A SCHEFFÉ-TYPE METHOD FOR MULTIPLE COMPARISONS

DANIEL V. TAUSK

Let V be a real finite dimensional vector space and assume that a parameter θ of some statistical model belongs to V. Moreover, assume that we have an unbiased normal estimator $\hat{\theta}$ for θ , i.e., $\hat{\theta}$ is a Gaussian V-valued random variable with expectation equal to θ . Let the covariance matrix of $\hat{\theta}$ be equal to $\sigma^2 \Sigma$, where σ is a (possibly unknown) positive real number and $\Sigma \in V \otimes V$ is known and nondegenerate. In case σ is unknown, we assume that we have access to an estimator $\hat{\sigma} \geq 0$ for σ such that

$$m \, \frac{\hat{\sigma}^2}{\sigma^2} \sim \chi^2(m),$$

for some positive integer m. Moreover, we assume that $\hat{\sigma}$ is independent of $\hat{\theta}$.

We will regard Σ as an inner product on the dual space V^* and we will denote by Σ^{-1} the induced inner product on V. The norms induced by both inner products will be denoted by $\|\cdot\|$. If $\alpha \in V^*$ is a nonzero linear functional, then

$$\frac{\alpha(\hat{\theta}) - \alpha(\theta)}{\sigma \|\alpha\|} \sim N(0, 1), \quad \frac{\alpha(\hat{\theta}) - \alpha(\theta)}{\hat{\sigma} \|\alpha\|} \sim t(m)$$

and these facts can be used to construct confidence intervals for $\alpha(\theta)$. Our goal is to construct simultaneous confidence intervals for all $\alpha(\theta)$ with α ranging over some subset Λ of V^* . We will consider only the simplest case in which Λ consists of all vectors of some subspace of V^* . Note that the general case can be reduced to this case by replacing Λ with its linear span, though in many cases such replacement will make our choice of simultaneous confidence intervals suboptimal.

Since every subspace of V^* is the annihilator W° of some subspace W of V, we set $\Lambda = W^{\circ}$, for some proper subspace W of V. We will make use of the following elementary results.

Lemma 1. Let V be a real finite dimensional vector space endowed with an inner product $\langle \cdot, \cdot \rangle$ and let the dual space V^* be endowed with the induced inner product. Denote the corresponding norms both by $\|\cdot\|$. If W is a proper subspace of V then for every $v \in V$, the supremum of

(1)
$$\{ |\alpha(v)| : \alpha \in W^{\circ}, \|\alpha\| = 1 \}$$

Date: December 14th, 2022.

is equal to the norm of the orthogonal projection of v in W^{\perp} .

Proof. Simply note that the set (1) is equal to:

$$\{ |\langle z, P(v) \rangle | : z \in W^{\perp}, ||z|| = 1 \},\$$

where $P: V \to W^{\perp}$ denotes the orthogonal projection onto W.

Lemma 2. Let V be a real finite dimensional vector space and let X be a Gaussian V-valued random variable with mean zero and nondegenerate covariance matrix $\Sigma \in V \otimes V$. We regard Σ as an inner product on V^{*} and we endow V with the induced inner product Σ^{-1} and the corresponding norm $\|\cdot\|$. Let U be a subspace of V and let $P: V \to U$ denote the orthogonal projection onto U with respect to Σ^{-1} . If $r = \dim(U)$ then $\|P(X)\|^2 \sim \chi^2(r)$.

Proof. Pick an orthonormal basis $(e_i)_{i=1}^n$ of V such that $(e_i)_{i=1}^r$ is a basis of U and denote by X_i , i = 1, ..., n the coordinates of X, i.e., $X = \sum_{i=1}^n X_i e_i$. To conclude the proof, note that X_i , i = 1, ..., n are independent standard normal and that:

$$||P(X)||^2 = \sum_{i=1}^r X_i^2.$$

In what follows we denote by $P: V \to W^{\perp}$ the orthogonal projection onto W^{\perp} with respect to the inner product Σ^{-1} and we set:

 $r = \dim(V) - \dim(W) = \dim(W^{\perp}).$

It follows from Lemma 1 that the supremum of

$$\frac{|\alpha(\hat{\theta}) - \alpha(\theta)|}{\sigma \|\alpha\|}$$

with α ranging over $W^{\circ} \setminus \{0\}$ is equal to

$$\frac{\|P(\hat{\theta} - \theta)\|}{\sigma}$$

Applying now Lemma 2 with $X = \frac{\hat{\theta} - \theta}{\sigma}$ we obtain that:

(2)
$$\frac{\|P(\hat{\theta} - \theta)\|^2}{\sigma^2} \sim \chi^2(r)$$

These observations yield the following method for constructing simultaneous confidence intervals in case σ is known.

Proposition 3. Let $\gamma \in [0, 1[$ and pick $q \in [0, +\infty[$ such that the probability of $\chi^2(r) \leq q$ is γ . We have that the interval with center $\alpha(\hat{\theta})$ and radius $\sigma\sqrt{q} \|\alpha\|$ is a simultaneous γ -confidence interval for $\alpha(\theta)$ for all $\alpha \in W^{\circ}$. \Box

We deal with the case of unknown σ in a similar way, noting first that Lemma 1 yields that the supremum of

$$\frac{|\alpha(\hat{\theta}) - \alpha(\theta)|}{\hat{\sigma} \|\alpha\|}$$

with α ranging over $W^{o} \setminus \{0\}$ is equal to

$$\frac{\|P(\hat{\theta} - \theta)\|}{\hat{\sigma}}$$

and again Lemma 2 gives us (2). Hence

$$\frac{\|P(\hat{\theta}-\theta)\|^2}{r\hat{\sigma}^2} \sim F(r,m)$$

and we obtain the following result.

Proposition 4. Let $\gamma \in [0, 1[$ and pick $f \in [0, +\infty[$ such that the probability of $F(r,m) \leq f$ is γ . We have that the interval with center $\alpha(\hat{\theta})$ and radius $\hat{\sigma}\sqrt{rf} \|\alpha\|$ is a simultaneous γ -confidence interval for $\alpha(\theta)$ for all $\alpha \in W^{\circ}$.

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE SÃO PAULO, BRAZIL Email address: tausk@ime.usp.br URL: http://www.ime.usp.br/~tausk