$ uma álgebra. Um *ideal* de $\mathfrak A$ é um subespaço I de $\mathfrak A$ tal que $TS \in I$ e $ST \in I$, para todos $T \in I$, $S \in \mathfrak A$.

6.14. Observação. Se $\mathfrak A$ é uma álgebra e se I é um ideal de $\mathfrak A$ tal que $\mathbf 1 \in I$ então $I = \mathfrak A$. Além do mais, se I contém um elemento inversível de $\mathfrak A$ então $\mathbf 1 \in I$ e portanto $I = \mathfrak A$. Vemos então que se I é um ideal próprio de $\mathfrak A$ (i.e., se $I \neq \mathfrak A$) então I é disjunto de $\mathcal U(\mathfrak A)$.

6.15. **Lema.** Sejam \mathfrak{A} , \mathfrak{A}' álgebras $e \phi : \mathfrak{A} \to \mathfrak{A}'$ um homomorfismo. Então o núcleo $\operatorname{Ker}(\phi) = \phi^{-1}(0)$ de ϕ é um ideal próprio de \mathfrak{A} .

Demonstração. Claramente $\operatorname{Ker}(\phi)$ é um subespaço de \mathfrak{A} e $TS, ST \in \operatorname{Ker}(\phi)$, sempre que $T \in \operatorname{Ker}(\phi)$, $S \in \mathfrak{A}$. Além do mais, temos $\operatorname{Ker}(\phi) \neq \mathfrak{A}$ porque $\operatorname{Ker}(\phi)$ não contém o elemento unidade de \mathfrak{A} .

Reciprocamente, todo ideal próprio de uma álgebra é núcleo de um homomorfismo, como se vê no seguinte:

6.16. **Lema.** Sejam $\mathfrak A$ uma álgebra, I um ideal próprio de $\mathfrak A$ e $q:\mathfrak A\to\mathfrak A/I$ a aplicação quociente, onde $\mathfrak A/I$ denota o espaço vetorial quociente de $\mathfrak A$ pelo subespaço I. Temos que existe uma única operação binária em $\mathfrak A/I$ satisfazendo:

(6.1)
$$q(T)q(S) = q(TS),$$

para todos $T, S \in \mathfrak{A}$; essa operação binária torna o espaço quociente \mathfrak{A}/I uma álgebra com elemento unidade igual a $q(\mathbf{1})$ e a aplicação $q: \mathfrak{A} \to \mathfrak{A}/I$ um homomorfismo sobrejetor com núcleo igual ao ideal I. Além do mais, se a álgebra \mathfrak{A} é comutativa então \mathfrak{A}/I também é comutativa.

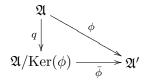
Demonstração. Como q é sobrejetora, é fácil ver que existe no máximo uma operação binária em \mathfrak{A}/I que satisfaz (6.1). Para mostrar que tal operação de fato está bem definida, devemos verificar que se $T,T',S,S'\in\mathfrak{A}$ são tais que q(T)=q(T') e q(S)=q(S') então q(TS)=q(T'S'); temos:

$$T'S' - TS = [T + (T' - T)][S + (S' - S)] - TS$$
$$= T(S' - S) + (T' - T)S + (T' - T)(S' - S) \in I,$$

já que $T'-T, S'-S \in I$. Segue então que q(TS)=q(T'S'). A verificação das outras afirmações feitas no enunciado é imediata. \square

Deixamos a cargo do leitor a verificação do seguinte fato simples:

6.17. **Lema** (fundamental do homomorfismo). Sejam \mathfrak{A} , \mathfrak{A}' álgebras e seja $\phi: \mathfrak{A} \to \mathfrak{A}'$ um homomorfismo. Então $\phi(\mathfrak{A})$ é uma subálgebra de \mathfrak{A}' e existe uma única aplicação $\bar{\phi}: \mathfrak{A}/\mathrm{Ker}(\phi) \to \mathfrak{A}'$ tal que o diagrama:



comuta, onde $q: \mathfrak{A} \to \mathfrak{A}/\mathrm{Ker}(\phi)$ denota a aplicação quociente. Temos que $\bar{\phi}$ é um isomorfismo da álgebra quociente $\mathfrak{A}/\mathrm{Ker}(\phi)$ sobre a álgebra $\phi(\mathfrak{A})$. \square

Iniciamos agora nosso estudo de álgebras de Banach. No que segue, denotamos por \mathbb{K} o corpo \mathbb{R} ou o corpo \mathbb{C} .

- 6.18. **Definição.** Uma álgebra de Banach sobre \mathbb{K} é uma álgebra \mathfrak{A} sobre \mathbb{K} munida de uma norma $\|\cdot\|$ tal que $(\mathfrak{A},\|\cdot\|)$ é um espaço de Banach sobre \mathbb{K} e tal que as seguintes condições são satisfeitas:
 - (a) $\|\mathbf{1}\| = 1$;
 - (b) $||TS|| \le ||T|| ||S||$, para todos $T, S \in \mathfrak{A}$.

Segue da propriedade (b) na Definição 6.18 que a multiplicação de uma álgebra de Banach é uma aplicação bilinear contínua.

Observe que se \mathfrak{A} é uma álgebra de Banach e se \mathfrak{A}_0 é uma subálgebra fechada de \mathfrak{A} então \mathfrak{A}_0 é também uma álgebra de Banach com a norma e a multiplicação induzidas de \mathfrak{A} ; dizemos nesse caso que \mathfrak{A}_0 é uma subálgebra de Banach de \mathfrak{A} .

- 6.19. Exemplo. Se X é um espaço de Banach não nulo sobre \mathbb{K} então o espaço $\mathfrak{A}=\operatorname{Lin}(X)$ dos operadores \mathbb{K} -lineares contínuos $T:X\to X$ munido da norma de operadores $\|T\|=\sup_{\|x\|\leq 1}\|Tx\|$ é uma álgebra de Banach sobre \mathbb{K} , cuja multiplicação é dada pela composição de operadores. O elemento neutro de \mathfrak{A} é o operador identidade de X. Observe que a álgebra $\operatorname{Lin}(X)$ não é comutativa se X tem dimensão maior que 1.
- 6.20. **Exemplo.** Se K é um espaço topológico compacto não vazio então o espaço C(K) das funções contínuas $f:K\to \mathbb{K}$ é uma álgebra de Banach comutativa sobre \mathbb{K} munida da norma do supremo $||f||=\sup_{x\in K}|f(x)|$ e da multiplicação ponto a ponto $(fg)(x)=f(x)g(x), x\in K$. O elemento neutro de C(K) é a função constante e igual a 1 em K.
- 6.21. **Proposição.** Seja $\mathfrak A$ uma álgebra sobre $\mathbb K$ munida de uma norma $\|\cdot\|$ tal que $(\mathfrak A, \|\cdot\|)$ é um espaço de Banach sobre $\mathbb K$ e tal que a operação de multiplicação $\mathfrak A \times \mathfrak A \to \mathfrak A$ é contínua. Então existe uma norma $\|\cdot\|'$ em $\mathfrak A$, equivalente a $\|\cdot\|$, tal que $(\mathfrak A, \|\cdot\|')$ é uma álgebra de Banach sobre $\mathbb K$.

Demonstração. Para cada $T \in \mathfrak{A}$, denote por $\mathfrak{l}_T : \mathfrak{A} \to \mathfrak{A}$ o operador linear definido por $\mathfrak{l}_T(S) = TS$, para todo $S \in \mathfrak{A}$. Como a multiplicação de \mathfrak{A} é bilinear e contínua, segue facilmente que a aplicação:

$$\mathfrak{A}\ni T\longmapsto \mathfrak{l}_T\in\mathrm{Lin}(\mathfrak{A})$$

é linear e contínua, onde o espaço de Banach $\mathrm{Lin}(\mathfrak{A})$ é munido da norma de operadores. A inversa de (6.2) é uma restrição da aplicação

$$\operatorname{Lin}(\mathfrak{A}) \ni L \longmapsto L(\mathbf{1}) \in \mathfrak{A}$$

e portanto (6.2) é um homeomorfismo sobre sua imagem. Segue que a norma

$$||T||' \stackrel{\text{def}}{=} ||\mathfrak{l}_T||, \quad T \in \mathfrak{A},$$

induzida em \mathfrak{A} por (6.2) é equivalente à norma $\|\cdot\|$. Daí $(\mathfrak{A}, \|\cdot\|')$ é um espaço de Banach sobre \mathbb{K} . Como \mathfrak{l}_1 é o operador identidade de \mathfrak{A} e \mathfrak{A} é um espaço não nulo, temos que $\|\mathbf{1}\|'=1$, i.e., a condição (a) que aparece na Definição 6.18 é satisfeita. Para verificar a condição (b), observe que:

$$||TS||' = ||\mathfrak{l}_{TS}|| = ||\mathfrak{l}_{T}\mathfrak{l}_{S}|| \le ||\mathfrak{l}_{T}|| ||\mathfrak{l}_{S}|| = ||T||' ||S||',$$
 para todos $T, S \in \mathfrak{A}$.

A Proposição 6.21 nos diz que as condições (a) e (b) na Definição 6.18 não são tão importantes; nós sempre podemos satisfazê-las trocando a norma de $\mathfrak A$ por uma outra equivalente.

Para facilitar a compreensão do material que será apresentado no restante da seção, sugerimos que o leitor mantenha em mente o Exemplo 6.19.

- 6.22. Lema. Seja 🎗 uma álgebra de Banach. Então:
 - o fecho de uma subálgebra de A é uma subálgebra de A;
 - se \mathfrak{A}_0 é uma subálgebra comutativa de \mathfrak{A} então o fecho de \mathfrak{A}_0 é uma subálgebra comutativa de \mathfrak{A} ;
 - o fecho de um ideal de $\mathfrak A$ é um ideal de $\mathfrak A$.

Demonstração. Segue facilmente da continuidade da multiplicação de \mathfrak{A} . \square

Se $\mathfrak A$ é uma álgebra de Banach e se $\mathcal C \subset \mathfrak A$ é um subconjunto arbitrário então é fácil ver que o fecho da subálgebra gerada por $\mathcal C$ em $\mathfrak A$ é a menor subálgebra fechada de $\mathfrak A$ que contém $\mathcal C$; essa será chamada a subálgebra de Banach de $\mathfrak A$ gerada por $\mathcal C$ ou a subálgebra fechada de $\mathfrak A$ gerada por $\mathcal C$. Obviamente, se $\mathfrak A_0$ é uma subálgebra de Banach de $\mathfrak A$ e se $\mathcal C$ é um subconjunto de $\mathfrak A_0$ então a subálgebra fechada gerada por $\mathcal C$ em $\mathfrak A$ coincide com a subálgebra fechada gerada por $\mathcal C$ em $\mathfrak A_0$.

6.23. Corolário. Seja $\mathfrak A$ uma álgebra de Banach e seja $\mathcal C$ um subconjunto de $\mathfrak A$ tal que TS=ST, para todos $T,S\in\mathcal C$. Então a subálgebra de Banach gerada por $\mathcal C$ em $\mathfrak A$ é uma álgebra de Banach comutativa.

Demonstração. Segue do Lema 6.22 e do Corolário 6.9.

Vamos agora estudar algumas propriedades do conjunto dos elementos inversíveis de uma álgebra de Banach.

6.24. **Lema.** Seja $\mathfrak A$ uma álgebra de Banach. Dado $T \in \mathfrak A$, suponha que a série⁸ $\sum_{n=0}^{\infty} T^n$ converge em $\mathfrak A$, i.e., que o limite $\lim_{k\to\infty} \sum_{n=0}^k T^n$ existe em $\mathfrak A$; esse é o caso, por exemplo, se ||T|| < 1. Então $\mathbf 1 - T$ é inversível em $\mathfrak A$ e:

$$(\mathbf{1} - T)^{-1} = \sum_{n=0}^{\infty} T^n.$$

⁸Por convenção, definimos $T^0 = \mathbf{1}$, para todo $T \in \mathfrak{A}$.

Demonstração. Segue da continuidade da multiplicação de a que:

$$(\mathbf{1} - T) \sum_{n=0}^{\infty} T^n = \sum_{n=0}^{\infty} [(\mathbf{1} - T)T^n] = \sum_{n=0}^{\infty} (T^n - T^{n+1}) = \lim_{k \to \infty} (\mathbf{1} - T^{k+1});$$

como a série $\sum_{n=0}^{\infty} T^n$ converge, temos que $\lim_{k\to\infty} T^{k+1} = 0$ e portanto $(\mathbf{1}-T)\sum_{n=0}^{\infty} T^n = \mathbf{1}$. De modo análogo, vê-se que $(\sum_{n=0}^{\infty} T^n)(\mathbf{1}-T) = \mathbf{1}$. Note que se ||T|| < 1 então a série $\sum_{n=0}^{\infty} T^n$ é normalmente convergente, já que $||T^n|| \le ||T||^n$ e a progressão geométrica $\sum_{n=0}^{\infty} ||T||^n$ é convergente. \square

6.25. Corolário. Se $\mathfrak A$ é uma álgebra de Banach então a bola aberta de centro $\mathbf 1$ e raio 1 em $\mathfrak A$ está contida em $\mathcal U(\mathfrak A)$.

6.26. Corolário. Se $\mathfrak A$ é uma álgebra de Banach então o conjunto $\mathcal U(\mathfrak A)$ dos elementos inversíveis de $\mathfrak A$ é aberto em $\mathfrak A$.

Demonstração. Pelo Corolário 6.25, o elemento neutro $\mathbf{1}$ é um ponto interior de $\mathcal{U}(\mathfrak{A})$. Se $T \in \mathcal{U}(\mathfrak{A})$ então a aplicação $\mathfrak{l}_T : \mathfrak{A} \ni S \mapsto TS \in \mathfrak{A}$ é um homeomorfismo de \mathfrak{A} cujo inverso é $\mathfrak{l}_{T^{-1}}$. Como \mathfrak{l}_T leva $\mathcal{U}(\mathfrak{A})$ sobre $\mathcal{U}(\mathfrak{A})$ e $\mathfrak{l}_T(\mathbf{1}) = T$, segue que T também é um ponto interior de $\mathcal{U}(\mathfrak{A})$.

6.27. Corolário. Se \mathfrak{A} é uma álgebra de Banach então o fecho de um ideal próprio I de \mathfrak{A} é novamente um ideal próprio de \mathfrak{A} .

Demonstração. Se I é um ideal próprio de $\mathfrak A$ então sabemos que \overline{I} é um ideal de $\mathfrak A$, pelo Lema 6.22. Se fosse $\overline{I} = \mathfrak A$ então I seria denso em $\mathfrak A$ e portanto $I \cap \mathcal U(\mathfrak A) \neq \emptyset$, já que $\mathcal U(\mathfrak A)$ é um aberto não vazio de $\mathfrak A$ (Corolário 6.26). Mas isso implicaria que I = A (veja Observação 6.14).

Note que se $\mathfrak A$ é uma álgebra de Banach então a aplicação:

$$(6.3) \mathbb{K} \ni \lambda \longmapsto \lambda \mathbf{1} \in \mathfrak{A}$$

é um homomorfismo e também uma isometria sobre sua imagem. Além do mais, para todos $\lambda \in \mathbb{K}, T \in \mathfrak{A},$ temos $\lambda T = (\lambda \mathbf{1})T$. Identificaremos então cada escalar $\lambda \in \mathbb{K}$ com o elemento $\lambda \mathbf{1} \in \mathfrak{A}$.

6.28. **Definição.** Seja $\mathfrak A$ uma álgebra de Banach. Dado um elemento $T \in \mathfrak A$ então o *espectro* de T é o conjunto $\sigma(T) \subset \mathbb K$ definido por:

$$\sigma(T) = \{ \lambda \in \mathbb{K} : \lambda - T \text{ não \'e inversível em } \mathfrak{A} \},$$

e o resolvente de T é o conjunto $\rho(T) \subset \mathbb{K}$ definido por:

$$\rho(T) = \mathbb{K} \setminus \sigma(T) = \{ \lambda \in \mathbb{K} : \lambda - T \text{ \'e inversivel em } \mathfrak{A} \}.$$

Note que se \mathfrak{A}_0 é uma subálgebra fechada de uma álgebra de Banach \mathfrak{A} então é perfeitamente possível que um elemento de \mathfrak{A}_0 seja inversível em \mathfrak{A} mas não seja inversível em \mathfrak{A}_0 ; daí, dado $T \in \mathfrak{A}_0$, temos que o espectro e o resolvente de T visto como elemento de \mathfrak{A}_0 não necessariamente coincidem respectivamente com o espectro e o resolvente de T visto como elemento de \mathfrak{A} (veja Exemplo 6.31 abaixo). De modo geral, preferimos usar a notação simplificada $\sigma(T)$ e $\rho(T)$ introduzida na Definição 6.28, mas quando for

necessário usaremos a notação mais precisa $\sigma_{\mathfrak{A}}(T)$ e $\rho_{\mathfrak{A}}(T)$ para o espectro e o resolvente de T visto como elemento de \mathfrak{A} . Em geral, se \mathfrak{A}_0 é uma subálgebra fechada de \mathfrak{A} então temos:

$$\rho_{\mathfrak{A}_0}(T) \subset \rho_{\mathfrak{A}}(T), \quad \sigma_{\mathfrak{A}}(T) \subset \sigma_{\mathfrak{A}_0}(T).$$

6.29. Exemplo. Seja X um espaço de Banach não nulo e seja $\mathfrak{A}=\operatorname{Lin}(X)$ a álgebra de Banach dos operadores lineares contínuos em X (recorde Exemplo 6.19). Temos que um elemento $T\in\mathfrak{A}$ é inversível se e somente se T é um operador linear bijetor; de fato, se $T:X\to X$ é linear, bijetor e contínuo então o Teorema da Aplicação Aberta garante que $T^{-1}:X\to X$ também é contínuo e portanto $T^{-1}\in\mathfrak{A}$. O espectro de T é dado então por:

$$\sigma(T) = \big\{ \lambda \in \mathbb{K} : \lambda - T \text{ não \'e bijetor} \big\}.$$

Note que $\lambda \in \mathbb{K}$ é um autovalor de T se e somente se o operador $\lambda - T$ não é injetor. Quando X tem dimensão finita então o espectro de T coincide exatamente com o conjunto dos autovalores de T; quando X tem dimensão infinita então $\sigma(T)$ contém (mas em geral não coincide com) o conjunto dos autovalores de T.

6.30. **Exemplo.** Seja K um espaço topológico compacto não vazio e seja C(K) a álgebra de Banach comutativa das funções contínuas em K (recorde Exemplo 6.20). Temos que um elemento $f \in C(K)$ é inversível se e somente se $0 \notin f(K)$. Segue portanto que o espectro de f é precisamente a imagem de f, ou seja:

$$\sigma(f) = f(K),$$

para toda $f \in C(K)$.

6.31. **Exemplo.** Seja $S^1\subset\mathbb{C}$ o círculo unitário $\{z\in\mathbb{C}:|z|=1\}$ e considere a álgebra de Banach complexa $\mathfrak{A}=C(S^1)$ constituída pelas funções contínuas $f:S^1\to\mathbb{C}$. Seja $\mathfrak{i}\in\mathfrak{A}$ a aplicação inclusão, i.e., $\mathfrak{i}(z)=z$, para todo $z\in S^1$. A subálgebra gerada por \mathfrak{i} em \mathfrak{A} é a álgebra das funções polinomiais

$$S^1 \ni z \longmapsto \sum_{k=0}^n a_k z^k \in \mathbb{C}, \quad k \ge 0, \ a_0, \dots, a_k \in \mathbb{C}.$$

Seja \mathfrak{A}_0 o fecho da subálgebra gerada por i, i.e., a subálgebra de Banach gerada por i em \mathfrak{A} . Obviamente i é um elemento inversível de \mathfrak{A} , já que i não se anula em S^1 . Vamos ver que i não é inversível na álgebra de Banach \mathfrak{A}_0 , i.e., a função $z\mapsto z^{-1}$ não pertence a \mathfrak{A}_0 . Em primeiro lugar, note que se f pertence à subálgebra gerada por i então a integral de linha $\int_{|z|=1} f(z) \, \mathrm{d}z$ é nula, já que f é a restrição de uma função inteira. Como toda função $f\in \mathfrak{A}_0$ é o limite uniforme em S^1 de uma seqüência de elementos da subálgebra gerada por i, temos na verdade $\int_{|z|=1} f(z) \, \mathrm{d}z = 0$, para toda $f\in \mathfrak{A}_0$. Como $\int_{|z|=1} z^{-1} \, \mathrm{d}z = 2\pi i$, temos que $\mathfrak{i}^{-1} \notin \mathfrak{A}_0$. Como vimos no

Exemplo 6.30, o espectro de $\mathfrak i$ visto como elemento de $\mathfrak A$ é dado por:

$$\sigma_{\mathfrak{N}}(\mathfrak{i}) = S^1.$$

Vamos calcular o espectro de i visto como elemento de \mathfrak{A}_0 . Obviamente, $\sigma_{\mathfrak{A}_0}(\mathfrak{i})$ contém $\sigma_{\mathfrak{A}}(\mathfrak{i})=S^1$. Seja $\lambda\in\mathbb{C}$. Se $|\lambda|<1$ então:

$$\int_{|z|=1} (\lambda - z)^{-1} \, \mathrm{d}z = -2\pi i$$

e portanto $z \mapsto (\lambda - z)^{-1}$ não pertence a \mathfrak{A}_0 ; logo $\lambda \in \sigma_{\mathfrak{A}_0}(\mathfrak{i})$. Suponha agora que $|\lambda| > 1$. Nesse caso, a série de Taylor da função $z \mapsto (\lambda - z)^{-1}$ centrada na origem converge uniformemente no disco unitário $|z| \leq 1$ e portanto $z \mapsto (\lambda - z)^{-1}$ é o limite uniforme em S^1 de uma seqüência de funções polinomiais. Logo $z \mapsto \lambda - z$ é inversível em \mathfrak{A}_0 e $\lambda \notin \sigma_{\mathfrak{A}_0}(\mathfrak{i})$. Concluímos então que:

$$\sigma_{\mathfrak{A}_0}(\mathfrak{i})=\mathrm{B}[0,1]=\big\{z\in\mathbb{C}:|z|\leq 1\big\}.$$

Continuemos agora o estudo das propriedades do espectro e do resolvente de um elemento de uma álgebra de Banach.

6.32. Lema. Se $\mathfrak A$ é uma álgebra de Banach então para todo $T \in \mathfrak A$ temos que o resolvente de T é aberto em $\mathbb K$ e portanto o espectro de T é fechado em $\mathbb K$.

Demonstração. O resolvente de T é a imagem inversa do conjunto $\mathcal{U}(\mathfrak{A})$ pela função contínua $\mathbb{K} \ni \lambda \mapsto \lambda - T \in \mathfrak{A}$. Pelo Corolário 6.26, $\mathcal{U}(\mathfrak{A})$ é aberto em \mathfrak{A} e portanto $\rho(T)$ é aberto em \mathbb{K} .

6.33. Lema. Se \mathfrak{A} é uma álgebra de Banach então para todo $T \in \mathfrak{A}$ temos que o espectro de T está contido na bola fechada de centro na origem e raio ||T|| em \mathfrak{A} .

Demonstração. Basta mostrar que se $\lambda\in\mathbb{K}$ e $|\lambda|>\|T\|$ então $\lambda-T$ é inversível em $\mathfrak{A}.$ Temos:

$$\lambda - T = \lambda (\mathbf{1} - T\lambda^{-1}).$$

Como $||T\lambda^{-1}|| = ||T|||\lambda|^{-1} < 1$, segue do Lema 6.24 que $\mathbf{1} - T\lambda^{-1}$ é inversível em \mathfrak{A} . Logo $\lambda - T$ também é inversível em \mathfrak{A} .

6.34. Corolário. Se $\mathfrak A$ é uma álgebra de Banach então o espectro de um elemento arbitrário $T \in \mathfrak A$ é compacto.

Demonstração. Segue dos Lemas 6.32 e 6.33.

6.35. Lema. Seja A uma álgebra de Banach. Então a aplicação inversão

inv:
$$\mathcal{U}(\mathfrak{A}) \ni T \longmapsto T^{-1} \in \mathfrak{A}$$

é de classe C^{∞} (holomorfa, se $\mathbb{K} = \mathbb{C}$) e sua diferencial é dada por:

(6.4)
$$d(inv)(T) \cdot H = -T^{-1}HT^{-1},$$

para todos $T \in \mathcal{U}(\mathfrak{A})$ e $H \in \mathfrak{A}$.

Demonstração. Começamos mostrando que inv é diferenciável no ponto $\mathbf{1}$ e que $d(\text{inv})(\mathbf{1}) \cdot H = -H$, para todo $H \in \mathfrak{A}$; para isso, é suficiente verificar que:

(6.5)
$$\lim_{H \to 0} \frac{(\mathbf{1} + H)^{-1} - \mathbf{1} - (-H)}{\|H\|} = 0.$$

Pelo Lema 6.24, se ||H|| < 1 então $(\mathbf{1} + H)^{-1} = \sum_{n=0}^{\infty} (-1)^n H^n$ e portanto:

(6.6)
$$(\mathbf{1} + H)^{-1} - \mathbf{1} - (-H) = \sum_{n=2}^{\infty} (-1)^n H^n.$$

Observe também que:

(6.7)
$$\left\| \sum_{n=2}^{\infty} (-1)^n H^n \right\| \le \sum_{n=2}^{\infty} \|H\|^n = \frac{\|H\|^2}{1 - \|H\|}.$$

A igualdade (6.5) segue então diretamente de (6.6) e (6.7). Seja agora T um elemento inversível arbitrário de \mathfrak{A} . Considere os homeomorfismos lineares \mathfrak{l}_T e \mathfrak{r}_T de \mathfrak{A} definidos por $\mathfrak{l}_T(S)=TS$, $\mathfrak{r}_T(S)=ST$, para todos $S\in\mathfrak{A}$. Temos o seguinte diagrama comutativo:

$$\begin{array}{c} \mathfrak{A} \stackrel{\mathrm{inv}}{\longrightarrow} \mathfrak{A} \\ \mathfrak{l}_{T} \\ \uparrow \\ \mathfrak{A} \stackrel{\mathrm{fr}_{T-1}}{\longrightarrow} \mathfrak{A} \end{array}$$

ou seja:

(6.8)
$$\operatorname{inv} = \mathfrak{r}_{T^{-1}} \circ \operatorname{inv} \circ \mathfrak{l}_{T^{-1}}.$$

Como as aplicações lineares contínuas $\mathfrak{l}_{T^{-1}}$ e $\mathfrak{r}_{T^{-1}}$ são de classe C^{∞} e inv é diferenciável no ponto $\mathbf{1}$, segue da igualdade (6.8) que inv é diferenciável no ponto T; diferenciando (6.8) no ponto T e usando a regra da cadeia, obtemos a fórmula (6.4). Para mostrar que inv é de classe C^{∞} , considere a aplicação:

$$(6.9) \mathfrak{A} \times \mathfrak{A} \ni (T_1, T_2) \longmapsto -\mathfrak{l}_{T_1} \circ \mathfrak{r}_{T_2} \in \operatorname{Lin}(\mathfrak{A});$$

temos que (6.9) é bilinear e contínua e portanto de classe C^{∞} . A fórmula (6.4) mostra que d(inv) : $\mathcal{U}(\mathfrak{A}) \to \text{Lin}(\mathfrak{A})$ é igual à composta da aplicação inv : $\mathcal{U}(\mathfrak{A}) \to \mathfrak{A}$, com a aplicação diagonal $\mathfrak{A} \ni T \mapsto (T,T) \in \mathfrak{A} \times \mathfrak{A}$, com a aplicação (6.9). Segue então por indução em k que inv é de classe C^k , para todo $k \geq 0$; logo inv é de classe C^{∞} . Finalmente, se $\mathbb{K} = \mathbb{C}$ então a fórmula (6.4) mostra que d(inv) $(T) : \mathfrak{A} \to \mathfrak{A}$ é \mathbb{C} -linear, para todo $T \in \mathcal{U}(\mathfrak{A})$ e portanto a aplicação inv é holomorfa.

6.36. **Definição.** Seja $\mathfrak A$ uma álgebra de Banach e seja $T \in \mathfrak A$. A aplicação:

$$\rho(T) \ni \lambda \longmapsto \rho(T; \lambda) \stackrel{\text{def}}{=} (\lambda - T)^{-1} \in \mathfrak{A}$$

é chamada a aplicação resolvente correspondente ao elemento T. O valor da aplicação resolvente num ponto $\lambda \in \rho(T)$ é chamado o resolvente de T no ponto λ .

6.37. Corolário. Seja $\mathfrak A$ uma álgebra de Banach. A aplicação resolvente de um elemento $T \in \mathfrak A$ é de classe C^{∞} (holomorfa, se $\mathbb K = \mathbb C$).

Demonstração. A aplicação $\mathbb{K} \ni \lambda \mapsto \lambda - T \in \mathfrak{A}$ é claramente de classe C^{∞} (holomorfa, se $\mathbb{K} = \mathbb{C}$). A conclusão segue do Lema 6.35 e da regra da cadeia.

Temos a seguinte estimativa sobre o resolvente $\rho(T; \lambda)$ de um elemento T quando $|\lambda| \to \infty$.

6.38. Lema. Seja $\mathfrak A$ uma álgebra de Banach. Dado $T \in \mathfrak A$ então:

$$\lim_{|\lambda| \to \infty} \rho(T; \lambda) = 0.$$

Demonstração. Para $\lambda \in \rho(T), \lambda \neq 0$, temos:

$$\rho(T;\lambda) = (\lambda - T)^{-1} = [\lambda(\mathbf{1} - T\lambda^{-1})]^{-1} = \lambda^{-1}(\mathbf{1} - T\lambda^{-1})^{-1}.$$

Como a aplicação inversão de $\mathfrak A$ é contínua (Lema 6.35), temos que:

$$\lim_{|\lambda| \to \infty} (\mathbf{1} - T\lambda^{-1})^{-1} = \mathbf{1}.$$

Obviamente, $\lim_{|\lambda| \to \infty} \lambda^{-1} = 0$. A conclusão segue.

Estamos em condições de demonstrar agora o seguinte importante resultado:

6.39. **Proposição.** Seja $\mathfrak A$ uma álgebra de Banach complexa. Então o espectro de um elemento $T \in \mathfrak A$ é um subconjunto compacto e não vazio do plano complexo $\mathbb C$.

Demonstração. Já vimos que o espectro de T é compacto (Corolário 6.34). Suponha por absurdo que $\sigma(T)=\emptyset$, de modo que $\rho(T)=\mathbb{C}$. Daí a aplicação resolvente de T é uma função inteira (Corolário 6.37), i.e., holomorfa em todo o plano complexo \mathbb{C} . Segue do Lema 6.38 que a aplicação resolvente é limitada e portanto constante, pelo Teorema de Liouville (Teorema 4.19). Daí $\rho(T;\lambda)=0$, para todo $\lambda\in\mathbb{C}$. Mas o elemento $\rho(T;\lambda)\in\mathfrak{A}$ é inversível para todo λ , o que nos dá uma contradição.

6.40. Corolário. Se $\mathfrak A$ é uma álgebra de Banach complexa com divisão então todo elemento de $\mathfrak A$ é da forma $\lambda 1$, com $\lambda \in \mathbb C$; em particular, a aplicação (6.3) é um isomorfismo e uma isometria de $\mathbb K = \mathbb C$ sobre $\mathfrak A$.

Demonstração. Dado $T \in \mathfrak{A}$ então, pela Proposição 6.39, existe $\lambda \in \mathbb{C}$ tal que $\lambda - T$ não é inversível; como \mathfrak{A} é uma álgebra com divisão, isso implica que $\lambda - T = 0$ e portanto $T = \lambda \mathbf{1}$.

6.41. **Lema** (expansão de Taylor do resolvente no infinito). Seja $\mathfrak A$ uma álgebra de Banach e seja $T \in \mathfrak A$. Para todo $z \neq 0$ em $\mathbb K$ com $|z| < ||T||^{-1}$, temos que o resolvente de T no ponto z^{-1} é dado pela série de potências:

(6.10)
$$\rho(T; z^{-1}) = \sum_{n=0}^{\infty} T^n z^{n+1}.$$

Demonstração. Temos:

$$\rho(T;z^{-1}) = (z^{-1} - T)^{-1} = [z^{-1}(\mathbf{1} - zT)]^{-1} = z(\mathbf{1} - zT)^{-1}.$$

Como ||zT|| = |z| ||T|| < 1, segue do Lema 6.24 que:

$$\rho(T; z^{-1}) = z \sum_{n=0}^{\infty} T^n z^n.$$

6.42. **Definição.** Seja $\mathfrak A$ uma álgebra de Banach complexa e seja $T \in \mathfrak A$. O raio espectral de T é o número real não negativo definido por:

(6.11)
$$|\sigma(T)| \stackrel{\text{def}}{=} \sup_{z \in \sigma(T)} |z|.$$

Segue da Proposição 6.39 que existe $z \in \sigma(T)$ tal que $|z| = |\sigma(T)|$, i.e., o supremo em (6.11) é na verdade um máximo. Temos que o raio espectral de T é o raio do menor disco fechado centrado na origem em $\mathbb C$ que contém o espectro de T. Note que, pelo Lema 6.33, temos sempre a desigualdade:

$$|\sigma(T)| \le ||T||.$$

No que segue, determinaremos uma fórmula precisa para $|\sigma(T)|$.

6.43. **Lema.** Seja $\mathfrak A$ uma álgebra de Banach complexa e seja $T \in \mathfrak A$. Então a fórmula (6.10) é válida para todo $z \in \mathbb C$ tal que $0 < |z| < |\sigma(T)|^{-1}$. Além do mais, temos $|\sigma(T)| \ge \limsup_{n \to \infty} \|T^n\|^{\frac{1}{n}}$.

Demonstração. Considere o conjunto:

$$U = \{ z \in \mathbb{C} : z \neq 0 \text{ e } z^{-1} \in \rho(T) \} \cup \{0\}$$

e a função $f: U \to \mathfrak{A}$ definida por:

$$f(z) = \begin{cases} \rho(T; z^{-1}), & \text{se } z \in U \setminus \{0\}, \\ 0, & \text{se } z = 0. \end{cases}$$

Claramente $U\setminus\{0\}$ é um aberto e a função f é holomorfa em $U\setminus\{0\}$ (Lema 6.32 e Corolário 6.37). Além do mais, se $|z|<\|T\|^{-1}$ então segue do Lema 6.41 que $z\in U$ e que:

(6.12)
$$f(z) = \sum_{n=0}^{\infty} T^n z^{n+1}.$$

A Proposição 3.7 e o Corolário 3.9 nos dizem então que f é holomorfa em U e que (6.12) é exatamente a série de Taylor de f centrada na origem. Como o disco aberto de centro na origem e raio $|\sigma(T)|^{-1}$ está contido em

U, segue da Proposição 4.15 que a igualdade (6.12) é válida para todo z com $|z|<|\sigma(T)|^{-1}$; logo (6.10) vale para todo z com $0<|z|<|\sigma(T)|^{-1}$. Vemos também que o raio de convergência da série de potências em (6.12) é pelo menos $|\sigma(T)|^{-1}$. Obviamente as séries de potências $\sum_{n=0}^{\infty} T^n z^{n+1}$ e $\sum_{n=0}^{\infty} T^n z^n$ têm o mesmo raio de convergência e a fórmula (3.2) nos dá então:

$$\frac{1}{\limsup_{n \to \infty} ||T^n||^{\frac{1}{n}}} \ge |\sigma(T)|^{-1}.$$

Isso completa a demonstração.

Nosso objetivo agora é mostrar que o limite $\lim_{n\to\infty} ||T^n||^{\frac{1}{n}}$ coincide exatamente com o raio espectral de T. Para isso, precisamos de um lema preparatório.

6.44. **Lema.** Seja $\mathfrak A$ uma álgebra de Banach e seja $T \in \mathfrak A$. Se $\lambda \in \mathbb K$ pertence ao espectro de T então λ^n pertence ao espectro de T^n , para todo $n \geq 1$.

Demonstração. Temos:

$$\lambda^n - T^n = (\lambda - T) \sum_{k=0}^{n-1} \lambda^k T^{n-1-k}.$$

Como a subálgebra de \mathfrak{A} gerada por T é comutativa (Corolário 6.9), segue que os elementos $\lambda - T$ e $\sum_{k=0}^{n-1} \lambda^k T^{n-1-k}$ comutam. Daí, se λ^n pertence ao resolvente de T^n então $\lambda^n - T^n$ é inversível e portanto, pelo Corolário 6.4, $\lambda - T$ também é inversível, i.e., λ pertence ao resolvente de T.

6.45. **Proposição** (fórmula do raio espectral). Seja $\mathfrak A$ uma álgebra de Banach complexa e seja $T \in \mathfrak A$. Então o limite $\lim_{n\to\infty} \|T^n\|^{\frac{1}{n}}$ existe e valem as iqualdades:

$$|\sigma(T)|=\lim_{n\to\infty}\|T^n\|^{\frac{1}{n}}=\inf_{n\geq 1}\|T^n\|^{\frac{1}{n}}.$$

Demonstração. Se $\lambda \in \sigma(T)$ então $\lambda^n \in \sigma(T^n)$ (Lema 6.44) e portanto $|\lambda^n| \leq ||T^n||$ (Lema 6.33). Logo $|\lambda| \leq ||T^n||^{\frac{1}{n}}$, para todo $n \geq 1$ e portanto, usando também o Lema 6.43, obtemos:

$$|\sigma(T)| \leq \inf_{n \geq 1} \|T^n\|^{\frac{1}{n}} \leq \liminf_{n \to \infty} \|T^n\|^{\frac{1}{n}} \leq \limsup_{n \to \infty} \|T^n\|^{\frac{1}{n}} \leq |\sigma(T)|.$$

A conclusão segue.

Como vimos no Exemplo 6.31, se \mathfrak{A}_0 é uma subálgebra fechada de uma álgebra de Banach \mathfrak{A} e se $T \in \mathfrak{A}_0$ então o espectro de T visto como elemento de \mathfrak{A}_0 pode conter propriamente o espectro de T visto como elemento de \mathfrak{A} . No entanto, temos o seguinte:

6.46. Corolário. Sejam $\mathfrak A$ uma álgebra de Banach complexa, $\mathfrak A_0$ uma sub-álgebra fechada de $\mathfrak A$ e $T \in \mathfrak A_0$. Então:

(6.13)
$$\sup_{z \in \sigma_{\mathfrak{A}}(T)} |z| = \sup_{z \in \sigma_{\mathfrak{A}_0}(T)} |z|,$$

i.e., o raio espectral de T visto como elemento de \mathfrak{A} coincide com o raio espectral de T visto como elemento de \mathfrak{A}_0 .

Demonstração. Simplesmente observe que, pela Proposição 6.45, ambos os supremos que aparecem em (6.13) são iguais ao limite $\lim_{n\to\infty} ||T^n||^{\frac{1}{n}}$. \square

7. CÁLCULO FUNCIONAL HOLOMORFO

No que segue, consideramos fixada uma álgebra de Banach complexa \mathfrak{A} . Se $\mathbb{C} \ni z \mapsto f(z) = \sum_{k=0}^n a_k z^k \in \mathbb{C}$ é uma função polinomial em \mathbb{C} com coeficientes complexos $a_0, \ldots, a_k \in \mathbb{C}$ e se T é um elemento da álgebra de Banach complexa \mathfrak{A} então podemos definir um elemento $f(T) \in \mathfrak{A}$ de forma natural fazendo $f(T) = \sum_{k=0}^n a_k T^k$. É fácil ver que se f e g são funções polinomiais então:

$$(7.1) (f+g)(T) = f(T) + g(T), (fg)(T) = f(T)g(T).$$

Mais geralmente, se $f: \mathbb{C} \to \mathbb{C}$ é uma função inteira então é natural definir $f(T) = \sum_{k=0}^{\infty} a_k T^k$, onde $\sum_{k=0}^{\infty} a_k z^k$ é a série de Taylor de f centrada na origem; note que a série $\sum_{k=0}^{\infty} a_k T^k$ é normalmente convergente em \mathfrak{A} , para todo $T \in \mathfrak{A}$, já que a série de potências $\sum_{k=0}^{\infty} a_k z^k$ converge em todo o plano complexo \mathbb{C} . Utilizando propriedades elementares de séries de potências, não é difícil verificar que as igualdades (7.1) também são válidas se f e g são funções inteiras arbitrárias.

Nosso objetivo aqui é procurar uma definição para f(T), quando $T \in \mathfrak{A}$ e $f: U \to \mathbb{C}$ é uma função holomorfa num aberto U do plano complexo. A primeira pergunta que devemos fazer é a seguinte: qual deve ser a relação entre o domínio de f e o elemento T para que f(T) esteja bem-definido? Uma pista para responder a essa pergunta é obtida se consideramos a álgebra de Banach $\mathfrak{A} = \operatorname{Lin}(\mathbb{C}^n)$ das matrizes complexas $n \times n$. Seja $T = \operatorname{diag}(\lambda_1, \ldots, \lambda_n) \in \mathfrak{A}$ a matriz diagonal que tem os números complexos $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ em sua diagonal principal. Nesse caso, uma definição razoável para f(T) deveria satisfazer:

(7.2)
$$f(T) = \operatorname{diag}(f(\lambda_1), \dots, f(\lambda_n)).$$

Como $\sigma(T) = \{\lambda_1, \dots, \lambda_n\}$, parece razoável que para definir f(T) o domínio da função f deva conter o espectro de T.

Seja então $T \in \mathfrak{A}$ e $f: U \to \mathbb{C}$ uma função holomorfa num aberto $U \subset \mathbb{C}$ contendo $\sigma(T)$. Para definir f(T) nesse caso geral, não é apropriado usar uma representação de f em série de potências, pois essa série pode não ser convergente num disco grande o suficiente para nossos propósitos. Uma idéia natural é utilizar a Fórmula Integral de Cauchy (recorde Proposição 5.3). Substituindo formalmente w por T na fórmula integral (5.1) somos levados a considerar a integral de linha:

(7.3)
$$\frac{1}{2\pi i} \int_{\gamma} f(z)(z-T)^{-1} dz = \frac{1}{2\pi i} \int_{\gamma} f(z)\rho(T;z) dz,$$

na qual o integrando é uma função holomorfa em $U \setminus \sigma(T)$, tomando valores na álgebra de Banach complexa \mathfrak{A} . Olhemos novamente para o caso em que $\mathfrak{A} = \operatorname{Lin}(\mathbb{C}^n)$ e $T = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Se γ é uma cadeia de curvas fechadas de classe C^1 por partes em $U \setminus \sigma(T)$ tal que $\operatorname{ind}(\gamma, p) = 0$ para todo $p \in \mathbb{C} \setminus U$ então a Fórmula Integral de Cauchy nos diz que a integral (7.3) é igual à matriz diagonal cujo j-ésimo elemento da diagonal principal é igual a $\operatorname{ind}(\gamma, \lambda_j) f(\lambda_j)$. Para obter o resultado desejado (7.2), devemos portanto supor também que $\operatorname{ind}(\gamma, p) = 1$, para todo $p \in \sigma(T)$. Isso motiva a seguinte:

- 7.1. **Definição.** Sejam $U \subset \mathbb{C}$ um aberto e K um subconjunto compacto de U. Uma cadeia de curvas fechadas γ é dita adaptada ao par (U, K) se:
 - $\operatorname{Im}(\gamma) \subset U \setminus K$;
 - $\operatorname{ind}(\gamma, p) = 1$, para todo $p \in K$;
 - $\operatorname{ind}(\gamma, p) = 0$, para todo $p \in \mathbb{C} \setminus U$.
- 7.2. **Definição.** Seja $T \in \mathfrak{A}$ e seja $f: U \to \mathbb{C}$ uma função holomorfa, onde U é um aberto de \mathbb{C} contendo $\sigma(T)$. Definimos $f(T) \in \mathfrak{A}$ fazendo:

(7.4)
$$f(T) \stackrel{\text{def}}{=} \frac{1}{2\pi i} \int_{\gamma} f(z)(z-T)^{-1} dz = \frac{1}{2\pi i} \int_{\gamma} f(z)\rho(T;z) dz,$$

onde γ é uma cadeia de curvas fechadas de classe C^1 por partes adaptada ao par $(U, \sigma(T))$.

Para justificar a Definição 7.2 precisamos verificar duas coisas. Em primeiro lugar, devemos saber que uma cadeia de curvas fechadas γ de classe C^1 por partes adaptada ao par $\left(U,\sigma(T)\right)$ de fato existe. A demonstração detalhada esse fato é um tanto técnica e deixamo-la para o apêndice. No momento, apenas enunciamos a seguinte:

7.3. **Proposição.** Dados um aberto $U \subset \mathbb{C}$ e um compacto $K \subset U$ então existe uma cadeia de curvas fechadas γ de classe C^{∞} por partes adaptada ao par (U, K).

Demonstração. Veja Apêndice A.

Devemos também verificar que a integral em (7.4) não depende da cadeia γ escolhida; temos o seguinte:

7.4. **Lema.** Seja $T \in \mathfrak{A}$ e sejam γ , μ cadeias de curvas fechadas de classe C^1 por partes adaptadas ao par $(U, \sigma(T))$. Então:

$$\int_{\gamma} f(z)\rho(T;z) dz = \int_{\mu} f(z)\rho(T;z) dz.$$

Demonstração. Escreva $\gamma = (\gamma_1, \dots, \gamma_n)$ e $\mu = (\mu_1, \dots, \mu_m)$; consideramos a seguinte cadeia de curvas fechadas de classe C^1 por partes:

$$\lambda = (\gamma_1, \dots, \gamma_n, \mu_1^{-1}, \dots, \mu_m^{-1}).$$

Obviamente $\operatorname{Im}(\lambda) \subset U \setminus \sigma(T)$ e $\operatorname{ind}(\lambda, p) = \operatorname{ind}(\gamma, p) - \operatorname{ind}(\mu, p) = 0$, para todo $p \in \mathbb{C} \setminus U$ e todo $p \in \sigma(T)$. Como a função $z \mapsto f(z)\rho(T;z)$ é holomorfa no aberto $U \setminus \sigma(T)$ e como $\operatorname{ind}(\lambda, p) = 0$ para todo p no complementar de $U \setminus \sigma(T)$, segue do Teorema de Cauchy (Teorema 5.5) que a integral $\int_{\Lambda} f(z)\rho(T;z) \, \mathrm{d}z$ é nula. Portanto:

$$\int_{\lambda} f(z)\rho(T;z) dz = \int_{\gamma} f(z)\rho(T;z) dz - \int_{\mu} f(z)\rho(T;z) dz = 0. \qquad \Box$$

APÊNDICE A. CONSTRUÇÃO DE CADEIAS DE CURVAS ADAPTADAS

O objetivo deste apêndice é demonstrar a Proposição 7.3. A idéia para a construção de uma cadeia de curvas fechadas adaptada a um par (U,K) é intuitivamente simples. Ladrilhamos o plano por um reticulado de quadrados com diâmetro menor que a distância de K até o complementar de U. A cadeia é obtida então considerando as fronteiras (percorridas no sentido anti-horário) dos quadrados do reticulado que interceptam K. Temos, no entanto, que eliminar as arestas que são comuns a dois quadrados, para que a imagem da cadeia seja disjunta de K; note que arestas comuns a dois quadrados são percorridas em sentidos opostos e portanto cancelam-se nas integrais de linha. Devemos também concatenar as arestas remanescentes dos quadrados de modo a formar uma cadeia de curvas fechadas. Nosso objetivo aqui é apresentar uma exposição detalhada e rigorosa dessa construção. Para isso, será conveniente considerar a seguinte generalização da Definição 5.2.

A.1. **Definição.** Uma cadeia de curvas em C é uma següência finita:

$$\gamma = (\gamma_1, \dots, \gamma_n),$$

onde cada $\gamma_j : [a_j, b_j] \to \mathbb{C}$ é uma curva contínua. Dizemos que a cadeia γ é de classe C^k (resp., de classe C^k por partes) se cada curva γ_j é de classe C^k (resp., de classe C^k por partes). A imagem da cadeia γ é o conjunto:

$$\operatorname{Im}(\gamma) = \bigcup_{j=1}^{n} \operatorname{Im}(\gamma_j).$$

Se a imagem de γ está contida num subconjunto U de \mathbb{C} , diremos que γ é uma cadeia de curvas em U. Se $\mathrm{Im}(\gamma) \subset U$ e se ω é uma 1-forma contínua em U então a integral de linha $\int_{\gamma} \omega$ é definida por:

$$\int_{\gamma} \omega = \sum_{i=1}^{n} \int_{\gamma_i} \omega.$$

Note que definimos uma cadeia de curvas como sendo uma seqüência de curvas, e não apenas um conjunto de curvas. O motivo disso não é que estaremos particularmente interessados na ordem das curvas que aparecem numa dada cadeia; utilizamos seqüências em vez de conjuntos para permitir eventualmente que uma mesma curva apareça mais de uma vez numa mesma

cadeia. Se $\gamma = (\gamma_1, \dots, \gamma_n)$ é uma cadeia de curvas, usaremos a notação $\mu \in \gamma$ e diremos que μ pertence a γ quando existe um índice $j = 1, \dots, n$ tal que $\mu = \gamma_j$.

A.2. **Definição.** Seja $\gamma = (\gamma_1, \dots, \gamma_n)$ uma cadeia de curvas em \mathbb{C} , onde $\gamma_j : [a_j, b_j] \to \mathbb{C}$, para $j = 1, \dots, n$. Dado um ponto $p \in \mathbb{C}$ então a *incidência* de γ em p é definida por:

$$\iota(\gamma, p) = \big| \{j = 1, \dots, n : \gamma_j(b_j) = p\} \big| - \big| \{j = 1, \dots, n : \gamma_j(a_j) = p\} \big|,$$
onde $|\cdot|$ denota a cardinalidade de um conjunto. A cadeia γ é dita *cíclica*

onde $|\cdot|$ denota a cardinalidade de um conjunto. A cadeia γ é dita *cíclica* se $\iota(\gamma, p) = 0$, para todo $p \in \mathbb{C}$.

Observe que toda cadeia de curvas fechadas é cíclica, mas nem toda cadeia cíclica de curvas é uma cadeia de curvas fechadas. Parte do nosso trabalho consiste em mostrar que uma cadeia cíclica de curvas pode ser reduzida, num sentido conveniente, a uma cadeia de curvas fechadas.

A.3. **Definição.** Seja $\gamma = (\gamma_1, \ldots, \gamma_n)$ uma cadeia de curvas em \mathbb{C} , onde $\gamma_j : [a_j, b_j] \to \mathbb{C}$, para $j = 1, \ldots, n$. Dizemos que γ é redutível se existem índices $j, k \in \{1, \ldots, n\}, j \neq k$, tais que $\gamma_j(b_j) = \gamma_k(a_k)$; nesse caso, a cadeia constituída pelas curvas $\gamma_r, r \in \{1, \ldots, n\} \setminus \{j, k\}$ e pela curva concatenada $\gamma_j \cdot \gamma_k$ é dita uma redução simples de γ . Se uma cadeia μ é obtida de γ por uma seqüência finita de reduções simples então dizemos que μ é uma redução de γ . Uma cadeia de curvas γ é dita irredutível quando não for redutível.

A.4. Lema. Seja γ uma cadeia de curvas em $\mathbb C$ e seja μ uma redução de γ . Então:

- se γ é de classe C^k por partes então μ também é de classe C^k por partes;
- $\operatorname{Im}(\gamma) = \operatorname{Im}(\mu)$;
- se γ é de classe C^1 por partes e se ω é uma 1-forma contínua num subconjunto U de \mathbb{C} que contém $\operatorname{Im}(\gamma)$ então $\int_{\gamma} \omega = \int_{\mathbb{R}} \omega$;
- para todo $p \in \mathbb{C}$, temos $\iota(\gamma, p) = \iota(\mu, p)$;
- a cadeia γ é cíclica se e somente se a cadeia μ é cíclica.

Demonstração. Claramente é suficiente considerar o caso em que μ é uma redução simples de γ . Nesse caso, a verificação das afirmações acima é imediata.

A.5. Lema. Toda cadeia de curvas em C admite uma redução irredutível.

Demonstração. Senão, seria possível executar uma seqüência infinita de reduções simples numa cadeia; como cada redução simples reduz em uma unidade o número de curvas de uma cadeia e como toda cadeia é finita, isso é impossível.

A.6. Lema. Se uma cadeia de curvas γ em $\mathbb C$ é cíclica e irredutível então γ é uma cadeia de curvas fechadas.

Demonstração. Escreva $\gamma = (\gamma_1, \dots, \gamma_n)$, com $\gamma_j : [a_j, b_j] \to \mathbb{C}, j = 1, \dots, n$. Seja $j = 1, \dots, n$ fixado. Devemos mostrar que $\gamma_j(a_j) = \gamma_j(b_j)$. Tomando $p = \gamma_j(a_j)$ então, como $\iota(\gamma, p) = 0$, deve existir um índice $k = 1, \dots, n$ tal que $\gamma_k(b_k) = p$. Se fosse $k \neq j$, a cadeia γ seria redutível. Logo k = j e portanto $\gamma_j(b_j) = p = \gamma_j(a_j)$.

A.7. **Definição.** Seja $\gamma = (\gamma_1, \dots, \gamma_n)$ uma cadeia de curvas em $\mathbb C$ e suponha que existam índices $j,k \in \{1,\dots,n\}$ (não necessariamente distintos) tais que $\gamma_j = \gamma_k^{-1}$. Se μ denota a cadeia obtida de γ pela remoção das curvas γ_j e γ_k então diremos que μ é obtida de γ por uma operação de cancelamento.

A.8. **Lema.** Seja γ uma cadeia de curvas em \mathbb{C} e suponha que μ é obtida de γ por um número finito de operações de cancelamento. Então:

- se γ é de classe C^k (resp., de classe C^k por partes) então μ também é de classe C^k (resp., de classe C^k por partes);
- $\operatorname{Im}(\mu) \subset \operatorname{Im}(\gamma)$;
- se γ é de classe C^1 por partes e se ω é uma 1-forma contínua num subconjunto U de \mathbb{C} que contém $\operatorname{Im}(\gamma)$ então $\int_{\gamma} \omega = \int_{\mathbb{R}} \omega$;
- para todo $p \in \mathbb{C}$, temos $\iota(\gamma, p) = \iota(\mu, p)$;
- a cadeia γ é cíclica se e somente se a cadeia μ é cíclica.

Demonstração. Claramente é suficiente considerar o caso em que μ é obtida de γ por uma única operação de cancelamento. Nesse caso, a verificação das afirmações acima é imediata. Observamos, no entanto, que o seguinte caso merece uma atenção especial: se μ é obtida de γ pela remoção de uma curva γ_j tal que $\gamma_j = \gamma_j^{-1}$. Nesse caso, a curva γ_j é obrigatoriamente fechada e, se γ_j é de classe C^1 por partes, a integral $\int_{\gamma_j} \omega$ é necessariamente nula, já que $\int_{\gamma_j} \omega = -\int_{\gamma_j} \omega$.

A.9. Observação. Suponha que $\gamma = (\gamma_1, \dots, \gamma_n)$ é uma cadeia de curvas duas a duas distintas, i.e., $\gamma_j \neq \gamma_k$, para $j, k = 1, \dots, n, j \neq k$. Considere a cadeia μ constituída pelas curvas γ_j pertencentes a γ tais que γ_j^{-1} não pertence a γ . É fácil ver que μ é obtida de γ por um número finito de operações de cancelamento e portanto a tese do Lema A.8 aplica-se às curvas γ e μ .

Dado um ponto $p = (p_1, p_2) \in \mathbb{R}^2 \cong \mathbb{C}$ e um número real positivo l então denotamos por Q(p, l) o quadrado $Q(p, l) = [p_1, p_1 + l] \times [p_2, p_2 + l]$; consideramos também os caminhos retilíneos:

$$\partial^{1}Q(p,l) = [p, p + (l,0)], \quad \partial^{2}Q(p,l) = [p + (l,0), p + (l,l)],$$
$$\partial^{3}Q(p,l) = [p + (l,l), p + (0,l)], \quad \partial^{4}Q(p,l) = [p + (0,l), p],$$

e a curva fechada:

$$\partial Q(p,l) = \partial^1 Q(p,l) \cdot \partial^2 Q(p,l) \cdot \partial^3 Q(p,l) \cdot \partial^4 Q(p,l).$$

As curvas $\partial^i Q(p,l)$, i=1,2,3,4, são chamadas as arestas do quadrado Q(p,l). É fácil verificar que se Q=Q(p,l) é um quadrado então

 $\operatorname{ind}(\partial Q,z)=1$ se z pertence ao interior de Q e $\operatorname{ind}(\partial Q,z)=0$ se znão pertence a Q.

Dado l > 0 então o reticulado padrão de lado l é o conjunto de quadrados:

$$Q_l = \{Q(p,l) : p = (lm, ln), \ m, n \in \mathbb{Z}\}.$$

Se $\widetilde{\mathcal{Q}}$ é um subconjunto finito de \mathcal{Q}_l então denotamos por $\partial\widetilde{\mathcal{Q}}$ a cadeia de curvas de classe C^{∞} constituída pelas curvas $\partial^i Q$, com $Q \in \widetilde{\mathcal{Q}}$, i=1,2,3,4. Note que a cadeia de curvas fechadas constituída pelas curvas ∂Q , $Q \in \widetilde{\mathcal{Q}}$, é uma redução da cadeia $\partial\widetilde{\mathcal{Q}}$; segue então do Lema A.4 que a cadeia $\partial\widetilde{\mathcal{Q}}$ é cíclica. Denote por $\bar{\partial}\widetilde{\mathcal{Q}}$ a cadeia formada pelas curvas γ pertencentes à cadeia $\partial\widetilde{\mathcal{Q}}$ tais que γ^{-1} não pertence à cadeia $\partial\widetilde{\mathcal{Q}}$; dito de outra forma, $\bar{\partial}\widetilde{\mathcal{Q}}$ é a cadeia formada pelas curvas $\gamma \in \partial\widetilde{\mathcal{Q}}$ tais que $\mathrm{Im}(\gamma)$ não está contida na interseção de dois quadrados distintos pertencentes ao conjunto $\widetilde{\mathcal{Q}}$. Temos que $\bar{\partial}\widetilde{\mathcal{Q}}$ é obtida de $\partial\widetilde{\mathcal{Q}}$ por um número finito de operações de cancelamento (veja Observação A.9). Segue então do Lema A.8 que $\bar{\partial}\widetilde{\mathcal{Q}}$ é uma cadeia cíclica de curvas de classe C^{∞} cuja imagem está contida na imagem de $\partial\widetilde{\mathcal{Q}}$; além do mais, se ω é uma 1-forma contínua num subconjunto $U \subset \mathbb{C}$ contendo a imagem de $\partial\widetilde{\mathcal{Q}}$ então:

(A.1)
$$\int_{\partial \widetilde{\mathcal{Q}}} \omega = \int_{\bar{\partial} \widetilde{\mathcal{Q}}} \omega.$$

Estamos agora prontos para a:

Demonstração da Proposição 7.3. Sejam $U \subset \mathbb{C}$ um aberto e K um subconjunto compacto de U. Considere o reticulado padrão \mathcal{Q}_l , onde l é escolhido de forma que $l\sqrt{2}$ (i.e., o diâmetro de um quadrado de lado l) é menor que a distância de K até o complementar de U. Seja $\widetilde{\mathcal{Q}}$ o conjunto dos quadrados $Q \in \mathcal{Q}_l$ tais que $Q \cap K \neq \emptyset$; como K é limitado, temos que $\widetilde{\mathcal{Q}}$ é finito. Além do mais, pela nossa escolha de l, temos $Q \subset U$, para todo $Q \in \widetilde{\mathcal{Q}}$. Como vimos acima nos comentários que precedem a demonstração, $\partial \widetilde{\mathcal{Q}}$ e $\partial \widetilde{\mathcal{Q}}$ são cadeias cíclicas de curvas de classe C^{∞} . Seja γ uma redução irredutível de $\partial \widetilde{\mathcal{Q}}$ (Lema A.5). Então γ é uma cadeia cíclica de curvas de classe C^{∞} por partes tal que $\mathrm{Im}(\gamma) = \mathrm{Im}(\partial \widetilde{\mathcal{Q}})$ (Lema A.4); pelo Lema A.6, γ é uma cadeia de curvas fechadas. Para completar a demonstração, devemos verificar que γ é adaptada ao par (U,K). Se um ponto $z_0 \in \mathbb{C}$ não pertence à fronteira de nenhum dos quadrados $Q \in \widetilde{\mathcal{Q}}$ então $z_0 \notin \mathrm{Im}(\partial \widetilde{\mathcal{Q}})$, $z_0 \notin \mathrm{Im}(\gamma)$ e:

$$\begin{split} (\mathrm{A.2}) \quad & \mathrm{ind}(\gamma, z_0) \quad \stackrel{\mathrm{Lema}}{=} \quad \frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}z}{z - z_0} \quad \stackrel{\mathrm{Lema}}{=} \quad \frac{1}{2\pi i} \int_{\bar{\partial} \widetilde{\mathcal{Q}}} \frac{\mathrm{d}z}{z - z_0} \\ \stackrel{(\mathrm{A.1})}{=} \quad & \frac{1}{2\pi i} \int_{\partial \widetilde{\mathcal{Q}}} \frac{\mathrm{d}z}{z - z_0} = \sum_{Q \in \widetilde{\mathcal{Q}}} \frac{1}{2\pi i} \int_{\partial Q} \frac{\mathrm{d}z}{z - z_0} = \sum_{Q \in \widetilde{\mathcal{Q}}} \mathrm{ind}(\partial Q, z_0). \end{split}$$

Se $z_0 \notin U$ então z_0 não pertence a nenhum dos quadrados $Q \in \widetilde{Q}$ e portanto (A.2) implica que ind $(\gamma, z_0) = 0$. Seja agora $z_0 \in K$. Devemos mostrar que $z_0 \notin \text{Im}(\gamma)$ e que ind $(\gamma, z_0) = 1$. Consideramos dois casos.

Caso 1. z_0 pertence ao interior de algum quadrado de Q_l .

Nesse caso, z_0 não pertence à fronteira de nenhum dos quadrados de $\widetilde{\mathcal{Q}}$, de modo que $z_0 \notin \operatorname{Im}(\gamma)$ e as igualdades em (A.2) são válidas. Seja $Q \in \mathcal{Q}_l$ tal que z_0 pertence ao interior de Q. Temos $\operatorname{ind}(\partial Q, z_0) = 1$ e $\operatorname{ind}(\partial Q', z_0) = 0$, para qualquer quadrado $Q' \in \mathcal{Q}_l$ com $Q' \neq Q$. Como $z_0 \in Q \cap K$, vemos que Q está em $\widetilde{\mathcal{Q}}$. Segue então de (A.2) que $\operatorname{ind}(\gamma, z_0) = 1$.

Caso 2. z_0 pertence à fronteira de algum quadrado de Q_l .

Vamos mostrar em primeiro lugar que $z_0 \notin \operatorname{Im}(\gamma) = \operatorname{Im}(\bar{\partial} \widetilde{\mathcal{Q}})$. Suponha por absurdo que $z_0 \in \operatorname{Im}(\mu)$, onde $\mu \in \bar{\partial} \widetilde{\mathcal{Q}}$. Temos que $\mu \in \partial \widetilde{\mathcal{Q}}$, i.e., μ é uma aresta de um quadrado $Q \in \widetilde{\mathcal{Q}}$; daí μ^{-1} é uma aresta de um outro quadrado $Q' \in \mathcal{Q}_l$. Como $z_0 \in Q' \cap K$, temos $Q' \in \widetilde{\mathcal{Q}}$. Logo ambas as curvas $\mu \in \mu^{-1}$ pertencem à cadeia $\partial \widetilde{\mathcal{Q}}$, contradizendo $\mu \in \bar{\partial} \widetilde{\mathcal{Q}}$.

Vamos agora mostrar que $\operatorname{ind}(\gamma, z_0) = 1$. Como $z_0 \notin \operatorname{Im}(\gamma)$, existe uma bola aberta B de centro z_0 que é disjunta de $\operatorname{Im}(\gamma)$. Temos que $\operatorname{ind}(\gamma, z) = \operatorname{ind}(\gamma, z_0)$, para todo $z \in B$ (Corolário 1.19). Seja $Q \in \mathcal{Q}_l$ tal que z_0 pertence à fronteira de Q; como $z_0 \in Q \cap K$, temos $Q \in \widetilde{\mathcal{Q}}$. Seja z um ponto de B pertencente ao interior de Q. Como z pertence ao interior de um quadrado de $\widetilde{\mathcal{Q}}$, podemos argumentar como no caso 1 e usar as igualdades (A.2) para concluir que $\operatorname{ind}(\gamma, z) = 1$. Obtivemos então que $\operatorname{ind}(\gamma, z_0) = \operatorname{ind}(\gamma, z) = 1$, completando a demonstração. \square

Referências

- [1] D. V. Tausk, Integration of Banach Space Valued Functions, http://www.ime.usp.br/~tausk/texts/bochner.dvi
- [2] E. L. Lima, Análise no Espaço \mathbb{R}^n , Brasília, Ed. Universidade de Brasília. São Paulo, Ed. E. Blücher Ltda., 1970.