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CHAPTER 1

Classical Mechanics

There are three basic ingredients for the formulation of a physical theory:
spacetime, ontology and dynamics. Spacetime is represented, within the
theory, by a set endowed with some extra structure; the points of such set
are called events. For Classical Mechanics, the adequate type of spacetime
is Galilean spacetime, which consists of a four dimensional real affine space
endowed with global absolute time and Euclidean metric structure over the
simultaneity hyperplanes defined by the absolute time function. We will give
the details of the definition in Section 1.1. To describe the ontology of the
theory means to say what are the objects whose existence is posited by the
theory, i.e., the thing the theory is all about. Such objects should be in some
way connected to spacetime. For Classical Mechanics, the ontology consists
of particles, having worldlines which are one-dimensional submanifolds of
spacetime. Finally, the dynamics says how the ontology is allowed to behave.
In the case of Classical Mechanics, this means specifying when a given set
of worldlines for the particles is admissible by the theory. This is done
by means of a second order ordinary differential equation. We present the
ontology and the dynamics of Classical Mechanics in Section 1.2.

1.1. Galilean spacetime

Recall that an affine space consists of a non empty set E, a vector space
V and a transitive free action V × E → E of the additive group (V,+) on
the set E. The elements of E are called points and the elements of V are
called vectors; the action of a vector v ∈ V upon a point e ∈ E is denoted
by v + e ∈ E or, alternatively, by e + v ∈ E. The fact that the action is
free and transitive means that given points e1, e2 ∈ E, there exists a unique
vector v ∈ V such that e2 = v+ e1; such vector v is denoted by e2 − e1. We
normally refer to the set E as the affine space and to V as the underlying
vector space of E. The dimension of E and the scalar field of E are, by
definition, the dimension of V and the scalar field of V , respectively.

1.1.1. Definition. A Galilean spacetime consists of:
• a four-dimensional real affine space E;
• a non zero linear functional t : V → R on the underlying vector

space V of E;
• a (positive definite) inner product 〈·, ·〉 on the kernel Ker(t) of t.

We call t the time functional.

1



1.1. GALILEAN SPACETIME 2

Given events e1, e2 ∈ E, the elapsed time from e1 to e2 is defined as
t(e2− e1). Two events e1, e2 ∈ E are called simultaneous if the elapsed time
from e1 to e2 is zero, i.e., if the vector e2 − e1 is in the kernel of t. When
e1, e2 ∈ E are simultaneous, we can define the distance between e1 and e2
to be ‖e1 − e2‖, where ‖ · ‖ is the norm on Ker(t) associated to the given
inner product. The simultaneity relation is an equivalence relation, which
defines a partition of E into equivalence classes. Such equivalence classes are
precisely the orbits of the action of Ker(t) on E. Those are three-dimensional
real affine spaces with underlying vector space Ker(t) (see Exercise 1.3); we
call them the simultaneity hyperplanes.

Notice that, unlike vector spaces in which the origin is a “special” point,
affine spaces have no “special” points. That is one of the reasons why space-
time is taken to be an affine space, rather than a vector space. Also, notice
that, given a Galilean spacetime, one cannot define an object which repre-
sents space. Rather, one has a family of simultaneity hyperplanes (one space
for each instant of time). This happens because in Galilean spacetime it is
meaningless to say that two events e1, e2 on distinct simultaneity hyper-
planes are “at the same place in space”. To say that two events happened
at the same time is meaningful, but to say that they happened at the same
place is not!

1.1.1. Units of measurement. The definition of Galilean spacetime
given above is not quite what it should be. Notice that, according to our
definitions, the elapsed time between two events e1, e2 ∈ E is a real number
and this is not quite right. The elapsed time between events should not be a
number, but rather something that is expressed using a unit of measurement
of time, such as seconds. In order to obtain a more appropriate definition
of Galilean spacetime, one should fix a real one-dimensional vector space S
and demand that the time functional t be a non zero linear map t : V → S
taking values in S. Thus, elapsed times would be elements of S, not real
numbers! The choice of a non zero element of S amounts to the choice of
both a time orientation and of a unit of measurement of time and it allows
one to identify S with R. Notice that, by taking R as the counter-domain
of t in our definition of Galilean spacetime, we have automatically taken a
time orientation to be part of the structure of spacetime (i.e., we can say
that an event e2 is in the future of the event e1 when t(e2 − e1) > 0). One
might argue that this is not appropriate1.

Just as the counter-domain of t shouldn’t be R, also the counter-domain
of the inner product on the kernel of t shouldn’t be R. The outcome of an
inner product should be expressed in units of squared length. So, just as
in the case of time, one should fix a real one-dimensional vector space M

1Orientation of time is not needed for specifying the dynamics of Classical Mechanics.
One might argue that it would be more appropriate to leave the orientation of time out
of the structure of spacetime, and define it in terms of entropy. We shall not discuss this
issue here.
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whose elements are to be interpreted as lengths; in this case, a orientation
should be given in M (as there should be a canonical notion of positive
length). Square lengths should be elements of the tensor product M ⊗M ,
so instead of an inner product on Ker(t), one should have a positive-definite
symmetric bilinear form on Ker(t) taking values in M ⊗M . A quotient of a
length by an elapsed time (i.e., a velocity), would then be an element of the
one-dimensional vector space M ⊗ S∗, where S∗ denotes the dual space of
S (Exercise 1.6 clarifies the role of tensor products and dual spaces here).

We shall not pursue this programme further in this text. We just would
like the reader to be aware that a better way to formulate things in Physics
is to have lots of given one-dimensional vector spaces, each one appropriate
for the values of a given type of physical dimension (such as elapsed time,
length, mass, charge, etc) and lots of other one-dimensional vector spaces
constructed from the given ones using, for instance, tensor products and du-
als, which are spaces for the values of things such as velocities, accelerations,
forces, etc. Since working like this systematically would be too annoying and
distractive, we shall simply assume that units of measurement have been
chosen and we will identify all such would-be one-dimensional vector spaces
with R once and for all.

1.1.2. Inertial coordinate systems and the Galileo group. We
start by defining a notion of isomorphism for Galilean spacetimes. Recall
that, given affine spaces E, E′, with underlying vector spaces V , V ′, respec-
tively, then a map A : E → E′ is called affine if there exists a linear map
L : V → V ′ such that:

A(v + e) = L(v) +A(e),

for all v ∈ V , e ∈ E. The linear map L is unique when it exists and it is
called the underlying linear map of A. An affine map A is called an affine
isomorphism if it is bijective; this happens if and only if the underlying linear
map L is bijective. When A is an affine isomorphism, then its inverse A−1

is also affine, with underlying linear map L−1. The affine automorphisms of
E (i.e., the affine isomorphisms from E to E) form a group Aff(E) under
composition and the map A 7→ L that associates to each affine isomorphism
A its underlying linear map L is a group homomorphism from Aff(E) onto
the general linear group GL(V ) (i.e., the group of linear isomorphisms of V ).
The kernel of such homomorphism is a normal subgroup of the group of affine
automorphisms of E; its elements are of the form E 3 e 7→ v + e ∈ E, with
v ∈ V , and they are called translations of E. The group of all translations
of E is obviously isomorphic to the additive group of V (see Exercise 1.5).

1.1.2. Definition. Let (E, V, t, 〈·, ·〉), (E′, V ′, t′, 〈·, ·〉′) be Galilean space-
times. An isomorphism A : (E, V, t, 〈·, ·〉) → (E′, V ′, t′, 〈·, ·〉′) is an affine
isomorphism A : E → E′ with underlying linear isomorphism L : V → V ′

such that:
(a) L preserves time, i.e., t′ ◦ L = t;
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(b) L carries the inner product 〈·, ·〉 on Ker(t) to the inner product 〈·, ·〉′
on Ker(t′), i.e., 〈L(v1), L(v2)〉′ = 〈v1, v2〉, for all v1, v2 ∈ Ker(t).

Notice that condition (a) above implies that L sends Ker(t) onto Ker(t′).
Galilean spacetimes and its isomorphisms form a category. Two Galilean
spacetimes are always isomorphic, i.e., given two Galilean spacetimes there
always exist an isomorphism from one to the other (see Exercise 1.7).

One might wonder why we care about defining isomorphisms of Galilean
spacetimes or why should we ever talk about “Galilean spacetimes” in the
plural when presenting a physical theory; after all, in Physics we should have
only one spacetime. We have two purposes in mind for isomorphisms: one,
is to consider the set of all automorphisms of a given Galilean spacetime.
Such set forms a group under composition and it is called the Galileo group.
The other purpose is to give an elegant definition of a privileged class of
coordinate systems over Galilean spacetime, which is what we are going to
do next.

Consider the affine space R4 canonically obtained from the vector space
R4 (see Exercise 1.1), the time functional on the vector space R4 given by
the projection onto the first coordinate and the canonical Euclidean inner
product on the kernel {0} ×R3 ∼= R3 of such time functional. We have just
defined a Galilean spacetime, which we call the Galilean spacetime of coor-
dinates. In what follows, we denote by (E, V, t, 〈·, ·〉) the Galilean spacetime
over which Classical Mechanics is going to be formulated.

1.1.3. Definition. An isomorphism φ : E → R4 from the Galilean
space time E to the Galilean spacetime of coordinates R4 is called an inertial
coordinate system.

Notice that we have avoided the (very common) terminology “inertial
observer”. This is no accident. There is no need to talk about “observers”
here. We will discuss this point in more detail later.

1.1.4. Definition. The group of automorphisms of the Galilean space-
time E is called the active Galileo group and the group of automorphisms of
the Galilean spacetime of coordinates R4 is called the passive Galileo group.

Obviously, the active and the passive Galileo groups are isomorphic, as
any choice of inertial coordinate system induces an isomorphism between
them (see Exercise 1.8); but such isomorphism is not canonical, in the sense
that it depends on the choice of the inertial coordinate system. This two
Galileo groups have distinct physical interpretations: elements of the active
Galileo group are used to transform stuff inside spacetime (say, move particle
worldlines around), while elements of the passive Galileo group are used to
relate two inertial coordinate systems. More explicitly, if φ1 : E → R4,
φ2 : E → R4 are inertial coordinate systems then the only map A : R4 → R4
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such that φ2 = A ◦ φ1, i.e., such that the diagram:

(1.1.1)

E
φ1

~~}}
}}

}}
}} φ2

  A
AA

AA
AA

A

R4
A

// R4

commutes is an element of the passive Galileo group.
We finish the section by taking a closer look at the Galileo group. Let

A : R4 → R4 be an element of the passive Galileo group. Then A can be
written as the composition of a linear isomorphism L : R4 → R4 with a
translation of R4:

(1.1.2) A(t, x) = L(t, x) + (t0, x0), (t, x) ∈ R×R3 = R4,

where (t0, x0) ∈ R×R3 = R4 is fixed. The linear isomorphism L is required
to satisfy conditions (a) and (b) in Definition 1.1.2. Condition (a) says that
L is of the form:

(1.1.3) L(t, x) =
(
t, L0(x)− vt

)
, (t, x) ∈ R×R3 = R4,

for some fixed v ∈ R3 and some linear isomorphism L0 : R3 → R3. The
expression L0(x)− vt just expresses an arbitrary R3-valued linear function
of the pair (t, x); the reason for us choosing to write a minus sign in front of
v will be apparent in a moment. Condition (b) now requires that the linear
isomorphism L0 be an isometry of R3, i.e., an element of the orthogonal
group O(3). Let us consider the following subgroups of the passive Galileo
group:

• the group of translations of R4, which is isomorphic to the additive
group R4;

• the group of isometries (i.e., rotations and reflections) of R3 (or,
more precisely, of {0} ×R3), which is the orthogonal group O(3);

• the group of linear isomorphisms of R4 of the form:

(1.1.4) R×R3 3 (t, x) 7−→ (t, x− vt) ∈ R×R3,

with v ∈ R3. This group is isomorphic to the additive group R3

and its elements are called Galilean boosts (see Exercise 1.9 for the
physical interpretation of Galilean boosts and for an explanation
of why we prefer to use a minus sign in front of v).

One immediately sees that every element of the passive Galileo group can be
written in a unique way as a composition of a translation of R4, an isometry
of R3 and a Galilean boost. We can identify the passive Galileo group with
the cartesian product:

(1.1.5) R4 ×O(3)×R3,

by identifying the element A defined by (1.1.2) and (1.1.3) with the triple(
(t0, x0), L0, v

)
. It is easy to check that the passive Galileo group is a closed
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Lie subgroup of the Lie group2 Aff(R4) of affine isomorphisms of R4 and
that the map that identifies it with the cartesian product (1.1.5) is a smooth
diffeomorphism (in particular, the Galileo group is a ten dimensional Lie
group). We emphasize, however, that the group structure on the cartesian
product (1.1.5) that turns such map into a group isomorphism is not the one
of the direct product of the groups R4, O(3) and R3. We left to the reader
as an exercise to write down explicitly the appropriate group structure on
(1.1.5) and to check that it coincides with the one of a semi-direct product
of the form:

R4 o
(
O(3) nR3

)
,

where O(3) acts on R3 and O(3) nR3 acts on R4.
As for the active Galileo group, we have already observed that it is

isomorphic to the passive Galileo group (by means of a choice of an inertial
coordinate system) and any isomorphism between the two Galileo groups
carries the three subgroups of the passive Galileo group defined above to
subgroups of the active Galileo group. However, except for the group of
translations, the corresponding subgroups of the active Galileo group depend
on the choice of inertial coordinate system. Namely, it makes sense to say
that an affine isomorphism of the affine space E is a (pure) translation, but
it doesn’t make sense to say that it is purely linear (it only makes sense to
say that an affine map is linear when its domain and counter-domain are
affine spaces which have been canonically obtained from vector spaces).

1.2. Ontology and dynamics

Let us now present the ontology and the dynamics of Classical Mechan-
ics. We will do this using an inertial coordinate system, which will be fixed
throughout the section. One must then check that the dynamics defined
(i.e., the particle worldlines which are admissible by the theory) do not de-
pend on the choice of inertial coordinate system. This task is very simple
and will be left to the reader (Exercises 1.10, 1.11 and 1.12). It is also
possible to give an intrinsic formulation of Classical Mechanics, i.e., to for-
mulate it directly over Galilean spacetime. To do so isn’t terribly difficult,
but we do not want to distract the reader with the technical complications
that arise during such task, so we relegate such formulation to an optional
section (Section 1.3).

Classical Mechanics is a theory about particles. Particles have trajecto-
ries that are represented within the theory by smooth curves q : R → R3

(what we mean when we use the word “particle” is precisely that such tra-
jectories exist). The graph of the map q, i.e., the set:

gr(q) =
{(
t, q(t)

)
: t ∈ R

}
⊂ R4

2The group Aff(R4) has a differential structure because it is an open subset of the
real finite-dimensional vector space of all affine maps of R4. It is diffeomorphic to the
cartesian product GL(R4)×R4, where the first coordinate represents the linear part and
the second the translation part.
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is called the worldline of the particle. More precisely, the worldline of the
particle is the subset of the Galilean spacetime E that is mapped onto gr(q)
by our fixed inertial coordinate system; but we will keep referring to gr(q)
as the worldline of the particle, anyway. Also, it should be mentioned that
the map q : R → R3 becomes well-defined only after a choice of an inertial
coordinate system (as have been mentioned before, in the absence of a choice
of an inertial coordinate system, we do not even have an object to use as
the counter-domain of the map q, i.e., we do not have an object representing
space).

A universe described by Classical Mechanics contains a certain number
n of particles, with trajectories3:

qj : R −→ R3, j = 1, 2, . . . , n.

To each particle it is associated a positive real number mj called the mass
of the particle. The natural number n and the positive real numbers mj are
parameters of the theory. This completes the description of the ontology.
Now, let us describe the dynamics. For each j = 1, . . . , n, the trajectory qj
of the j-th particle must satisfy the differential equation:

(1.2.1)
d2qj
dt2

(t) = Fj

(
t, q1(t), . . . , qn(t), dq1

dt (t), . . . , dqn

dt (t)
)
, t ∈ R,

where Fj : dom(Fj) ⊂ R × (R3)n × (R3)n → R3 is a smooth map defined
over some open subset dom(Fj) of R × (R3)n × (R3)n and it is called the
total force acting upon the j-th particle (actually, it is more appropriate to
call the map Fj the force law and the righthand side of (1.2.1) the force).

What we have just presented is merely a prototype of a theory. In order
to complete the formulation of the theory, we have to present also a table
of force laws, i.e., we have to say what the maps Fj are. We will now
present just a very small table of force laws. One should keep in mind that
by expanding such table one can obtain new theories compatible with the
prototype described above.

The force laws described below will only depend upon the positions qj(t)
and thus we will omit the other variables.

• The gravitational force. For i 6= j, we set:

F gr
ij (q1, . . . , qn) =

Gmimj

‖qi − qj‖3
(qj − qi),

and we call it the gravitational force of particle j acting upon parti-
cle i (or, alternatively, the gravitational force that particle j exerts
upon particle i). Here G denotes a constant called Newton’s gravi-
tational constant.

3A particular correspondence between the particles and the numbers 1, 2, . . . , n is
obviously not meant to have physical meaning. It would be more appropriate to use a
general n-element set for labeling the particles, rather than the set {1, 2, . . . , n}.
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• The electrical force. For i 6= j, we set:

F el
ij (q1, . . . , qn) = − Ceiej

‖qi − qj‖3
(qj − qi),

and we call it the electrical force of particle j acting upon particle
i (or, alternatively, the electrical force that particle j exerts upon
particle i). Here C denotes a constant called Coulomb’s constant
and ej ∈ R, j = 1, . . . , n, is a new parameter of the theory called
the charge of the j-th particle.

We define the total gravitational force acting upon particle j by:

F gr
j =

∑
i6=j

F gr
ji ,

and, similarly, the total electrical force acting upon particle j by:

F el
j =

∑
i6=j

F el
ji .

Now we state a rule that says that the forces in our table should be added
in order that the total force Fj be obtained. Thus, the total force Fj acting
upon particle j is given by:

Fj = F gr
j + F el

j .

Notice that both for the gravitational and for the electrical force we
have:

(1.2.2) Fij = −Fji.

This is sometimes called Newton’s law of reciprocal actions. It implies that:

(1.2.3)
n∑

j=1

Fj =
n∑

j=1

∑
i6=j

Fji = 0.

The gravitational and the electrical forces are the fundamental forces of
Classical Mechanics. When dealing with practical physics problems, other
forces do arise, such as friction, viscosity, contact forces, etc. Those other
forces are supposed to be emergent forces; one would not need them if all
the microscopic details of the interactions were to be taken into account4.

Also, we should mention external forces. A physical theory, in principle,
is supposed to be about the entire universe. So, in the universe described
by Classical Mechanics as formulated above, there is nothing but those n
particles. Evidently, one would like also to apply the theory to subsystems
of the universe. For Classical Mechanics, a subsystem of the universe is
obtained by choosing a subset of the set of all particles, i.e., a subset I of
the set of labels {1, 2, . . . , n}. Set Ic = {1, 2, . . . , n} \ I. One could then

4Of course, this cannot be taken too seriously, as we know that Classical Mechanics is
not a fundamental theory. Classical Mechanics does not work properly at the microscopic
scale.
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compare the dynamics of the particles with labels in I when the presence
of the particles with labels in Ic is taken into account with the dynamics of
the particles with labels in I when the presence of the particles with labels
in Ic is not taken into account. One should not expect the two dynamics
to be identical, but in many cases it might happen that those two dynamics
are very similar (observe, for instance, that Fij becomes very small when
‖qi − qj‖ becomes very large). In those cases, we say that the subsystem
defined by I is almost isolated. There is another possibility: maybe we don’t
get a good approximation of the dynamics of the particles with labels in I by
ignoring the existence of the particles with labels in Ic, but we do get a good
approximation of the dynamics of the particles with labels in I by taking into
account only the forces exerted upon particles with labels in I by particles
with labels in Ic and by ignoring the forces exerted upon particles with labels
in Ic by particles with labels in I (for example, we can study the dynamics
of a tennis ball near the Earth by taking into account the gravitational force
exerted by the Earth upon the tennis ball, and by ignoring the gravitational
force exerted by the tennis ball upon the Earth). Thus, we could write down
the differential equations for the trajectories of the particles with labels in
I using the internal forces of the subsystem defined by I (i.e., the forces
between particles with labels in I) and also the external forces (i.e., the forces
exerted upon the particles with labels in I by particles with labels in Ic).
There is also another type of situation in which we would like to talk about
external forces. Sometimes, in Physics, we need to make “Frankenstein
theories”, mixing up pieces of (not necessarily fully compatible) distinct
theories. For instance, one might like to consider the particles of Classical
Mechanics moving inside a magnetic field. Magnetic fields are not part of
Classical Mechanics: they are part of Maxwell’s electromagnetism, a theory
which is not even formulated within Galilean spacetime (it is formulated
within Minkowski spacetime). Nevertheless, for practical applications, one
might well be willing to consider the particles of Classical Mechanics inside
a magnetic field and thus one would have to consider the force exerted by
the magnetic field upon the particles (the Lorentz force).

1.2.1. Forces with a potential. Taking together all the force maps
Fj we obtain a map:

F = (F1, . . . , Fn) : dom(F ) ⊂ R× (R3)n × (R3)n −→ (R3)n.

If the righthand side of (1.2.1) does not depend on the velocities dqj

dt (t) then
we can think of F as a map of the form:

F : dom(F ) ⊂ R× (R3)n −→ (R3)n.

That is a time-dependent vector field over (R3)n, i.e., for each t ∈ R, we
have a vector field F (t, ·) over (an open subset of) (R3)n. When the forces
Fj do not depend on the velocities and there exists a smooth map:

V : dom(V ) = dom(F ) ⊂ R× (R3)n −→ R
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such that5:

(1.2.4) F (t, q) = −∇qV (t, q), (t, q) ∈ dom(F ) ⊂ R× (R3)n,

then we call V a potential for the force F . In (1.2.4) we have denoted by
∇qV (t, q) the gradient of the map V (t, ·) evaluated at the point q. Forces
that admit a potential will be essential for the variational formulation of
Classical Mechanics (Subsection 1.4.1). When F (t, q) does not depend on
t, then, as is well-known from elementary calculus, the existence of the
potential V is equivalent to the condition that the line integral

∫
q F of the

vector field F over a piecewise smooth curve q : [a, b] → (R3)n depend only
on the endpoints q(a), q(b) of the curve6. In that case the force F is called
conservative. We leave as a simple exercise to the reader to check that the
following:

V gr(q1, . . . , qn) = −
∑
i<j

Gmimj

‖qi − qj‖
, V el(q1, . . . , qn) =

∑
i<j

Ceiej
‖qi − qj‖

,

are potentials for the gravitational and for the electrical forces, respectively.
Obviously, V = V gr + V el is a potential for F = F gr + F el.

1.3. Optional section: intrinsic formulation

In this section we present an intrinsic (i.e., coordinate system free) for-
mulation of the ontology and dynamics of Classical Mechanics. Material
from this section will not be used elsewhere, so uninterested readers may
safely skip it. While some might complain that this section contains too
much “abstract nonsense”, we think that something is learned from this
exercise. In what follows, a Galilean spacetime (E, V, t, 〈·, ·〉) is fixed.

Consider the quotient:

T = E/Ker(t),

which is a one-dimensional real affine space with underlying vector space
V/Ker(t) (see Exercise 1.4). The linear functional t induces an isomor-
phism between the quotient V/Ker(t) and the real line R; by means of such
isomorphism, we may regard R as the underlying vector space of the affine
space T. Denote by:

t̄ : E −→ T

the quotient map, which is an affine map whose underlying linear map is t.
A point t of the affine space T is called an instant of time; the inverse image
of t by t̄ is a simultaneity hyperplane, which is to be interpreted as space at
the instant t.

5Why do we use a minus sign in the righthand side of (1.2.4)? It is a good convention.
For instance, it allows us to build some intuition about the behavior of the particles by
thinking about the graph of V as some sort of roller coaster.

6If the curve is q = (q1, . . . , qn), with qj denoting the trajectory of the j-th particle,
then such line integral is called the work done by the force F .
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Recall that a real finite-dimensional affine space is, in a natural way,
a differentiable manifold whose tangent space at an arbitrary point is nat-
urally identified with the underlying vector space of the affine space (see
Exercise 1.13). The affine map t̄ is smooth7 (see Exercise 1.14). By a sec-
tion of t̄ we mean a map q : T → E such that t̄ ◦ q is the identity map of
T. We can define a particle worldline to be the image of a smooth section
q of t̄; clearly, the section q is uniquely determined by the corresponding
worldline. Equivalently, one can define a particle worldline to be a smooth
submanifold of E that is mapped diffeomorphically onto T by the map t̄.

Let q : T → E be a smooth section of t̄. Given t ∈ T, then the tangent
space TtT is canonically identified with R and the tangent space Tq(t)E is
canonically identified with V ; thus, the differential dq(t) is a linear map
from R to V . We set:

q̇(t) = dq(t)1 ∈ V,
and we call it the velocity at the instant t ∈ T of a particle whose worldline
is the image of q. Since t̄ ◦ q is the identity of T, it follows by differentiation
that t ◦ dq(t) is the identity of R, so that, in particular:

t
(
q̇(t)

)
= 1.

The velocity q̇(t) is a generator of the (one-dimensional) tangent space at
the point q(t) of the worldline q(T); actually, it is the only vector in that
tangent space that is mapped by t to the number 1. The map q̇ (which is
essentially the differential of q) is smooth and it takes values in the affine
subspace t−1(1) of V :

q̇ : T −→ t−1(1) ⊂ V.

The underlying vector space of the affine space t−1(1) is Ker(t). We can
differentiate the map q̇ at some t ∈ T to obtain a linear map:

dq̇(t) : R −→ Ker(t).

We set:
q̈(t) = dq̇(t)1 ∈ Ker(t).

We call q̈(t) the acceleration at the instant t ∈ T of a particle whose worldline
is the image of q.

We have learned some interesting things: velocities q̇(t) are elements
of the affine space t−1(1). So we cannot add two velocities and get a new
velocity! On the other hand, we can subtract two velocities and obtain an
element of the three-dimensional vector space Ker(t). A difference of veloc-
ities is a relative velocity; since Ker(t) is endowed with an inner product,
we can talk about the norm of a relative velocity. That’s a relative speed.
Notice that, unlike velocities, accelerations q̈(t) are elements of the vector
space Ker(t), so we can add them and multiply them by real numbers ob-
taining new elements of Ker(t). It is also meaningful to take the norm of an
acceleration.

7Actually, it is a smooth fibration.
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The intrinsic formulation of Classical Mechanics is almost done. The
trajectories qj : R → R3 used in the formulation of Section 1.2 must be
replaced by sections qj : T → E of t̄. The lefthand side of equality (1.2.1) is
replaced with mj q̈j(t). We just have to explain what type of objects should
the maps Fj be replaced with.

Consider the cartesian product En of n copies of E. This is an affine
space with underlying vector space V n. Let Q denote the subset of En

defined by:

Q =
{
(q1, . . . , qn) ∈ En : t(qi − qj) = 0, i, j = 1, . . . , n

}
.

The set Q is an affine subspace of En with underlying vector space:{
(v1, . . . , vn) ∈ V n : t(vi − vj) = 0, i, j = 1, . . . , n

}
.

The affine space Q is called configuration spacetime. Notice that, for each t
in T, the n-tuple

(
q1(t), . . . , qn(t)

)
belongs to Q. In the intrinsic formulation

of Classical Mechanics, the force laws Fj are maps of the form:

(1.3.1) Fj : dom(Fj) ⊂ Q× t−1(1)n −→ Ker(t).

It is readily checked that both the gravitational and the electrical forces are
well-defined maps of the form (1.3.1).

1.4. An introduction to variational calculus

A variational problem is a particular case of the problem of finding a
critical point of a map whose domain is typically infinite-dimensional. We
proceed to describe an important class of variational problems for curves.

Let [a, b] be an interval and consider the vector space C∞(
[a, b],Rn

)
of

smooth maps q : [a, b] → Rn. Given points qa, qb ∈ Rn, then the set:

C∞
qaqb

(
[a, b],Rn

)
=

{
q ∈ C∞(

[a, b],Rn
)

: q(a) = qa, q(b) = qb
}

is an affine subspace of C∞(
[a, b],Rn

)
whose underlying vector space is the

space C∞
00

(
[a, b],Rn

)
of smooth maps from [a, b] to Rn vanishing at the

endpoints of the interval [a, b]. Consider a smooth map:

L : R×Rn ×Rn −→ R

and define:
SL : C∞

qaqb

(
[a, b],Rn) −→ R

by setting:

SL(q) =
∫ b

a
L

(
t, q(t), q̇(t)

)
dt,

where q̇(t) = dq
dt (t). The map L is called a Lagrangian and SL is called the

corresponding action functional. More precisely, we have a family of action
functionals associated to the Lagrangian L (one action functional for each
interval [a, b] and for each choice of points qa, qb ∈ Rn); but we will be a little
sloppy and refer to any of them as “the action functional”. The variational
problem that we are going to consider is the problem of finding the critical
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points of SL. But we do not intend to discuss infinite-dimensional calculus
seriously, because we don’t have to. We will just present a definition of crit-
ical point for this specific context. If we were to discuss infinite-dimensional
calculus seriously, then it would be preferable to replace C∞(

[a, b],Rn
)

with
the space Ck

(
[a, b],Rn

)
of maps of class Ck, for some fixed finite k. The

space Ck
(
[a, b],Rn

)
, endowed with the appropriate norm (for instance, the

sum of the supremum norm of the function with the supremum norms of its
first k derivatives) is a Banach space8, while C∞(

[a, b],Rn
)

can only handle
the structure of a Fréchet space. Calculus on Banach spaces is simpler to
handle (it is more similar to finite-dimensional calculus) than calculus on
Fréchet spaces. But we are not going to need any theorems from infinite-
dimensional calculus, so we don’t have to worry about any of that.

1.4.1. Definition. Let q : [a, b] → Rn be a smooth curve. By a variation
of q we mean a family (qs)s∈I of smooth curves qs : [a, b] → Rn, where I ⊂ R
is an open interval with 0 ∈ I, q0 equals q and the map:

I × [a, b] 3 (s, t) 7−→ qs(t) ∈ Rn

is smooth. We say that the variation (qs)s∈I has fixed endpoints if the maps:

I 3 s 7−→ qs(a) ∈ Rn, I 3 s 7−→ qs(b) ∈ Rn

are constant. The variational vector field of a variation (qs)s∈I is the smooth
map v : [a, b] → Rn defined by:

(1.4.1) v(t) =
d
ds
qs(t)

∣∣∣∣
s=0

, t ∈ [a, b].

Clearly, if v is the variational vector field of a variation with fixed end-
points then v(a) = v(b) = 0.

Notice that a smooth curve q : [a, b] → Rn is a point of the space
C∞

qaqb

(
[a, b],Rn

)
, where qa = q(a), qb = q(b); a variation with fixed endpoints

of q is a curve s 7→ qs in C∞
qaqb

(
[a, b],Rn

)
passing through the point q at s = 0.

The corresponding variational vector field v is like the vector tangent to that
curve at s = 0.

1.4.2. Definition. We say that a smooth curve q : [a, b] → Rn is a
critical point of the action functional SL if

(1.4.2)
d
ds
SL(qs)

∣∣∣∣
s=0

= 0,

for every variation with fixed endpoints (qs)s∈I of q.

In the context of infinite-dimensional calculus, the map SL is smooth and
the lefthand side of (1.4.2) is precisely the differential of SL at the point q
in the direction v, where v is the variational vector field of (qs)s∈I . With
our approach, however, it is not clear in principle that the lefthand side of

8The space Ck
qaqb

(
[a, b],Rn

)
is then a closed affine subspace of a Banach space and

therefore it is a Banach manifold.
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(1.4.2) depends only on v (i.e., that two variations with the same variational
vector field would yield the same value for the lefthand side of (1.4.2)) and
that it is linear in v. Nevertheless, as we will see now, a very simple direct
computation of the lefthand side of (1.4.2) shows that both things are true.
Using any standard result about differentiation under the integral sign and
the chain rule we obtain:

(1.4.3)
d
ds
SL(qs)

∣∣∣∣
s=0

=
∫ b

a

∂L

∂q

(
t, q(t), q̇(t)

)
v(t) +

∂L

∂q̇

(
t, q(t), q̇(t)

)
v̇(t) dt,

where v̇(t) = dv
dt (t). Above, we have denoted by ∂L

∂q and by ∂L
∂q̇ the differential

of L with respect to its second and third variables; thus, in ∂L
∂q̇ the symbol

q̇ is merely a label, not “the derivative of q”. Notice that the expressions:
∂L

∂q

(
t, q(t), q̇(t)

)
,

∂L

∂q̇

(
t, q(t), q̇(t)

)
are differentials evaluated at a point of real valued functions over Rn and
therefore they are elements of the dual space Rn∗ (thus they can be applied
to vectors v(t), v̇(t) of Rn, as we did in (1.4.3)). We won’t systematically
take too seriously the difference between Rn and Rn∗ and we will sometimes
identify the two spaces in the usual way.

Now we want to use integration by parts in (1.4.3) to get rid of v̇(t). In
other words, we observe that:

(1.4.4)
∂L

∂q̇

(
t, q(t), q̇(t)

)
v̇(t) =

d
dt

(∂L
∂q̇

(
t, q(t), q̇(t)

)
v(t)

)
−

( d
dt
∂L

∂q̇

(
t, q(t), q̇(t)

))
v(t).

Using the fundamental theorem of calculus and the fact that:

v(a) = v(b) = 0

for variations with fixed endpoints, we see that the first term on the right-
hand side of (1.4.4) vanishes once it goes inside the integral sign. Thus:

(1.4.5)
d
ds
SL(qs)

∣∣∣∣
s=0

=∫ b

a

(
− d

dt
∂L

∂q̇

(
t, q(t), q̇(t)

)
+
∂L

∂q

(
t, q(t), q̇(t)

))
v(t) dt.

We want to infer from (1.4.5) that q is a critical point of SL if and only if
the big expression inside the parenthesis in (1.4.5) vanishes, i.e., if and only
if:

(1.4.6)
d
dt
∂L

∂q̇

(
t, q(t), q̇(t)

)
=
∂L

∂q

(
t, q(t), q̇(t)

)
, t ∈ [a, b].

The differential equation (1.4.6) is called the Euler–Lagrange equation. Ob-
viously, if the Euler–Lagrange equation holds then, by (1.4.5), q is a crit-
ical point of SL. In order to prove the converse, we need two ingredients.
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The first, is the observation that any smooth map v : [a, b] → Rn with
v(a) = v(b) = 0 is the variational vector field of some variation of q with
fixed endpoints. For instance, we can consider the variation9:

qs(t) = q(t) + sv(t).

By this observation, the assumption that q be a critical point of SL implies
that the righthand side of (1.4.5) vanishes, for any smooth map v such that
v(a) = v(b) = 0. The second ingredient is this.

1.4.3. Lemma (fundamental lemma of the calculus of variations). Let
α : [a, b] → Rn∗ be a continuous map and assume that:

(1.4.7)
∫ b

a
α(t)v(t) dt = 0,

for any smooth map v : [a, b] → Rn having support contained in the open
interval ]a, b[. Then α = 0.

Proof. Assuming by contradiction that α is not zero, then the j-th
coordinate αj : [a, b] → R of α is not zero for some j = 1, . . . , n. By
continuity, αj never vanishes (and has a fixed sign) over some interval [c, d]
contained in ]a, b[. One can construct a smooth v whose only non vanishing
coordinate is the j-th coordinate vj and such that vj is non negative (but
not identically zero) over [c, d] and vanishes outside [c, d]. Then the integral
in (1.4.7) will not be zero. �

It is possible to prove a more general version of the fundamental lemma
of the calculus of variations, by assuming α to be merely Lebesgue integrable;
in that case, the thesis says that α vanishes almost everywhere. This version
is a little harder to prove and we are not going to need it.

As we have seen, if q is a critical point of SL then the integral in (1.4.5)
vanishes for every smooth v : [a, b] → Rn such that v(a) = v(b) = 0 and
thus, by the fundamental lemma of the calculus of variations, it follows that
the Euler–Lagrange equation is satisfied. We have just proven:

1.4.4. Theorem. A smooth curve q : [a, b] → Rn is a critical point of
SL if and only if it satisfies the Euler–Lagrange equation (1.4.6). �

The lefthand side of the Euler–Lagrange equation (1.4.6) should not be
confused with ∂2L

∂t∂q̇

(
t, q(t), q̇(t)

)
(for instance, such expression is automat-

ically zero if L does not depend on t). The lefthand side of the Euler–
Lagrange equation is the derivative of the map t 7→ ∂L

∂q̇

(
t, q(t), q̇(t)

)
.

1.4.5. Remark. We have worked so far with a Lagrangian whose domain
is R×Rn×Rn. We could have used a Lagrangian whose domain is an open
subset of R×Rn×Rn instead. Some obvious adaptations would have to be

9Some authors define critical points using exclusively variations of this type. This is
not a good idea, since this breaks the manifest invariance under general diffeomorphisms
of the notion of critical point!
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done in our definitions. For instance, the domain of the action functional
SL would consist only of curves q such that

(
t, q(t), q̇(t)

)
is in the domain

of L, for all t ∈ [a, b]. Also, in the definition of critical point, one should
only consider curves q : [a, b] → Rn that are in the domain of SL and only
variations (qs)s∈I of q such that qs is in the domain of SL, for all s ∈ I.
Observe that if (qs)s∈I is an arbitrary variation of a curve q that is in the
domain of SL then there exists an open interval I ′ ⊂ I containing the origin
such that qs is in the domain of SL, for all s ∈ I ′. Namely, the set of pairs
(s, t) ∈ I × [a, b] such that

(
t, qs(t), d

dt qs(t)
)

is in the domain of L is open in
I× [a, b] and contains {0}× [a, b]; since [a, b] is compact, it follows that such
set contains I ′ × [a, b] for some open interval I ′ ⊂ I containing the origin.
Obviously, Theorem 1.4.4 also holds for a Lagrangian defined in an open
subset of R×Rn ×Rn.

1.4.6. Remark. We have actually proved a little more than what is
stated in Theorem 1.4.4. A variation (qs)s∈I is said to have compact support
if the map:

I 3 s 7−→ qs(t) ∈ Rn

is constant for t in a neighborhood of a in [a, b] and for t in a neighborhood
of b in [a, b]. Our proof of Theorem 1.4.4 has actually shown that if (1.4.2)
holds for all variations of q having compact support then q satisfies the
Euler–Lagrange equation.

1.4.1. Variational formulation of Classical Mechanics. Now it
is easy to see that when the force F = (F1, . . . , Fn) admits a potential
V (see Subsection 1.2.1) then the differential equation (1.2.1) defining the
dynamics of Classical Mechanics is precisely the Euler–Lagrange equation
of the Lagrangian L : dom(V ) × (R3)n ⊂ R × (R3)n × (R3)n → R defined
by:

(1.4.8) L(t, q1, . . . , qn, q̇1, . . . , q̇n) =
n∑

j=1

1
2
mj‖q̇j‖2 − V (t, q1, . . . , qn).

Namely, the Euler–Lagrange equation for L can be written as:
d
dt
∂L

∂q̇j

(
t, q(t), q̇(t)

)
=
∂L

∂qj

(
t, q(t), q̇(t)

)
, j = 1, . . . , n,

and (identifying R3 with its dual space):

d
dt
∂L

∂q̇j

(
t, q(t), q̇(t)

)
=

d
dt

(
mj q̇j(t)

)
= mj

d2qj
dt2

(t),

∂L

∂qj

(
t, q(t), q̇(t)

)
= −∇qjV

(
t, q(t)

)
= Fj

(
t, q(t)

)
.

The Lagrangian (1.4.8) motivates the following definition.

1.4.7. Definition. We call 1
2 mj‖q̇j(t)‖2 the kinetic energy of the j-th

particle at the instant t and the sum
∑n

j=1
1
2 mj‖q̇j(t)‖2 appearing in (1.4.8)
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the total kinetic energy at the instant t. We also call V
(
t, q(t)

)
the potential

energy at the instant t.

It is common to denote the total kinetic energy by T , so that the La-
grangian becomes L = T − V . Notice that we can define a kinetic energy
for just one particle, but not a potential energy for just one particle.

What is so good about rewriting the dynamics of Classical Mechanics
in terms of an Euler–Lagrange equation? One motivation is that the Euler–
Lagrange equation is good for doing arbitrary transformations of coordi-
nates (even time-dependent transformations of coordinates10), i.e., after a
transformation of coordinates the Euler–Lagrange equation is transformed
into the Euler–Lagrange equation of a transformed Lagrangian (what we
mean exactly by this will become clearer when we do variational calculus
on manifolds). On the other hand, equation (1.2.1) isn’t good for arbitrary
transformations of coordinates (for instance, under a general transformation
of coordinates the lefthand side of (1.2.1) gets a term with a first order de-
rivative of q). Also, essentially all equations in Physics (the field equations
of Electromagnetism, of General Relativity and of the Gauge theories of the
Standard Model, for instance) can be obtained from variational problems.
So, one usually talks about “the Lagrangian” of the theory. We will also
see that Lagrangians (and Hamiltonians) are essential for doing Quantum
Theory.

1.4.8. Remark. The Lorentz force (exerted by a magnetic field upon a
charged particle) is an important example of a force which depends on the
velocity of the particle and therefore it is not a force with a potential (in
the sense defined in Subsection 1.2.1). Nevertheless, as we will see later, it
is possible to handle it using a Lagrangian.

1.5. Lagrangians on manifolds

The variational problem discussed in Section 1.4 can be straightfor-
wardly reformulated for curves on manifolds. One can then prove that the
critical points of the action functional are again the curves which satisfy
the Euler–Lagrange equation. But, in a manifold, in order to give meaning
to the statement that a curve satisfies the Euler–Lagrange equation, one
has to use a coordinate chart; it turns out that such statement does not
depend on the choice of the coordinate chart. There are some minor techni-
cal complications that arise in the context of manifolds and for the reader’s
convenience we give all details. We won’t try to give a manifestly coor-
dinate independent formulation of the Euler–Lagrange equation; attempts
at doing so tend to get nasty and it happens that for an important class
of Lagrangians (hyper-regular Lagrangians), the Euler–Lagrange equation

10One could be willing to use, say, spherical coordinates based on an orthonormal
basis that rotates!
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is equivalent to Hamilton’s equations (which we will present later on) and
those are easily formulated in a manifestly coordinate independent manner.

Let Q be a differentiable manifold. Given an interval [a, b], we denote
by C∞(

[a, b], Q
)

the set of all smooth maps q : [a, b] → Q and, given points
qa, qb ∈ Q, we denote by C∞

qaqb

(
[a, b], Q

)
the subset of C∞(

[a, b], Q
)

consisting
of maps q with q(a) = qa, q(b) = qb. In order to define an action functional
SL : C∞

qaqb

(
[a, b], Q

)
→ R of the form:

(1.5.1) SL(q) =
∫ b

a
L

(
t, q(t), q̇(t)

)
dt,

the appropriate domain for the map L is the product R × TQ, where TQ
denotes the tangent bundle of Q. So, we define a Lagrangian on the manifold
Q to be a smooth map:

L : R× TQ −→ R

and the map SL defined above is called the corresponding action functional.
As before, we should point out that in fact there is a family of action func-
tionals for a given Lagrangian L (one for each interval [a, b] and for each
choice of points qa, qb ∈ Q), but as before we will be a little sloppy and
use the same name and notation for all of them. Also, as before (see Re-
mark 1.4.5), it is possible to work with a map L whose domain is some open
subset of R× TQ and in order to do that there are obvious adaptations in
the definitions and proofs that follow; we don’t want to distract the reader
with things like that. In order to avoid awkward moments in the future,
let us make a warning about notation: if q : [a, b] → Q is a differentiable
curve in a manifold then for each t ∈ [a, b] the derivative q̇(t) of q at t is an
element of the tangent space Tq(t)Q which is a subset of the tangent bundle
TQ. So, strictly speaking, the notation in (1.5.1) is wrong; it is

(
t, q̇(t)

)
, and

not
(
t, q(t), q̇(t)

)
, which is a point of the domain R× TQ of the Lagrangian

L. Nevertheless, we find it convenient in many cases to write elements of
the tangent bundle TQ as ordered pairs consisting of a point of Q and a
tangent vector at that point. It happens that typical constructions of the
tangent space of a manifold at a point have the property that tangent spaces
at distinct points are disjoint, so that the set TQ can be taken to be literally
the union of all tangent spaces. But when Q is a submanifold of Rn one
identifies the tangent space TqQ at a point q ∈ Q with a subspace of Rn,
and such subspaces of Rn are not disjoint and thus one is forced to take TQ
to be the disjoint union TQ =

⋃
q∈Q

(
{q} × TqQ

)
; in that case, one has to

write elements of the tangent bundle as ordered pairs (a point and a vector).
So, for reasons of uniformity, we find it convenient to do so also when Q is
a general manifold.

Definitions 1.4.1 and 1.4.2 can be readily adapted to the present context.
Given a smooth curve q : [a, b] → Q, we define a variation of q to be a family
(qs)s∈I of smooth curves qs : [a, b] → Q, where I ⊂ R is an open interval
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with 0 ∈ I, q0 equals q and the map:

I × [a, b] 3 (s, t) 7−→ qs(t) ∈ Q

is smooth. If the maps s 7→ qs(a), s 7→ qs(b) are constant, we say that
the variation (qs)s∈I has fixed endpoints. The variational vector field of a
variation (qs)s∈I is defined again by formula (1.4.1), but now v is a smooth
map from [a, b] to the tangent bundle TQ such that v(t) ∈ Tq(t)Q for all
t ∈ [a, b], i.e., v is a vector field along the curve q. Again, for a variation
with fixed endpoints, the variational vector field v satisfies v(a) = v(b) = 0.
As before, we say that q is a critical point of SL if (1.4.1) holds for every
variation with fixed endpoints (qs)s∈I of q.

If we were to do serious infinite-dimensional calculus here, we would have
to show how to turn C∞(

[a, b], Q
)

into an infinite-dimensional manifold (it
is a Fréchet manifold and, by replacing C∞ with Ck, for some fixed finite k,
it would be a Banach manifold), how to identify the space of smooth vector
fields along q ∈ C∞(

[a, b], Q
)

with the tangent space TqC
∞(

[a, b], Q
)
, we

would have to show that C∞
qaqb

(
[a, b], Q

)
is a submanifold of C∞(

[a, b], Q
)

whose tangent space at a point q consists of the smooth vector fields v along q
with v(a) = v(b) = 0 and we would have to show that the action functional
SL is smooth. All of that would require a considerable amount of work.
The construction of the manifold structure of C∞(

[a, b], Q
)

is completely
standard, but not completely straightforward. Luckily, we don’t have to
worry about any of that here, as we won’t be using any theorems from
infinite-dimensional calculus.

If L : R×TQ→ R is a Lagrangian, Q̃ is another differentiable manifold
and ϕ : Q → Q̃ is a smooth diffeomorphism, then there is an obvious way
to push L to the manifold Q̃ using ϕ. Namely, we define a Lagrangian
Lϕ : R× TQ̃→ R by requiring that the diagram:

R× TQ
Id×dϕ //

L
##G

GGGGGGGG R× TQ̃

Lϕ{{ww
ww

ww
ww

w

R

be commutative, where Id denotes the identity map of R and dϕ : TQ→ TQ̃
denotes the differential of the map ϕ (the map whose restriction to the
tangent space TqQ is the differential11 dϕq : TqQ → Tϕ(q)Q̃, for all q ∈ Q).
Obviously, if q : [a, b] → Q is a smooth map and if q̃ = ϕ ◦ q : [a, b] → Q̃ is

11Some authors prefer to use Tϕ instead of dϕ; that is indeed the natural notation
if one thinks of T as a functor that carries Q to TQ. Also, if ϕ is a map from Rm to Rn

then there is some conflict of notation: in that context, dϕ usually refers to the map that
associates to each x ∈ Rm a linear map dϕx from Rm to Rn, while the map dϕ from the
tangent bundle TRm ∼= Rm ×Rm to the tangent bundle TRn = Rn ×Rn is not exactly
that. Having said that, we will continue to use dϕ instead of Tϕ.
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the curve obtained by pushing q using ϕ, then:

Lϕ

(
t, q̃(t), ˙̃q(t)

)
= L

(
t, q(t), q̇(t)

)
,

for all t ∈ [a, b], so that:
SL(q) = SLϕ(q̃).

The equality q̃s = ϕ ◦ qs defines a bijection between variations with fixed
endpoints (qs)s∈I of q and variations with fixed endpoints (q̃s)s∈I of q̃ and
then, since SL(qs) = SLϕ(q̃s) for all s ∈ I, it follows that q is a critical point
of SL if and only if q̃ is a critical point of SLϕ . What we have just observed
is pretty obvious: any definition that makes sense for manifolds must give
rise to a concept that is invariant under diffeomorphisms (just like, say, any
definition that makes sense for groups must give rise to a concept that is
invariant under group isomorphisms, and so on).

An important particular case of the construction of pushing a Lagrangian
using a smooth diffeomorphism is this: consider a local chart ϕ : U → Ũ ,
where U is an open subset of Q and Ũ is an open subset of Rn. We can push
the Lagrangian L (more precisely, the restriction of L to the open subset
R× TU of R× TQ) using ϕ obtaining a Lagrangian:

Lϕ : R× T Ũ = R× Ũ ×Rn −→ R

on the manifold Ũ . We call Lϕ the representation of L with respect to the
chart ϕ. A smooth curve q : [a, b] → Q with q

(
[a, b]

)
⊂ U is a critical point

of SL if and only if the curve q̃ = ϕ ◦ q is a critical point of SLϕ . Actually,
in order to get to that conclusion, there is a minor detail one should pay
attention to: ϕ only induces a bijection between variations of q that stay
inside of U and variations of q̃ that stay inside of Ũ . But if the image of
q is contained in U then, for any variation (qs)s∈I of q, we have that the
image of qs is contained in U for s in some open interval I ′ ⊂ I containing
the origin (see the argument that appears in Remark 1.4.5). Thus, for the
definition of critical point, it doesn’t make any difference to consider only
variations of the curve that stay inside some given open set containing the
image of the curve. By Theorem 1.4.4, the curve q̃ is a critical point of SLϕ

if and only if12:

(1.5.2)
d
dt
∂Lϕ

∂q̇

(
t, q̃(t), ˙̃q(t)

)
=
∂Lϕ

∂q

(
t, q̃(t), ˙̃q(t)

)
,

for all t ∈ [a, b]. When (1.5.2) holds for all t ∈ [a, b] (where q̃ = ϕ ◦ q),
we say that the curve q satisfies the Euler–Lagrange equation with respect
to the chart ϕ. We have shown that a smooth curve with image contained
in the domain of a chart is a critical point of SL if and only if it satisfies
the Euler–Lagrange equation with respect to that chart. It follows that, if
ϕ1, ϕ2 are local charts whose domains contain the image of a smooth curve

12We denote by
∂Lϕ

∂q
and

∂Lϕ

∂q̇
the derivatives of Lϕ with respect to its second and

third variables, respectively, even though (t, q, q̇) is the typical name of a point of R×TQ,
not of a point of the domain of Lϕ.
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q then q satisfies the Euler–Lagrange equation with respect to ϕ1 if and
only if q satisfies the Euler–Lagrange equation with respect to ϕ2. That
could also be checked by a direct computation using the transition function
ϕ2 ◦ ϕ−1

1 (see Exercises 1.18 and 1.19). But we have just proven that fact
and no such computation was necessary13; that is because being a solution
of the Euler–Lagrange equation is equivalent to being a critical point of
the action functional and the latter notion is manifestly invariant under
diffeomorphisms!

What we have done above is to prove a version of Theorem 1.4.4 for
curves on manifolds, but only for curves whose image is contained in the
domain of a local chart! Now we have to handle arbitrary curves. Consider
a smooth curve q : [a, b] → Q and a local chart ϕ : U → Ũ (whose domain
does not necessarily contain the image of q). We will say that q satisfies the
Euler–Lagrange equation with respect to ϕ if (1.5.2) holds for all t ∈ q−1(U),
where:

(1.5.3) q̃ = ϕ ◦ q|q−1(U).

Notice that q−1(U) is an open subset of [a, b] (open with respect to [a, b],
of course). When the image of q does not intercept U then q−1(U) is the
empty set and the condition that q satisfy the Euler–Lagrange equation with
respect to ϕ is vacuously satisfied. The right generalization of Theorem 1.4.4
is:

1.5.1. Theorem. Let L : R×TQ→ R be a Lagrangian and q : [a, b] → Q
be a smooth curve. Then the following statements are equivalent:

(a) q is a critical point of SL;
(b) for every local chart ϕ on Q, q satisfies the Euler–Lagrange equation

with respect to ϕ;
(c) there exists a family of local charts on Q, whose domains cover the

image of q, such that q satisfies the Euler–Lagrange equation with
respect to any chart belonging to that family.

Proof. The implication (b)⇒(c) is obvious. The implications (a)⇒(b)
and (c)⇒(a) will be proven in Lemmas 1.5.2 and 1.5.6 below. �

The fact that (a)⇒(b) is useful when one knows that q is a critical point
of SL; then you can choose whatever local chart you like and you know that
q satisfies the Euler–Lagrange equation with respect to that chart. The fact
that (c)⇒(a), on the other hand, is useful when you want to check that q is
a critical point of SL; in that case, you can choose your favorite set of charts
(as long as their domains are able to cover the image of q) for checking that
q satisfies the Euler–Lagrange equation with respect to them.

13Suppose that a curve q satisfies the Euler–Lagrange equation with respect to a
chart ϕ1 just at one given instant t ∈ [a, b]. Is it true that it satisfies the Euler–Lagrange
equation with respect to a different chart ϕ2 at that same instant? The argument that
we have just presented does not allow us to conclude that. But that is indeed true and it
follows from the result of Exercise 1.19.
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Let’s get to the proof of (a)⇒(b).

1.5.2. Lemma. Condition (a) in the statement of Theorem 1.5.1 implies
condition (b).

Proof. Let ϕ : U → Ũ ⊂ Rn be a local chart on Q. Defining q̃ as in
(1.5.3), it suffices to check that (1.5.2) holds for all t ∈ [c, d], where [c, d]
is an arbitrary interval contained in q−1(U). Because of Remark 1.4.6, it
suffices to prove that:

(1.5.4)
d
ds

∫ d

c
Lϕ

(
t, q̃s(t), ˙̃qs(t)

)
dt

∣∣∣∣
s=0

= 0,

for any variation with compact support:

(1.5.5) I × [c, d] 3 (s, t) 7−→ q̃s(t) ∈ Rn

of the curve q̃|[c,d]. By replacing I with a smaller interval, we can assume
that q̃s(t) belongs to Ũ , for all s ∈ I, t ∈ [c, d]. Set:

qs(t) = ϕ−1
(
q̃s(t)

)
,

for s ∈ I, t ∈ [c, d] and qs(t) = q(t), for s ∈ I, t ∈ [a, b] \ [c, d]. The fact that
the variation (1.5.5) has compact support implies easily that the map:

I × [a, b] 3 (s, t) 7−→ qs(t) ∈ Q
is smooth and therefore it is a variation with fixed endpoints of q. Since q
is a critical point of SL, we have:

(1.5.6)
d
ds

∫ b

a
L

(
t, qs(t), q̇s(t)

)
dt

∣∣∣∣
s=0

= 0.

The difference:∫ b

a
L

(
t, qs(t), q̇s(t)

)
dt−

∫ d

c
L

(
t, qs(t), q̇s(t)

)
dt

is independent of s ∈ I and since:∫ d

c
L

(
t, qs(t), q̇s(t)

)
dt =

∫ d

c
Lϕ

(
t, q̃s(t), ˙̃qs(t)

)
dt

for all s ∈ I, it follows from (1.5.6) that (1.5.4) holds. �

The implication (c)⇒(a) is a bit trickier. The plan is to show that
the derivative of s 7→ SL(qs) at s = 0 is zero for variations (qs)s∈I whose
variational vector field v has small support. Then we have to show that this
suffices for establishing that q is a critical point of SL. That happens because
the derivative of s 7→ SL(qs) defines a linear function of the variational
vector field v (our next lemma) and because variational vector fields with
small support span all smooth vector fields v along q with v(a) = v(b) = 0.
Curiously, we won’t need to show that every smooth vector field v along q
with v(a) = v(b) = 0 is the variational vector field of some variation with
fixed endpoints. That wouldn’t be hard to do (but it isn’t as straightforward



1.5. LAGRANGIANS ON MANIFOLDS 23

as when the manifold is Rn); one could, for instance, use the exponential
map of some arbitrary Riemannian metric of Q to define a variation of q
by qs(t) = expq(t)

(
sv(t)

)
(or one could embed Q in RN , using Whitney’s

theorem, then construct the desired variation in RN , and then retract it
back to Q using a tubular neighborhood). But we simply don’t need to
prove that.

1.5.3. Lemma. Let q : [a, b] → Q be a smooth curve. There exists a real
valued linear map D defined in the space of all smooth vector fields along q
such that:

D(v) =
d
ds
SL(qs)

∣∣∣∣
s=0

,

for any variation (qs)s∈I of q, where v denotes the variational vector field.

Proof. If the image of q is contained in the domain of a local chart
ϕ : U → Ũ ⊂ Rn then one can simply define D by:

D(v) =
∫ b

a

∂Lϕ

∂q

(
t, q̃(t), ˙̃q(t)

)
ṽ(t) +

∂Lϕ

∂q̇

(
t, q̃(t), ˙̃q(t)

) ˙̃v(t) dt,

where q̃ = ϕ ◦ q, ṽ(t) = dϕq(t)

(
v(t)

)
and t ∈ [a, b]. For the general case,

choose a partition a = t0 < t1 < · · · < tk = b of [a, b] such that q
(
[ti, ti+1]

)
is contained in the domain of some chart, for all i. Then (using the same
symbol SL to denote the action functional for curves defined on the smaller
intervals):

SL(qs) =
k−1∑
i=0

SL(qs|[ti,ti+1]), s ∈ I,

and if Di is a linear map that satisfies the thesis of the lemma for the
restricted curve q|[ti,ti+1], we simply define D by setting:

D(v) =
k−1∑
i=0

Di(v|[ti,ti+1]). �

Now we show that smooth vector fields with small support span all
smooth vector fields that vanish at the endpoints.

1.5.4. Lemma. Let q : [a, b] → Q be a smooth curve and let U be an
open cover of the interval [a, b]. Every smooth vector field v along q with
v(a) = v(b) = 0 can be written as a finite sum

∑k
i=1 vi of smooth vector

fields vi along q with vi(a) = vi(b) = 0 and such that the support of vi is
contained in some element of U .

Proof. Replace U with a finite subcover {U1, . . . , Uk} and consider a
smooth partition of unit subordinated to it, i.e., smooth maps ξi : [a, b] → R,
i = 1, . . . , k, with

∑k
i=1 ξi = 1, such that the support of ξi is contained in

Ui, for all i. Set vi = vξi, i = 1, . . . , k. �
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Now we check that, under condition (c) in the statement of Theo-
rem 1.5.1, the derivative of s 7→ SL(qs) at s = 0 vanishes when the variational
vector field has small support.

1.5.5. Lemma. Let q : [a, b] → Q be a smooth curve and let ϕ : U → Ũ be
a local chart such that q satisfies the Euler–Lagrange equation with respect
to ϕ. If v is a smooth vector field along q such that v(a) = v(b) = 0 and such
that the support of v is contained in an interval [c, d] contained in q−1(U)
then D(v) = 0, where D is a linear map satisfying the condition in the
statement of Lemma 1.5.3.

Proof. We define a variation (qs)s∈I of q as follows: if t is in [a, b]\[c, d],
we set qs(t) = q(t), for all s ∈ I. For t ∈ [c, d], we set:

(1.5.7) qs(t) = ϕ−1
(
q̃(t) + sṽ(t)

)
,

for all s ∈ I, where q̃(t) = ϕ
(
q(t)

)
, ṽ(t) = dϕq(t)

(
v(t)

)
and I is chosen

small enough so that q̃(t) + sṽ(t) is in Ũ , for all s ∈ I, t ∈ [c, d]. The map
(s, t) 7→ qs(t) is smooth in I × [a, b] because equality (1.5.7) actually holds
for t in the neighborhood q−1(U) of [c, d]. Thus (qs)s∈I is a variation of q
with variational vector field v, so that:

D(v) =
d
ds
SL(qs)

∣∣∣∣
s=0

.

Arguing as in the proof of Lemma 1.5.2, we see that:

(1.5.8)
d
ds
SL(qs)

∣∣∣∣
s=0

=
d
ds

∫ d

c
Lϕ

(
t, q̃s(t), ˙̃qs(t)

)
dt

∣∣∣∣
s=0

,

where q̃s(t) = ϕ(qs(t)
)

= q̃(t) + sṽ(t), for t ∈ [c, d], s ∈ I. Since:

I × [c, d] 3 (s, t) 7−→ q̃s(t)

is a variation with fixed endpoints of q̃|[c,d] and since q̃|[c,d] is a solution of
the Euler–Lagrange equation (1.5.2), it follows that the righthand side of
(1.5.8) vanishes. This concludes the proof. �

1.5.6. Lemma. Condition (c) in the statement of Theorem 1.5.1 implies
condition (a).

Proof. Let U be the set of all intervals J that are open in [a, b] and
such that q(J) is contained in the domain of one of the charts belonging to
the family whose existence is assumed in condition (c). By Lemma 1.5.5,
D(v) = 0 if v(a) = v(b) = 0 and the support of v is contained in some J ∈ U
(obviously, if the support of v is contained in J then it is contained in some
closed interval [c, d] contained in J). By Lemma 1.5.4 and by the linearity
of D, it follows that D(v) = 0 for any v with v(a) = v(b) = 0, proving that
q is a critical point of SL. �
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Assume now that the manifold Q is a submanifold of Rn (we have been
using n to denote the dimension of Q, but, obviously, now we are not) and
assume that we have a Lagrangian L : R × Rn × Rn → R on Rn. Since
Q is a submanifold of Rn, TQ is naturally identified with a submanifold
of TRn = Rn × Rn and thus we can restrict L to R × TQ. What are the
critical points of the action functional of the restriction of L? The following
proposition answers that.

1.5.7. Proposition. Let L be a Lagrangian on Rn, Q be a submanifold
of Rn and Lrestr denote the Lagrangian on Q obtained by restricting L to
R × TQ. A smooth curve q : [a, b] → Q is a critical point of the action
functional SLrestr if and only if:

d
dt
∂L

∂q̇

(
t, q(t), q̇(t)

)
− ∂L

∂q

(
t, q(t), q̇(t)

)
∈ (Tq(t)Q)o,

for all t ∈ [a, b], where (Tq(t)Q)o ⊂ Rn∗ denotes the annihilator of the tangent
space Tq(t)Q ⊂ Rn (if one identifies the dual space Rn∗ with Rn in the
usual way then then annihilator (Tq(t)Q)o is identified with the orthogonal
complement (Tq(t)Q)⊥).

Proof. We leave details to the reader as an exercise. The hint is don’t
(really, don’t!) use Theorem 1.5.1 and the representation of Lrestr with
respect to a local chart on Q. It is much easier to use directly the defini-
tion of critical point, observing that SLrestr(qs) = SL(qs), for any variation
(qs)s∈I of q in Q. The derivative d

dsSL(qs)|s=0 can be computed exactly as
in Section 1.4. The only difference from what was done there is that now
we are going obtain that q is a critical point of SLrestr if and only if the
righthand side of (1.4.5) vanishes for smooth maps v : [a, b] → Rn such that
v(a) = v(b) = 0 and v(t) ∈ Tq(t)Q, for all t ∈ [a, b]. You will then need
a generalization of the Fundamental Lemma of the Calculus of Variations
(which is stated as Exercise 1.17) to conclude the proof. If you prefer not
to use the fact that any v is the variational vector field of a variation of q in
Q, notice that in order to conclude the proof it is enough to consider vector
fields v along q having small support (contained in q−1(U), where U ⊂ Q is
the domain of a local chart) and for those one straightforwardly constructs
a variation of q using a local chart on Q. �

1.5.1. Back to Classical Mechanics. Constraints. Are the varia-
tional problems on manifolds discussed in this section of any use to Classical
Mechanics? They are. This stuff is useful when we work on a problem in
which there is something which constrains the motion of the particles: a
track from which a particle cannot get away, a string or a rigid bar connect-
ing two particles, etc. Of course, at the fundamental level, there are no such
constraints; tracks, strings and bars are themselves made out of particles.
The problem of n constrained particles which we are going to discuss in this
subsection would, at the fundamental level, be a problem of N > n free
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particles, interacting through the fundamental forces of Classical Mechanics
(the electrical and the gravitational forces14).

Let us consider a system of n particles subject to forces F = (F1, . . . , Fn)
that admit a potential V . We then know that their trajectories satisfy
the Euler–Lagrange equation of the Lagrangian L defined in (1.4.8). Now,
assume that apart from the forces encoded in the potential V , there are also
additional forces acting on the particles, in such a way that the configuration(
q1(t), . . . , qn(t)

)
∈ (R3)n must stay inside a subset Q of (R3)n, for all t.

Such additional forces will be called the forces from the constraint. We will
assume that the subset Q is a smooth submanifold of (R3)n.

The type of constraint that we are considering here are constraints on
the positions of the particles (known as holonomic constraints). One could
also consider constraints formulated in terms of the velocities of the parti-
cles that cannot be reduced to constraints on the positions alone (non holo-
nomic constraints); we are not going to consider those in this course. The
constraints under consideration in this subsection are also being assumed to
be independent of time (otherwise, we should consider a submanifold Qt of
(R3)n, for each t).

Let us try to take the Lagrangian L defined in (1.4.8) and consider
its restriction to a Lagrangian Lcons on the submanifold Q. What are the
critical points of the action functional? The answer is obtained from Propo-
sition 1.5.7. A curve q = (q1, . . . , qn) : [a, b] → Q ⊂ (R3)n is a critical point
of the action functional SLcons if and only if the vector:

(1.5.9)
(
mj

d2qj
dt2

(t) +∇qjV
(
t, q(t)

))
j=1,...,n

=
(
mj

d2qj
dt2

(t)− Fj

(
t, q(t)

))
j=1,...,n

∈ (R3)n

is orthogonal15 to the tangent space Tq(t)Q ⊂ (R3)n, for all t ∈ [a, b]. We
can reformulate this by saying that:

(1.5.10) mj
d2qj
dt2

(t) = −∇qjV
(
t, q(t)

)
+Rj(t)

= Fj

(
t, q(t)

)
+Rj(t), j = 1, . . . , n,

for all t ∈ [a, b], for some map R = (R1, . . . , Rn) : [a, b] → (R3)n such that
R(t) ∈ (R3)n is orthogonal to the tangent space Tq(t)Q, for all t ∈ [a, b].
If q = (q1, . . . , qn) are the actual trajectories of the particles, then (1.5.10)
holds if and only if the vector Rj(t) ∈ R3 is the force exerted upon the j-th
particle by the constraint at the instant t.

14As noted earlier, this cannot be taken too seriously, as we know that Classical
Mechanics is not a fundamental theory.

15Orthogonality here means orthogonality with respect to the standard inner product
of (R3)n. We observe that sometimes it is useful to consider an inner product on (R3)n

that is scaled by the masses of the particles. See Exercise 1.22 for details.
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Of course, there is no logical reason why the critical points of the action
functional SLcons should correspond to the trajectories of n particles subject
to the forces encoded in the potential V and to the forces from the constraint.
That isn’t a logical consequence of the dynamics of Classical Mechanics, as
presented in Section 1.2. What we have shown is that it is true that the
critical points of the action functional SLcons correspond to the trajectories
of the n constrained particles if and only if the forces Rj(t) exerted by the
constraint upon the particles constitute a vector R(t) =

(
R1(t), . . . , Rn(t)

)
that is orthogonal to the tangent space Tq(t)Q, for all t. Is the orthogonality
between R(t) and Tq(t)Q a reasonable assumption? That can only be judged
within the context of a specific example. When n = 1, so that the manifold
Q corresponds to a curve or a surface inside physical space from which the
particle cannot get away, then the assumption of orthogonality between the
vector R(t) (in R3) and the tangent space Tq(t)Q is easy to be physically
interpreted. It means that, whatever keeps the particle inside Q, does that
by exerting upon the particle a force that is orthogonal to Q; such condition
can usually be understood as the absence of friction between the particle
and the surface. For the general case, the orthogonality between R(t) and
the vectors in Tq(t)Q is an orthogonality between vectors in configuration
space (R3)n, not an orthogonality between vectors in physical space, so it
is hard to understand the physical meaning of such orthogonality condition.
In Exercises 1.20 and 1.21 we ask the reader to work with concrete examples
(the double pendulum and the double spherical pendulum) and to discover
what the orthogonality condition means in those cases.

1.6. Hamiltonian formalism

The ordinary differential equation (1.2.1) defining the dynamics of Clas-
sical Mechanics is of second order. Everyone knows that a second order
ordinary differential equation over a certain space can be reformulated in
terms of a first order ordinary differential equation over a new space whose
dimension is the double of the dimension of the original space. Such refor-
mulation has some advantages. For an ordinary differential equation of first
order the initial condition that determines the solution is just the value of
the solution at one given initial instant and thus one can see the equation
as defining a family of maps (the flow) from a space to itself. One can then
ask questions such as “is there any interesting structure that is invariant by
that flow?”. One obvious way of reformulating the differential equation that
defines the dynamics of Classical Mechanics as a first order equation is to
introduce a new independent variable for q̇(t). It turns out that this is not
the best idea; a small modification of that idea yields much better results.

1.6.1. Definition. The momentum of the j-th particle at time t ∈ R is
defined by:

(1.6.1) pj(t) = mj q̇j(t).
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Notice that (by (1.2.1)) the derivative of pj at an instant t is equal to
the total force Fj acting upon the j-th particle at that instant. Assuming
(1.2.3) it follows immediately that the total momentum:

n∑
j=1

pj(t)

is independent of t, i.e., it is conserved. Condition (1.2.3) holds if we don’t
have external forces (either we are dealing with the entire universe or with a
system which is almost isolated, so that external forces are neglected) and if
the force laws satisfy Newton’s law of reciprocal actions (1.2.2) (which holds
for the fundamental forces of Classical Mechanics, i.e., the gravitational
and the electrical forces). In the presence of external forces (and assuming
Newton’s law of reciprocal actions) the derivative of the total momentum
is equal to the sum of the external forces; therefore, even when the total
momentum of a system is not conserved due to external forces, it is not
hard to keep track of its evolution, since we can ignore the internal forces
which are often the ones which are complicated to handle (imagine keeping
track of the internal forces among all particles of some macroscopic system!).
Later on we will take a closer look at the subject of conservation laws and
we will understand the relationship between those and symmetry; for now,
that is all that must be said about the conservation of the total momentum.
We are just trying to give some motivation for Definition 1.6.1, so that it
doesn’t look like we have given a name for some arbitrary formula involving
the particle trajectories qj .

The maps qj : R→ R3, pj : R→ R3, j = 1, . . . , n, define a curve:

(q, p) = (q1, . . . , qn, p1, . . . , pn) : R −→ (R3)n × (R3)n.

If the maps qj satisfy (1.2.1) and the maps pj are defined by (1.6.1) then
the curve (q, p) satisfies the first order differential equation:

(1.6.2)
dqj
dt

(t) =
pj(t)
mj

,
dpj

dt
(t) = Fj , j = 1, . . . , n,

where, in the second equation, Fj is understood to be evaluated at the point:(
t, q1(t), . . . , qn(t), 1

m1
p1(t), . . . , 1

mn
pn(t)

)
.

Conversely, if the curve (q, p) satisfies (1.6.2) then the maps qj satisfy (1.2.1)
and the maps pj are given by (1.6.1). Let us now assume that the force F
admits a potential V : dom(V ) ⊂ R×(R3)n → R. Equation (1.6.2) becomes:

(1.6.3)
dqj
dt

(t) =
pj(t)
mj

,
dpj

dt
(t) = −∇qjV

(
t, q(t)

)
, j = 1, . . . , n.

Recall from Definition 1.4.7 the notions of kinetic and potential energy. The
total energy (also known as mechanical energy or just energy) at the instant
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t is defined to be the sum of the total kinetic energy with the potential
energy:

(1.6.4)
n∑

j=1

1
2
mj‖q̇j(t)‖2 + V

(
t, q(t)

)
.

The kinetic energy of the j-th particle can be written in terms of its mo-
mentum pj :

1
2
mj‖q̇j(t)‖2 =

‖pj(t)‖2

2mj

and so the total energy is equal to:
n∑

j=1

‖pj(t)‖2

2mj
+ V

(
t, q(t)

)
.

Define a map H : dom(V )× (R3)n ⊂ R× (R3)n × (R3)n → R by setting16:

(1.6.5) H(t, q, p) = H(t, q1, . . . , qn, p1, . . . , pn) =
n∑

j=1

‖pj‖2

2mj
+ V (t, q),

for all (t, q) ∈ dom(V ) ⊂ R× (R3)n and all p ∈ (R3)n. The total energy at
the instant t is then equal to H

(
t, q(t), p(t)

)
.

1.6.2. Definition. The map H defined in (1.6.5) is called the Hamil-
tonian of Classical Mechanics.

Notice that:

(1.6.6)
∂H

∂qj
(t, q, p) = ∇qjV (t, q),

∂H

∂pj
(t, q, p) =

pj

mj
, j = 1, . . . , n,

where we have used the standard identification between R3 and the dual
space R3∗ (notice that the lefthand sides of the equalities in (1.6.6) are
elements of R3∗, while the righthand sides are elements of R3). It follows
from (1.6.6) that equation (1.6.3) is equivalent to:

(1.6.7)
dq
dt

(t) =
∂H

∂p

(
t, q(t), p(t)

)
,

dp
dt

(t) = −∂H
∂q

(
t, q(t), p(t)

)
,

where now we have used the standard identification between (R3)n and the
dual space (R3)n∗ (the lefthand sides of the equalities in (1.6.7) are elements
of (R3)n, while the righthand sides are elements of the dual space (R3)n∗).
In this section we will continue to use such identification. Later, when we
work with manifolds, we will discover that the more appropriate domain
for H is an open subset of R × (R3)n × (R3)n∗ and that p(t) should be
regarded as an element of (R3)n∗. Under such conditions, both sides of the
first equation in (1.6.7) become elements of (R3)n (actually, the righthand

16We are using the symbols q, p for names of curves t 7→ q(t), t 7→ p(t) and also for
names of points q, p ∈ (R3)n. This type of notation abuse is very convenient and it hardly
generates any misunderstandings.
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side is an element of the bidual of (R3)n, which is naturally identified with
(R3)n) and both sides of the second equation in (1.6.7) become elements of
(R3)n∗. For now, insisting on not identifying (R3)n with (R3)n∗ would just
be annoying.

1.6.3. Definition. Equations (1.6.7) are called Hamilton’s equations.
The space (R3)n × (R3)n on which the curve t 7→

(
q(t), p(t)

)
takes values is

called the phase space.

Assume that H(t, q, p) does not depend on t, so that we write H(q, p)
instead of H(t, q, p) (if H is of the form (1.6.5), this happens if and only if
the potential V (t, q) does not depend on t). If t 7→

(
q(t), p(t)

)
is a solution

of Hamilton’s equations (1.6.7) then:

d
dt
H

(
q(t), p(t)

)
=
∂H

∂q

(
q(t), p(t)

)dq
dt

(t) +
∂H

∂p

(
q(t), p(t)

)dp
dt

(t)

=
∂H

∂q

(
q(t), p(t)

)∂H
∂p

(
q(t), p(t)

)
− ∂H

∂p

(
q(t), p(t)

)∂H
∂q

(
q(t), p(t)

)
.(1.6.8)

In the formula above, the expressions:

∂H

∂q

(
q(t), p(t)

)∂H
∂p

(
q(t), p(t)

)
,

∂H

∂p

(
q(t), p(t)

)∂H
∂q

(
q(t), p(t)

)
denote the evaluation of an element of (R3)n∗ at an element of (R3)n. Un-
der the identification of (R3)n∗ with (R3)n, both expressions become the
(standard) inner product between the vectors ∂H

∂q

(
q(t), p(t)

)
, ∂H

∂p

(
q(t), p(t)

)
of (R3)n. Hence the difference (1.6.8) vanishes and:

d
dt
H

(
q(t), p(t)

)
= 0.

We have proven:

1.6.4. Proposition. If H(t, q, p) does not depend on t then H is con-
stant along the solutions of Hamilton’s equations (1.6.7). �

In other words, the Hamiltonian H (when it does not depend on time) is
a first integral for Hamilton’s equations. It follows that, when the potential
energy does not depend on time, the total energy is conserved in Classical
Mechanics. Of course, we could have discovered the conservation of total
energy simply by computing the derivative of (1.6.4), but it is interesting to
see that such conservation law is a particular case of the more general fact
that H is a first integral of Hamilton’s equations.

Hamilton’s equations state that the curve t 7→
(
q(t), p(t)

)
is an integral

curve of the time-dependent vector field over (R3)n × (R3)n defined by:

(1.6.9) (t, q, p) 7−→
(∂H
∂p

(t, q, p),−∂H
∂q

(t, q, p)
)
∈ (R3)n × (R3)n.
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This vector field is almost the gradient of H, which is given by:

∇(q,p)H(t, q, p) =
(∂H
∂q

(t, q, p),
∂H

∂p
(t, q, p)

)
∈ (R3)n × (R3)n.

However, (1.6.9) differs from the gradient by an order switch and by a minus
sign. We now introduce a modified notion of gradient that yields exactly
(1.6.9). This is done as follows: recall that the gradient of a map is the vector
that, when contracted with a given inner product, yields the differential of
that map; in other words, the gradient is the vector that corresponds to
the differential via the isomorphism between the space and the dual space
induced by an inner product. For example, if 〈·, ·〉 denotes the standard
inner product of (R3)n, then:

〈∇(q,p)H(t, q, p), (x, y)〉 = ∂(q,p)H(t, q, p)(x, y) =
∂H

∂q
(t, q, p)x+

∂H

∂p
(t, q, p)y,

for all (x, y) ∈ (R3)n × (R3)n. We obtain a new notion of gradient simply
by replacing the inner product with something else. We define an anti-
symmetric bilinear map ω over the vector space (R3)n × (R3)n by setting:

(1.6.10) ω
(
(x, y), (x̄, ȳ)

)
= 〈x, ȳ〉 − 〈x̄, y〉,

(x, y), (x̄, ȳ) ∈ (R3)n × (R3)n.

The bilinear form ω induces an isomorphism between (R3)n× (R3)n and its
dual space

(
(R3)n × (R3)n

)∗ and we can therefore consider the vector:

~H(t, q, p) ∈ (R3)n × (R3)n

that corresponds to the differential ∂(q,p)H(t, q, p) ∈
(
(R3)n × (R3)n

)∗ via
such isomorphism. More explicitly, given (t, q, p) in the domain of H, it is
easily checked that there exists a unique vector ~H(t, q, p) in (R3)n × (R3)n

that satisfies the equality:

ω
(
~H(t, q, p), (x, y)

)
= ∂(q,p)H(t, q, p)(x, y) =

∂H

∂q
(t, q, p)x+

∂H

∂p
(t, q, p)y,

for all (x, y) ∈ (R3)n × (R3)n and that such vector is given by:

~H(t, q, p) =
(∂H
∂p

(t, q, p),−∂H
∂q

(t, q, p)
)
.

Thus ~H is precisely the time-dependent vector field (1.6.9) whose integral
curves are the solutions t 7→

(
q(t), p(t)

)
of Hamilton’s equations!

1.6.5. Definition. The bilinear form ω defined in (1.6.10) is called the
canonical symplectic form of the phase space (R3)n × (R3)n and the vector
field ~H is called the symplectic gradient of the map H.

In this section we have taken the first steps towards presenting what is
called the Hamiltonian formalism. Here is an overview of what are going to
be our next steps. Hamilton’s equations can be formulated in the context
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of manifolds and for that purpose the manifold is required to be endowed
with what will be called a symplectic form. We will study Hamiltonians and
symplectic forms on manifolds in Section 1.8, but first we have to know what
is meant by a symplectic form over a vector space, which is the subject of
Section 1.7. After Section 1.8, we will see that given a Lagrangian L over a
manifoldQ (so that the domain of L is an open subset ofR×TQ) then, under
certain conditions (known as hyper-regularity), we can construct a map H
(the Legendre transform of L), called the Hamiltonian corresponding to L,
defined over an open subset of R× TQ∗, where TQ∗ denotes the cotangent
bundle of Q. When the Lagrangian L is the difference between total kinetic
energy and potential energy (so that — assuming that the force exerted
by the constraint is normal to Q — the Euler–Lagrange equation is the
dynamical equation of Classical Mechanics), the corresponding Hamiltonian
H will be exactly the sum of the total kinetic energy with the potential
energy (with the total kinetic energy rewritten in terms of new variables p).
We will see that a cotangent bundle TQ∗ carries a canonical symplectic form,
so that it makes sense to talk about Hamilton’s equations associated to a
Hamiltonian H over a cotangent bundle. Moreover, we will see that when H
is constructed from L, the solutions of Hamilton’s equations associated to H
are the same as the solutions of the Euler–Lagrange equation associated to
L; more precisely, q is a solution of the Euler–Lagrange equation associated
to L if and only if (q, p) is a solution of Hamilton’s equations associated to
H, for some curve p. There will be a explicit description of such curve p.
When Q = (R3)n and L is the difference between total kinetic energy and
potential energy, p agrees with the momentum (1.6.1).

1.7. Symplectic forms over vector spaces

In Section 1.6 we have defined the canonical symplectic form of the phase
space (R3)n×(R3)n. Let us now explain what we mean by a symplectic form
over a vector space and let us prove some elementary results about those.
This section is just a bunch of results from elementary linear algebra (which
are usually not taught in standard elementary linear algebra courses). In
Subsection 1.7.1 we show how to construct a volume form from a symplectic
form using the exterior product and that requires a bit of multilinear algebra.
For the reader’s convenience, we have included a short review of multilinear
algebra in the appendix (Section A.1).

1.7.1. Definition. Let V be a real finite-dimensional vector space. A
symplectic form over V is an anti-symmetric bilinear form ω : V × V → R

that is also non degenerate, i.e., given v ∈ V , if ω(v, w) = 0 for all w ∈ V
then v = 0. The pair (V, ω) is called a symplectic vector space (or just a
symplectic space).

We have restricted our definition to the context of finite-dimensional
vector spaces over the field of real numbers. Of course, the same definition
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makes sense for arbitrary vector spaces over any scalar field, but real finite-
dimensional vector spaces are sufficient for our purposes. Notice that the
condition that ω be non degenerate is equivalent to the condition that the
linear map canonically associated to ω:

(1.7.1) V 3 v 7−→ ω(v, ·) ∈ V ∗

be injective. Since V is finite-dimensional, this is the same as requiring
that (1.7.1) be an isomorphism. In the infinite-dimensional case, one should
talk about weak non degeneracy (when (1.7.1) is injective) and strong non
degeneracy (when (1.7.1) is an isomorphism17). But let us focus on the
finite-dimensional case. Just like inner products, symplectic forms induce
an isomorphism between the space V and its dual V ∗, so one can talk about
the vector v that represents a linear functional α ∈ V ∗ with respect to ω,
i.e., v ∈ V is the only vector such that ω(v, ·) = α. This is the crucial
property that allowed us to define the symplectic gradient ~H in Section 1.6.
Notice that in the case of an inner product 〈·, ·〉, the linear functionals 〈v, ·〉
and 〈·, v〉 are equal, while if ω is a symplectic form then ω(v, ·) = −ω(·, v),
so one must be more careful and pay attention to our convention of putting
the v in the first variable of ω in the definition (1.7.1) of the isomorphism
between V and its dual space V ∗.

1.7.2. Example. For any natural number n, we define the canonical
symplectic form of R2n = Rn ×Rn by:

ω0

(
(x, y), (x̄, ȳ)

)
= 〈x, ȳ〉 − 〈x̄, y〉, x, y, x̄, ȳ ∈ Rn,

where 〈·, ·〉 denotes the canonical inner product of Rn. It is a simple exercise
to check that ω0 is indeed anti-symmetric and non degenerate. We also define
a canonical symplectic form for the space Rn ×Rn∗ (again denoted by ω0),
by setting:

ω0

(
(x, α), (x̄, ᾱ)

)
= ᾱ(x)− α(x̄), x, x̄ ∈ Rn, α, ᾱ ∈ Rn∗.

Notice that when using Rn ×Rn∗ instead of Rn ×Rn one does not need an
inner product to define the symplectic form!

Not surprisingly, there is a notion of isomorphism for symplectic spaces.

1.7.3. Definition. Given symplectic spaces (V, ω), (Ṽ , ω̃), then a sym-
plectomorphism from (V, ω) to (Ṽ , ω̃) is a linear isomorphism:

T : V −→ Ṽ

such that:

(1.7.2) ω̃
(
T (v), T (w)

)
= ω(v, w),

for all v, w ∈ V . One could rephrase (1.7.2) by saying that the pull-back
T ∗ω̃ (which is defined by the lefthand side of (1.7.2)) is equal to ω.

17Of course, in the infinite-dimensional case, V would normally be assumed to be a
topological vector space and one would consider only its topological dual space, consisting
of continuous linear functionals over V .
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Clearly, the composition of symplectomorphisms is a symplectomor-
phism and the inverse of a symplectomorphism is a symplectomorphism.
Symplectomorphisms in the theory of symplectic spaces play the same role
that orthogonal transformations (i.e., linear isometries) play in the theory
of vector spaces with inner product. We now define the analogue for the
theory of symplectic spaces of the notion of orthonormal basis.

1.7.4. Definition. If (V, ω) is a symplectic space, then a symplectic
basis for (V, ω) is a basis (e1, . . . , en, e′1, . . . , e

′
n) for V such that:

ω(ei, e′j) = δij , ω(ei, ej) = 0, ω(e′i, e
′
j) = 0,

for all i, j = 1, . . . , n, where δij = 1 for i = j and δij = 0 for i 6= j.

Clearly, the canonical basis of R2n (and the canonical basis of Rn×Rn∗)
is symplectic with respect to the canonical symplectic form. Just like in the
theory of spaces with inner product, we have:

1.7.5. Proposition. Any symplectic space admits a symplectic basis.

Proof. This is a simple linear algebra exercise whose details are left
to the reader. The idea is to use induction in the dimension of the sym-
plectic space (V, ω). If V is not the null space then we can find vectors
e1, e

′
1 ∈ V such that ω(e1, e′1) 6= 0 and obviously such vectors can be chosen

with ω(e1, e′1) = 1. The restriction of ω to the space span{e1, e′1} spanned
by e1, e′1 is easily seen to be non degenerate and thus it follows from the
result of Exercise 1.28 that V is the direct sum of span{e1, e′1} with the
orthogonal complement (with respect to ω) of span{e1, e′1}. Now apply the
induction hypothesis to the restriction of ω to the orthogonal complement
of span{e1, e′1} and conclude the proof. �

In Exercise 1.30 we ask the reader to prove a generalization of Propo-
sition 1.7.5 that yields a special basis for anti-symmetric bilinear forms ω
that are not necessarily non degenerate.

1.7.6. Corollary. Any symplectic space is even dimensional.

Proof. A symplectic basis has an even number of elements. �

Another proof of Corollary 1.7.6 is given in the statement of Exer-
cise 1.27.

We have the following result, which is analogous to the result that two
vector spaces having the same dimension, endowed with inner products, are
linearly isometric.

1.7.7. Corollary. If (V, ω) and (Ṽ , ω̃) are symplectic spaces having
the same dimension, then there exists a symplectomorphism from (V, ω) to
(Ṽ , ω̃).
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Proof. Choose a symplectic basis of (V, ω) and a symplectic basis of
(Ṽ , ω̃). Define a linear isomorphism T : V → Ṽ sending one basis to the
other. Apply the result of Exercise 1.29. �

Because of Corollary 1.7.7, in order to prove a theorem about arbitrary
symplectic spaces, it suffices to prove it for R2n, endowed with the canonical
symplectic form.

1.7.1. The volume form induced by a symplectic form. Let (V, ω)
be a symplectic space with dim(V ) = 2n. The symplectic form ω is an ele-
ment of

∧
2 V

∗ and the wedge product:

ωn = ω ∧ · · · ∧ ω
of n copies of ω is an element of the one-dimensional space

∧
2n V

∗. We will
show that ωn is not zero and therefore it is a volume form over V . Because
of Corollary 1.7.7 it suffices to prove that ωn is not zero when V = R2n

and ω = ω0 is the canonical symplectic form of R2n. Let us denote18 by
(dq1, . . . ,dqn,dp1, . . . ,dpn) the dual basis of the canonical basis of R2n. The
canonical symplectic form ω0 of R2n is given by:

(1.7.3) ω0 =
n∑

i=1

dqi ∧ dpi.

Namely:
n∑

i=1

(dqi ∧ dpi)
(
(x, y), (x̄, ȳ)

)
=

n∑
i=1

dqi(x, y)dpi(x̄, ȳ)− dqi(x̄, ȳ)dpi(x, y)

=
n∑

i=1

xiȳi − x̄iyi = 〈x, ȳ〉 − 〈x̄, y〉,

for all x = (x1, . . . , xn), y = (y1, . . . , yn), x̄ = (x̄1, . . . , x̄n), ȳ = (ȳ1, . . . , ȳn)
in Rn. The canonical volume form of R2n is given by:

dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn.

Let us compute the wedge product ωn
0 of n copies of ω0. We have:

ωn
0 =

n∑
i1,...,in=1

dqi1 ∧ dpi1 ∧ · · · ∧ dqin ∧ dpin .

Clearly:
dqi1 ∧ dpi1 ∧ · · · ∧ dqin ∧ dpin = 0

unless i1, . . . , in ∈ {1, . . . , n} are pairwise distinct. Therefore:

ωn
0 =

∑
σ∈Sn

dqσ(1) ∧ dpσ(1) ∧ · · · ∧ dqσ(n) ∧ dpσ(n),

18This is actually more than just a notation. One can see dqi, dpj as the (constant)
one-forms overR2n that are the differentials of the scalar functions (q, p) 7→ qi, (q, p) 7→ pj .
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where Sn denotes the group of all bijections of the set {1, . . . , n}. By count-
ing order switches the reader can easily check that:

dqσ(1) ∧ dpσ(1) ∧ · · · ∧ dqσ(n) ∧ dpσ(n)

= (−1)
n(n−1)

2 dqσ(1) ∧ · · · ∧ dqσ(n) ∧ dpσ(1) ∧ · · · ∧ dpσ(n).

We have:

dqσ(1) ∧ · · · ∧ dqσ(n) ∧ dpσ(1) ∧ · · · ∧ dpσ(n)

= sgn(σ)2dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn

= dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn,

where sgn(σ) is the sign of the permutation σ, i.e., sgn(σ) = 1 if σ is even
and sgn(σ) = −1 if σ is odd. Hence:

ωn
0 = (−1)

n(n−1)
2 n! dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn.

This motivates the following:

1.7.8. Definition. If (V, ω) is a symplectic space with dim(V ) = 2n
then the volume form induced by ω is:

(1.7.4) (−1)
n(n−1)

2
1
n!
ωn,

where ωn denotes the wedge product of n copies of ω.

Our computations have shown that the volume form induced by the
canonical symplectic form of R2n is just the canonical volume form of R2n

(obviously, the same holds if R2n is replaced with Rn × Rn∗). Moreover,
as remarked earlier, it follows from Corollary 1.7.7 that (1.7.4) is indeed a
volume form over V , i.e., it is not zero. Namely, the pull-back of (1.7.4)
by a symplectomorphism from (R2n, ω0) to (V, ω) is equal to the canonical
volume form of R2n, so that (1.7.4) cannot be zero.

1.8. Symplectic manifolds and Hamiltonians

In Section 1.6 we have seen that the solutions to Hamilton’s equations are
precisely the integral curves of the symplectic gradient of the Hamiltonian.
Let us now formulate Hamilton’s equations in the context of manifolds. The
required ingredients are a Hamiltonian and a symplectic form. In this section
we are going to use several facts that are taught during courses on calculus
on manifolds. The reader is assumed to be familiar with such facts, but
there is a short summary of those in the appendix (Section A.2).

1.8.1. Definition. Let M be a differentiable manifold. By a symplectic
form over M we mean a smooth two-form ω over M such that:

(a) ωx is non degenerate (i.e., ωx is a symplectic form over the tangent
space TxM), for all x ∈M ;

(b) ω is closed, i.e., the exterior derivative dω vanishes.
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The pair (M,ω) is called a symplectic manifold.

Observe that if (V, ω) is a symplectic space (in the sense of Section 1.7)
and if we regard ω as a constant two-form over V (i.e., the two-form that as-
sociates ω to every point x ∈ V ) then ω is automatically closed and therefore
(V, ω) is a symplectic manifold. Actually, we have a bit of a terminological
conflict here: if V is a real finite-dimensional vector space then a symplectic
form over the vector space V (in the sense of Section 1.7) is not the same
thing as a symplectic form over V when V is regarded as a manifold. When
V is regarded as a manifold, then a symplectic form ω over V gives us a
symplectic form ωx over the vector space V for each x ∈ V . Terminological
conflicts of this type are common during courses on differentiable manifolds
and they cause no disastrous misunderstandings.

It is an obvious consequence of Corollary 1.7.6 that every symplectic
manifold is even dimensional.

It is not at all obvious why we have chosen to require a symplectic form
on a manifold to be closed. It happens that, because of such assumption,
all symplectic manifolds are locally alike (Darboux’s theorem below). The
reader will see that the assumption that the symplectic form be closed is
crucial for the most basic theorems on the subject. A (not necessarily closed)
smooth two-form that is non degenerate at every point is usually called
almost symplectic.

Let us now formulate Hamilton’s equations in a symplectic manifold.

1.8.2. Definition. Let (M,ω) be a symplectic manifold andH : M → R

be a smooth map. We call it a Hamiltonian over M (we will use that
terminology sometimes also when H is only defined in an open subset of
M). The symplectic gradient of H is the unique smooth vector field ~H over
M such that:

ω
(
~H(x), ·

)
= dH(x) ∈ TxM

∗,

for all x ∈ M . A smooth map H : R ×M → R (perhaps defined only over
some open subset of R×M) is called a time-dependent Hamiltonian over M .
It’s symplectic gradient is defined to be the unique time-dependent vector
field ~H over M such that:

ω
(
~H(t, x), ·

)
= ∂xH(t, x) ∈ TxM

∗,

for all (t, x) ∈ R×M , where ∂xH(t, x) denotes the differential at the point
x of the map H(t, ·). An integral curve of the symplectic gradient ~H of a
(possibly time-dependent) Hamiltonian H is called a solution to Hamilton’s
equations.

If H is a time-dependent Hamiltonian then, for each t ∈ R, H(t, ·) is
a (time independent) Hamiltonian and the symplectic gradient of H(t, ·) is
the vector field ~H(t, ·), where ~H denotes the symplectic gradient of H. In
other words, the symplectic gradient of a time-dependent Hamiltonian at
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(t, x) ∈ R ×M can be obtained by first “freezing time”, obtaining H(t, ·),
and then computing the symplectic gradient of H(t, ·) at x.

Here is the generalization of the notion of symplectomorphism to the
context of manifolds.

1.8.3. Definition. Given symplectic manifolds (M,ω), (M̃, ω̃) then a
symplectomorphism from (M,ω) to (M̃, ω̃) is a smooth diffeomorphism:

Φ : M −→ M̃

such that:
Φ∗ω̃ = ω,

i.e., such that dΦx : TxM → TΦ(x)M̃ is a symplectomorphism from the sym-
plectic space (TxM,ωx) to the symplectic space (TΦ(x)M̃, ω̃Φ(x)). A sym-
plectic chart over a symplectic manifold (M,ω) is a local chart:

Φ : U ⊂M −→ Ũ ⊂ R2n

that is a symplectomorphism from U endowed with (the restriction of) ω to
Ũ endowed with (the restriction of) the canonical symplectic form of R2n

(we also allow the counter-domain of a symplectic chart to be an open subset
of Rn ×Rn∗).

1.8.4. Theorem (Darboux). If (M,ω) is a symplectic manifold then for
every point of M there exists a symplectic chart whose domain contains that
point.

Proof. See Exercise 1.32. �

Darboux’s theorem won’t be terribly important for us, since for what is
going to be our central example of symplectic manifold (cotangent bundles),
the symplectic charts can be easily constructed. It is easy to see that the
integral curves of a symplectic gradient ~H are represented, with respect to
a symplectic chart Φ, by solutions of the (standard) Hamilton’s equations
(1.6.7) corresponding to the Hamiltonian that represents H with respect to
Φ (see Exercise 1.31 for details).

We have proven in Section 1.6 (Proposition 1.6.4) that a Hamiltonian
that does not depend on time is a first integral of Hamilton’s equations.
Such fact generalizes to Hamiltonians on symplectic manifolds.

1.8.5. Theorem. If H is a (time independent) Hamiltonian over a sym-
plectic manifold (M,ω) then H is constant over the integral curves of the
symplectic gradient ~H, i.e., H is a first integral of ~H.

Proof. If t 7→ x(t) is an integral curve of ~H then:
d
dt
H

(
x(t)

)
= dHx(t)

(
ẋ(t)

)
= dHx(t)( ~Hx(t)) = ω

(
~Hx(t), ~Hx(t)) = 0,

where ẋ(t) = dx
dt (t). �
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Theorem 1.8.5 does not hold for time-dependent Hamiltonians. Actually,
the argument used in its proof shows that if t 7→ x(t) is an integral curve of
~H then:

d
dt
H

(
t, x(t)

)
=
∂H

∂t

(
t, x(t)

)
.

Now we establish a deeper relationship between the flow of ~H and the
symplectic structure.

1.8.6. Theorem. If H is a time-dependent Hamiltonian over a symplec-
tic manifold (M,ω) then the symplectic form ω is invariant under the flow
of the symplectic gradient ~H.

Proof. We just have to check that the Lie derivative L ~Ht
ω is zero, for

all t ∈ R, where ~Ht = ~H(t, ·) (see Proposition A.2.7 if you are not familiar
with this). We use the standard formula for the Lie derivative of a differential
form (see (A.2.9)):

L ~Ht
ω = di ~Ht

ω + i ~Ht
dω.

Since ω is closed, the second term on the righthand side of the equality
above vanishes. As for the first term, observe that, by the definition of ~Ht,
i ~Ht

ω is equal to dHt, where Ht = H(t, ·). Since d(dHt) = 0, the proof is
concluded. �

We have seen in Subsection 1.7.1 (recall Definition 1.7.8) that a symplec-
tic form over a vector space induces a volume form over that vector space.
Obviously, the same construction can be used (pointwise) for manifolds.

1.8.7. Definition. The volume form induced by a symplectic form ω
on a manifold M is defined by:

(1.8.1) (−1)
n(n−1)

2
1
n!
ωn,

where ωn denotes the wedge product of n copies of ω and n denotes half the
dimension of M .

We have already shown that ωn never vanishes, so that (1.8.1) is indeed
a volume form over M .

1.8.8. Corollary (Liouville’s theorem). The volume form induced by
the symplectic form is invariant under the flow of the symplectic gradient of
a (possibly time-dependent) Hamiltonian.

Proof. A diffeomorphism that preserves the symplectic form preserves
the volume form. �

Liouville’s theorem is very important for Statistical Mechanics. Also,
there are many theorems about the dynamics of a flow that preserves a
measure (which, by Liouville’s theorem, is the case of a Hamiltonian flow).
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1.9. Canonical forms in a cotangent bundle

In this section we will show that the cotangent bundle of a differentiable
manifold carries a canonical one-form and a canonical symplectic form; such
symplectic form is, up to a sign, equal to the exterior differential of the
canonical one-form. The symplectic form will allow us to talk about Hamil-
ton’s equations in a cotangent bundle.

Let Q be a differentiable manifold and denote by TQ∗ its cotangent
bundle. A point of TQ∗ will be written as an ordered pair (q, p), where q is
a point of Q and p ∈ TqQ

∗ is a linear functional over the tangent space TqQ.
Denote by π : TQ∗ → Q the canonical projection, i.e., π(q, p) = q, for all
(q, p) ∈ TQ∗. The cotangent bundle TQ∗ is a differentiable manifold and the
projection π is a smooth map (it is also a smooth submersion). We are going
to define a one-form θ over the differentiable manifold TQ∗, i.e., for each
point (q, p) ∈ TQ∗ we are going to associate a linear functional θ(q,p) over
the tangent space T(q,p)TQ

∗. The construction of θ is straightforward: given
a point (q, p) ∈ TQ∗, we consider the differential dπ(q,p) of the projection π
at the point (q, p), which is a linear map:

dπ(q,p) : T(q,p)TQ
∗ −→ TqQ.

Now, p is a linear functional over TqQ and therefore we can compose it with
dπ(q,p) to obtain a linear functional over T(q,p)TQ

∗. We set:

(1.9.1) θ(q,p) = p ◦ dπ(q,p) : T(q,p)TQ
∗ −→ R,

for all (q, p) ∈ TQ∗, so that:

θ(q,p)(ζ) = p
(
dπ(q,p)(ζ)

)
,

for all (q, p) ∈ TQ∗ and all ζ ∈ T(q,p)TQ
∗.

1.9.1. Definition. The one-form θ defined in (1.9.1) is called the canon-
ical one-form of the cotangent bundle TQ∗.

1.9.2. Example. Let us compute explicitly the canonical one-form θ
of the cotangent bundle TQ∗ of an open subset Q of Rn. Such cotangent
bundle is identified with the product Q×Rn∗ and the canonical projection
π : TQ∗ → Q is just the projection onto the first coordinate of the product
Q × Rn∗. Given a point (q, p) ∈ TQ∗, i.e., q is in Q and p is in Rn∗, then
the tangent space T(q,p)TQ

∗ is identified with Rn ×Rn∗ and the differential
dπ(q,p) is the projection onto the first coordinate of the product Rn ×Rn∗.
The canonical one-form θ is given by:

(1.9.2) θ(q,p)(ζ1, ζ2) = p(ζ1), q ∈ Q, p ∈ Rn∗, ζ1 ∈ Rn, ζ2 ∈ Rn∗.

Let us write the one-form θ using the standard way of writing down differ-
ential forms. Denote by19:

q : Q×Rn∗ −→ Q, p : Q×Rn∗ −→ Rn∗

19Yes, we are using q and p both for the names of the projection maps of the product
Q×Rn∗ and for the names of points of Q and of Rn∗, respectively.
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the projection maps of the product Q×Rn∗ and write:

q = (q1, . . . , qn), p = (p1, . . . , pn),

so that qi and pi, i = 1, . . . , n, are real valued maps over Q×Rn∗ (when we
write p = (p1, . . . , pn), we are using the standard identification between Rn∗

and Rn). Denote by dqi, dpi the (ordinary or exterior) differential of such
maps, which are (constant) one-forms over Q × Rn∗. The one-forms dqi,
dpi are simply the dual basis of the canonical basis of Rn × Rn∗, i.e., they
are the 2n projections of Rn × Rn∗ ∼= R2n. Given ζ = (ζ1, ζ2) ∈ Rn × Rn∗

then the n coordinates of ζ1 ∈ Rn are dqi(ζ), i = 1, . . . , n and therefore, by
(1.9.2), the one-form θ is equal to:

(1.9.3) θ =
n∑

i=1

pidqi.

As we will see in one moment, by computing the canonical one-form of the
cotangent bundle of an open subset of Rn, we have actually computed the
canonical one-form of any cotangent bundle.

Given differentiable manifolds Q, Q̃, if ϕ : Q → Q̃ is a smooth diffeo-
morphism then it induces a smooth diffeomorphism:

dϕ : TQ −→ TQ̃

between the tangent bundles TQ, TQ̃ (which sends a point (q, q̇) in TQ to the
point

(
ϕ(q),dϕq(q̇)

)
in TQ̃) and it also induces a smooth diffeomorphism:

d∗ϕ : TQ∗ −→ TQ̃∗

between the cotangent bundles TQ∗, TQ̃∗, defined by:

(1.9.4) d∗ϕ(q, p) =
(
ϕ(q), p ◦ dϕ−1

q

)
=

(
ϕ(q), (dϕ−1

q )∗(p)
)
, (q, p) ∈ TQ∗.

Be aware that our notation might be a little misleading: the restriction of
d∗ϕ to a fiber TqQ

∗ of TQ∗ is not the transpose dϕ∗q of the differential dϕq,
but actually its inverse (dϕ∗q)

−1 = (dϕ−1
q )∗ (the map dϕ∗q goes in the wrong

direction!). That is why we write d∗ϕ, instead of dϕ∗; using dϕ∗ would be
too misleading.

We have a commutative diagram:

(1.9.5)

TQ∗ d∗ϕ //

��

TQ̃∗

��
Q

ϕ
// Q̃

in which the vertical arrows are the canonical projections.
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If θ denotes the canonical one-form of TQ∗ and θ̃ denotes the canonical
one-form of TQ̃∗ then it is a simple exercise20 to check that the diffeomor-
phism d∗ϕ carries θ to θ̃, i.e, the pull-back of θ̃ by d∗ϕ is equal to θ:

(1.9.6) (d∗ϕ)∗θ̃ = θ.

The reader should have quickly guessed that (1.9.6) must hold! This is
just a particular case of the fact that any concept whose definition makes
sense for an arbitrary differentiable manifold must be preserved by smooth
diffeomorphisms (just like any concept whose definition makes sense for rings
must be preserved by ring isomorphisms, and so on).

If ϕ : U ⊂ Q → Ũ ⊂ Rn is a local chart on Q then the smooth diffeo-
morphism:

d∗ϕ : TU∗ ⊂ TQ∗ −→ T Ũ∗ = Ũ ×Rn∗

is a local chart on the cotangent bundle TQ∗; it is the local chart canonically
associated to ϕ on the cotangent bundle. The local chart d∗ϕ on TQ∗

carries the restriction21 to the open set TU∗ of the canonical one-form θ of
TQ∗ to the canonical one-form of the cotangent bundle T Ũ∗ of the open
subset Ũ of Rn. Thus, the canonical one-form of the cotangent bundle T Ũ∗

(which we have computed in Example 1.9.2) is the representation of the
canonical one-form θ of TQ∗ with respect to the local chart d∗ϕ. Notice that
our considerations have proven that the canonical one-form of a cotangent
bundle is smooth.

There are two possibilities here for notation and we will let the reader
pick her favorite one. We can, as in Example 1.9.2, denote by:

(1.9.7) q1, . . . , qn, p1, . . . , pn,

the 2n projections of Ũ ×Rn∗ ⊂ Rn ×Rn∗, so that the canonical one-form
of the cotangent bundle T Ũ∗ is given by the righthand side of (1.9.3) and
the (restriction to the open set TU∗ of the) canonical one-form θ of TQ∗ is
given by the pull-back:

θ = (d∗ϕ)∗
( n∑

i=1

pidqi
)
.

The other possibility is to use (1.9.7) to denote the coordinate functions of
the map d∗ϕ, so that d∗ϕ = (q1, . . . , qn, p1, . . . , pn) and (1.9.7) denote real
valued maps over the open subset TU∗ of TQ∗. Under such notation, the
(restriction to TU∗ of) the canonical one-form θ of TQ∗ is given exactly by
the righthand side of equality (1.9.3).

20Just differentiate the arrows of diagram (1.9.5) and follow the definitions!
21Obviously, the canonical one-form of the cotangent bundle TU∗ of the open subset

U of Q is the restriction to TU∗ of the canonical one-form of the cotangent bundle TQ∗.
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1.9.3. Definition. Given a differentiable manifoldQ, then the canonical
symplectic form of the cotangent bundle TQ∗ is defined by:

(1.9.8) ω = −dθ,

where θ denotes the canonical one-form of TQ∗.

We use a minus sign in (1.9.8) because we want ω to agree with the
canonical symplectic form of Rn × Rn∗ when Q = Rn. We will see in a
moment that ω is indeed a symplectic form over TQ∗. It is already clear
that it is smooth (because θ is smooth) and that it is closed (because it is
exact). If Q, Q̃ are differentiable manifolds and ϕ : Q → Q̃ is a smooth
diffeomorphism then, by (1.9.6), since pull-backs commute with exterior
differentiation, it follows that:

(d∗ϕ)∗ω̃ = ω,

where ω denotes the canonical symplectic form of TQ∗ and ω̃ the canonical
symplectic form of TQ̃∗.

1.9.4. Example. If Q is an open subset of Rn then, using the same
notation used in Example 1.9.2, we see (by taking the exterior derivative on
both sides of (1.9.3)) that the canonical symplectic form ω of TQ∗ is given
by:

(1.9.9) ω =
n∑

i=1

dqi ∧ dpi,

and therefore it agrees with the canonical symplectic form (1.7.3) of the
space Rn ×Rn∗. If H : dom(H) ⊂ R× TQ∗ = R×Q×Rn∗ → R is a time-
dependent Hamiltonian over Q and if TQ∗ is endowed with its canonical
symplectic form ω then the symplectic gradient of H is given by:

dom(H) 3 (t, q, p) 7−→
(∂H
∂p

(t, q, p),−∂H
∂q

(t, q, p)
)
∈ Rn ×Rn∗.

Given a smooth curve (q, p) : I → TQ∗ (defined over some interval I ⊂ R)
then, for t ∈ I with

(
t, q(t), p(t)

)
∈ dom(H), the condition:

d
dt

(
q(t), p(t)

)
= ~H

(
t, q(t), p(t)

)
is equivalent to (the satisfaction at t of) Hamilton’s equations:

(1.9.10)
dq
dt

(t) =
∂H

∂p

(
t, q(t), p(t)

)
,

dp
dt

(t) = −∂H
∂q

(
t, q(t), p(t)

)
.

If ϕ : U ⊂ Q → Ũ ⊂ Rn is a local chart on Q then the (restriction to
TU∗ of the) symplectic form ω of TQ∗ is the pull-back by the local chart d∗ϕ
of the (restriction to Ũ×Rn∗ of the) canonical symplectic form of Rn×Rn∗.
It follows that the bilinear form ω(q,p) on T(q,p)TQ

∗ is non degenerate, for
all (q, p) ∈ TQ∗.
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Again, we have two possibilities for notation: use (1.9.7) to denote the
projections of Ũ ×Rn∗ ⊂ Rn ×Rn∗, so that the (restriction to TU∗ of the)
canonical symplectic form ω of TQ∗ is the pull-back by d∗ϕ of the righthand
side of (1.9.9) or use (1.9.7) to denote the coordinate functions of the map
d∗ϕ, so that the righthand side of (1.9.9) is precisely the (restriction to TU∗

of the) canonical symplectic form ω of TQ∗.

Our considerations so far have proven the following:

1.9.5. Proposition. Given a differentiable manifold Q then:
(a) the canonical symplectic form of TQ∗ is indeed a symplectic form;
(b) if Q̃ is another differentiable manifold and if ϕ : Q→ Q̃ is a smooth

diffeomorphism then d∗ϕ : TQ∗ → TQ̃∗ is a symplectomorphism if
both tangent bundles are endowed with their canonical symplectic
forms;

(c) if ϕ : U ⊂ Q → Ũ ⊂ Rn is a local chart on Q then the local chart
d∗ϕ on TQ∗ is symplectic if TQ∗ is endowed with its canonical
symplectic form. �

Let H : dom(H) ⊂ R × TQ∗ → R be a time-dependent Hamiltonian
over the cotangent bundle TQ∗ of a differentiable manifold Q. Given a
local chart ϕ : U ⊂ Q → Ũ ⊂ Rn on Q then, since the local chart d∗ϕ
on TQ∗ is symplectic, we have that a curve on TQ∗ is an integral curve of
the symplectic gradient ~H if and only if the representation of such curve
with respect to the chart d∗ϕ is a solution of Hamilton’s equations (1.9.10)
corresponding to the Hamiltonian that represents H with respect to the
chart d∗ϕ (see Exercise 1.31 for details).

The first of Hamilton’s equations can be formulated without the aid of
a coordinate chart. More explicitly, given t ∈ R, q ∈ Q, we can freeze the
first two variables of H, obtaining a map H(t, q, ·) that sends each p in the
open subset:

dom
(
H(t, q, ·)

)
=

{
p ∈ TqQ

∗ : (t, q, p) ∈ dom(H)
}

of the cotangent space TqQ
∗ to the real number H(t, q, p). The differential of

the mapH(t, q, ·) at a point p of its domain will be denoted by ∂H
∂p (t, q, p) and

it is a linear functional over TqQ
∗, i.e., it is an element of the bidual TqQ

∗∗,
which we identify with an element of the tangent space TqQ. Unfortunately,
the partial derivative ∂H

∂q (t, q, p) does not make sense for a time-dependent
Hamiltonian H on a cotangent bundle, as one can fix q and move p, but one
cannot fix p and move q (one would need a connection22 to make sense out
of ∂H

∂q (t, q, p) without the aid of a local chart).

22A connection on Q induces a direct sum decomposition of the tangent space
T(q,p)TQ∗ into a vertical subspace (the space tangent to the fiber) and a horizontal sub-

space (which is defined by the connection). The derivative ∂H
∂p

(t, q, p) is the differential
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The following proposition simply says that if a curve t 7→
(
q(t), p(t)

)
on

a cotangent bundle satisfies Hamilton’s equations (formulated intrinsically,
in terms of the symplectic gradient with respect to the canonical symplectic
form of the cotangent bundle) then it also satisfies the first of Hamilton’s
equations (which can be formulated without the aid of a coordinate chart).

1.9.6. Proposition. If a smooth curve (q, p) : I → TQ∗ (defined on
some interval I ⊂ R) satisfies

(
t, q(t), p(t)

)
∈ dom(H) and:

(1.9.11)
d
dt

(
q(t), p(t)

)
= ~H

(
t, q(t), p(t)

)
for a certain t ∈ I then:

(1.9.12)
dq
dt

(t) =
∂H

∂p

(
t, q(t), p(t)

)
∈ Tq(t)Q.

Proof. If two manifolds Q, Q̃ are diffeomorphic and if the thesis of
the proposition holds for Q̃ then it also holds for Q (if this is not obvious
to you, see Exercise 1.34). Moreover, in order to prove the thesis for a
certain manifold Q, we can replace Q with an open neighborhood of the
point q(t) in Q. Since a sufficiently small neighborhood of a point of Q is
diffeomorphic to an open subset of Rn, it suffices to prove the proposition
in the case when Q is an open subset of Rn. In that case, condition (1.9.11)
means that the curve (q, p) satisfies Hamilton’s equations (1.9.10) (at the
given instant t) and condition (1.9.12) means that the curve (q, p) satisfies
the first of Hamilton’s equations (at the given instant t), so the conclusion
is obvious. �

The method that we used to prove Proposition 1.9.6 is a very nice strat-
egy for proving theorems about differentiable manifolds. It works as follows:
suppose that we want to prove a certain statement about differentiable man-
ifolds23. For each differentiable manifold Q, the statement may or may not
hold for Q, i.e., the statement defines a subclass C of the class of all dif-
ferentiable manifolds. Proving the statement means to prove that C is the
class of all differentiable manifolds. For a statement that really is a state-
ment about differentiable manifolds (i.e., it concerns the manifold structure
alone), it should be the case that if a manifold diffeomorphic to Q is in
C than also Q is in C. Let us say in this case that the class C is closed
under diffeomorphisms. Proving that the class C is closed under diffeomor-
phisms normally is a completely follow-your-nose type of exercise, i.e., one
just needs to use a given diffeomorphism to keep carrying things over from
one manifold to the other. We say that the statement under consideration is

of H along the vertical subspace and the derivative ∂H
∂q

(t, q, p) can be defined as the dif-

ferential of H along the horizontal subspace (which, obviously, depends on the choice of
connection).

23More generally, the statement might be about a family of manifolds. The strategy
can be easily adapted for that situation as well.
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local (or that the class C is local) if the class C has, in addition, the following
property: given a differentiable manifold Q, if every point of Q has an open
neighborhood in Q that (regarded as a manifold in its own right) belongs
to C, then Q belongs to C. Normally, when a statement is local, it is very
easy to check that it really is local. Obviously, if C is closed under diffeo-
morphisms and local then, if every open subset of Rn is in C, it follows that
every differentiable manifold is in C. We have therefore the following strat-
egy for proving a local statement about differentiable manifolds: (i) observe
that the class C defined by the statement is closed under diffeomorphisms;
(ii) check that the class C is local; (iii) prove the statement for open subsets
of Rn. There is nothing spectacular about this strategy, but it allows one
to focuss on what is really important, i.e., proving the statement for open
subsets of Rn. Many authors tend to present proofs of theorems about dif-
ferentiable manifolds in which the proof of the statement for open subsets of
Rn gets mixed up with a lot of procedures of carrying things around using
coordinate charts. Our strategy relieves the mind from such distractions.

1.10. The Legendre transform

The Legendre transform is the procedure that is used to transform a
Lagrangian L : R × TQ → R into a Hamiltonian H : R × TQ∗ → R.
This procedure is performed fiberwise: for each t ∈ R and each q ∈ Q, we
freeze the first two variables of L, obtaining a map L(t, q, ·) over the tangent
space TqQ; on such map, we perform a certain procedure (which we also
call “Legendre transform”) that yields the map H(t, q, ·) over the cotangent
space TqQ

∗. We start by studying the procedure which is applied to the
map L(t, q, ·); that is a general procedure that can be applied to real valued
maps over a real finite-dimensional vector space.

In what follows, E denotes a fixed real finite-dimensional vector space.
Let f : dom(f) ⊂ E → R be a map of class C2 defined over an open subset
dom(f) of E. The differential df(x) of f at a point x ∈ dom(f) is a linear
functional over E, i.e., an element of the dual space E∗. The differential df
is therefore a map (of class C1):

(1.10.1) df : dom(f) ⊂ E −→ E∗

from the open subset dom(f) of E to the dual space E∗.

1.10.1. Definition. The map f : dom(f) ⊂ E → R is called regular if
its differential (1.10.1) is a local diffeomorphism and it is called hyper-regular
if its differential is a diffeomorphism onto an open subset of E∗ (the image
Im(df) of the map df).

It follows from the inverse function theorem that f is regular if and only
if its second differential:

d(df)(x) : E −→ E∗
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is a linear isomorphism for all x ∈ dom(f) ⊂ E. Moreover, f is hyper-regular
if and only if f is regular and the map df is injective.

Given a map f : dom(f) ⊂ E → R of class C2 over an open subset
dom(f) of E, we consider the map φ : dom(f) ⊂ E → R (of class C1)
defined by:

(1.10.2) φ(x) = df(x)x− f(x), x ∈ dom(f).

The expression df(x)x denotes the evaluation of the linear functional df(x)
at the vector x.

1.10.2. Definition. If f : dom(f) ⊂ E → R is a hyper-regular map of
class C2 then its Legendre transform is the map f∗ : dom(f∗) ⊂ E∗ → R

defined by:
f∗ = φ ◦ (df)−1,

with φ given by (1.10.2). The domain dom(f∗) of f∗ is the image Im(df) of
the map df .

The map f∗ looks like just a map of class C1 (since both φ and the
inverse of df are maps of class C1), but, curiously, we will prove below that
the map f∗ is of class C2. In any case, we are really interested only in
the case when f is smooth and clearly in that case f∗ is smooth as well.
The reader might be a little puzzled by Definition 1.10.2. It seems as if the
formula for f∗ just fell from the sky. Many authors define the Legendre
transform in terms of the solution to a maximization problem24, but we
do not. In a moment, the reader should be convinced that the Legendre
transform is a very clever construction.

1.10.3. Example. Consider the Lagrangian:

L : dom(V )× (R3)n ⊂ R× (R3)n × (R3)n → R

defined in Subsection 1.4.1. Its Euler–Lagrange equation is the dynamical
equation for a system of n particles subject to (the forces with) a potential
V : dom(V ) ⊂ R×(R3)n → R. Given (t, q) ∈ dom(V ) ⊂ R×(R3)n, consider
the map f : (R3)n → R obtained by freezing the first two variables of L:

f(q̇) = L(t, q, q̇), q̇ ∈ (R3)n.

24One defines the value of the Legendre transform f∗ at a linear functional α ∈ E∗

to be the maximum of α(x) − f(x), with x running through the domain of f . When f
is convex, such maximum is attained precisely at the point x such that df(x) = α (if
such point exists). Therefore, in that case, the definition using the maximization problem
agrees with ours. The maximization problem might create a sense of motivation on some
readers, but it is nevertheless a bad idea: it creates an illusion of difficulty in the case
when f is not convex. It is an “illusion of difficulty”, because the difficulty is being created
by the bad choice of definition alone! With our definition, there are no difficulties when f
is not convex and all the nice properties of the Legendre transform can be (easily) proven
as well.
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The differential of f at a point q̇ is the partial differential ∂L
∂q̇ (t, q, q̇) of L with

respect to its third variable and it is an element of the dual space (R3)n∗;
identifying (R3)n∗ with (R3)n in the standard way, we obtain:

df(q̇) =
(

∂L
∂q̇1

(t, q, q̇), . . . , ∂L
∂q̇n

(t, q, q̇)
)

= (m1q̇1, . . . ,mnq̇n) ∈ (R3)n,

i.e., df(q̇) is the vector p = (p1, . . . , pn) containing the momenta of all the
particles (more precisely, p becomes the vector containing the momenta of
all the particles when q̇ is replaced with the derivative q̇(t) of the curve
t 7→ q(t) describing the trajectories of all the particles). We have:

df(q̇)q̇ =
∂L

∂q̇
(t, q, q̇)q̇ =

n∑
j=1

mj‖q̇j‖2

and therefore the map φ corresponding to f as in (1.10.2) is given by:

φ(q̇) =
∂L

∂q̇
(t, q, q̇)q̇ − L(t, q, q̇) =

n∑
j=1

1
2
mj‖q̇j‖2 + V (t, q).

Thus, φ yields the total energy (after q is replaced with q(t) and q̇ is replaced
with q̇(t)). The Legendre transform f∗ = φ◦(df)−1 is just the map φ written
in terms of p, instead of q̇:

f∗(p) =
n∑

j=1

‖pj‖2

2mj
+ V (t, q).

Setting H(t, q, p) = f∗(p) (with f defined by f(q̇) = L(t, q, q̇)), we see that
H is precisely the Hamiltonian (1.6.5) of Classical Mechanics.

This is the first good news: the Legendre transform turns the Lagrangian
of Classical Mechanics into the Hamiltonian of Classical Mechanics. In a
moment we are going to see what happens in the case of Classical Mechanics
with constraints (Subsection 1.10.1). But, first, let us prove a few more
properties of the Legendre transform.

If f : dom(f) ⊂ E → R is a hyper-regular map of class C2 then the
differential of its Legendre transform f∗ : dom(f∗) ⊂ E∗ → R is a continuous
map:

(1.10.3) df∗ : dom(f∗) ⊂ E∗ → E∗∗

taking values in the bidual space E∗∗. We have the following:

1.10.4. Lemma. Under the standard identification of E∗∗ with E, the
differential (1.10.3) of the Legendre transform f∗ of a hyper-regular map
f : dom(f) ⊂ E → R of class C2 is equal to the inverse (df)−1 of the
differential of the map f .

Proof. Let α ∈ dom(f∗) = Im(df) be given and let x ∈ dom(f) be
such that df(x) = α. We have to show that df∗(α) is the element of E∗∗

that is identified with x, i.e., that:

(1.10.4) df∗(α)α̇ = α̇(x),
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for all α̇ ∈ E∗. Since f∗ = φ ◦ (df)−1 (with φ defined in (1.10.2)), we have:

(1.10.5) df∗(α)α̇ = dφ(x)
[
d
(
(df)−1

)
(α)α̇

]
.

Given ẋ ∈ E, we differentiate both sides of (1.10.2) with respect to x and
evaluate at ẋ (for the differentiation of the term df(x)x we use the product
rule25). The result is:

(1.10.6) dφ(x)ẋ =
(
df(x)ẋ

)
x+ df(x)ẋ− df(x)ẋ =

(
df(x)ẋ

)
x.

Now set ẋ = d
(
(df)−1

)
(α)α̇ in (1.10.6) in order to compute the righthand

side of (1.10.5). Notice that, since the maps df and (df)−1 are mutually
inverse, the differentials df(x) and d

(
(df)−1

)
(α) are also mutually inverse,

so that:
df(x)ẋ = df(x)

[
d
(
(df)−1

)
(α)α̇

]
= α̇.

It follows that (1.10.4) holds. �

1.10.5. Corollary. If f is a hyper-regular map of class C2 then so is
its Legendre transform.

Proof. Since df is a diffeomorphism of class C1, so is its inverse (df)−1,
which, by the lemma, is identified with df∗. It follows that f∗ is a map of
class C2 and that f∗ is hyper-regular. �

Since the Legendre transform of a hyper-regular map of class C2 is again
a hyper-regular map of class C2, it makes sense to take the Legendre trans-
form f∗∗ of the Legendre transform f∗. It turns out that f∗∗ is just f .

1.10.6. Proposition. Under the standard identification of E∗∗ with E,
the Legendre transform f∗∗ of the Legendre transform f∗ of a hyper-regular
map f : dom(f) ⊂ E → R of class C2 is equal to f (i.e., the Legendre
transform is involutive).

Proof. Let ψ : dom(f∗) ⊂ E∗ → R be the analogue of the map (1.10.2)
for f∗, i.e., ψ is defined by:

ψ(α) = df∗(α)α− f∗(α), α ∈ dom(f∗) = Im(df).

The double Legendre transform f∗∗ is equal to ψ ◦ (df∗)−1. Let x ∈ dom(f)
be fixed and set α = df(x). By Lemma 1.10.4, (df∗)−1 = df (up to the
identification between E∗∗ and E) and therefore:

f∗∗(x) = ψ(α).

25Here is how you do this: if (v, w) 7→ v · w denotes any bilinear map, then the
differential of a map p(x) = v(x) · w(x) is given by:

dp(x)ẋ =
(
dv(x)ẋ

)
· w(x) + v(x) ·

(
dw(x)ẋ

)
.

In order to prove that, think about p as the composite of the map x 7→
(
v(x), w(x)

)
with

the bilinear map that is denoted by the dot; use the chain rule and the standard formula
for the differential of a bilinear map. In the case under consideration, v is the map df , w
is the identity map x 7→ x and the bilinear map E∗ × E → R is the evaluation map.
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Since df∗ = (df)−1, we obtain that df∗(α) is equal to (the element of E∗∗

that is identified with) x and therefore:

ψ(α) = df∗(α)α− f∗(α) = α(x)− f∗(α) = α(x)− φ(x),

with φ defined in (1.10.2). But φ(x) = α(x) − f(x) and the conclusion
follows. �

Now we are ready to study the Legendre transform of a Lagrangian.
Let Q be a differentiable manifold and L be a Lagrangian on Q, i.e., L is
a smooth real valued map defined over an open subset dom(L) of R× TQ.
For each (t, q) ∈ R×Q, we obtain a map L(t, q, ·) by freezing the first two
variables of L, i.e., L(t, q, ·) is the map q̇ 7→ L(t, q, q̇) defined over the open
subset:

dom
(
L(t, q, ·)

)
=

{
q̇ ∈ TqQ : (t, q, q̇) ∈ dom(L)

}
of the tangent space TqQ. The differential of the map L(t, q, ·) at a point
q̇ ∈ dom

(
L(t, q, ·)

)
will be denoted by ∂L

∂q̇ (t, q, q̇) and it is an element of the
cotangent space TqQ

∗.

1.10.7. Definition. The Lagrangian L is said to be regular (resp.,
hyper-regular) if the map L(t, q, ·) is regular (resp., hyper-regular) for all
(t, q) in R×Q.

In other words, the Lagrangian L is regular if the map:

(1.10.7) TqQ ⊃ dom
(
L(t, q, ·)

)
3 q̇ 7−→ ∂L

∂q̇
(t, q, q̇) ∈ TqQ

∗

is a local diffeomorphism for all (t, q) ∈ R × Q and the Lagrangian L is
hyper-regular if the map (1.10.7) is a diffeomorphism onto an open subset
of TqQ

∗, for all (t, q) ∈ R×Q. We can join all the maps (1.10.7) with (t, q)
running over R × Q, obtaining the so called fiber derivative of L, which is
the map:

FL : dom(L) ⊂ R× TQ −→ R× TQ∗

defined by:

FL(t, q, q̇) =
(
t, q,

∂L

∂q̇
(t, q, q̇)

)
, (t, q, q̇) ∈ dom(L).

The conditions of regularity and hyper-regularity of L can be stated in
terms of the fiber derivative FL.

1.10.8. Lemma. The Lagrangian L is regular if and only if its fiber de-
rivative FL is a local diffeomorphism and the Lagrangian L is hyper-regular
if and only if its fiber derivative FL is a diffeomorphism onto an open subset
of R× TQ∗ (such open subset is obviously the image of FL).

Proof. It is obvious that FL is injective if and only if the map (1.10.7) is
injective for all (t, q) ∈ R×Q. Since a smooth map is a diffeomorphism onto
an open subset of its counter-domain if and only if the map is an injective
local diffeomorphism, it follows that in order to prove the lemma it suffices
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to prove the first part of its statement, i.e., to prove that L is regular if and
only if FL is a local diffeomorphism. We employ the strategy discussed at
the end of Section 1.9. Observe that:

(a) if two manifolds Q, Q̃ are diffeomorphic and if the thesis (that a
Lagrangian L on the manifold is regular if and only if the map FL is
a local diffeomorphism) holds for the manifold Q̃ then it also holds
for the manifold Q (if this is not obvious to you, see Exercise 1.36);

(b) if every point of Q has an open neighborhood U in Q such that the
thesis holds for the manifold U then the thesis holds for Q.

Because of (a) and (b), it suffices to prove the thesis if Q is an open subset of
Rn. In that case, the thesis follows easily from the inverse function theorem
(see Exercise 1.37). �

1.10.9. Definition. If L : dom(L) ⊂ R × TQ → R is a hyper-regular
Lagrangian, then its Legendre transform is the map:

L∗ : dom(L∗) = Im(FL) ⊂ R× TQ∗ −→ R

defined by:

L∗(t, q, p) =
(
L(t, q, ·)

)∗(p), (t, q, p) ∈ dom(L∗) = Im(FL) ⊂ R× TQ∗,

where
(
L(t, q, ·)

)∗(p) denotes the value at the point p ∈ TqQ
∗ of the Legendre

transform
(
L(t, q, ·)

)∗ of the map L(t, q, ·). The map L∗ is also denoted by
H and it is also called the Hamiltonian associated to the Lagrangian L.

It follows straightforwardly from the definition above that the Hamilton-
ian H : dom(H) = dom(L∗) ⊂ R× TQ∗ → R associated to a hyper-regular
Lagrangian L satisfies:

H
(
FL(t, q, q̇)

)
= H

(
t, q,

∂L

∂q̇
(t, q, q̇)

)
=
∂L

∂q̇
(t, q, q̇)q̇ − L(t, q, q̇),

for all (t, q, q̇) ∈ dom(L), i.e., the Hamiltonian H is the composition of the
map:

(1.10.8) R× TQ ⊃ dom(L) 3 (t, q, q̇) 7−→ ∂L

∂q̇
(t, q, q̇)q̇ − L(t, q, q̇) ∈ R

with the inverse of the map FL. Lemma 1.10.8 implies that the domain of
H is open and that H is smooth (since the map (1.10.8) is clearly smooth).
We can also define a fiber derivetive:

FH : dom(H) ⊂ R× TQ∗ −→ R× TQ

for H by setting:

FH(t, q, p) =
(
t, q,

∂H

∂p
(t, q, p)

)
∈ R× TQ, (t, q, p) ∈ dom(H).

The following proposition is an immediate consequence of the results
that we have proven about the Legendre transform of maps on real finite-
dimensional vector spaces.
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1.10.10. Proposition. Let L : dom(L) ⊂ R × TQ → R be a hyper-
regular Lagrangian and H : dom(H) ⊂ R × TQ∗ → R be its Legendre
transform. Then:

(a) for each (t, q) ∈ R × Q, the map H(t, q, ·) is hyper-regular and its
differential:

TqQ
∗ ⊃ dom

(
H(t, q, ·)

)
3 p 7−→ ∂H

∂p
(t, q, p) ∈ dom

(
L(t, q, ·)

)
⊂ TqQ

is the inverse of the map (1.10.7);
(b) the fiber derivatives FL, FH are mutually inverse smooth diffeo-

morphisms;
(c) for each (t, q) ∈ R×Q, the Legendre transform of the map H(t, q, ·)

is equal to the map L(t, q, ·).

Proof. Item (a) follows from Lemma 1.10.4, item (b) follows from
item (a) and from Lemma 1.10.8 and item (c) follows from Proposition 1.10.6.

�

For a Hamiltonian that is the Legendre transform of a hyper-regular
Lagrangian, Proposition 1.9.6 yields the following:

1.10.11. Proposition. Under the conditions of Proposition 1.10.10, if
a smooth curve (q, p) : I → TQ∗ (defined on some interval I ⊂ R) satisfies(
t, q(t), p(t)

)
∈ dom(H) and:

(1.10.9)
d
dt

(
q(t), p(t)

)
= ~H

(
t, q(t), p(t)

)
for a certain t ∈ I then

(
t, q(t), q̇(t)

)
∈ dom(L) and:

(1.10.10) p(t) =
∂L

∂q̇

(
t, q(t), q̇(t)

)
.

Proof. Follows immediately from Proposition 1.9.6 and item (a) of
Proposition 1.10.10. �

Proposition 1.10.11 says that if H is the Legendre transform of a hyper-
regular Lagrangian L then, for a solution (q, p) to Hamilton’s equations, the
p is determined from the q by equality (1.10.10).

Finally, we prove that when H is the Legendre transform of L, the
Euler–Lagrange equation and Hamilton’s equations have the same solutions;
more precisely, a map q is a solution to the Euler–Lagrange equation if and
only if it is a solution to Hamilton’s equations, with p defined by (1.10.10).
The statement that a curve q on a manifold Q be a solution to the Euler–
Lagrange equation is to be understood in terms of coordinate charts. Recall
from Section 1.5 that if ϕ : U ⊂ Q → Ũ ⊂ Rn is a local chart on Q and
L : dom(L) ⊂ R × TQ → R is a Lagrangian on Q then the representation
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of L with respect to ϕ is the Lagrangian Lϕ with domain (Id denotes the
identity map of R):

dom(Lϕ) = (Id× dϕ)
(
dom(L) ∩ (R× TU)

)
⊂ R× T Ũ = R× Ũ ×Rn

defined by:
Lϕ

(
t, ϕ(q),dϕq(q̇)

)
= L(t, q, q̇),

for all (t, q, q̇) ∈ dom(L) ∩ (R× TU).

1.10.12. Theorem. Under the conditions of Proposition 1.10.10, assume
that we are given a smooth curve q : I → Q (defined over some interval
I ⊂ R) and a local chart ϕ : U ⊂ Q → Ũ ⊂ Rn. For those t ∈ I with(
t, q(t), q̇(t)

)
∈ dom(L), define p(t) ∈ Tq(t)Q

∗ by equality (1.10.10). If Lϕ

denotes the representation of L with respect to the chart ϕ then, for all
t ∈ I with q(t) ∈ U and

(
t, q(t), q̇(t)

)
∈ dom(L), the following conditions are

equivalent:
(a) the Euler–Lagrange equation:

(1.10.11)
d
dt
∂Lϕ

∂q̇

(
t, q̃(t), ˙̃q(t)

)
=
∂Lϕ

∂q

(
t, q̃(t), ˙̃q(t)

)
holds, where q̃ = ϕ ◦ q|q−1(U);

(b) equality (1.10.9) (Hamilton’s equations) holds.

Let us first prove the equivalence between the Euler–Lagrange equation
and Hamilton’s equations when Q = Rn. Theorem 1.10.12 will then follow
easily.

1.10.13. Lemma. Let L : dom(L) ⊂ R×Rn×Rn → R be a hyper-regular
Lagrangian and H : dom(H) ⊂ R×Rn×Rn∗ → R be its Legendre transform.
Let q : I → Rn be a smooth curve (defined over some interval I ⊂ R) and,
for all t ∈ I with

(
t, q(t), q̇(t)

)
∈ dom(L), define p(t) by equality (1.10.10).

Then, for all t ∈ I with
(
t, q(t), q̇(t)

)
∈ dom(L), we have:

(1.10.12)
d
dt
∂L

∂q̇

(
t, q(t), q̇(t)

)
=
∂L

∂q

(
t, q(t), q̇(t)

)
if and only if:

(1.10.13)
dq
dt

(t) =
∂H

∂p

(
t, q(t), p(t)

)
,

dp
dt

(t) = −∂H
∂q

(
t, q(t), p(t)

)
.

Proof. Given t ∈ I, since the map H
(
t, q(t), ·

)
is the Legendre trans-

form of the map L
(
t, q(t), ·

)
, it follows from Lemma 1.10.4 that their differ-

entials are mutually inverse. Thus (1.10.10) implies that the first equation
in (1.10.13) is satisfied. Moreover, (1.10.10) implies that the lefthand side
of the second equation in (1.10.13) equals the lefthand side of the Euler–
Lagrange equation (1.10.12). Thus, the proof will be completed once we
check that:

∂H

∂q

(
t, q(t), p(t)

)
= −∂L

∂q

(
t, q(t), q̇(t)

)
.
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By the definition of the Legendre transform (we have used above q, q̇ for
names of curves and now we are going to use them also for names of points):

(1.10.14) H
(
t, q,

∂L

∂q̇
(t, q, q̇)

)
=
∂L

∂q̇
(t, q, q̇)q̇ − L(t, q, q̇),

for all (t, q, q̇) ∈ dom(L). Differentiating both sides of (1.10.14) with respect
to q and evaluating at a vector v ∈ Rn, we obtain:

∂H

∂q

(
t, q, p)v +

∂H

∂p
(t, q, p)

( ∂2L

∂q∂q̇
(t, q, q̇)v

)
=

( ∂2L

∂q∂q̇
(t, q, q̇)v

)
q̇ − ∂L

∂q
(t, q, q̇)v,

where p = ∂L
∂q̇ (t, q, q̇). Since the differentials of the maps L(t, q, ·) and

H(t, q, ·) are mutually inverse, we obtain that ∂H
∂p (t, q, p) is (the element

of the bidual of Rn that is identified with the vector) q̇ ∈ Rn and therefore:

∂H

∂p
(t, q, p)

( ∂2L

∂q∂q̇
(t, q, q̇)v

)
=

( ∂2L

∂q∂q̇
(t, q, q̇)v

)
q̇.

The conclusion follows. �

Proof of Theorem 1.10.12. Denote by HΦ the representation of the
Hamiltonian H with respect to the local chart Φ = d∗ϕ of TQ∗, i.e., the
domain of HΦ is the image of dom(H) ∩ (R × TU∗) under Id × Φ (with Id
the identity map of R) and:

HΦ

(
t,Φ(q, p)

)
= HΦ

(
t, ϕ(q), (dϕ−1

q )∗(p)
)

= H(t, q, p),

for all (t, q, p) ∈ dom(H) ∩ (R× TU∗). Set:(
q̃(t), p̃(t)

)
= Φ

(
q(t), p(t)

)
∈ Ũ ×Rn∗ ⊂ Rn ×Rn∗,

for all t ∈ q−1(U) ⊂ I. By the result of item (c) of Exercise 1.31, equality
(1.10.9) is equivalent to:

(1.10.15)
dq̃
dt

(t) =
∂HΦ

∂p

(
t, q̃(t), p̃(t)

)
,

dp̃
dt

(t) = −∂HΦ

∂q

(
t, q̃(t), p̃(t)

)
.

We have to show that (1.10.15) is equivalent to (1.10.11). This will follow
from Lemma 1.10.13 once we check the validity of the following facts:

(i) Lϕ is hyper-regular and HΦ is the Legendre transform of Lϕ;
(ii) for all t ∈ q−1(U) ⊂ I with

(
t, q̃(t), ˙̃q(t)

)
∈ dom(Lϕ), we have:

p̃(t) =
∂Lϕ

∂q̇

(
t, q̃(t), ˙̃q(t)

)
.

Let us check those facts. For t ∈ R, q ∈ U , setting q̃ = ϕ(q), we have:

Lϕ(t, q̃, ·) ◦ dϕq = L(t, q, ·),(1.10.16)

HΦ(t, q̃, ·) ◦ (dϕ∗q)
−1 = H(t, q, ·).(1.10.17)
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Since H(t, q, ·) is the Legendre transform of L(t, q, ·), equalities (1.10.16),
(1.10.17) and the result of Exercise 1.35 imply thatHΦ(t, q̃, ·) is the Legendre
transform of Lϕ(t, q̃, ·). We have proven fact (i). Let us prove fact (ii).

Given t ∈ q−1(U) ⊂ I with
(
t, q̃(t), ˙̃q(t)

)
∈ dom(Lϕ) (or, equivalently,

with
(
t, q(t), q̇(t)

)
∈ dom(L)), we replace q with q(t) and q̃ with q̃(t) in

(1.10.16); after that, we differentiate both sides at the point q̇(t), obtaining:

(1.10.18)
∂Lϕ

∂q̇

(
t, q̃(t), ˙̃q(t)

)
◦ dϕq(t) =

∂L

∂q̇

(
t, q(t), q̇(t)

)
.

By (1.10.10), the righthand side of (1.10.18) equals p(t) and therefore:

∂Lϕ

∂q̇

(
t, q̃(t), ˙̃q(t)

)
= p(t) ◦ dϕ−1

q(t) = (dϕ−1
q(t))

∗(p(t)) = p̃(t),

proving fact (ii). �

1.10.1. Mechanics with constraints again. In Example 1.10.3 we
have seen that the Legendre transform of the Lagrangian of Classical Me-
chanics is precisely the Hamiltonian of Classical Mechanics. Let us now
see what happens in the presence of constraints. As in Subsection 1.5.1 we
consider n particles subject to a constraint defined by a submanifold Q of
(R3)n and to (the forces with) a potential V : dom(V ) ⊂ R × (R3)n → R.
We consider the restriction Lcons to R×TQ of the Lagrangian L of Classical
Mechanics without constraints (defined in Subsection 1.4.1). We have seen
in Subsection 1.5.1 that if the force exerted by the constraint is normal to Q
then the curves q = (q1, . . . , qn) in Q which are possible trajectories for the
particles are precisely the critical points of the action functional correspond-
ing to Lcons (which are, in a given chart, solutions to the Euler–Lagrange
equation of the Lagrangian that represents Lcons with respect to that chart).
Let us now compute the Legendre transform Hcons of the Lagrangian Lcons

(see also Exercise 1.38 for a slightly different approach). Since Lcons is the
restriction of L, given (t, q, q̇) ∈ R× TQ with (t, q) in the domain of V , the
partial derivative:

(1.10.19)
∂Lcons

∂q̇
(t, q, q̇) ∈ TqQ

∗

is simply the restriction to TqQ of the linear functional ∂L
∂q̇ (t, q, q̇) ∈ (R3)n∗

(which was computed in Example 1.10.3). Thus, (1.10.19) is the restriction
to TqQ of the linear functional over (R3)n that is identified (via the standard
identification of (R3)n with its dual space) with the vector:

(m1q̇1, . . . ,mnq̇n) ∈ (R3)n.

Let us check that Lcons is hyper-regular. The map:

(1.10.20) TqQ 3 q̇ 7−→ ∂Lcons

∂q̇
(t, q, q̇) =

∂L

∂q̇
(t, q, q̇)

∣∣∣
TqQ

∈ TqQ
∗
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is linear (because the map q̇ 7→ ∂L
∂q̇ (t, q, q̇) is linear). Given q̇ ∈ TqQ, if

(1.10.19) vanishes then:
∂Lcons

∂q̇
(t, q, q̇)q̇ = 0

and therefore:

∂Lcons

∂q̇
(t, q, q̇)q̇ =

∂L

∂q̇
(t, q, q̇)q̇ =

n∑
j=1

mj‖q̇j‖2 = 0

which implies q̇ = 0. This proves that the linear map (1.10.20) is injective
and it is therefore an isomorphism (and a diffeomorphism). Hence Lcons is
hyper-regular. Let us compute its Legendre transform Hcons. Clearly:

(1.10.21)
∂Lcons

∂q̇
(t, q, q̇)q̇ − Lcons(t, q, q̇) =

∂L

∂q̇
(t, q, q̇)q̇ − L(t, q, q̇),

for every (t, q, q̇) ∈ R × TQ with (t, q) ∈ dom(V ). The righthand side
of (1.10.21) was computed in Example 1.10.3. The Hamiltonian Hcons is
therefore given by:

Hcons(t, q, p) =
n∑

j=1

1
2
mj‖q̇j‖2 + V (t, q),

for all (t, q) ∈ dom(V ), p ∈ TqQ
∗, where q̇ ∈ TqQ is the unique vector such

that:

(1.10.22) p =
∂Lcons

∂q̇
(t, q, q̇) ∈ TqQ

∗

holds (the existence and uniqueness of q̇ follows from the fact that (1.10.20)
is a linear isomorphism). A solution of Hamilton’s equations corresponding
to Hcons (i.e., an integral curve of the symplectic gradient of Hcons with
respect to the canonical symplectic form of the cotangent bundle TQ∗) is,
by Proposition 1.10.11 and Theorem 1.10.12, a curve I 3 t 7→

(
q(t), p(t)

)
in

TQ∗ such that:

(1.10.23) p(t) =
∂Lcons

∂q̇

(
t, q(t), q̇(t)

)
for all t ∈ I and such that the representation of q with respect to any
local chart of Q is a solution of the Euler–Lagrange equation corresponding
to the Lagrangian that represents Lcons with respect to the given chart
(by Theorem 1.5.1, such condition is equivalent to the condition that the
restriction of q to any closed interval contained in I be a critical point of
the action functional corresponding to Lcons). In other words, a solution
of Hamilton’s equations corresponding to Hcons consists of a curve (q, p) in
TQ∗, with q a curve in Q describing the trajectories of n particles subject
to the given constraints and the given potential (under the assumption that
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the force exerted by the constraint is normal to Q) and with p defined by
(1.10.23). Notice that:

Hcons
(
t, q(t), p(t)

)
=

n∑
j=1

1
2
mj‖q̇j(t)‖2 + V

(
t, q(t)

)
,

for all t ∈ I, i.e., Hcons
(
t, q(t), p(t)

)
equals the total energy at the instant t.

By Theorem 1.8.5, if the potential V does not depend on time, we conclude
that the total energy is conserved.

While it is standard to denote a solution to Hamilton’s equations by
(q, p), one should be aware that this notation might be misleading: in the
absence of constraints (Example 1.10.3), p(t) was precisely the (element of
(R3)n∗ that is identified with the) vector containing the momenta of all
the particles. However, in the present context, p(t) is the restriction to the
tangent space Tq(t)Q of the linear functional over (R3)n that is identified with
the vector containing the momenta of all the particles. Thus, in general, p(t)
is not the momentum of anything ! It is customary, nevertheless, to call p(t)
the canonical momentum or the canonically conjugate momentum. If one
considers a local chart ϕ on Q, then the curve (q, p) is represented (with
respect to the local chart d∗ϕ induced on TQ∗) by a curve:

(q̃, p̃) = (q̃ 1, . . . , q̃m, p̃1, . . . , p̃m)

in Rm ×Rm∗, with m = dim(Q). Elementary Physics texts would normally
call the curves q̃ j , j = 1, . . . ,m, the description of the evolution of the
mechanical system in terms of generalized coordinates26. One should pay at-
tention to the following facts: the index j in q̃ j does not refer to the number
of a particle; the number m = dim(Q) is not the number of particles and it
is normally called the number of degrees of freedom of the system. The p̃j is
not the “momentum of the j-th particle”, since p (and p̃) is not momentum
and j does not refer to the number of a particle. The sum

∑m
j=1 p̃j is not

the total momentum and in fact it does not have any physically relevant
meaning (it is highly dependent on the choice of the coordinate chart) and
it is not conserved. The actual total momentum

∑n
j=1mj q̇j(t) is not in gen-

eral conserved either because there are external forces (the forces exerted by
the constraint) acting upon the system of n constrained particles. In Sec-
tion 1.11 we will understand this violation of the conservation of the total
momentum27 as a break down of the spatial translations symmetry.

26In the standard notation used by elementary Physics texts for the description of the
evolution of a mechanical system in terms of generalized coordinates, there are no tildes
over the q’s and the p’s. We need the tildes because we are using the (q, p) without the
tildes for the curve in TQ∗.

27Of course, there is no violation of the conservation of the total momentum if one
considers the full (closed) system, containing both the n particles and the objects (also
made out of particles) that are constraining the n particles.
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1.11. Symmetry and conservation laws

In this section we will make a brief exposition of the relationship between
symmetries and conservation laws. The result we present is a particular
case of the celebrated Nöther’s theorem (whose most general formulation
concerns not only Mechanics, but also field theories28). The idea is that
to a continuous symmetry of a mechanical system (described in terms of an
element of the Lie algebra of a Lie group that acts on the configuration space
and preserves the Hamiltonian) we associate a conservation law (described
in terms of a first integral of the equations of motion defined over phase
space). The result that we are going to present is not the best that can
be done. For instance, time translation symmetry implies conservation of
energy (Theorem 1.8.5), but that important relationship between symmetry
and conservation law does not follow from the result we are going to present
in this section. Nevertheless, such result is very simple and sufficient for our
limited purposes. During the presentation, we are going to use some very
basic facts about Lie groups and actions of Lie groups on manifolds which,
for the reader’s convenience, are recalled in the appendix (Section A.3).

Let Q be a differentiable manifold and H : dom(H) ⊂ R × TQ∗ → R

be a time-dependent Hamiltonian over TQ∗. Given a Lie group G and a
smooth action:

ρ : G×Q 3 (g, q) 7−→ g · q ∈ Q
of G on Q then, for each g ∈ G, the smooth diffeomorphism:

ρg : Q 3 q 7−→ g · q ∈ Q

of Q induces a smooth diffeomorphism d∗(ρg) of the cotangent bundle TQ∗

(see (1.9.4)). For g, h ∈ G, we have ρg ◦ ρh = ρgh and therefore (see Exer-
cise 1.33):

d∗(ρg) ◦ d∗(ρh) = d∗(ρgh).

We thus obtain a smooth action of G on TQ∗ defined by:

g · (q, p) = d∗(ρg)(q, p) =
(
g · q,

(
d(ρg)−1

q

)∗(p)), g ∈ G, (q, p) ∈ TQ∗.

We say that the action of G on Q is a symmetry of the Hamiltonian H if,
for all (t, q, p) ∈ dom(H) and all g ∈ G, we have

(
t, g · (q, p)

)
∈ dom(H) and:

H
(
t, g · (q, p)

)
= H(t, q, p).

For each X in the Lie algebra g of G, the action of G on Q induces a vector
field XQ on Q and the action of G on TQ∗ induces a vector field XTQ∗

on TQ∗ (see Subsection A.3.1). Recall from Section 1.9 that θ denotes the
canonical one-form of the cotangent bundle TQ∗. Here is the main result of
the section.

28We observe also that most presentations of Nöther’s theorem use the Lagrangian
formalism, while we are going to use the Hamiltonian formalism.
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1.11.1. Theorem. Given a differentiable manifold Q, a time-dependent
Hamiltonian H : dom(H) ⊂ R × TQ∗ → R and a smooth action of a Lie
group G on Q that is a symmetry of H then, for all X ∈ g, the real valued
map θ(XTQ∗

) over TQ∗ is a first integral of ~H, i.e., it is constant along the
integral curves of ~H.

Proof. It is sufficient to prove that for all t ∈ R the directional deriv-
ative:

d
(
θ(XTQ∗

)
)
( ~Ht) = ~Ht

(
θ(XTQ∗

)
)

of the map θ(XTQ∗
) along the vector field ~Ht = ~H(t, ·) vanishes. We start

by observing that the canonical one-form θ of TQ∗ is invariant under the
flow of the vector field XTQ∗

. Namely, the flow at time t of XTQ∗
is the

diffeomorphism d∗(ρg) with g = exp(tX) and it follows from (1.9.6) that the
pull-back of θ by d∗(ρg) equals θ. Thus, the Lie derivative of θ along XTQ∗

vanishes:
LXTQ∗θ = 0.

Since the action of G on Q is a symmetry of H, we see that for all t ∈ R
the map Ht = H(t, ·) is constant along the integral curves of XTQ∗

(because
such integral curves are of the form R 3 s 7→ exp(sX) · (q, p) ∈ TQ∗) and
therefore:

(1.11.1) XTQ∗
(Ht) = dHt(XTQ∗

) = 0.

We compute the Lie derivative of θ along XTQ∗
in terms of exterior differ-

entiation and interior products (formula (A.2.9)):

LXTQ∗θ = diXTQ∗θ + iXTQ∗dθ = 0,

and we evaluate the result at ~Ht:

(1.11.2) d
(
θ(XTQ∗

)
)
( ~Ht) + dθ(XTQ∗

, ~Ht) = 0.

In order to conclude the proof we have to check that the first term on the
lefthand side of (1.11.2) vanishes, which will follow if we show that the
second term vanishes. Since dθ = −ω, keeping in mind the definition of the
symplectic gradient ~Ht, we obtain:

dθ(XTQ∗
, ~Ht) = ω( ~Ht, X

TQ∗
) = dHt(XTQ∗

)

and the conclusion follows from (1.11.1). �

Theorem 1.11.1 can be easily generalized to the following result about
Hamiltonians on symplectic manifolds: if (M,ω) is a symplectic manifold
with exact symplectic form ω = −dθ and if a Lie group G acts on M in
such a way that the action preserves the one-form θ and a time-dependent
Hamiltonian H over M then, for all X ∈ g, the real valued map θ(XM ) over
M is a first integral of ~H. The proof of such result is identical to the proof of
Theorem 1.11.1. A generalization of Theorem 1.11.1 to symplectic manifolds
whose symplectic form is not exact (or to the case in which the symplectic
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form is exact but the action of the Lie group preserves the symplectic form
and not the corresponding one-form) is given in Exercise 1.39.

The first integral θ(XTQ∗
) of ~H given by Theorem 1.11.1 can be made

more explicit as shown by the following:

1.11.2. Proposition. If a Lie group G acts smoothly on Q then for all
X ∈ g, we have:

θ(XTQ∗
)(q, p) = p

(
XQ(q)

)
,

for all (q, p) ∈ TQ∗.

Proof. By the definition of θ, we have:

θ(XTQ∗
)(q, p) = p

[
dπ(q,p)

(
XTQ∗

(q, p)
)]
,

for all (q, p) ∈ TQ∗, where π : TQ∗ → Q denotes the canonical projection.
Since XTQ∗

(q, p) is the image of X by the differential at 1 ∈ G of the map
g 7→ g ·(q, p), we have (by the chain rule) that dπ(q,p)

(
XTQ∗

(q, p)
)

equals the
image of X by the differential at 1 ∈ G of the map g 7→ π

(
g · (q, p)

)
= g · q.

Thus:
dπ(q,p)

(
XTQ∗

(q, p)
)

= XQ(q)
and the conclusion follows. �

1.11.3. Example. Let V : dom(V ) ⊂ R × (R3)n → R be a smooth
potential and consider the Hamiltonian:

H(t, q, p) =
n∑

j=1

‖pj‖2

2mj
+ V (t, q), (t, q) ∈ dom(V ), p ∈ (R3)n∗,

of Classical Mechanics. Let G be the abelian Lie group (R3,+), whose Lie
algebra g is R3 endowed with the identically vanishing Lie bracket. We
consider the action of G on Q = (R3)n by spatial translations, i.e., we set:

g · q = (g + q1, . . . , g + qn), g ∈ R3, q = (q1, . . . , qn) ∈ (R3)n.

The differential of the map q 7→ g · q at a point q ∈ Q is the identity map
(and its inverse transpose is also the identity map) and therefore the induced
action of G on the cotangent bundle TQ∗ is given by:

g · (q, p) = (g · q, p), q ∈ (R3)n, p ∈ (R3)n∗.

Since the action of g on p is trivial, the kinetic term of H is preserved by
the action. Now, assume that the potential V depends on q only through
the differences qi − qj , i, j = 1, . . . , n; this is the case of the electrical and
gravitational potentials. Under such assumption the action of G is a sym-
metry of the potential and thus also of the Hamiltonian. Let us determine
the conservation law associated to an element X ∈ g = R3. The value at
q ∈ (R3)n of the vector field XQ is obtained by differentiating g 7→ g · q at
g = 0 and evaluating at the vector X; thus:

XQ(q) = (X, . . . ,X) ∈ (R3)n.
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By Proposition 1.11.2, the conserved quantity θ(XTQ∗
) is given by:

TQ∗ 3 (q, p) 7−→ p
(
XQ(q)

)
=

n∑
j=1

pj(X) ∈ R.

Replacing X with the k-th vector of the canonical basis of R3 (k = 1, 2, 3),
we obtain that the k-th component of the total momentum is conserved if
spatial translations are a symmetry of the Hamiltonian H.

1.11.4. Example. Consider again the Hamiltonian of Classical Mechan-
ics with a potential V (as in Example 1.11.3) and let now G = SO(3) be the
Lie group of all orientation preserving linear isometries of R3 (or, equiva-
lently, the group of 3× 3 orthogonal matrices whose determinant is equal to
1). We consider the action of G on Q = (R3)n by spatial rotations, i.e., we
set:

g · q =
(
g(q1), . . . , g(qn)

)
, g ∈ SO(3), q = (q1, . . . , qn) ∈ (R3)n.

The map q 7→ g ·q is linear and thus its differential at any point equals itself;
moreover, since q 7→ g · q is a linear isometry of (R3)n (endowed with its
canonical inner product) then the transpose inverse of q 7→ g · q equals itself
(upon identification of (R3)n with its dual space using the canonical inner
product). Thus, the action of G induced on the cotangent bundle TQ∗ is:

g · (q, p) = (g · q, g · p), g ∈ SO(3), q ∈ (R3)n, p ∈ (R3)n ∼= (R3)n∗.

Since each g ∈ G is a linear isometry of R3, the action of G preserves
the kinetic term of the Hamiltonian. Now, assuming that the potential V
depends on q only through the norms of the differences qi − qj (which is
the case of the electric and the gravitational potentials) then the action
of G is also a symmetry of the potential and hence of the Hamiltonian.
The Lie algebra g = so(3) of G is the Lie algebra of anti-symmetric linear
endomorphisms of R3 (or, equivalently, of 3 × 3 anti-symmetric matrices)
endowed with the standard commutator. Let us compute the conserved
quantity corresponding to an element X ∈ so(3). Given q ∈ (R3)n we
differentiate the map g 7→ g · q at the identity and we evaluate it at X,
obtaining:

XQ(q) =
(
X(q1), . . . , X(qn)

)
, q ∈ (R3)n.

Thus, by Proposition 1.11.2, the conserved quantity corresponding to X is:

TQ∗ 3 (q, p) 7−→ p
(
XQ(q)

)
=

n∑
j=1

pj

(
X(qj)

)
∈ R.

Let us rewrite such conserved quantity in a nicer way. The Lie algebra
of SO(3) can be identified with R3 endowed with the vector product (see
Exercise 1.40); more explicitly, given X ∈ so(3), there exists a unique v ∈ R3

such that:
X(w) = v ∧ w, w ∈ R3,
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where ∧ denotes the vector product. Thus (identifying pj ∈ R3∗ with a
vector of R3):

pj

(
X(qj)

)
= 〈pj , v ∧ qj〉 = 〈v, qj ∧ pj〉,

so that the conserved quantity associated to v is:

(1.11.3) TQ∗ 3 (q, p) 7−→
n∑

j=1

〈v, qj ∧ pj〉 ∈ R.

This motivates the following:

1.11.5. Definition. The angular momentum of the j-th particle at time
t ∈ R is defined by:

Lj(t) = qj(t) ∧ pj(t) = mj

(
qj(t) ∧ q̇j(t)

)
.

Replacing v with the k-th vector of the canonical basis ofR3 (k = 1, 2, 3),
we obtain that the k-th component of the total angular momentum:

n∑
j=1

Lj(t) =
n∑

j=1

qj(t) ∧ pj(t)

is conserved if spatial rotations are a symmetry of the Hamiltonian H.

1.12. The Poisson bracket

In this section we define the Poisson bracket, which is a binary operation
on the space of smooth real valued maps over a symplectic manifold. We
will need the Poisson bracket for our forthcoming discussion of quantization.
The concept of Poisson bracket allows one to establish some nice algebraic
analogies between Classical and Quantum Mechanics (in fact, such analogies
are somewhat misleading, but interesting nevertheless). We will prove some
simple properties of the Poisson bracket, which should allow the reader to
have an idea of the relevance of the concept for Classical Mechanics.

In what follows, (M,ω) denotes a fixed symplectic manifold and C∞(M)
denotes the vector space of all smooth real valued maps over M .

1.12.1. Definition. Given f, g ∈ C∞(M), then the Poisson bracket
{f, g} is the element of C∞(M) defined by:

{f, g} = ω(~f,~g),

where ~f , ~g denote the symplectic gradients of f and g, respectively (recall
Definition 1.8.2).

Here is an alternative definition of the Poisson bracket: for each x in
M , the symplectic form ωx over the tangent space TxM induces a linear
isomorphism:

TxM 3 v 7−→ ωx(v, ·) ∈ TxM
∗,
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which is precisely the isomorphism that carries the symplectic gradient ~f(x)
to the differential df(x). Such isomorphism can be used to carry the sym-
plectic form ωx over TxM to a symplectic form πx over the dual space TxM

∗,
i.e., πx satisfies:

πx

(
ωx(v, ·), ωx(w, ·)

)
= ωx(v, w), v, w ∈ TxM.

We have that π is a smooth anti-symmetric (0, 2)-tensor field (or twice con-
travariant tensor field) over M (see Subsection A.2.2). Obviously, the Pois-
son bracket of two maps f, g ∈ C∞(M) is given by:

{f, g} = π(df,dg).

The direct relationship between the Poisson bracket and Classical Me-
chanics is that the Poisson bracket can be used to describe the time evolution
of the value of a smooth function f : M → R along the flow of a Hamiltonian.

1.12.2. Proposition. Let H : dom(H) ⊂ R × M → R be a time-
dependent Hamiltonian and let t 7→ x(t) be an integral curve of ~H. Then,
given a smooth map f : M → R, we have:

(1.12.1)
d
dt
f
(
x(t)

)
= {f,Ht}

(
x(t)

)
,

where Ht = H(t, ·).

Notice that the map Ht in the statement of Proposition 1.12.2 is defined
only over some open subset of M , so that, to be completely precise, the
Poisson bracket in (1.12.1) is the Poisson bracket between the restriction
of f to the domain of Ht and the map Ht. Of course, the Poisson bracket
is also defined for maps whose domain is an open subset of the symplectic
manifold M (in fact, open subsets of a symplectic manifold are themselves
symplectic manifolds, endowed with the restriction of the symplectic form).

Proof of Proposition 1.12.2. It is a straightforward computation:
d
dt
f
(
x(t)

)
= dfx(t)

[
~H

(
t, x(t)

)]
= ωx(t)

[
~f
(
x(t)

)
, ~Ht

(
x(t)

)]
. �

1.12.3. Corollary. A smooth map f : M → R is a first integral of the
symplectic gradient ~H of a time-dependent Hamiltonian H if and only if the
Poisson bracket {f,Ht} vanishes, for all t ∈ R. �

Poisson brackets are also useful for writing down in a nice way the con-
dition that a local chart be symplectic.

1.12.4. Proposition. Let Φ : U ⊂ M → Ũ ⊂ R2n be a local chart on
M ; write Φ = (q1, . . . , qn, p1, . . . , pn). The local chart Φ is symplectic if and
only if:

{qi, qj} = 0, {pi, pj} = 0, {qi, pj} = δij , i, j = 1, . . . , n,

where δij = 1 for i = j and δij = 0 for i 6= j.
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Proof. For x ∈ U , let:

(1.12.2)
∂

∂q1
(x), . . . ,

∂

∂qn
(x),

∂

∂p1
(x), . . . ,

∂

∂pn
(x),

denote the basis of TxM that is carried by dΦ(x) to the canonical basis of
R2n. The dual basis of (1.12.2) is:

(1.12.3) dq1(x), . . . ,dqn(x),dp1(x), . . . ,dpn(x).

The chart Φ is symplectic if and only if (1.12.2) is a symplectic basis of
(TxM,ωx), for all x ∈ U . By the result of Exercise 1.42, the basis (1.12.2) is
symplectic for ωx if and only if the dual basis (1.12.3) is symplectic for πx,
which happens (for all x ∈ U) if and only if:

π(dqi,dqj) = {qi, qj} = 0, π(dpi,dpj) = {pi, pj} = 0,

π(dqi,dpj) = {qi, pj} = δij ,

for all i, j = 1, . . . , n. �

Let us now investigate some algebraic properties of the Poisson bracket
and its relationship with other operations defined on manifolds. We start
by noticing that, for f, g ∈ C∞(M), we have:

{f, g} = ω(~f,~g) = −ω(~g, ~f ) = −dg(~f ) = −~f(g).

In other words, if we identify the vector field ~f with the linear endomorphism
of C∞(M) that sends g to ~f(g) = dg(~f ) then:

(1.12.4) {f, ·} = −~f,
where {f, ·} denotes the linear endomorphism of C∞(M) that sends g to
{f, g}. It follows that {f, ·} is a derivation of the algebra C∞(M), i.e.:

(1.12.5) {f, g1g2} = {f, g1}g2 + g1{f, g2}, f, g1, g2 ∈ C∞(M).

Another interesting algebraic property of the Poisson bracket is given
by the following theorem.

1.12.5. Theorem. The real vector space C∞(M) endowed with the Pois-
son bracket is a Lie algebra, i.e., the Poisson bracket is bilinear, anti-
symmetric and satisfies the Jacobi identity:

(1.12.6) {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0, f, g, h ∈ C∞(M).

Proof. The only non trivial part of the statement is the Jacobi identity.
Since the symplectic form ω is closed, we have:

(1.12.7) dω(~f,~g,~h) = 0.

We use formula (A.2.8) for computing the lefthand side of (1.12.7):

(1.12.8) ~f
(
ω(~g,~h)

)
− ~g

(
ω(~f,~h)

)
+ ~h

(
ω(~f,~g)

)
− ω

(
[~f,~g ],~h

)
+ ω

(
[~f,~h], ~g

)
− ω

(
[~g,~h], ~f

)
= 0.
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We rewrite the six terms in the lefthand side of (1.12.8) in terms of iterated
Poisson brackets. Notice that:

~f
(
ω(~g,~h)

)
= ~f

(
{g, h}

)
,

and using (1.12.4) we obtain:

~f
(
ω(~g,~h)

)
= −{f, {g, h}}.

The second and third terms in the lefthand side of (1.12.8) can in an anal-
ogous way be rewritten in terms of iterated Poisson brackets. Let us work
with the remaining terms. We have:

−ω
(
[~f,~g ],~h

)
= ω

(
~h, [~f,~g ]

)
= dh

(
[~f,~g ]

)
= [~f,~g ](h) = ~f

(
~g(h)

)
− ~g

(
~f(h)

)
.

Using (1.12.4) we obtain:

−ω
(
[~f,~g ],~h

)
= {f, {g, h}} − {g, {f, h}}.

The fifth and sixth terms in the lefthand side of (1.12.8) can in an analogous
way be rewritten in terms of iterated Poisson brackets. Once all terms in the
lefthand side of (1.12.8) are rewritten in terms of iterated Poisson brackets
and the appropriate cancelations are performed (and taking into account
the anti-symmetry of the Poisson bracket), one obtains the Jacobi identity
(1.12.6). �

We have then that the vector space C∞(M) is an associative algebra,
endowed with the pointwise product of real valued functions, and also a Lie
algebra, endowed with the Poisson bracket. Moreover, the two structures
are related by the fact that, for all f ∈ C∞(M), the linear endomorphism
{f, ·} of C∞(M) is a derivation with respect to the associative product, i.e.,
(1.12.5) holds.

1.12.6. Definition. A Poisson algebra is a vector space V endowed
with both an associative algebra structure V × V 3 (x, y) 7→ xy ∈ V and a
Lie algebra structure V ×V 3 (x, y) 7→ [x, y] ∈ V , in such a way that, for all
x ∈ V , the linear endomorphism [x, ·] of V is a derivation of the associative
product, i.e.:

[x, y1y2] = [x, y1]y2 + y1[x, y2], x, y1, y2 ∈ V.

We have shown that if (M,ω) is a symplectic manifold, then C∞(M)
is a Poisson algebra, endowed with the pointwise product and the Poisson
bracket. Notice that the associative product of the Poisson algebra C∞(M)
is also commutative, but such commutativity is not a requirement of the
definition of Poisson algebra. In Exercise 1.43 we give an example of a family
of Poisson algebras whose associative product might not be commutative
(such example is related to Quantum Theory, as we will learn later).

The Jacobi identity (1.12.6) (or, more generally, the Jacobi identity in
any Lie algebra) can be interpreted in two ways: first, it says that for all
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f ∈ C∞(M), the linear endomorphism {f, ·} is a derivation of the Poisson
bracket:

{f, {g, h}} = {{f, g}, h}+ {g, {f, h}}, f, g, h ∈ C∞(M).

The second interpretation is that the map f 7→ {f, ·} (the adjoint repre-
sentation of the Lie algebra) is a Lie algebra homomorphism from the Lie
algebra C∞(M) (endowed with the Poisson bracket) to the Lie algebra of
linear endomorphisms of C∞(M) (endowed with the standard commutator
of linear operators):

(1.12.9) [{f, ·}, {g, ·}] = {{f, g}, ·},
or, more explicitly:

{f, {g, h}} − {g, {f, h}} = {{f, g}, h}, f, g, h ∈ C∞(M).

This second interpretation, coupled with (1.12.4), yields the following:

1.12.7. Proposition. For all f, g ∈ C∞(M), the Lie bracket of the
symplectic gradients ~f , ~g is given by minus the symplectic gradient of the
Poisson bracket {f, g}:

[~f,~g ] = −
−−−→
{f, g} .

Proof. Use (1.12.9) and (1.12.4). �

1.13. Measurements and Observables

Exercises

Affine spaces and Galilean spacetimes.

Exercise 1.1. Let V be a vector space and consider the action of the
additive group (V,+) on the set E = V given by:

V × E 3 (v, e) 7−→ v + e ∈ E.
Show that E = V is an affine space with underlying vector space V . This is
called the affine space canonically obtained from the vector space V .

Exercise 1.2. Let E be an affine space with underlying vector space
V . Show that for every point O ∈ E, the map:

V 3 v 7−→ v +O ∈ E
is an affine isomorphism from the affine space canonically obtained from V
onto the affine space E.

Exercise 1.3. Let E be an affine space with underlying vector space V
and let V0 be a vector subspace of V . Let E0 be an orbit of the action of
V0 on E. Show that E0 can be made into an affine space with underlying
vector space V0 in such a way that the inclusion map of E0 into E is affine,
with the inclusion map of V0 into V its underlying linear map. We call E0

an affine subspace of E.
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Exercise 1.4. Let E be an affine space with underlying vector space V
and let V0 be a vector subspace of V . Denote by E/V0 the quotient of E
by the action of V0 (i.e., E/V0 is the set of orbits of the action of V0 on E).
Show that the action:

(V/V0)× (E/V0) 3 (v + V0, e+ V0) 7−→ (e+ v) + V0 ∈ E/V0

is well-defined and turns E/V0 into an affine space with underlying vector
space V/V0. Show that the quotient map E → E/V0 is an affine map whose
underlying linear map is the quotient map V → V/V0.

Exercise 1.5. Given an affine space E with underlying vector space V ,
show that there exists a short exact sequence of groups:

1 −→ V −→ Aff(E) −→ GL(V ) −→ 1,

where 1 denotes the trivial group.

Units of measurement.

Exercise 1.6. Let M be a real one-dimensional vector space. Every
non zero vector m ∈M defines a basis of M , a basis m⊗m of M ⊗M and
a basis m−1 of the dual space M∗, where the linear functional m−1 satisfies
m−1(m) = 1 (m−1 is simply the dual basis of m). Given non zero vectors
m1,m2 ∈M with m2 = cm1, check that:

m2 ⊗m2 = c2m1 ⊗m1, m−1
2 = 1

c m
−1
1 .

Conclude that if the elements of M are to be interpreted as lengths then the
elements of M ⊗M are to be interpreted as square lengths and the elements
of M∗ are to be interpreted as inverse lengths.

Inertial coordinate systems and the Galileo group.

Exercise 1.7. Show that any two Galilean spacetimes are isomorphic.

Exercise 1.8. Let X, Y be objects of an arbitrary category (for in-
stance, Galilean spacetimes) and assume that we are given an isomorphism
f : X → Y . Show that f induces a group isomorphism:

f∗ : Aut(X) −→ Aut(Y )

from the group of automorphisms of X to the group of automorphisms of Y
defined by:

f∗(g) = f ◦ g ◦ f−1, g ∈ Aut(X).
Show that a subgroup G of Aut(X) has the property that the subgroup
f∗(G) of Aut(Y ) is independent of the isomorphism f : X → Y if and only
if G is normal in Aut(X).

Exercise 1.9. Given an inertial coordinate system φ : E → R4, then
the inverse image under φ of R × {0} ⊂ R × R3 = R4 is an affine one-
dimensional subspace of E which we call the moving origin of the inertial
coordinate system φ. Let φ1, φ2 be inertial coordinate systems related by an
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element A of the passive Galileo group as in diagram (1.1.1). The moving
origin of the inertial coordinate system φ2 is mapped by φ1 onto the following
one-dimensional affine subspace of R4:

(1.13.1) φ1

[
φ−1

2

(
R× {0}

)]
= A−1

(
R× {0}

)
.

Assume that A is the Galilean boost (1.1.4). Show that (1.13.1) is equal to:{
(t, vt) : t ∈ R

}
.

This means that the origin of φ2 moves with uniform velocity v with respect
to the coordinate system φ1.

Ontology and dynamics.

Exercise 1.10. Let φ1, φ2 be inertial coordinate systems related by an
element A of the passive Galileo group as in diagram (1.1.1). Let A be given
as in (1.1.2) and (1.1.3). Given maps q, q̃ : R→ R3, show that:

(1.13.2) φ−1
1

(
gr(q)

)
= φ−1

2

(
gr(q̃)

)
if and only if q and q̃ are related by:

(1.13.3) q̃(t+ t0) = L0

(
q(t)

)
− vt+ x0, t ∈ R.

Equality (1.13.2) means that q and q̃ are representations with respect to
the inertial coordinate systems φ1, φ2, respectively, of the same particle
worldline.

Exercise 1.11. Suppose that the force maps Fj , j = 1, . . . , n, satisfy
the condition:

L0

(
Fj(t, q1, . . . , qn, q̇1, . . . , q̇n)

)
= Fj

(
t+ t0, L0(q1)− vt+ x0, . . . ,

L0(qn)− vt+ x0, L0(q̇1)− v, . . . , L0(q̇n)− v
)
,

for all (t, q1, . . . , qn, q̇1, . . . , q̇n) ∈ dom(Fj) ⊂ R × (R3)n × (R3)n, where
t0 ∈ R, x0 ∈ R3, v ∈ R3 and a linear isometry L0 : R3 → R3 are fixed.
Show that if:

qj : R −→ R3, q̃j : R −→ R3, j = 1, . . . , n,

are smooth maps related as in (1.13.3) then the maps qj satisfy the dif-
ferential equation (1.2.1) if and only if the maps q̃j satisfy the differential
equation (1.2.1).

Exercise 1.12. Show that the gravitational and the electrical forces
satisfy the condition given in the statement of Exercise 1.11.
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Intrinsic formulation.

Exercise 1.13. Let E be a finite-dimensional real affine space with
underlying vector space V . Show that there is a unique way to turn E into
a differentiable manifold in such a way that, for every point O ∈ E, the
map defined in Exercise 1.2 is a smooth diffeomorphism. Show that, given a
point e ∈ E, then the linear isomorphism from V to the tangent space TeE
given by the differential of the map defined in Exercise 1.2 at the point e−O
is independent of the choice of the point O. We use such linear isomorphism
to identify once and for all the tangent space TeE with the vector space V .

Exercise 1.14. Let E, E′ be real finite-dimensional affine spaces with
underlying vector spaces V , V ′, respectively. Show that every affine map
A : E → E′ is smooth and that for every e ∈ E, the differential:

dA(e) : TeE ∼= V −→ V ′ ∼= TA(e)E
′

is the underlying linear map of A.

Exercise 1.15. Let q : T → E be a smooth section of t̄. Given a velocity
v ∈ t−1(1), show that the following statements are equivalent:

(a) q̇(t) = v, for all t ∈ T;
(b) q is an affine map whose underlying linear map R→ V is given by

multiplication by the vector v;
(c) the image of q is an affine subspace of E with underlying vector

space spanned by v.
A particle whose worldline is the image of a section q : T → E satisfying one
of the equivalent conditions above is said to have rectilinear uniform motion
with velocity v.

Exercise 1.16. Let φ : E → R4 be an inertial coordinate system. The
affine isomorphism φ passes to the quotient and defines an affine isomor-
phism τ from T = E/Ker(t) to R ∼= R4/

(
{0} × R3

)
. Let q0 : T → E be a

smooth section of t̄ and let q : R→ R3 be the smooth map such that:

φ
(
q0(T)

)
= gr(q).

We have a commutative diagram:

T
q0 //

τ

��

E

φ
��

R
(Id,q)

// R4

where Id denotes the identity map of R. Consider the moving origin of the
inertial coordinate system φ (see Exercise 1.9); it is like the worldline of a
particle having rectilinear uniform motion with some velocity v ∈ t−1(1).
Given t0 ∈ T, show that the relative velocity q̇0(t0)− v ∈ Ker(t) is mapped
by the underlying linear map of φ to the vector

(
0, dq

dt (t)
)
, where t = τ(t0).
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Lagrangians on manifolds.

Exercise 1.17. Let Q be a differentiable manifold, q : [a, b] → Q be a
smooth curve and α : [a, b] → TQ∗ be a continuous map, where α(t) belongs
to the dual space Tq(t)Q

∗, for all t ∈ [a, b]. Assume that:∫ b

a
α(t)v(t) = 0,

for any smooth vector field v : [a, b] → TQ along q whose support is con-
tained in the open interval ]a, b[. Show that α = 0.

Exercise 1.18. Let U be an open subset of Rn, L : R × U × Rn → R

be a Lagrangian, σ : U → σ(U) be a smooth diffeomorphism onto an open
subset σ(U) of Rn and Lσ : R×σ(U)×Rn → R be the Lagrangian obtained
by pushing L using σ, i.e.:

Lσ

(
t, σ(q),dσq(q̇)

)
= L(t, q, q̇),

for all t ∈ R, q ∈ U , q̇ ∈ Rn. Let q : [a, b] → U be a smooth curve and set
q̃ = σ ◦ q. Show that:

d
dt
∂Lσ

∂q̇

(
t, q̃(t), ˙̃q(t)

)
− ∂Lσ

∂q

(
t, q̃(t), ˙̃q(t)

)
=

[(dσq(t))
∗]−1

( d
dt
∂L

∂q̇

(
t, q(t), q̇(t)

)
− ∂L

∂q

(
t, q(t), q̇(t)

))
,

for all t ∈ [a, b], where (dσq(t))∗ : Rn∗ → Rn∗ denotes the transpose of the
linear map dσq(t).

Exercise 1.19. Let Q be a differentiable manifold, L : R × TQ → R

be a Lagrangian, q : [a, b] → Q be a smooth map, ϕ : U → Ũ ⊂ Rn be a
local chart on Q and q̃ = ϕ ◦ q|q−1(U). Use the result of Exercise 1.18 (with
σ the transition function between two coordinate charts) to show that, for
all t ∈ q−1(U), the linear functional:

(dϕq(t))
∗
( d

dt
∂Lϕ

∂q̇

(
t, q̃(t), ˙̃q(t)

)
− ∂Lϕ

∂q

(
t, q̃(t), ˙̃q(t)

))
∈ Tq(t)Q

∗

does not depend on the choice of the chart ϕ.

Exercise 1.20 (the double pendulum). For this exercise, let us pretend
that physical space is two-dimensional and let us identify it with the complex
plane C, which is more convenient for writing down the formulas (three-
dimensional physical space will be considered in Exercise 1.21 below). The
double pendulum is the system consisting of two particles in C constrained
in the following way: the first particle remains over a circle (say, centered
at the origin of C) of radius r1 > 0 and the second particle remains over a
circle of radius r2 > 0 centered at the position of the first particle. The set
Q ⊂ C2 of allowed pairs of positions for the two particles is then the image
of the map:

(1.13.4) R×R 3 (θ1, θ2) 7−→ (r1eiθ1 , r1e
iθ1 + r2e

iθ2) ∈ C× C.
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(a) Compute the differential of the map (1.13.4) and show that such
map is a smooth immersion.

(b) Show that the map (1.13.4) passes to the quotient and induces an
embedding from the torus (R/2πZ)2 to C2. Conclude that the
image Q of (1.13.4) is a smooth submanifold of C2 diffeomorphic
(through the map (1.13.4)) to the torus.

(c) Compute the tangent space of Q at a point q = (q1, q2) ∈ C2. Show
that a force R = (R1, R2) ∈ C2 is orthogonal to TqQ if and only if
R2 is parallel to the line connecting the points q1, q2 ∈ C and R1

is the sum of −R2 with a vector parallel to the line connecting the
point q1 and the origin.

(d) Consider the potential V : C2 → R defined by:

V (q1, q2) = −m1g<(q1)−m2g<(q2), q1, q2 ∈ C,
where g is a positive constant, m1,m2 > 0 denote the masses of
the particles and <(z) denotes the real part of z ∈ C (this corre-
sponds to the potential of a force of magnitude mjg pointing to
the direction of the positive real axis, acting on the j-th particle.
For instance, this could arise from what is called a homogeneous
gravitational field of magnitude g pointing to the direction of the
positive real axis). Write down the representation of the Lagrangian
Lcons (corresponding to the potential V and the constraint given
by Q) with respect to a local chart on Q given by the inverse of
the restriction of the map (1.13.4) to some open set in which it is
injective (for instance, an open square of side 2π). Write down also
the corresponding Euler–Lagrange equation.

The condition on the forces R1, R2 that you discovered when solving item (c)
is precisely the condition that one would expect under the assumption that
particle number 1 is attached to the origin and particle number 2 is attached
to particle number 1 by means of inextensible strings of negligible mass. The
force R2 is the tension exerted upon particle number 2 by the string con-
necting the two particles and it should be parallel to that string (i.e., parallel
to the line connecting the two particles) — that is the standard assumption
about string tension. The force R1 is the sum of two string tensions, one
exerted upon particle number 1 by the string connecting particle number
1 to the origin (which should be parallel to that string) and the other ex-
erted upon particle number 1 by the string connecting both particles (which
should29 be equal to −R2).

Exercise 1.21 (the double spherical pendulum). The double spherical
pendulum is the system consisting of two particles in R3 constrained in the

29Here’s the argument: assuming Newton’s law of reciprocal actions, then the force
exerted by particle number 2 upon the string is equal to −R2. If R′

2 denotes the force
exerted by the string upon particle number 1 then the force exerted by particle number
1 upon the string is −R′

2. The total force on the string is then −R2 − R′
2 and since the

mass of the string is being neglected, we take such total force to be zero, i.e., R′
2 = −R2.
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following way: the first particle remains over a sphere (say, centered at the
origin of R3) of radius r1 > 0 and the second particle remains over a sphere
of radius r2 > 0 centered at the position of the first particle. Check that
the submanifold Q of R3×R3 corresponding to such constraint is the image
under the linear isomorphism:

(1.13.5) R3 ×R3 3 (u1, u2) 7−→ (r1u1, r1u1 + r2u2) ∈ R3 ×R3

of the product S2 × S2, where S2 ⊂ R3 denotes the unit sphere centered at
the origin. Conclude that Q is a smooth submanifold of R3×R3. Compute
the tangent space TqQ at a point q = (q1, q2) ∈ Q and show that a force
R = (R1, R2) ∈ R3 × R3 is orthogonal to TqQ if and only if it satisfies the
condition that appears in item (c) of Exercise 1.20 above. If you want to have
some fun, you can choose a potential V and write down the representation
of the Lagrangian Lcons and the Euler–Lagrange equation with respect to
your favorite chart on Q (for instance, you can obtain one by means of the
map (1.13.5) and of spherical coordinates on the sphere S2).

Exercise 1.22. Let m1, . . . ,mn > 0 denote the masses of the particles
and consider the linear isomorphism M : (R3)n → (R3)n defined by:

M(q1, . . . , qn) = (m1q1, . . . ,mnqn), q1, . . . , qn ∈ R3.

Denote by 〈·, ·〉 the standard inner product of (R3)n and by 〈·, ·〉M the inner
product of (R3)n defined by:

〈q, q′〉M = 〈M(q), q′〉, q, q′ ∈ (R3)n.

If V : dom(V ) ⊂ R× (R3)n → R is a smooth map, we denote by ∇M
q V (t, q)

the gradient of V relative to the inner product 〈·, ·〉M (with respect to the
second variable), i.e.:

〈∇M
q V (t, q), ·〉M =

∂V

∂q
(t, q) ∈ (R3)n∗, (t, q) ∈ dom(V ).

Show that:
(a) ∇M

q V (t, q) = M−1
(
∇qV (t, q)

)
, for all (t, q) ∈ dom(V );

(b) given a subspace S of (R3)n, then M maps the orthogonal com-
plement of S with respect to the inner product 〈·, ·〉M onto the
orthogonal complement of S with respect to the standard inner
product of (R3)n;

(c) the vector (1.5.9) is orthogonal to Tq(t)Q with respect to the stan-
dard inner product of (R3)n if and only if the vector:

d2q

dt2
(t) +∇M

q V (t, q)

is orthogonal to Tq(t)Q with respect to the inner product 〈·, ·〉M .

Exercise 1.23. Let Q be a smooth submanifold of Rn. Given a point
q0 ∈ Q, show that there exists a unique map:

α : Tq0Q× Tq0Q −→ Rn/Tq0Q
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having the following property: if q : I → Q, v : I → Rn are smooth curves
defined in an interval I such that v(t) ∈ Tq(t)Q for all t ∈ I and if q(t0) = q0
for some t0 ∈ I then:

α
(
q̇(t0), v(t0)

)
= v̇(t0) + Tq0Q ∈ Rn/Tq0Q.

Show that such map α is bilinear (hint: let f be an Rm-valued smooth map
defined in an open neighborhood U of q0 in Rn such that 0 ∈ Rm is a regular
value of f and Q∩U = f−1(0). Differentiate the equality dfq(t)

(
v(t)

)
= 0 at

t = t0). The map α is called the second fundamental form of the submanifold
Q at the point q0 and it is denoted by αQ

q0 . If one chooses an inner product
on Rn (not necessarily the standard one) then one can identify the quotient
Rn/Tq0Q with the orthogonal complement of Tq0Q with respect to that inner
product, obtaining from αQ

q0 a bilinear form taking values in that orthogonal
complement. That’s the second fundamental form relative to the chosen
inner product.

Exercise 1.24. Consider the map M and the inner product 〈·, ·〉M de-
fined in Exercise 1.22. Assuming that the trajectories q = (q1, . . . , qn) of the
particles are obtained as critical points of the action functional SLcons , show
that the forces R(t) exerted by the constraint are given by:

R(t) = M
(
αQ

q(t)

(
q̇(t), q̇(t)

)
+ Pq(t)

[
∇M

q V
(
t, q(t)

)])
,

where the second fundamental form of Q is taken to be relative to the
inner product 〈·, ·〉M (see Exercise 1.23) and Pq(t) denotes the orthogonal
projection with respect to 〈·, ·〉M onto the orthogonal complement of Tq(t)Q
with respect to 〈·, ·〉M .

Exercise 1.25. Consider the inner product 〈·, ·〉M defined in Exer-
cise 1.22 and the Riemannian metric on the submanifold Q of (R3)n induced
by such inner product. Show that if the potential V is zero then a curve
q : [a, b] → Q is a critical point of the action functional SLcons if and only if
q is a geodesic of Q (hint: what is the variational problem whose solutions
are the geodesics of a Riemannian manifold?).

Symplectic forms over vector spaces.

Exercise 1.26. Let V , W be finite-dimensional real vector spaces and
B : V ×W → R be a bilinear map. Consider the linear map:

(1.13.6) V 3 v 7−→ B(v, ·) ∈W ∗

canonically associated to B. Given bases E = (ei)n
i=1, F = (fj)m

j=1 of V and
W , respectively, we can associate an n×m matrix [B]EF to B whose entry
at row i and column j is B(ei, fj). Show that:
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(a) given v ∈ V , w ∈W , then:

B(v, w) =
n∑

i=1

m∑
j=1

B(ei, fj)viwj =
(
v1 · · · vn

)
[B]EF

w1
...
wm

 ,

where (v1, . . . , vn) denotes the coordinates of v with respect to E
and (w1, . . . , wm) denotes the coordinates of w with respect to F ;

(b) if V is endowed with the basis E and W ∗ with the dual basis of F ,
show that the matrix that represents the linear map (1.13.6) is the
transpose of [B]EF ;

(c) if V andW have the same dimension, show that B is non degenerate
(i.e., given v ∈ V , if B(v, w) = 0 for all w ∈ W then v = 0) if and
only if the matrix [B]EF is invertible (hint: B is non degenerate if
and only if the linear map (1.13.6) is injective).

Exercise 1.27. If (V, ω) is a symplectic space then, by the result of
item (c) in Exercise 1.26, the matrix H = [ω]EE is invertible, where E is
any basis of V . Conclude from the fact that H is both invertible and anti-
symmetric that V is even-dimensional (hint: take the determinant on both
sides of Ht = −H).

Exercise 1.28. Let V be a (not necessarily finite-dimensional) real vec-
tor space and S be a subspace of V . Given a bilinear map B : V × V → R,
then the orthogonal complement of S with respect to B is the subspace S⊥

of V defined by:

S⊥ =
{
v ∈ V : B(v, w) = 0, for all w ∈ S

}
.

Show that, if S is finite-dimensional, then the following conditions are equiv-
alent:

(a) S ∩ S⊥ = {0};
(b) B|S×S is non degenerate;
(c) V = S ⊕ S⊥.

(hint: the only non trivial part is to prove that (b) implies V = S+S⊥. For
that, notice that, assuming (b), since S is finite-dimensional, the linear map
S 3 v 7→ B(v, ·)|S ∈ S∗ is an isomorphism. Given w ∈ V , we can then find
v ∈ S such that the linear functional B(v, ·)|S is equal to B(w, ·)|S . Notice
that w − v ∈ S⊥).

Exercise 1.29. Given symplectic spaces (V, ω), (Ṽ , ω̃), show that the
following conditions are equivalent for a linear map T : V → Ṽ :

(a) T is a symplectomorphism;
(b) the image under T of any symplectic basis of (V, ω) is a symplectic

basis of (Ṽ , ω̃);
(c) there exists a symplectic basis of (V, ω) whose image under T is a

symplectic basis of (Ṽ , ω̃).
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Exercise 1.30. Let V be a real finite-dimensional vector space and
ω : V ×V → R be a (not necessarily non degenerate) anti-symmetric bilinear
form.

(a) Show that there exists a basis (e1, . . . , en, e′1, . . . , e
′
n, f1, . . . , fm) of

V such that:

ω(ei, e′j) = δij , ω(ei, ej) = 0, ω(e′i, e
′
j) = 0,

ω(ei, fk) = 0, ω(e′i, fk) = 0, ω(fk, fl) = 0,

for all i, j = 1, . . . , n, k, l = 1, . . . ,m, where δij = 1 for i = j and
δij = 0 for i 6= j (hint: the proof is almost identical to the proof of
Proposition 1.7.5).

(b) Given a basis of V as above, show that (f1, . . . , fm) is a basis of
the kernel of ω, i.e., the kernel of the linear map (1.7.1).

(c) Given a basis of V as above, show that ω is non degenerate if and
only if m = 0.

Symplectic manifolds and Hamiltonians.

Exercise 1.31. Let (M,ω), (M̃, ω̃) be symplectic manifolds and let
Φ : M → M̃ be a symplectomorphism. Given a time-dependent Hamiltonian
H : dom(H) ⊂ R ×M → R, we can push it to the manifold M̃ using Φ,
obtaining a time-dependent Hamiltonian HΦ : dom(HΦ) ⊂ R × M̃ → R

such that dom(HΦ) = (Id × Φ)
(
dom(H)

)
(Id denotes the identity map of

R) and:
HΦ

(
t,Φ(x)

)
= H(t, x),

for all (t, x) ∈ dom(H).
(a) Show that, for (t, x) ∈ dom(H), we have:

dΦx

(
~H(t, x)

)
=
−→
HΦ

(
t,Φ(x)

)
.

(b) Let x : I → M be a smooth curve (defined over some interval
I ⊂ R) and let t ∈ I be such that

(
t, x(t)

)
∈ dom(H). Setting

x̃ = Φ ◦ x, show that:

(1.13.7)
dx
dt

(t) = ~H
(
t, x(t)

)
,

if and only if:
dx̃
dt

(t) =
−→
HΦ

(
t, x̃(t)

)
.

(c) Let now Φ : U ⊂ M → Ũ ⊂ R2n be a symplectic chart and define
HΦ as above (of course, before pushing H using Φ, we have to
restrict H to dom(H) ∩ (R × U)). Let x : I → M be a smooth
curve and set x̃ = Φ ◦ x|x−1(U). Write x̃ = (q̃, p̃), with:

q̃ : x−1(U) ⊂ I −→ Rn, p̃ : x−1(U) ⊂ I −→ Rn.



EXERCISES 76

Given t ∈ I with x(t) ∈ U and
(
t, x(t)

)
∈ dom(H), show that

(1.13.7) holds if and only if:
dq̃
dt

(t) =
∂HΦ

∂p

(
t, q̃(t), p̃(t)

)
,

dp̃
dt

(t) = −∂HΦ

∂q

(
t, q̃(t), p̃(t)

)
.

Exercise 1.32. The goal of this exercise is to prove Darboux’s theorem
(Theorem 1.8.4).

(a) Show that, in order to prove Darboux’s theorem, it is sufficient to
prove the following result: if ω is a symplectic form over an open
subset U of R2n with 0 ∈ U and if ω(0) is the canonical symplectic
form ω0 of R2n then there exists a smooth diffeomorphism Φ from
an open neighborhood of 0 in R2n onto an open neighborhood of 0
in U such that Φ∗ω is (the restriction to the domain of Φ of) ω0.
(hint: use Corollary 1.7.7).

(b) Let ω and U be as in item (a). Show that there exists a smooth
one-form λ over some open neighborhood V of 0 in U such that
λ(0) = 0 and dλ = ω0 − ω.

(c) For t ∈ R, consider the smooth two-form over U defined by:

ωt = (1− t)ω0 + tω.

The set:

(1.13.8)
{
(t, x) ∈ R× V : ωt(x) is non degenerate

}
is open in R × V and contains R × {0}. We can define a smooth
time-dependent vector field X with domain (1.13.8) such that:

iXtωt = λ,

where Xt = X(t, ·). Denote by F the flow of X with initial time
t0 = 0 (i.e., for each x, t 7→ F (t, x) is the maximal integral curve
of X passing through x at t = 0). Show that for all t ∈ R, the
map Ft = F (t, ·) is defined over an open neighborhood of the origin
(hint: the domain of F is open in R × V and contains R × {0},
since Xt(0) = 0, for all t ∈ R).

(d) Use the result of Exercise A.2 and formulas (A.2.6) and (A.2.9) to
prove that:

d
dt

(F ∗
t ωt) = 0.

Conclude the proof of Darboux’s theorem by observing that:

F ∗
1ω = ω0.

Canonical forms in a cotangent bundle.

Exercise 1.33. Let Q1, Q2, Q3 be differentiable manifolds and:

ϕ : Q1 −→ Q2, ψ : Q2 −→ Q3

be smooth diffeomorphisms. Show that:

d∗(ψ ◦ ϕ) = d∗ψ ◦ d∗ϕ.
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Exercise 1.34. Let Q, Q̃ be differentiable manifolds and ϕ : Q → Q̃
be a smooth diffeomorphism. Let H : dom(H) ⊂ R × TQ∗ → R be a
time-dependent Hamiltonian and HΦ : dom(HΦ) ⊂ R × TQ̃∗ → R be the
time-dependent Hamiltonian obtained by pushing H using Φ = dϕ∗ (see
Exercise 1.31). Given (t, q, p) ∈ dom(H), show that:

dϕq

(∂H
∂p

(t, q, p)
)

=
∂HΦ

∂p

(
t, q̃, p̃),

where (q̃, p̃) = d∗ϕ(q, p). Conclude, using also the result of Exercise 1.31,
that if the thesis of Proposition 1.9.6 holds for Q̃ then it also holds for Q.

The Legendre transform.

Exercise 1.35. Let E, E′ be real finite-dimensional vector spaces, let
f : dom(f) ⊂ E → R be a map of class C2 defined over some open subset
dom(f) of E and let T : E′ → E be a linear isomorphism. Consider the
map f ◦ T : T−1

(
dom(f)

)
→ R. Show that:

(a) f is regular (resp., hyper-regular) if and only if f ◦ T is regular
(resp., hyper-regular);

(b) if f is hyper-regular then the Legendre transform (f ◦ T )∗ of f ◦ T
is defined in the open subset T ∗

(
dom(f∗)

)
of E′∗ and it is equal to

f∗ ◦T ∗−1, where T ∗ : E∗ → E′∗ denotes the transpose of the linear
map T and f∗ denotes the Legendre transform of f .

Exercise 1.36. Let Q, Q̃ be differentiable manifolds and ϕ : Q→ Q̃ be
a smooth diffeomorphism. Let L : dom(L) ⊂ R× TQ→ R be a Lagrangian
on Q and let Lϕ : dom(Lϕ) ⊂ R×TQ̃→ R be the Lagrangian on Q̃ obtained
by pushing L using ϕ, i.e., dom(Lϕ) = (Id × dϕ)

(
dom(L)

)
(Id denotes the

identity map of R) and:

Lϕ ◦ (Id× dϕ)|dom(L) = L.

Show that the diagram:

dom(L) FL //

(Id×dϕ)|dom(L)

��

R× TQ∗

Id×d∗ϕ
��

dom(Lϕ)
FLϕ

// R× TQ̃∗

commutes. Conclude that claim (a) in the proof of Lemma 1.10.8 is true.

Exercise 1.37. Let f : U ⊂ Rm ×Rn → Rn be a smooth map defined
over an open subset U of Rm ×Rn. Show that the following conditions are
equivalent:

(a) for all x ∈ Rm, the map:

f(x, ·) :
{
y ∈ Rn : (x, y) ∈ U

}
3 y 7−→ f(x, y) ∈ Rn

is a local diffeomorphism;
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(b) the map U 3 (x, y) 7→
(
x, f(x, y)

)
∈ Rm ×Rn is a local diffeomor-

phism.
(hint: compute the differential of the map (x, y) 7→

(
x, f(x, y)

)
and use the

inverse function theorem).

Exercise 1.38. Let (Q, g) be a Riemannian manifold and:

V : dom(V ) ⊂ R×Q −→ R

be a smooth map defined over an open subset dom(V ) of R × Q. Define a
Lagrangian L on Q by setting:

(1.13.9) L(t, q, q̇) =
1
2
gq(q̇, q̇)− V (t, q),

for all (t, q) ∈ dom(V ) and all q̇ ∈ TqQ. If the Riemannian metric of Q is
the one defined in Exercise 1.25 (and if V is the restriction to R×Q of the
potential defined over an open subset of R × (R3)n) then the Lagrangian
(1.13.9) is precisely the Lagrangian Lcons of Subsection 1.5.1. Show that L
is hyper-regular and that its Legendre transform H is given by:

H(t, q, p) =
1
2
g−1
q (p, p) + V (t, q),

for all (t, q) ∈ dom(V ) and all p ∈ TqQ
∗, where g−1

q is the inner product on
the dual space TqQ

∗ that turns the linear isomorphism:

TqQ 3 q̇ 7−→ gq(q̇, ·) ∈ TqQ
∗

into a linear isometry30.

Symmetry and conservation laws.

Exercise 1.39. Let (M,ω) be a symplectic manifold and:

H : dom(H) ⊂ R×M −→ R

be a time-dependent Hamiltonian over M . Let G be a Lie group and:

ρ : G×M 3 (g, x) 7−→ g · x ∈M

be a smooth action of G on M . We say that ρ is a symmetry of the triple
(M,ω,H) if for all g ∈ G the diffeomorphism ρg = ρ(g, ·) is a symplecto-
morphism of (M,ω) and if for all (t, x) ∈ dom(H) and all g ∈ G we have
(t, g · x) ∈ dom(H) and H(t, g · x) = H(t, x).

(a) Given X ∈ g, show that the one-form iXMω = ω(XM , ·) is closed
(hint: the Lie derivative LXMω vanishes) and therefore locally given
as a differential of a real valued smooth map.

30Given a basis of TqQ and considering TqQ
∗ to be endowed with the dual basis, then

the matrix that represents g−1
q is precisely the inverse of the matrix that represents gq

(see Exercise 1.41).
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(b) If f is a real valued smooth map over an open subset dom(f) of M
whose differential df equals (the restriction to dom(f) of) iXMω,
show that f is a first integral of the vector field ~H, i.e., f is constant
along integral curves of ~H that stay inside dom(f).

When the symplectic form ω is exact, so that ω = −dθ for some smooth
one-form θ, and the action of G preserves θ then, for all X ∈ g, the one-form
iXMω is exact, since the map f = θ(XM ) satisfies df = iXMω (see item (a)
of Exercise 1.46).

Exercise 1.40. Show that:
(a) for each v ∈ R3, the linear endomorphism Xv : w 7→ v ∧ w of R3

is anti-symmetric and it is therefore an element of the Lie algebra
so(3) of the Lie group SO(3);

(b) the map R3 3 v 7→ Xv ∈ so(3) is a linear isomorphism;
(c) given v, w ∈ R3, then the commutator:

[Xv, Xw] = Xv ◦Xw −Xw ◦Xv

is equal to Xv∧w. Conclude that R3 endowed with the vector prod-
uct is a Lie algebra and that the map v 7→ Xv is an isomorphism
from the Lie algebra (R3,∧) onto the Lie algebra so(3).

The Poisson bracket.

Exercise 1.41. Let V be a real finite-dimensional vector space and
B : V × V → R be a non degenerate bilinear form, so that the linear map:

(1.13.10) V 3 v 7−→ B(v, ·) ∈ V ∗

canonically associated to B is an isomorphism. Define a bilinear form:

B′ : V ∗ × V ∗ −→ R

by carrying B to V ∗ using the linear isomorphism (1.13.10), i.e.:

B′(B(v, ·), B(w, ·)
)

= B(v, w), v, w ∈ V.

Show that the linear map:

V ∗ 3 α 7−→ B′(α, ·) ∈ V ∗∗ ∼= V

canonically associated to B′ is the inverse of the transpose of the linear
map (1.13.10) (hint: check first that the transpose of (1.13.10) is given by
V 3 v 7→ B(·, v) ∈ V ∗). Conclude that, if V is endowed with a certain basis
and V ∗ is endowed with the corresponding dual basis, then the matrix that
represents B′ is the inverse of the transpose of the matrix that represents B
(see Exercise 1.26).

Exercise 1.42. Let (V, ω) be a symplectic space and π : V ∗ × V ∗ → R

be the symplectic form over V ∗ for which the linear isomorphism:

V 3 v 7−→ ω(v, ·) ∈ V ∗
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is a symplectomorphism, i.e.:

π
(
ω(v, ·), ω(w, ·)

)
= ω(v, w), v, w ∈ V.

Show that a basis of V is symplectic for ω if and only if its dual basis is
symplectic for π (hint: a basis is symplectic if and only if the matrix that
represents the symplectic form with respect to that basis is A =

(
0n In
−In 0n

)
,

where 0n and In denote the n×n zero matrix and the n×n identity matrix,
respectively. Use the result of Exercise 1.41 and the fact that A−1 = −A).

Exercise 1.43. Let A be an associative algebra (for instance, the alge-
bra of linear endomorphisms of a vector space) and define:

(1.13.11) [x, y] = xy − yx, x, y ∈ A.
Show that A is a Poisson algebra endowed with its associative product and
with the commutator (1.13.11) (it is also a Poisson algebra if we replace the
commutator (1.13.11) with any scalar multiple of it).

Exercise 1.44. Let (M,ω), (M̃, ω̃) be symplectic manifolds and let
Φ : M → M̃ be a symplectomorphism. Show that the map:

Φ∗ : C∞(M̃) 3 f 7−→ f ◦ Φ ∈ C∞(M)

is an isomorphism of Poisson algebras, i.e., it is a linear isomorphism that
preserves both the associative (pointwise) product:

Φ∗(fg) = Φ∗(f)Φ∗(g), f, g ∈ C∞(M̃),

and the Poisson bracket:

Φ∗({f, g}) = {Φ∗(f),Φ∗(g)}, f, g ∈ C∞(M̃).

Exercise 1.45. Let M be an open subset of R2n endowed with the
canonical symplectic form (Example 1.7.2). Given a map f : M → R,
denote its 2n partial derivatives by:

∂f

∂q1
, . . . ,

∂f

∂qn
,
∂f

∂p1
, . . . ,

∂f

∂pn
.

Given f, g ∈ C∞(M), show that their Poisson bracket is given by:

{f, g} =
n∑

j=1

∂f

∂qj

∂g

∂pj
− ∂f

∂pj

∂g

∂qj
.

Exercise 1.46. Let (M,ω) be a symplectic manifold whose symplectic
form is exact and let θ be a smooth one-form over M with ω = −dθ. Assume
that we are given a smooth action ρ : G×M →M of a Lie group G on M
that preserves the one-form θ, i.e., ρ∗gθ = θ for all g ∈ G, where ρg = ρ(g, ·)
(this is the case, for instance, if M is a cotangent bundle TQ∗, θ is the
canonical one-form and the action of G on M = TQ∗ is obtained from an
action of G on Q). Each X in the Lie algebra g induces a vector field XM on
M (when M = TQ∗ and the action of G is a symmetry of a time-dependent
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Hamiltonian then the map θ(XM ) is precisely the conserved quantity given
by Theorem 1.11.1).

(a) For X ∈ g, show that the differential of the map θ(XM ) is:

iXMω = ω(XM , ·)
(hint: write the Lie derivative of θ along XM using formula (A.2.9)
and observe that such Lie derivative must vanish). Conclude that
the symplectic gradient of θ(XM ) is XM .

(b) For X,Y ∈ g, show that the Poisson bracket {θ(XM ), θ(YM )}
equals ω(XM , YM ).

(c) For X,Y ∈ g, show that ω(XM , YM ) = −θ
(
[XM , YM ]

)
(hint: com-

pute dθ(XM , YM ) using formula (A.2.8). Use the result of item (a)
to conclude that XM

(
θ(YM )

)
= ω(YM , XM )).

(d) Show that the map g 3 X 7−→ θ(XM ) ∈ C∞(M) is a Lie alge-
bra homomorphism if C∞(M) is endowed with the Poisson bracket
(hint: use formula (A.3.4)).



APPENDIX A

A summary of certain prerequisites

This notes are intendend as a course for mathematicians and graduate
students in Mathematics. Therefore, a lot of standard material from grad-
uate mathematical courses are taken as prerequisites. Nevertheless, in this
appendix we make a quick presentation of some of those prerequisites. If
you don’t have any familiarity with such prerequisites, you probably won’t
be able to learn them using this appendix, but if you have some familiarity
with them, this appendix might be useful for a quick review or as a quick
reference guide. Most results will be stated without proof.

A.1. Quick review of multilinear algebra

Throughout the section, V denotes a fixed real finite-dimensional vector
space. For most of what is presented in the section, the field of real numbers
can be replaced with an arbitrary field1 and for everything that is presented
in the section it can be replaced with an arbitrary field of characteristic
zero. We choose to use the field of real numbers for the presentation only
for psychological reasons.

Given natural numbers r, s, then an (r, s)-tensor over V (also called a
tensor that is r times covariant and s times contravariant) is a multilinear
map:

τ : V × · · · × V × V ∗ × · · · × V ∗ −→ R

in which there are r copies of V and s copies of the dual space V ∗. The set
of (r, s)-tensors over V is, in a natural way, a real vector space. Such vector
space is naturally isomorphic to the tensor product of r copies of the dual
space V ∗ and s copies of the space V :

(A.1.1)
( ⊗

r

V ∗
)
⊗

( ⊗
s

V
)
.

We won’t need such identification between spaces of multilinear maps and
tensor products of vector spaces, but we will use (A.1.1) as a notation for
the space of (r, s)-tensors over V . The space of (0, 0)-tensors over V is
simply the field of real numbers. The space of (0, 1)-tensors over V is the

1In the definition of wedge product, the factorial of the degree of the forms appears in
the denominator and that doesn’t make sense in general if the characteristic of the field is
not zero. Also, if the characteristic of the field is two, then anti-symmetry is the same as
symmetry and it is not true that an anti-symmetric map vanishes when two of its entries
are equal.

82
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bidual V ∗∗ and it will be identified in the usual way with the space V itself,
so that elements of V are regarded as (0, 1)-tensors over V . The space
of (1, 0)-tensors over V is simply the dual space V ∗. The space of linear
endomorphisms of V can be naturally identified with the space of (1, 1)-
tensors over V : namely, we identify a linear endomorphism T : V → V with
the bilinear map V × V ∗ 3 (v, α) 7→ α

(
T (v)

)
∈ R.

Given some other real finite-dimensional vector space W , a linear iso-
morphism T : W → V and an (r, s)-tensor τ over V then the pull-back T ∗τ
is the (r, s)-tensor over W defined by:

(A.1.2) (T ∗τ)(w1, . . . , wr, β1, . . . , βs)

= τ
(
T (w1), . . . , T (wr), β1 ◦ T−1, . . . , βs ◦ T−1

)
,

for all w1, . . . , wr ∈ W , β1, . . . , βs ∈ W ∗. When the tensor τ is purely
covariant, i.e., when s = 0, then the pull-back T ∗τ is defined for any linear
map T : W → V (because we don’t need to use T−1 in (A.1.2) when s = 0).
The operation τ 7→ T ∗τ defines a linear map:

T ∗ :
( ⊗

r

V ∗
)
⊗

( ⊗
s

V
)
−→

( ⊗
r

W ∗
)
⊗

( ⊗
s

W
)

in which it is assumed that T be an isomorphism if s 6= 0. Given some other
real finite-dimensional vector space P and a linear map S : P →W then:

(T ◦ S)∗τ = S∗T ∗τ,

for any tensor τ over V , in which it is necessary to assume that T and S be
isomorphisms if τ is not purely covariant.

Given an (r, s)-tensor τ over V and an (r′, s′)-tensor τ ′ over V , then
their tensor product is the (r + r′, s+ s′)-tensor τ ⊗ τ ′ over V defined by:

(τ ⊗ τ ′)(v1, . . . , vr+r′ , α1, . . . , αs+s′)

= τ(v1, . . . , vr, α1, . . . , αs)τ ′(vr+1, . . . , vr+r′ , αs+1, . . . , αs+s′),

for all v1, . . . , vr+r′ ∈ V , α1, . . . , αs+s′ ∈ V ∗. The product cτ of a tensor τ
by a real number c coincides with the tensor product c ⊗ τ (and also with
τ ⊗ c), where the real number c is seen as a (0, 0)-tensor. Clearly, the tensor
product operation is associative, i.e., if τ , τ ′, τ ′′ are tensors over V then:

(τ ⊗ τ ′)⊗ τ ′′ = τ ⊗ (τ ′ ⊗ τ ′′),

so that we can write tensor products of several tensors without parenthesis.
If (e1, . . . , en) is a basis of V and (e1, . . . , en) denotes its dual basis then:

(A.1.3) ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs , i1, . . . , ir, j1, . . . , js = 1, . . . , n,

is a basis of the space of (r, s)-tensors over V . The dimension of the space
of (r, s)-tensors over V is therefore equal to nr+s. The coordinates of an
(r, s)-tensor τ over V with respect to the basis (A.1.3) are given by:

(A.1.4) τ j1...js

i1...ir
= τ(ei1 , . . . , eir , e

j1 , . . . , ejs).
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We say that the family of real numbers (A.1.4) represents the tensor τ with
respect to the basis (e1, . . . , en). The r lower indexes in (A.1.4) are normally
called the covariant indexes and the s upper indexes the contravariant in-
dexes.

Pull-backs preserve tensor products: if T : W → V is a linear map and
τ , τ ′ are tensors over V then:

(A.1.5) T ∗(τ ⊗ τ ′) = (T ∗τ)⊗ (T ∗τ ′),

where we have to assume that T be an isomorphism if either τ or τ ′ is not
purely covariant.

In what follows, we will focus on purely covariant tensors and we will use
the symbol

⊗
k V

∗ to denote the space of all k-linear maps τ : V k → R (i.e.,
the space of all (k, 0)-tensors over V ). The subspace of

⊗
k V

∗ consisting
of anti-symmetric k-linear maps will be denoted by

∧
k V

∗. For k = 0,
both

⊗
k V

∗ and
∧

k V
∗ are just the scalar field R. If k is larger than the

dimension of V , then
∧

k V
∗ is the null space.

If κ ∈
∧

k V
∗ is an anti-symmetric k-linear map and λ ∈

∧
l V

∗ is an
anti-symmetric l-linear map then the wedge product κ ∧ λ ∈

∧
k+l V

∗ is the
(k + l)-linear anti-symmetric map defined by2:

(κ ∧ λ)(v1, . . . , vk+l) =
1
k!l!

∑
σ∈Sk+l

sgn(σ)(κ⊗ λ)(vσ(1), . . . , vσ(k+l)),

for all v1, . . . , vk+l ∈ V , where Sk+l denotes the group of all bijections of
the set {1, . . . , k+ l} and sgn(σ) denotes the sign of the permutation σ, i.e.,
sgn(σ) = 1 if σ is even and sgn(σ) = −1 if σ is odd. The product cκ of an
anti-symmetric k-linear map κ by a real number c coincides with the wedge
product c ∧ κ (and also with κ ∧ c), where the real number c is seen as an
element of

∧
0 V

∗. The wedge product operation is associative, i.e., if κ, λ
and µ are anti-symmetric purely covariant tensors over V then:

(κ ∧ λ) ∧ µ = κ ∧ (λ ∧ µ),

so that we can write wedge products of several anti-symmetric covariant
tensors without parenthesis. Given κi ∈

∧
ki
V ∗, i = 1, . . . , r, then the

following formula holds:

(κ1 ∧ · · · ∧ κr)(v1, . . . , vk)

=
1

k1! · · · kr!

∑
σ∈Sk

sgn(σ)(κ1 ⊗ · · · ⊗ κr)(vσ(1), . . . , vσ(k)),

2Some authors use 1
(k+l)!

in front of the summation sign. This difference in the

definition of the exterior product also influences the definition of exterior differentiation of
differential forms (see Subsection A.2.2), since the properties that characterize the exterior
differential depend on the definition of the wedge product.
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for all v1, . . . , vk ∈ V , where k = k1 + · · · + kr. In particular, given linear
functionals αi ∈ V ∗ =

∧
1 V

∗, i = 1, . . . , r, then:

(α1 ∧ · · · ∧ αr)(v1, . . . , vr) =
∑
σ∈Sr

sgn(σ)α1(vσ(1)) · · ·αr(vσ(r)),

i.e.:

(A.1.6) (α1 ∧ · · · ∧ αr)(v1, . . . , vr) = det
(
αi(vj)

)
r×r

,

for all v1, . . . , vr ∈ V . If (e1, . . . , en) is a basis of V and (e1, . . . , en) denotes
its dual basis then:

(A.1.7) ei1 ∧ · · · ∧ eik , 1 ≤ i1 < i2 < · · · < ik ≤ n,

is a basis of
∧

k V
∗. Thus, for 0 ≤ k ≤ n, the dimension of

∧
k V

∗ is
(
n
k

)
and

the dimension of
∧

n V
∗ is equal to 1. The non zero elements of

∧
n V

∗ are
called volume forms over V . The coordinates of κ ∈

∧
k V

∗ with respect to
the basis (A.1.7) are:

κi1...ik = κ(ei1 , . . . , eik).

For κ ∈
∧

k V
∗, λ ∈

∧
l V

∗, we have:

κ ∧ λ = (−1)klλ ∧ κ,

so that κ ∧ κ = 0 if κ ∈
∧

k V
∗ and k is odd.

Set: ⊗
V ∗ =

∞⊕
k=0

⊗
k

V ∗,
∧
V ∗ =

∞⊕
k=0

∧
k

V ∗ =
n⊕

k=0

∧
k

V ∗,

where n = dim(V ). The tensor product operation of purely covariant ten-
sors extends in a unique way to a bilinear binary operation in the space⊗
V ∗ and the wedge product operation of anti-symmetric purely covariant

tensors extends in a unique way to a bilinear binary operation in the space∧
V ∗. Both

⊗
V ∗ and

∧
V ∗ become associative (graded) real algebras with

unit endowed with such binary operations. Observe that
∧
V ∗ is a vector

subspace but not a subalgebra of
⊗
V ∗.

Given a linear map T : W → V , then the pull-back operation τ 7→ T ∗τ
(on purely covariant tensors over V ) extends to an algebra homomorphism:

T ∗ :
⊗

V ∗ −→
⊗

W ∗,

so that (A.1.5) holds for all τ, τ ′ ∈
⊗
V ∗. The restriction of T ∗ to

∧
V ∗

gives an algebra homomorphism:

T ∗ :
∧
V ∗ −→

∧
W ∗,

so that:
T ∗(κ ∧ λ) = (T ∗κ) ∧ (T ∗λ),

for all κ, λ ∈
∧
V ∗.
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Given a vector v ∈ V and a tensor τ ∈
⊗

k V
∗, k ≥ 1, we define the

interior product of τ by v to be the tensor ivτ ∈
⊗

k−1 V
∗ given by:

(ivτ)(v1, . . . , vk−1) = τ(v, v1, . . . , vk−1),

for all v1, . . . , vk−1 ∈ V . For τ ∈
⊗

0 V
∗ we set ivτ = 0. The map iv extends

in a unique way to a linear endomorphism (not an algebra homomorphism!)
of

⊗
V ∗. Such endomorphism sends

∧
V ∗ to

∧
V ∗ and for κ ∈

∧
k V

∗,
λ ∈

∧
l V

∗ we have:

(A.1.8) iv(κ ∧ λ) = (ivκ) ∧ λ+ (−1)kκ ∧ (ivλ).

A.2. Quick review of calculus on manifolds

We have selected for presentation some topics which are taught during
courses on calculus on manifolds. We won’t present either the definition
of differentiable manifold or the construction of the tangent bundle. The
word “smooth” always refers to “class C∞”. Differentiable manifolds are
always assumed to be smooth (i.e., endowed with a smooth atlas) and to
have a Hausdorff topology. For maps, the word “differentiable” is to be
taken literally, i.e., a differentiable map is map that can be differentiated
once.

A.2.1. Vector fields and flows. Let M be a differentiable manifold
and let X be a smooth vector field over M , i.e., X is a smooth map from
M to the tangent bundle TM such that X(x) ∈ TxM , for all x ∈M . By an
integral curve of X we mean a differentiable map x : I → M , defined over
some interval I ⊂ R, such that:

dx
dt

(t) = X
(
x(t)

)
,

for all t ∈ I. Given t0 ∈ R and x0 ∈M , there exists a unique integral curve
x : I →M of X with t0 ∈ I, x(t0) = x0 and that is maximal, i.e., it cannot
be extended to an integral curve of X defined in a strictly larger interval.
Every integral curve of X is a restriction of a maximal integral curve. The
flow of X is the map F : dom(F ) ⊂ R×M →M such that, for all x0 ∈M :{

t ∈ R : (t, x0) ∈ dom(F )
}
3 t 7−→ F (t, x0) ∈M

is the maximal integral curve of X passing through x0 at t = 0. The domain
of F is open in R×M and the map F is smooth. For each t ∈ R, the map:

Ft : dom(Ft) =
{
x ∈M : (t, x) ∈ dom(F )

}
3 x 7−→ F (t, x) ∈M

is a smooth diffeomorphism between open subsets of M whose inverse is the
map F−t (the image of Ft is precisely the domain of F−t). The map F0 is
the identity map of M . Given t, s ∈ R, if x ∈M is in the domain of Ft and
Ft(x) is in the domain of Fs then x is in the domain of Ft+s and:

Ft+s(x) = Fs

(
Ft(x)

)
.



A.2. QUICK REVIEW OF CALCULUS ON MANIFOLDS 87

Let X be a smooth time-dependent vector field over a differentiable man-
ifold M , i.e., X is a smooth map from an open subset dom(X) of R×M to
the tangent bundle TM such that X(t, x) ∈ TxM , for all (t, x) ∈ dom(X).
For each t ∈ R, we obtain from X a smooth vector field Xt = X(t, ·) over
the open set:

dom(Xt) =
{
x ∈ X : (t, x) ∈ dom(X)

}
.

By an integral curve of X we mean a differentiable map x : I →M , defined
over some interval I ⊂ R, such that

(
t, x(t)

)
∈ dom(X) and:

dx
dt

(t) = X
(
t, x(t)

)
,

for all t ∈ I. Given t0 ∈ R and x0 ∈ M , if (t0, x0) ∈ dom(X), there exists
a unique integral curve x : I → M of X with t0 ∈ I, x(t0) = x0 and that
is maximal (in the sense explained above). Again, every integral curve of
X is a restriction of a maximal integral curve. For vector fields that do
not depend on time, it is true that the time translation of an integral curve
is an integral curve (i.e., if t 7→ x(t) is an integral curve and t0 ∈ R is
given then t 7→ x(t0 + t) is an integral curve); for that reason, one only
considers integral curves satisfying some initial condition at t = 0 when
defining the flow. For time-dependent vector fields it is not true that the
time translation of an integral curve is an integral curve, so it is relevant
to consider a flow with an arbitrary initial time t0: for a fixed t0 ∈ R, we
define the flow with initial time t0 of the time-dependent vector field X to
be the map F t0 : dom(F t0) ⊂ R× dom(Xt0) ⊂ R×M → M such that, for
all x0 ∈ dom(Xt0):{

t ∈ R : (t, x0) ∈ dom(F t0)
}
3 t 7−→ F t0(t, x0) ∈M

is the maximal integral curve of X passing through x0 at t = t0. The domain
of F t0 is open in R ×M and the map F t0 is smooth. In fact, we can say
more; the set: {

(t0, t, x) ∈ R×R×M : (t, x) ∈ dom(F t0)
}

is open in R × R ×M and the map (t0, t, x) 7→ F t0(t, x) ∈ M (defined on
such set) is smooth3. For each t ∈ R, the map:

F t0
t : dom(F t0

t ) =
{
x ∈M : (t, x) ∈ dom(F t0)

}
3 x 7−→ F t0(t, x) ∈M

is a smooth diffeomorphism between open subsets of M whose inverse is the
map F t

t0 (the image of F t0
t is the domain of F t

t0). Given t0, t, s ∈ R, if x is in
the domain of F t0

t and F t0
t (x) is in the domain of F t

s then x is in the domain
of F t0

s and:
F t0

s (x) = F t
s

(
F t0

t (x)
)
.

3Such properties of the flow of a time-dependent vector field X are easily established
as a corollary of the properties of the flow of the (time independent) vector field over the
manifold dom(X) ⊂ R×M defined by (t, x) 7→

(
1, X(t, x)

)
.
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For any t0 ∈ R, the map F t0
t0

is the identity map of dom(Xt0). When X do
not depend on time, we have that F t0

t coincides with F 0
t−t0 .

A.2.2. Tensor fields and differential forms. Given a differentiable
manifold M , then an (r, s)-tensor field over M (also called a tensor field that
is r times covariant and s times contravariant) is a map τ that associates to
each point x ∈M an (r, s)-tensor τ(x) (denoted also by τx) over the tangent
space TxM (see Section A.1). Scalar fields (i.e., real valued functions) are
(0, 0)-tensor fields and vector fields are (identified with) (0, 1)-tensor fields.
By a differential form of degree k (or simply a k-form) over M we mean an
anti-symmetric (k, 0)-tensor field κ over M (i.e., κ associates to each x ∈M
an element κ(x) of

∧
k TxM

∗). A zero-form is the same as a scalar field.
The natural counter-domain for an (r, s)-tensor field over M is the dis-

joint union:

(A.2.1)
( ⊗

r

TM∗
)
⊗

( ⊗
s

TM
)

=
⋃

x∈M

{x} ×
[( ⊗

r

TxM
∗
)
⊗

( ⊗
s

TxM
)]
.

The set (A.2.1) can, in a natural way, be turned into a differentiable mani-
fold, so that it makes sense to talk about smooth tensor fields. An atlas for
(A.2.1) is obtained as follows: given a local chart ϕ : U ⊂M → Ũ ⊂ Rn on
M , we define a local chart:⋃
x∈U

{x} ×
[( ⊗

r

TxM
∗
)
⊗

( ⊗
s

TxM
)]

−→ Ũ ×
[( ⊗

r

Rn∗
)
⊗

( ⊗
s

Rn
)]

over (A.2.1) by:
(x, τ) 7−→

(
ϕ(x), (dϕ−1

x )∗τ
)
.

The operations of tensor product and wedge product can be defined
(pointwise) for fields, i.e., if τ is an (r, s)-tensor field over M and τ ′ is an
(r′, s′)-tensor field over M then τ ⊗ τ ′ is the (r + r′, s+ s′)-tensor field over
M defined by:

(τ ⊗ τ ′)x = τx ⊗ τ ′x, x ∈M,

and, similarly, if κ is a k-form over M and λ is an l-form over M then κ∧ λ
is the (k + l)-form over M defined by:

(κ ∧ λ)x = κx ∧ λx, x ∈M.

The tensor product f ⊗ τ (or τ ⊗ f) of a scalar field f by a tensor field τ is
just the ordinary product fτ (i.e., the map that sends x ∈ M to f(x)τ(x))
and the wedge product f∧κ (or κ∧f) of a scalar field f by a differential form
κ is the same as the ordinary product fκ. The tensor product of smooth
tensor fields is smooth and the wedge product of smooth differential forms
is smooth.
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The operation of interior product by vectors can also be defined (point-
wise) for fields: if X is a vector field over M and τ is a (k, 0)-tensor field over
M then, for k ≥ 1, iXτ denotes the (k − 1, 0)-tensor field over M defined
by:

(iXτ)(x) = iX(x)τx, x ∈M.

We set iXτ = 0 for k = 0. The interior product iXτ of a smooth tensor field
τ by a smooth vector field X is a smooth tensor field.

If τ is an (r, s)-tensor field over M , X1, . . . , Xr are vector fields over M
and α1, . . . , αs are one-forms over M then τ(X1, . . . , Xr, α1, . . . , αs) denotes
the scalar field over M defined by:

(A.2.2) M 3 x 7−→ τx
(
X1(x), . . . , Xr(x), α1(x), . . . , αs(x)

)
∈ R.

The scalar field (A.2.2) is smooth if τ , X1, . . . , Xr, α1, . . . , αs are smooth.
If ϕ : N → M is a smooth local diffeomorphism defined over a differ-

entiable manifold N and if τ is an (r, s)-tensor field over M , we define the
pull-back ϕ∗τ to be the (r, s)-tensor field over N given by:

(ϕ∗τ)y = (dϕy)∗τϕ(y), y ∈ N.

When the tensor field τ is purely covariant (i.e., when s = 0) then the pull-
back ϕ∗τ is defined for any smooth map ϕ : N → M . In particular, the
pull-back ϕ∗κ is well-defined for any smooth map ϕ if κ is a differential form.
If the tensor field τ is smooth then the pull-back ϕ∗τ is also smooth. Given
a smooth local diffeomorphism ψ : P → N defined over a differentiable
manifold P then:

(ϕ ◦ ψ)∗τ = ψ∗ϕ∗τ.

The assumption that ϕ, ψ be local diffeomorphisms is not necessary if τ is
purely covariant.

A (smooth) local frame over an open subset U of a differentiable manifold
M is a sequence (e1, . . . , en) of (smooth) vector fields over U such that(
e1(x), . . . , en(x)

)
is a basis of TxM , for all x ∈ U . An (r, s)-tensor field τ

over M is represented with respect to such a frame by a family of maps:

(A.2.3) τ j1...js

i1...ir
: U −→ R, i1, . . . , ir, j1, . . . , js = 1, . . . , n,

in which, for x ∈ U , the real numbers τ j1...js

i1...ir
(x) represent τ(x) with respect

to the basis
(
e1(x), . . . , en(x)

)
(see (A.1.4)). If τ is smooth and the local

frame (e1, . . . , en) is smooth then the maps (A.2.3) are smooth. Conversely,
if for some family of smooth local frames whose domains cover M the cor-
responding maps (A.2.3) representing τ are smooth then τ is smooth.

Given a smooth map f : M → R and a vector field X over M , we set:

X(f) = df(X).

Given two smooth vector fields X, Y over M , then there exists a unique
vector field Z over M such that:

(A.2.4) Z(f) = X
(
Y (f)

)
− Y

(
X(f)

)
,
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for any smooth map f : M → R. Such vector field Z is smooth.

A.2.1. Definition. The only vector field Z satisfying (A.2.4) is denoted
by [X,Y ] and it is called the Lie bracket of the vector fields X, Y .

A.2.2. Definition. Let ϕ : N → M be a smooth map defined over a
differentiable manifold N . If X is a vector field over M and X ′ is a vector
field over N then we say that X ′ and X are ϕ-related (or related by ϕ) if:

X
(
ϕ(y)

)
= dϕy

(
X ′(y)

)
,

for all y ∈ N .

If ϕ is a local diffeomorphism then X and X ′ are ϕ-related if and only
if X ′ equals the pull-back ϕ∗X. We have the following:

A.2.3. Proposition. If ϕ : N →M is a smooth map, X ′, Y ′ are smooth
vector fields over N that are ϕ-related, respectively, to smooth vector fields
X, Y over M then the Lie bracket [X ′, Y ′] is ϕ-related to the Lie bracket
[X,Y ]. �

A.2.4. Definition. Let τ be a smooth (r, s)-tensor field over a differ-
entiable manifold M and let X be a smooth vector field over M . The Lie
derivative of τ with respect to X is the smooth (r, s)-tensor field LXτ over
M defined by:

(A.2.5) LXτ =
d
dt
F ∗

t τ

∣∣∣∣
t=0

,

where F denotes the flow of X.

Since the map Ft is a smooth diffeomorphism between open subsets of
M , the pull-back F ∗

t τ is always well-defined. The righthand side of (A.2.5)
is to be understood as follows: given any x ∈M , the value of the righthand
side of (A.2.5) at the point x is the derivative at t = 0 of the curve:

t 7−→ (F ∗
t τ)(x) ∈

( ⊗
r

TxM
∗
)
⊗

( ⊗
s

TxM
)
.

Here are the main properties of the Lie derivative. In what follows, X
denotes a smooth vector field over the differentiable manifold M .

(1) the Lie derivative commutes with restriction to open sets, i.e., if τ
is a smooth tensor field over M and U is an open subset of M then
the Lie derivative of τ |U with respect to X|U is the restriction of
LXτ to U :

L(X|U )(τ |U ) = (LXτ)|U .
(2) If f : M → R is a smooth map (regarded as a (0, 0)-tensor field

over M) then:
LXf = X(f).
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(3) If Y is a smooth vector field over M (regarded as a (0, 1)-tensor
field over M) then:

LXY = [X,Y ].

(4) If τ is a smooth (r, s)-tensor field over M , X1, . . . , Xr are smooth
vector fields over M and α1, . . . , αs are smooth one-forms over M
then:

X
(
τ(X1, . . . , Xr, α1, . . . , αs)

)
=

r∑
i=1

τ(X1, . . . ,LXXi, . . . , Xr, α1, . . . , αs)

+
s∑

i=1

τ(X1, . . . , Xr, α1, . . . ,LXαi, . . . , αs).

(5) If τ , τ ′ are smooth tensor fields over M then:

LX(τ ⊗ τ ′) = (LXτ)⊗ τ ′ + τ ⊗ (LXτ
′).

(6) If κ, λ are smooth differential forms over M then:

LX(κ ∧ λ) = (LXκ) ∧ λ+ κ ∧ (LXλ).

If τ is a smooth tensor field over M and F is the flow of a smooth vector
field X over M then the derivative of t 7→ F ∗

t τ at an arbitrary instant can
also be written in terms of the Lie derivative. In fact, this can be done even
when X is a time-dependent vector field.

A.2.5. Proposition. Let τ be a smooth (r, s)-tensor field over a differ-
entiable manifold M and let X be a smooth time-dependent vector field over
M . Given t0 ∈ R, if F t0 denotes the flow of X with initial time t0 then:

(A.2.6)
d
dt

(F t0
t )∗τ = (F t0

t )∗LXtτ,

where Xt = X(t, ·).

Proof. Let t1 ∈ R be fixed and let us show that (A.2.6) holds at t = t1.
Let G denote the flow of the vector field Xt1 . Set:

F̃t(x) = Gt−t1

(
F t0

t1
(x)

)
,

for all (t, x) ∈ R ×M for which the righthand side of the equality is well-
defined. We have F̃t1 = F t0

t1
and:

d
dt
F̃t(x)

∣∣∣∣
t=t1

=
d
dt
F t0

t (x)
∣∣∣∣
t=t1

,

for all x ∈ dom(F t0
t1

). It follows from the result of Exercise A.1 that:

d
dt

(F t0
t )∗τ

∣∣∣∣
t=t1

=
d
dt
F̃ ∗

t τ

∣∣∣∣
t=t1

.

Moreover:
(F̃ ∗

t τ)(x) = dF t0
t1

(x)∗
[
(G∗

t−t1τ)
(
F t0

t1
(x)

)]
,
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for all t ∈ R and all x ∈ M in the domain of F̃t. Taking the derivative at
t = t1 on both sides and taking into account that the map dF t0

t1
(x)∗ is linear,

we obtain:

d
dt

(F̃ ∗
t τ)(x)

∣∣∣∣
t=t1

= dF t0
t1

(x)∗
[ d

dt
(G∗

t−t1τ)
(
F t0

t1
(x)

)∣∣∣∣
t=t1

]
= dF t0

t1
(x)∗

[
(LXt1

τ)
(
F t0

t1
(x)

)]
,

for all x in the domain of F t0
t1

. The conclusion follows. �

A.2.6. Definition. We say that a smooth (r, s)-tensor field τ over a
differentiable manifold M is invariant under the flow F of a smooth vector
field X over M if F ∗

t τ is equal to (the restriction to the domain of Ft of) τ ,
for all t ∈ R. If X is a smooth time-dependent vector field over M , we say
that τ is invariant under the flow of X if (F t0

t )∗τ is equal to (the restriction
to the domain of F t0

t of) τ , for all t0, t ∈ R.

A.2.7. Proposition. Let τ be a smooth (r, s)-tensor field over a differ-
entiable manifold M and X be a smooth vector field over M . Then τ is
invariant under the flow of X if and only if LXτ = 0. If X is a smooth
time-dependent vector field over M then τ is invariant under the flow of X
if and only if LXtτ = 0, for all t ∈ R, where Xt = X(t, ·).

Proof. It suffices to consider the time-dependent case. The tensor field
τ is invariant under the flow of X if and only if:

(A.2.7)
d
dt

(F t0
t )∗τ = 0,

for all t0, t ∈ R. If LXtτ = 0 for all t ∈ R then (A.2.7) follows from (A.2.6).
If (A.2.7) holds for all t ∈ R, then using (A.2.6) with t = t0, we obtain that
LXt0

τ = 0 for all t0 ∈ R. �

Exterior differentiation is an operation that takes a smooth k-form κ
over a differential manifold to a smooth (k + 1)-form dκ over that same
manifold. Such operation is characterized by the following set of properties:

(1) exterior differentiation commutes with restriction to open sets, i.e.,
if U is an open subset of a differentiable manifold M and κ is a
smooth differential form over M then the exterior differential of
the restriction of κ to U is the restriction of dκ to U :

d(κ|U ) = (dκ)|U .

(2) Given a differentiable manifold M , then the map κ 7→ dκ that takes
smooth k-forms over M to smooth (k + 1)-forms over M is linear
(over the field of real numbers).

(3) Exterior differentiation agrees with ordinary differentiation over
smooth zero-forms (i.e., over smooth real valued functions).
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(4) The exterior differential of the exterior differential of a smooth
differential form κ vanishes:

d(dκ) = 0.

(5) If κ is a smooth k-form over a differentiable manifold M and λ is
a smooth l-form over M then:

d(κ ∧ λ) = (dκ) ∧ λ+ (−1)kκ ∧ dλ.

Let us show how properties (1)–(5) of exterior differentiation can be used
to compute the exterior differential of a differential form using a local chart.
Let ϕ : U ⊂ M → Ũ ⊂ Rn be a local chart on a differentiable manifold M .
If one denotes by xi : U → R, i = 1, . . . , n, the coordinate functions of ϕ (so
that ϕ = (x1, . . . , xn)) then it is customary to denote by ∂

∂xi , i = 1, . . . , n,
the local frame over U such that ∂

∂xi (p) is mapped by dϕ(p) to the i-th vector
of the canonical basis of Rn, for all p ∈ U , i = 1, . . . , n. If dxi denotes the
one-form which is the (exterior or ordinary) differential of the scalar field
xi then

(
dx1(p), . . . ,dxn(p)

)
is the dual basis of

(
∂

∂x1 (p), . . . , ∂
∂xn (p)

)
, for all

p ∈ U . If κ is a k-form over M then:

κ|U =
∑

I

κIdxI ,

where I runs over the k-tuples (i1, . . . , ik) with 1 ≤ i1 < · · · < ik ≤ n and:

κI = κ
(

∂
∂xi1

, . . . , ∂
∂xik

)
, dxI = dxi1 ∧ · · · ∧ dxik .

Using properties (1)–(5) of exterior differentiation it follows that:

(dκ)|U =
∑

I

dκI ∧ dxI .

Exterior differentiation commutes with pull-backs: if M , N are differen-
tiable manifolds, ϕ : N →M is a smooth map and κ is a smooth differential
form over M then:

d(ϕ∗κ) = ϕ∗dκ.
We have the following explicit formula for the exterior differential of a
smooth k-form κ over a differentiable manifold M :

(A.2.8) dκ(X0, X1, . . . , Xk) =
k∑

i=0

(−1)iXi

(
κ(X0, . . . , X̂i, . . . , Xk)

)
+

∑
i<j

(−1)i+jκ
(
[Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk),

for any smooth vector fields X0, X1, . . . , Xk over M , where the hat indicates
that the corresponding term was omitted from the sequence.

A smooth differential form is said to be closed if its exterior differential
vanishes; it is said to be exact if it is equal to the exterior differential of
another smooth differential form. By property 4 above, every smooth exact
form is closed. Poincaré Lemma says that every smooth closed form is
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locally exact, i.e., if κ is a smooth closed form over M then every point
of M has an open neighborhood U such that the restriction κ|U is exact
(actually, κ|U is exact whenever U is diffeomorphic to a star-shaped open
subset of Rn or, more generally, whenever U is contractible).

There is a very nice formula that expresses the Lie derivative of a differ-
ential form in terms of exterior derivatives and interior products. If κ is a
smooth differential form over a differentiable manifold M and X is a smooth
vector field over M then:

(A.2.9) LXκ = diXκ+ iXdκ.

In Exercise A.5 (which uses Exercises A.3 and A.4) we ask the reader to
prove a generalization of formula (A.2.9).

A.3. A little bit of Lie groups

A Lie group is a differentiable manifold G, endowed with a group struc-
ture, in such a way that both the multiplication map:

G×G 3 (g, h) 7−→ gh ∈ G

and the inversion map:
G 3 g 7−→ g−1 ∈ G

are smooth (in fact, the smoothness of the multiplication map implies the
smoothness of the inversion map, by the implicit function theorem). The
neutral element of a group G will be denoted by 1. The tangent space T1G at
the neutral element will be denoted by g. The space g can be endowed with
a binary operation (the Lie bracket) and with such operation it becomes a
Lie algebra and it is called the Lie algebra of the Lie group G (more details
are given below). To each g ∈ G, we can associate smooth diffeomorphisms:

Lg : G 3 x 7−→ gx ∈ G, Rg : G 3 x 7−→ xg ∈ G,

known respectively as the left translation map and the right translation map.
A vector fieldX overG is said to be left invariant (resp., right invariant) ifX
is Lg-related (resp., Rg-related) to X, for all g ∈ G (recall Definition A.2.2).
A left invariant (resp., right invariant) vector field is automatically smooth
and it is uniquely determined by its value at 1 ∈ G by the formula:

X(g) = dLg(1)X(1), g ∈ G,

(resp., by the formula X(g) = dRg(1)X(1), g ∈ G). We use the following
notation: letters like X, Y denote elements of g = T1G; given X ∈ g, we
denote by XL (resp., by XR) the unique left invariant vector field (resp., the
unique right invariant vector field) such that XL(1) = X (resp., such that
XR(1) = X). By Proposition A.2.3, the Lie bracket of left invariant (resp.,
of right invariant) vector fields is left invariant (resp., right invariant). We
define the Lie bracket [X,Y ] ∈ g of elements X,Y ∈ g by setting:

[X,Y ] = [XL, Y L](1),
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so that:
[X,Y ]L = [XL, Y L],

for all X,Y ∈ g. We have also:

(A.3.1) [X,Y ]R = −[XR, Y R],

for all X,Y ∈ g (this follows from the observation that XL and −XR are
related by the inversion map g 7→ g−1). Endowed with the Lie bracket,
the vector space g becomes a Lie algebra, i.e., a vector space endowed with
an anti-symmetric bilinear binary operation (X,Y ) 7→ [X,Y ] satisfying the
Jacobi identity:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0, X, Y, Z ∈ g.

Given X ∈ g then there exists a unique smooth group homomorphism:

γX : R −→ G

such that γ′X(0) = X (notice that γX(0) = 1, so that γ′X(0) ∈ g). The
map γX is also the maximal integral curve of XL (and also of XR) passing
through 1 at t = 0. The map:

exp : g −→ G

defined by:
exp(X) = γX(1), X ∈ g,

is smooth and it is called the exponential map of G. We have:

γX(t) = exp(tX),

for all t ∈ R, X ∈ g.

A.3.1. Actions of Lie groups on manifolds. Let G be a Lie group,
M be a differentiable manifold and:

ρ : G×M −→M

be a smooth (left) action of G on M , i.e., the map ρ is smooth and the map:

G 3 g 7−→ ρg
def= ρ(g, ·) ∈ Diff(M)

is a homomorphism from G to the group Diff(M) of all smooth diffeomor-
phisms of M . We write:

ρ(g, x) = g · x,
for all g ∈ G, x ∈ M . Given x ∈ M , we obtain from the action ρ a smooth
map:

βx : G −→M

defined by βx(g) = g ·x, for all g ∈ G. Given X ∈ g, we define a vector field
XM over the manifold M by setting:

(A.3.2) XM (x) = dβx(1)X ∈ TxM, x ∈M.
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The vector field XM is smooth. We have:

(A.3.3) XM (x) =
d
dt

(
exp(tX) · x

)∣∣∣∣
t=0

,

for all x ∈ M . Obviously, in (A.3.3) we can replace exp(tX) with γ(t),
where γ is any differentiable curve in G with γ(0) = 1 and γ′(0) = X. It is
easily checked that XM is the only vector field on M that is βx-related to
the right invariant vector field XR, for all x ∈ M . It follows from (A.3.1)
and from Proposition A.2.3 that:

(A.3.4) [XM , YM ] = −[X,Y ]M ,

for all X,Y ∈ g. In other words, the map X 7→ XM is an anti-homomor-
phism from the Lie algebra g to the Lie algebra of smooth vector fields over
M , endowed with the Lie bracket. For any x ∈M , the curve:

R 3 t 7−→ exp(tX) · x ∈M

is the maximal integral curve of XM passing through x at t = 0; thus, if F
denotes the flow of XM , then:

Ft = ρexp(tX),

for all t ∈ R.

A.3.1. Remark. The group Diff(M) of smooth diffeomorphisms of a
differentiable manifold M isn’t a (finite-dimensional) Lie group, but it can
be endowed with the structure of an infinite-dimensional Lie group (it is a
Fréchet Lie group if M is compact and, in general, it is a Lie group modeled
on a topological vector space which is an inductive limit of Fréchet spaces).
Unfortunately, given a smooth action ρ : G × M → M , then the group
homomorphism:

(A.3.5) G 3 g 7−→ ρg ∈ Diff(M)

is not smooth, unless M is compact. Let us then assume that M is compact.
The differential at the neutral element of a smooth homomorphism between
Lie groups is a homomorphism between their Lie algebras. The Lie algebra
homomorphism obtained by differentiating (A.3.5) at 1 ∈ G is precisely
the map g 3 X 7→ XM . But we have seen above that such map is not a
Lie algebra homomorphism, but an anti-homomorphism; what is going on
here? It happens that the Lie algebra of the infinite-dimensional Lie group
Diff(M) is identified with the space of smooth vector fields over M (vector
fields of compact support, if M is not compact) endowed with the negative
of the standard Lie bracket of vector fields!
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Exercises

Quick review of calculus on manifolds.

Exercise A.1. Let M , N be differentiable manifolds and

F : dom(F ) ⊂ R×M → N, F̃ : dom(F̃ ) ⊂ R×M → N

be smooth maps defined over open subsets of R ×M . For each t ∈ R, we
define maps:

Ft : dom(Ft) =
{
x ∈M : (t, x) ∈ dom(F )

}
3 x 7−→ F (t, x) ∈ N,

F̃t : dom(F̃t) =
{
x ∈M : (t, x) ∈ dom(F̃ )

}
3 x 7−→ F̃ (t, x) ∈ N.

Assume that for a certain t0 ∈ R the maps Ft0 and F̃t0 are equal and that:

d
dt
F (t, x)

∣∣∣∣
t=t0

=
d
dt
F̃ (t, x)

∣∣∣∣
t=t0

,

for all x ∈ dom(Ft0) = dom(F̃t0). Let τ be a smooth (r, s)-tensor field over
N ; if s 6= 0, assume that Ft and F̃t are local diffeomorphisms, for all t ∈ R.
Show that:

d
dt
F ∗

t τ

∣∣∣∣
t=t0

=
d
dt
F̃ ∗

t τ

∣∣∣∣
t=t0

.

(hint: there is no loss of generality in assuming that both M , N are open
subsets of Euclidean space. Notice that we can write (F ∗

t τ)(x) in the form
α
(
Ft(x),dFt(x)

)
, for some smooth map α and that the derivative of:

t 7−→ α
(
Ft(x),dFt(x)

)
at t = t0 depends only on the value and derivative at t = t0 of the map
t 7→ Ft(x)).

Exercise A.2. Let M , N be differentiable manifolds and:

F : dom(F ) ⊂ R×M −→ N

be a smooth map defined over some open subset dom(F ) of R ×M . For
t ∈ R, denote by Ft the smooth map F (t, ·) defined over the open set
dom(Ft) =

{
x ∈ M : (t, x) ∈ dom(F )

}
. Let κ be a smooth time-dependent

k-form over M , i.e., κ is a smooth map defined over some open subset
dom(κ) of R×M , associating an element κ(t, x) of

∧
k TxM

∗ to each (t, x)
in dom(κ). For each t ∈ R, we have a smooth k-form κt = κ(t, ·) over the
open subset dom(κt) =

{
x ∈ M : (t, x) ∈ dom(κ)

}
of M . Given t0 ∈ R,

show that the following equality holds over the open set F−1
t0

(
dom(κt0)

)
:

d
dt

(F ∗
t κt)

∣∣∣∣
t=t0

=
d
dt

(F ∗
t κt0)

∣∣∣∣
t=t0

+ F ∗
t0

( d
dt
κt

∣∣∣∣
t=t0

)
.

(hint: for a fixed x, define φ(t, s) = (F ∗
t κs)(x), and then write the derivative

of t 7→ φ(t, t) in terms of the partial derivatives of φ).
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Exercise A.3. Let M be a differentiable manifold and κ be a smooth
time-dependent k-form over M . For t ∈ R, set κt = κ(t, ·) and denote by
d
dtκt the smooth k-form over dom(κt) defined by:( d

dt
κt

)
(x) =

d
dt

(
κt(x)

)
, x ∈ dom(κt).

Show that the operation d
dt commutes with the exterior derivative, i.e.:

d
( d

dt
κt

)
=

d
dt

dκt,

for all t ∈ R (hint: write down the representation of κ with respect to a local
chart and observe that the exterior derivative and the operation d

dt involve
partial derivatives with respect to distinct variables).

Exercise A.4. Let M , N be differentiable manifolds and:

F : dom(F ) ⊂ R×M −→ N

be a smooth map defined over some open subset dom(F ) of R ×M . For
t ∈ R, denote by Ft the smooth map F (t, ·) defined over the open set
dom(Ft) =

{
x ∈ M : (t, x) ∈ dom(F )

}
. Given a k-form κ over N then the

generalized interior product i(F, κ) is the time-dependent (k − 1)-form over
M :

i(F, κ) : dom(F ) 3 (t, x) 7−→ i(F, κ)(t, x) ∈
∧
k−1

TxM
∗

defined by:
i(F, κ)(t, x) = dFt(x)∗

[
iv(t,x)κ

(
Ft(x)

)]
,

for all (t, x) ∈ dom(F ), where v(t, x) = d
dtFt(x) ∈ TFt(x)N . For t ∈ R, denote

by i(F, κ; t) the k-form over dom(Ft) defined by i(F, κ; t)(x) = i(F, κ)(t, x).
Show that if κ is a k-form over N and λ is an l-form over N then:

(A.3.6) i(F, κ ∧ λ; t) = i(F, κ; t) ∧ (F ∗
t λ) + (−1)k(F ∗

t κ) ∧ i(F, λ; t),

for all (t, x) ∈ dom(F ) (hint: use (A.1.8)).

Exercise A.5. Let M , N and F be as in the statement of Exercise A.4.
The goal of this exercise is to show that for a smooth k-form κ over N the
following formula holds:

(A.3.7)
d
dt
F ∗

t κ = d
(
i(F, κ; t)

)
+ i(F,dκ; t).

Notice that if N = M and F is the flow of a smooth vector field X over
M then formula (A.3.7) (with t = 0) reduces to (A.2.9). Let t ∈ R be
fixed and for a smooth k-form κ over N consider the smooth k-forms over
dom(Ft) ⊂M defined by:

D1(κ) =
d
dt
F ∗

t κ, D2(κ) = d
(
i(F, κ; t)

)
+ i(F,dκ; t).

We have to show that D1(κ) = D2(κ), for any smooth differential form κ
over N .
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(a) Check that the map κ 7→ Di(κ) is linear (over the field of real
numbers), for i = 1, 2.

(b) Check that, if κ and λ are smooth differential forms over N then:

Di(κ ∧ λ) = Di(κ) ∧ (F ∗
t λ) + (F ∗

t κ) ∧Di(λ),

for i = 1, 2 (hint: for i = 2 use formula (A.3.6)).
(c) Check that both D1 and D2 commute with the exterior derivative,

i.e., that Di(dκ) = d
(
Di(κ)

)
, i = 1, 2 (hint: for i = 1 use the result

of Exercise A.3).
(d) Use the results of the items above to conclude that the set of smooth

differential forms κ over N for which D1(κ) = D2(κ) is a real vector
subspace closed under exterior products and exterior derivatives.

(e) Check that D1(κ) = D2(κ) when κ is a smooth zero-form (i.e., a
smooth real valued function) over N .

(f) When N admits a global chart then any smooth differential form
over N can be obtained from smooth zero-forms using exterior
derivatives, exterior products and sums. Explain why it suffices
to prove (A.3.7) in the case when N admits a global chart. Con-
clude the proof of (A.3.7).


