BANACH MANIFOLD STRUCTURE FOR GENERAL SETS OF MAPS

DANIEL VICTOR TAUSK

ABSTRACT. We present a method for introducing a Banach manifold structure on sets of
mapsf : Q@ — M, where( is a set andV/ is a manifold. This new approach generalizes
and simplifies the classical work developed on [4] and also the more recent work [5].

1. INTRODUCTION

The introduction of infinite-dimensional manifold structures on sets of maps is the foun-
dation of modern calculus of variations and global analysis. It also plays the central role
in concrete applications of infinite-dimensional Morse theory and general critical point
theory.

In this paper we give conditions under which sets of maps can be endowed with Banach
manifold structures. More specifically, we consider the following setup. (L& an
arbitrary setand assume that we are given a riicthat assigns to each smooth manifold
M aseti(Q, M) of mapsf : Q@ — M and a topology on the s&ti(Q2, M). We assume
the validity of eight natural axioms for the rud@ and we show that for every manifold
the topological spac®i(2, M) can be endowed with the structure of a Banach manifold.
Such structure will be explicitly described in terms of local charts. Moreover, the Banach
manifold structure oP(Q2, M) is unique under some naturality conditions. The eight
axioms and the detailed construction of the Banach manifold structufg@n M) is
presented in Section 2. In Section 3 some concrete examples where the theory applies are
discussed,; first, we list a few rul@® for which the topological spacési(2, M) can be
easily described for arbitrary manifoldg. Then we give a general theorem showing that,
given a Banach spacgof mapsf : Q — IR satisfying two simple conditions, then there
exists a unique rul@t satisfying the eight axioms of Section 2 and wWitl(2, IR) = £.

Using this theorem we are able to construct several other examples ofuleswhich

the theory of Section 2 applies. We emphasize that the rfiagd — M belonging to our
Banach manifold$)t(€2, M) need not be continuowend in fact, in some examplesne

does not even need to fix a topologyfanFor example, for any sét, we obtain a Banach
manifold structure on the s&(Q2, M) of all mapsf : Q — M with relatively compact
image. IfQ2 is an arbitrary measure space, we also define a Banach manifold based on the
space of bounded mags: Q@ — IR with f € LP(Q, IR).

In what follows we will make a comparison between the constructions presented in this
paper and others appearing in the literature. We also sketch the idea behind our construc-
tion of the manifold structure abi($2, M).

It should be pointed out that in this paper we only consider Banach and Hilbert manifold
structures, which are in practice more applicable from the point of view of critical point
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theory. The theory of manifolds modelled on more general locally convex topological
vector spaces have been recently developed in detail in [2].

The classical work [4] introduces a Banach manifold structure on a set of se®iiQEs
of a smooth fiber bundI& over a smooth compact manifold with bound&yThe Banach
manifold M(E) is modelled on Banach spaces of the fodR{¢), where¢ is a vector
bundle neighborhoodn £, i.e., £ is an open subset df endowed with the structure of a
vector bundle ovef2. The rulefn that assigns to each vector bundla Banach space of
sectionMi(&) of £ is supposed to satisfy some axioms. For exanipté€s) should have a
continuous inclusion on the space of continuous sectiogg@fidowed with the compact-
open topology) and the left composition mapy¢) — Mi(n) induced by smooth fiber
bundle morphisms : ¢ — n should be continuous. Banach manifold structures for sets
of mapsf : Q@ — M, whereM is an arbitrary manifold, are obtained by identifying such
maps with sections of the trivial fiber bundlex M — Q.

Following the approach of [4], one would not expect to obtain Banach manifold struc-
tures on sets of sectiof®(E) of a fiber bundleF whose base manifol is not compact.

For the case of noncompact bases, the standard literature on the subject tends to present
Freclet manifold structures; typically, the topology ®t(E) is induced by the restriction
mapsM(E) — M(E|x), whereK C 2 is a compact domain arfii( E| i) is endowed

with a Banach manifold structure.

In [5], Banach manifold structures for sets of maps with noncompact domains are stud-
ied. The basic example of the theory of [5] is the nonlinear version of the Banach space
CP(Q, IR) of bounded continuous mags: Q — IR defined on a (not necessarily com-
pact) topological spac€, endowed with the sup norm. More precisely, it is introduced
a Banach manifold structure on the §&}(2, M) of continuous mapg : Q2 — M with
relatively compact image ai/. The technique for introducing the Banach manifold struc-
ture onCY (€2, M) is based on an infinite-dimensional version of the rank theorem, which
is used to show that? (2, M) is a smooth (embedded) submanifold of the Banach space
CP(Q, IR™), where M is embedded inR" using Whitney's theorem. Later, it is shown
that the manifold structure af{ (2, M) does not depend on the particular embedding of
M in the Euclidean space. We point out that there is no explicit description of a smooth
atlas for the Banach manifol@ (€2, A1) in [5].

From [5] it becomes clear that compactness of the dorfais not a crucial property
for the introduction of a Banach manifold structure on a set of &L, M ); indeed,
one only needs compactness oniti@ge(or in the closure of the image) of the maps in
M(2, M). The problem is that this new view is in principle conflicting with the spirit of
[4]; namely, if s :  — FE is a continuous section of a fiber bundie —  then the
image of s is always closed inF and homeomorphic té2, so that compactness in the
image is actually equivalent to compactness in the domain. One is therefore not expected
to obtain examples of Banach manifolds of maps with noncompact domain if spaces of
mapsf : 2 — M are considered as particular cases of spaces of sections of fiber bundles.

Any axiomatization for a rulét that leads to the introduction of Banach manifold
structures on sets of map® (2, M) (or M(F)) should include some sort of axiom re-
quiring continuity of left composition mapg — ¢ o f (at the very least, one needs
continuity of f — ¢ o f when¢ is a smooth diffeomorphism). If, as in [4], one mod-
els the Banach manifolds on Banach spa®§g) of sections of a vector bundie — 2
then the natural left composition majps— ¢ o f to be considered are the ones induced
by smooth fiber bundle morphisms: ¢ — 7 (see [4, Axiom§5]). In the case where
£ =Q x R™ n=Q x IR" are trivial vector bundles, such morphismsake the form
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Qx R™ > (a,z) — (a,¢(a,z)) € Q x IR™ and the corresponding left composition map
carriesf : Q@ — R™t0Q 3 a — ¢(a, f(a)) € R™. If Qis not compact then, in most
examples, such left composition maps are not continuous or even well-defined, i.e., they
do not take values if0t(2, IR™). Instead, one usually has only the continuity of the left
composition map’ — ¢ o f whereg is applied only tof (a) and not toa. This gives an-

other hint of the fact that it is more natural to work directly with sets of maps$) — M

and not with sections of trivial fiber bundles.

It should be mentioned that the use of Banach differentiable structures on sets of maps
with noncompact domains is indeed relevant. For instance, in the stiMigreé homology
in [6], one is lead to consider Sobolev spaces of maps of the féffiR, M) (see the
introduction of [5] for more examples where noncompact domains are used).

We emphasize that, differently from [5], the constructions and the Tmegults of this
papernever use embeddings of the manifolds into Euclidean spabés is possibly a
matter of personal taste, but the author feels that this is the most elegant way of dealing
with manifolds. Also, the explicit description of coordinate charts9of(2, M) is often
useful when dealing with spaces of maps in practical applications.

Let us now give a sketch of the main ideas behind the construction of the differentiable
structure of(§2, M). The most tempting way of defining a coordinate chardf{2, M)
is to consider the left composition map+— ¢ o f, wherep : U C M — IR"is a
coordinate chart od/. This kind of charts are indeed smoothly compatible with each
other in the examples we consider, but obviously one cannot expect that they form an atlas
for M(Q2, M); namely, there may be magse (2, M) whose image is not contained
in the domain of a chart al/. Since we only consider magswith relatively compact
image, one can cover the image pfwith a finite number of coordinate charts, i =
1,...,r, but there is no visible way of combining the chapis i = 1,...,r into a chart
for M (2, M) aroundf. Instead, let us take a look at the vector bundle neighborhoods of
[4]. As explained before in this introduction, a vector bundle neighbortiood a fiber
bundleE — Q is an open sef C FE which has the structure of a vector bundle over
Q. Obviously, in our cas&2 may not even be a topological space, so we shouldn’t talk
about fiber bundles ovee; but let us just for the moment assume tkiats a manifold.

For eacha € (2, the fiber¢, of £ overa is an open subset of the fibér, of E overa;
moreover¢, is endowed with the structure of a real finite-dimensional vector space. Just
for psychological reasons, it seems simpler to picture this situation in terms of a smooth
diffeomorphismyp, : V, — &,, whereV, C E, is open and, is a real finite-dimensional
vector space. Now, is just a chart ort,; in the case thakl = Q) x M is a trivial bundle,

the vector bundle neighborhod@dcan be thought of as a family of cha(ts, ).cq on M,
where the domain op, is an open subsét, of M (depending orz) and the counter-
domain ofyp, is a vector spacg, (also depending oa). So, rather than trying to cover the
image of a magy : 2 — M with a finite number of charts, we cover it withcantinuous
family of charts(¢,).cq, wheref(a) belongs to the domain a@f,, for everya € Q. This
yields a chart ot (2, M) around f taking values in the space of sections of a vector
bundle.

Now, the key observation here is that tinelex setfor the family of charts(,).cq
doesn’t need to have anything to do with the donfaiof the mapsf. Instead, we consider
anarbitrary smooth manifold\ to parameterize the chartg and we consider an arbitrary
vector bundles over X playing the role of the old vector bundle neighborhood. We then
consider a smooth diffeomorphism: V' — V between open subsets € X x M and

Iwe did use the existence of embeddings into Euclidean space occasionally in some less important remarks.
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V C ¢ such that for every: € X, the mapy, = ¢(z, -) carriesV, = V N ({z} x M) to
V,=Vn &.. Thus(y.)zex IS now a parameterized family of charts éh. In order to
complete the construction of the chart 92, M) aroundf : @ — M, we need a map
o : Q — X that tells us for each € (2, which of the chartsp,. should be used around
f(a); more explicitly, the chart ot(2, M) is of the formf — ¢ o (o, f) and it takes
values on the space of sections2 — ¢ of £ alongo. It may sound a bit surprising that
the construction of a chart arourfddoes not use any sort of continuity ffand does not
use approximations by smooth maps as in [4].

2. THE GENERAL AXIOMATIZATION

Given setsd, B we will denote byB“ the set of all maps fromd to B. Throughout
this section we will consider fixed a s@tand a rule?)t that assigns to each manifold
a subsedn(2, M) of M and a topology on the s&R(Q2, M). By a manifoldwe will
mean a smooth finite-dimensional real manifold whose topology is Hausdorff and second
countable, wheremoothmeans “of clasg’>".

Below we will list a few axioms concerning the ru) that will allow us to construct a
Banach manifold structure on the topological sp2it&?, M ).

Axiom AO. There exists a manifold/, for which (€2, My) is nonempty.

Axiom Al. Given manifoldsi/, N and a smooth map : M — N thengo f € M(Q, N)
for all f € 9($2, M ); moreover, thdeft composition map
LC(¢) : M(Q, M) — M(Q, N)
defined byLC(¢)(f) = ¢ o f is continuous.
Obviously axiom (Al) implies that iy : M — N is a smooth diffeomorphism then
LC(¢) is a homeomorphism. Also, from axioms (A0) and (A1) we obtain fhiaf2, M)

contains all constant maps; to see that, simply evall@tgp) in an arbitrary element of
M(2, My), whereg : My — M is an arbitrary constant map.

Axiom A2. Let My, M, be manifolds and denote lpy,, pr, the projections of the product

My x M. The map:

(2.2) (LC(pry), LC(pry)) : M(Q, My x M) — IN(Q, My) x M(SY, Mo)

is a homeomorphism, where the counter-domain of (2.1) is endowed with the standard
product topology.

Obviously one can show by induction a version of axiom (A2) for arbitrary finite prod-
ucts of manifolds.

Axiom A3. For any manifold\/ the elements di)t(2, M) have relatively compact image
in M, i.e., the selm(f) is compact for allf € (22, M).

Axiom A4. Let M be a manifold and/ C M be an open subset. ff € M(Q, M) and

Im(f) c Uthenthemag : Q@ — UisinM(Q,U).

If U is open inM then axiom (A1) implies tha®)t(2, U) is a subset oft(Q, M),
provided that we identify/** with a subset of\/* in the obvious way. Moreover, axioms
(A3) and (A4) imply that:

(2.2) M(QLU) = {f € MQ,M) :Im(f) CU}.
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For later use we observe that (2.2) implies:

(2.3) MOQ,UNV)=MQ,U)NM(Q, V),
for any open subsefd, V' C M. Also, axioms (A3) and (A4) imply that:
(2.4) M(Q, ¢~ 1(U)) = LC(e) " (M(Q, 1)),

for every smooth map : M — N and every open subsétcC N.

Axiom A5. By identifying U*? with a subset of\/*} then9(Q2, U) is open ind (2, M)
and has the topology induced frdi(Q2, M).

Axiom A6. Given a manifoldV/ and a pointz € §2 then theevaluation map
(2.5) eval, : M(Q, M) — M
given byeval, (f) = f(a) is continuous.

Observe that axiom (A6) means that the topologyiof(2, M) is finer than pointwise
convergence topology, i.e., the topology induced from the product topology 8n In
particular, all space®i(£2, M) are Hausdorff.

Before stating the last axiom, we prove the following:

2.1 Lemma. If F is a finite-dimensional real vector space (regarded as a manifold in the
canonical way) then the séii(Q, E) is a subspace of the vector spaE€. Fort ¢ IR,
denote by; : Q — IR the constant map equal tpassuming that the map:

(2.6) R>tr— ¢ € MO, R)

is continuous theMt((2, E) is a topological vector space, i.e., the vector space operations
of M(2, E) are continuous.

Proof. We know that)i(§2, E') contains the constant maps, so it contains the identically
zero map. Moreover, by axiom (A2 (2, E x E) can be identified with the product
M(Q, E) x M(, E); since the summafy x £ > (v,w) — v+ w € F is smooth,
axiom (A1) implies thatn(Q), E) is closed under addition and that the sumB{Q, F)

is continuous. For fixed € IR, the homotetyr > v — tv € E is smooth, and thus axiom
(A1) implies thatt(Q2, E) is closed under scalar multiplication. Finally, by axioms (A1)
and (A2), the mapi(Q2, R) x M(Q, E) — M(N, E) induced by scalar multiplication is
continuous; thus, if (2.6) is continuous, then the scalar multiplicatidii¢f?, £) is also
continuous. |

Axiom A7. The real vector spac®i((2, IR) is Banachble i.e., there exists a norm on
M(QY, IR) that induces its topology and that makes it into a Banach space.

Obviously axiom (A2) implies tha®t(2, IR™) is linearly homeomorphic to the topo-
logical direct sumdD,, M(Q2, IR) and thusii(2, IR™) is also a Banachble space, for all
n. More generally9lt(Q2, E) is a Banachble space for every real finite-dimensional vector
spaceF, by axiom (Al).

2.2 Lemma. Given manifolds\/, N and a smooth embedding: N — M then the map
LC(¢) : M(Q, N) — M(Q, M) is a homeomorphism onto its image, which is given by:

2.7 Im(LC(¢)) = {f € M(Q, M) : Im(f) C Im(¢)}.
Moreover, if Im(¢) is closed inM thenIm(LC(¢)) is closed iroR(Q, M).
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Proof. Since¢ : N — Im(¢) is a smooth diffeomorphism, by axiom (A1), we can assume
without loss of generality tha¥ is a submanifold of\/ and thaty is the inclusion map.
We then identifyi($2, N') with a subset of)t(2, M), beingLC(¢) the inclusion map.
Using a tubular neighborhood d@f in M we can find an open séf C M containing

N and a smooth retraction: U — N, i.e.,r|xy = Idy. ThenLC(r) is a continuous
left inverse of the inclusion oft(Q2, N) in 9M(2, U); observing that, by axiom (A5),
M(Q2, U) has the topology induced frodi (2, M), we conclude tha®t(2, N) has the
topology induced fromt (2, M), i.e., LC(¢) is a homeomorphism onto its image. The
inclusion of the lefthand side of (2.7) into the righthand side of (2.7) follows from axiom
(A3). Moreover, if f € M(Q, M) andIm(f) C N thenf € M(Q,U), by axiom (A4)
and thusf = LC(r)(f) is in 9(Q2, N). This proves (2.7). Finally, the fact th@g (2, V)

is closed i (2, M) if N is closed inM follows from axiom (A6). O

Letr : £ — X be a smooth vector bundle over a manifd{d Giveno € (2, X) we

set:
M, &0) ={s €MD, &) :mos =0},
and we endovdt(2, &; o) with the topology induced b$3t(2,¢). If U C & is open then
we also write:
M(Q,U;0) =MQ,U)NM(Q, & 0),

and we endowt(2, U; o) with the topology induced bt(€2, ), which, by axiom (A5),
coincides with the topology induced i(2,U). Moreover, M(2,U; o) is open in
M(Q, & 0).
2.3 Lemma. If 7 : £ — X is a smooth vector bundle over a manifoldand o is in
M, X) thenM(Q,; o) is a subspace of the vector space of all maps2? — £ with
mos=o. Moreoverd(€, ; o) is a Banachble space.

Proof. By axiom (A3) we can covelm(c) with a finite number of open set§;, C X,
i =1,...,r, such that is trivial overU; for eachi. Denote byn the dimension of the
fibers of¢ and for each = 1,...,r let¢; : 7~ 1(U;) — IR" be a smooth map whose
restriction to each fiber is an isomorphism. I&t)7_, be a smooth partition of unity on
the open set/ = | J._, U; such thasupp();) C U; for all i. Consider the smooth map

¢ N U) — EB]R” =~ R™

whosei-th coordinate equalé\; o 7)¢; on7—1(U;) and equals zero on—1(U \ U;), for
i=1,...,r. Then(m, ¢) : 7=1(U) — U x IR™ is a smooth vector bundle isomorphism
from 7—1(U) = ¢|y onto a vector subbundigof the trivial bundlelU x IR™. Observe
that if s € MM(Q, &;0) thenIm(s) C £|y and thus, by axioms (A4) and (A5), we have
M(Q, & 0) = M(N, € u; o). Sinceg is a closed submanifold df x IR"™, Lemma 2.2
implies thatLC(w, ¢) is a linear homeomorphism betwe8R(€2, {|i; o) and the closed
subspacén((, &; o) of the Banachble spad® (), U x IR"™;c) = IM(Q, R™). O

In order to construct a smooth atlas on the sp@B¢€, M), we will have to prove the
smoothness of certain left composition maps on Banachble spaces of th##@eng; o).
To that aim, we will employ a general lemma that allows one to establish differentiability
of maps between Banach spaces.

2.4. Definition. Let E be a Banachble space.s&parating set of continuous linear maps
for E' is a setA of continuous linear maps: £ — F, whereF is a Banachble space that
may depend on\, such that for every nonzekoc E there exists\ € A with A(v) # 0.
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Given Banachble spacés F', we denote byLin(E, F') the Banachble space of contin-
uous linear maps fron to F'.

2.5 Lemma (weak differentiation principle)Let F, F' be Banachble space&, C E an
open subsetf : U — F amap and\ a separating set of continuous linear maps farlf
there exists a continuous mgp U — Lin(F, F') such that:

d
(2.8) SO N+ =A(g@p),
forallz € U,v € E, A € Athenf is of classC! anddf = g.
Proof. See [5, Proposition 3.2]. O

Let X be a manifold andr! : ¢ — X, 72 : ¢€2 — X be smooth vector bundles
over X. We denote by¢! @ £2 the Whitney sunof ¢! and¢?, i.e., the vector bundle
over X whose fiber overr € X is £ @ 2. There exists an obvious diffeomorphism
betweent! @ ¢2 and the closed submanifold of the prodgétx &2 consisting of pairs
(v,w) € & x €2 with 7! (v) = 72(w). Thus, using Lemma 2.2 and axiom (A2) we obtain
a linear homeomorphism:

(2.9) M(Q, € © €% 0) ZM(Q, €5 0) ©M(Q, 6% 0),
foranyo € M($, X).

Denote byLin(¢1, £2) the vector bundle ovek whose fiber over: € X is the space
Lin(¢l,£2) of linear maps frong? to £2. Consider the smooth map:

C:Lin(¢", ) @¢ — ¢
defined byC(T,v) = T'(v), forall T € Lin(¢l,£2), v € €1, 2 € X. By axiom (A1), the
mapLC(C) is continuous and using the identification given in (2.9) we obtain a continuous
bilinear map:
LC(C) : M(Q, Lin(¢", €%);0) x M(Q, €15 0) — M(Q, €% 0).

The continuous bilinear mapC(C) above then induces in a natural way a continuous
linear map:
(210) O :M(Q,Lin(¢!,€%);0) — Lin(M(Q, €450), M(Q,€%0));

more explicitly, we have)(T')(s)(a) = T'(a)s(a), for everyT € M(Q,Lin(¢!,£2);0),
s € M(Q,¢0) anda € Q. The construction above will be used in the proof of
Lemma 2.6 below.

Recall that, given smooth vector bundtes: ¢! — X, 72 : ¢€2 — X over a manifold
X then a mapp defined on a subset gf, taking values ir¢? is calledfiber preservingf
72(¢(v)) = ' (v), for all v in the domain ofp.

2.6. Lemma. Letr! : ¢! — X, 72 : £2 — X be smooth vector bundles over a manifold
X and letp : U — £2 be a smooth fiber preserving map defined on an open stibsef!.
Giveno € M(Q, X) then:

LC(6) : MR, U3 0) — M(, % 0)
is @ smooth map on the open sut®e{(2, U; o) of the Banachble spacBt(Q, £*; o).
Proof. Denote byF¢ thefiber derivativeof ¢ which is the smooth fiber preserving map:
F¢ : U — Lin(¢', £2)
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defined byF¢(v) = d(@leiny)(v), forallv € £, NU, = € X. Our strategy is to use
Lemma 2.5 to show thdtC(¢) is of classC! and that:
d(LC(¢)) = O o LC(F9).
The smoothness dt.C(¢) will then follow by induction. We already know tha® is
continuous and thdtC(F¢) is continuous, by axiom (Al). For eache (2, denote by:
eval, : M(Q, % 0) — fg(a)

the map of evaluation at. We know from axiom (A6) thatval, is a continuous linear
map and then obviously = {evala ta € Q} is a separating set of continuous linear maps
for M(€2, £2; o). The verification of the hypothesis (2.8) on Lemma 2.5, wite LC(¢),

g = O o LC(F¢), is now straightforward. O

We will now consider a fixed manifold/ and we will construct a smooth atlas for
M(Q, M). Letw : £ — X be a smooth vector bundle over a manifé{dand let:

: XxMDV —VcC¢

be a smooth diffeomorphism, whe¥eis open inX x M andV is open in¢; we assume
in addition thaty is fiber preservingn the sense that o ¢ = pr, |/, wherepr, denotes
the first projection of the product x M. Giveno € (0, X) we write:

(2.11) MQ,M;0,V)={f €MQ,M): (0,f) €M, V)} C M, M),
and we consider the map:
(2.12) LC(p;0) : M(Q, M;0,V) — M(Q, Vo) C M(Q, & 0),

defined byLC(p;0)(f) = ¢ o (o, f). The seti(2, M;0,V) is open ind(Q, V), by
axioms (A2) and (A5); moreove?)i(£2, V; o) is open in the Banachble spa®(, ¢; o)
andLC(p; o) is a homeomorphism, by axiom (Al). ThLE(p; o) is a (topological) local
chart in the topological spaéat(Q2, M). We will call X theauxiliary manifoldando the
auxiliary mapcorresponding to the chatiC(y; o).

Our goal now is to show that the local charts (2.12) form a smooth atlag @ M).

2.7. Lemma. Letw : £ — X, 7' : 5 — Y be smooth vector bundles over manifolds
X,Y and lete € M(Q, X), 7 € M(Q,Y) be fixed. Given smooth fiber preserving
diffeomorphisms:

P XxM>OV-—VCE »:YxM>O>W-—Wcy

between open sets, V, W, W then the local chart&.C(y; o) andLC(¢; 7) ond(2, M)
are smoothly compatible, i.e., the transition ma@(v; 7) o LC(p; o)~ is a smooth dif-
feomorphism between open sets.

Proof. The strategy of the proof is two modify the chalt€(p; o) andLC(y; 7) so that
they both correspond to the same auxiliary manif&lld< Y and the same auxiliary map
(o,7) € M(Q, X x Y). To this aim, consider the smooth vector bundles:

axIdy :EXY — X xY, Idxxa': Xxn— XxY
over the manifoldX x Y. By axiom (A2), we have obvious linear homeomorphisms:

M(Q,&0) ZM(Q,EX Y (0,7), MQn7) XM(Q X xn;(0,7)),
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where(o, 7) € M(2, X xY). By taking restrictions of the linear homeomorphisms above
we obtain the following homeomorphisms:

(2.13) M(Q,V;0) ZM(Q,V x Y;(0,7)), MQ,W;7) = M(Q, X x W; (0,7)).
Also, by axiom (A2), we have (recall (2.11)):

(2.14) M(Q, M;0,V) =M(Q,M; (0,7),s(Y x V)),

(2.15) M(Q, M;7, W) =M(Q,M; (0,7), X x W),

wheres : Y x X x M — X x Y x M is the map that swaps the first two coordinates.
Consider the smooth fiber preserving diffeomorphisms:

P:XXYXM>Ds(YXV)—VxYCEXY,
DXXYXMOXXxW —XxWcXxn,

defined by (z,y,m) = (¢(x,m),y), ¥(z,y,m) = (z,%(y,m)). Using the identities
(2.14), (2.15) and the identifications (2.13), the ch&gy; o) andLC(«; 7) are identi-
fied respectively with the charts:

(2.16)  LC(%; (0, 7)) : M(Q, M; (0,7),5(Y x V)) — M(Q,V x Y;(a,7)),

(2.17) LC(¢; (,7)) : M(Q, M; (0,7), X x W)) — M(Q, X x W; (0,7)).

By (2.3), the intersection of the domains of the charts aboﬁﬁ(@ M; (o,7),Z), where:
Z=s5(Y xV)N(X xW)CXxY x M.

Hence, the transition map between the chifi{; (7, 7)) andLC(¢; (0, 7)), which, up
to the identifications (2.13), is equal to the transition map betiig&ip; o) andLC(v; 1),
is given by:

LC($op ) M(Q,3(2); (0,7)) — M(Q,B(2); (0,7));

since o @71 : 8(Z) — (Z) is a smooth fiber preserving diffeomorphism, Lemma 2.6
implies that the map above is a smooth diffeomorphism between open sets, which proves
thatLC(p; o) andLC(y; 7) are smoothly compatible. O

A topological spaceY is calledhereditarily paracompacif every subspace ok’ is
paracompact (or, equivalently, if every open subspac& @ paracompact). Under our
conventions, all manifolds are hereditarily paracompact. We have the following:

2.8 Lemma. Let f : X — Y be a local homeomorphism, whei& )’ are topological
spaces, with)y Hausdorff and hereditarily paracompact. $f C X is a subsétsuch that
fls : S — f(S) is a homeomorphism then there exists an operZset X’ containingS
such thatf|z : Z — f(Z) is a homeomorphism.

Proof. The proof follows a standard argument that is used in some proofs on the existence
of tubular neighborhoods (see for instancesR, Chapter 1V]). O

2.9. Proposition. The local charts of the forrf2.12)form a smooth atlas on the topologi-
cal space(Q, M).

2Actua||y, if one assumes thgt(.S) be closed ir)y then it would be sufficient to assume tBabe Hausdorff
and paracompact, rather than hereditarily paracompact.
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Proof. By Lemma 2.7, it suffices to find for everfye 9t(Q2, M) a chart of the form (2.12)
onM(Q2, M) whose domain containg Choose an arbitrary Riemannian metrican(or
an arbitrary connection ofiA/) and denote bgxp the corresponding exponential map,
which is a smooth\/-valued map on an open subdetof TM. If = : TM — M denotes
the projection then, by the inverse function theorem, the (wapxp) : D — M x M isa
smooth local diffeomorphism on an open subsebafontaining the zero section GfM;
thus, by Lemma 2.8, there exists an open%e:t T M containing the zero section which
is mapped diffeomorphically byr, exp) onto an open subsé C M x M containing
the diagonal. The desired char€(y; o) is now obtained by taking = TM, X = M,

¢ = (mexp)t: V — Vando = f. O

2.10 Remark.As we have already observed, axiom (A6) implies that the spig(@, M)

is Hausdorff. Actually, sincé/ can be embedded iR" for somen by Whitney’s theorem,
Lemma 2.2 implies tha®t(2, M) is homeomorphic to a subspace of the Banachble space
M(QY, R™). ThusM(Q, M) is T4, metrizable and hereditarily paracompact. Moreover,
M(Q, M) is second countable if the Banachble sp2it€, IR) is separable.

2.11 Remark.Obviously if the Banachble spa@8(2, IR) is Hilbertablethen the proof of
Lemma 2.3 shows that the spaé@i¥(2, &; o) are also Hilbertable and therefd®(Q2, M)
is a Hilbert manifold for any manifold/.

From now on, on this section, we will assume that the spaGéQ, M) are endowed
with the Banach manifold structure defined by the charts (2.12) and we will prove a few
basic results about such manifold structure.

The next two propositions are rather trivial though important for the completeness of
the theory.

2.12 Proposition. If E is a finite-dimensional real vector space (regarded as a mani-
fold in the canonical way) then the Banachble spag&?, F) has its canonical manifold
structure, i.e., the manifold structure induced by the atlas containing the identity map of
M, E).

Proof. Let X be a one point (zero-dimensional) manifold= E — X be the trivial
bundle overX whose unique fiber i€ and letc € (2, X) be the unique constant
map. The charLC(p;0) : M(Q, E;0, X x E) = M(QL E) — M(Q, & 0) = M(Q, E)
induced by the obvious diffeomorphism: X x E — £ is equal to the identity map. [

2.13 Proposition. If M is a manifold and/ C M is an open subset thed (2, U) is an
open submanifold ofJt (2, M).

Proof. By axiom (A5), 9t(Q2,U) is open inM(Q2, M). Moreover, the charts we have
defined fo(Q2, U) are also charts fant(Q, M). O

2.14 Proposition. Given manifoldsi/, N and a smooth map : M — N then the left
composition map.C(¢) : M(Q, M) — M(Y, N) is smooth.

Proof. Let f € (2, M) be fixed and choose local charts:
LC(p;0) : M(Q, M;0,V) — M(Q, V;0),
LC(¥;7) : M(Q, N3 7, W) — IM(Q, W;7),

whose domains contain respectivglyand ¢ o f. As usual, the definition of the charts
above involve manifoldX, Y, mapss € (2, X), 7 € W(, Y'), smooth vector bundles

E—= X, n—-Y,opensety C X x M, W CY x N,V C & W C nand smooth
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fiber preserving diffeomorphisms : V' — Vit W — W. Now we proceed as in
the proof of Lemma 2.7 in order to modify the chalfS(p; o) andLC(v; 7) so that they
correspond to the same auxiliary manifotdx Y and the same auxiliary mdp, 7). We
will then obtain chartd.C(%; (¢, 7)) andLC(v; (o, 7)) similar to (2.16) and (2.17); here
the domain ofg is open inX x Y x M while the domain ofy is open inX x Y x N.
The coordinate representation of the niap(¢) with respect to the charisC(z; (o, 7))
andLC(v; (o, 7)) is given by (see also (2.4)):

LC(¥; (0,7)) 0 LC($) o LC( (0,7)) ' = LC(Y0dop ),

whereg = Id xIdx ¢: X xY x M — X x Y x N. SincegopoB  is a smooth
fiber preserving map between open subsets of the vector buhdles and X x 7, the
conclusion follows from Lemma 2.6. O

2.15 Corollary. Given manifolds\/, N and a smooth diffeomorphisgh: M — N then
alsoLC(¢) : M(Q, M) — M(£, N) is a smooth diffeomorphism. O

2.16 Corollary. Given manifolds\/, N and a smooth embedding: N — M then the
left composition map.C(¢) : M(QY, N) — M(£2, M) is a smooth embedding.

Proof. As inthe proof of Lemma 2.2, we can find an open subset M containinglm(¢)
and a smooth left inverse: U — N for ¢ : N — U. Then, by Proposition 2.14,C(r)
is a smooth left inverse dC(¢) : M(Q, N) — M(, V). This implies thalL.C(¢) is a
smooth embedding it (€2, U). The conclusion now follows from Proposition 2.13.0

We finish the section by showing the usual identification between the tangent bundle
TM(Q, M) andIN(Q, TM).

2.17 Proposition. For every manifoldM and everya € €2, the evaluation mag2.5) is
smooth. Givery € M(Q, M) andv € T(M(Q2, M) then the map : Q@ — T'M defined
by:

’ (a) = d(evaly)(f)v € TryM, a€Q,
is in (2, TM). Moreover, the map:
(2.18) TMQ,M)>v— 0 €M, TM)
is a smooth diffeomorphism.

Proof. Let f € M(2, M) be fixed and consider a chart of the form (2.12)9(2, M)
whose domain containg Givena € 2 then the fiber preserving smooth diffeomorphism:

0: XXxMDV —VcC¢

induces a char(o(a),-) around f(a) on M, taking values ir¢, (. The coordinate
representation ofval, with respect to the charsC(y; o) andg(o(a), ) is simply the
restriction to(Q2, V; o) of the evaluation map:

M(Q, & 0) 35— 5(a) € Eo(a),

which is obviously linear and continuous by axiom (A6). Thwsl, is smooth and for
v € TrM(QY, M) we have:

(2.19) 2 (0(a), f(a))d(a) = [ALC(p; 0)(f)v](a),
whered, ¢ denotes differentiation of the mapwith respect to the variable if/.
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Denoting byr : TM — M the canonical projection and lpy, : £ &£ — £ the projec-
tion onto the first component theminduces a fiber preserving smooth diffeomorphism:

Fo: X xTM > (Id x 7) " (V) — pry H(V) Cc € @€,
defined by:
Fo(z,z) = (@(x,m), dap(x,m)z) € & & &s,

forall (z,z) € X x TM with (x,m) € V, wherem = w(z) € M. The mapFy induces
the chart:

LC(Fy;0) : M(Q,TM; 0, (1d x m)~H(V)) — M(Qpry ' (V);0) € M(Q £ @ &3 0)
on M (2, TM). Moreover, the chatC(y; o) on (2, M) induces the chart:
(LC(¢30) 0 p, dLC(p30)) : TR, M;0, V) — M, Vo) x ML, & 0)

on TON(Q, M), wherep : TO(Q, M) — IM(Q, M) denotes the canonical projection.
Identifying (€2, € & &; o) with M(Q, &; 0) & M(Q, &; o) (recall (2.9)) then by (2.19) the
coordinate representation of (2.18) with respect to the cr(al(ﬁ{@; o) op,dLC(yp; o))
andLC (Fy; o) is simply the identity map d(2, V; o) x M(Q, &; o). This shows at the
same time that € 9(Q, TM) and that (2.18) is a smooth diffeomorphism. O

2.18 Remark.lIt is possible to generalize the theory of this section to include spaces of
maps (2, M) whereM is infinite-dimensional. For instance, one can allbivto belong

to the class of Hausdorff paracompact Banach manifolds modelled on a class of Banach
spaces that admit a nonzero real valued smooth map with bounded support (for instance,
Hilbert spaces). In this case one has to strengthen axiom (A7), sHitfiat F) is Banach-

ble for every Banach spade in the class under consideration.

2.19 Remark. Given a ruledt satisfying axioms (A0)—(A7) then the manifold struc-
ture in the topological spacé®(Q2, M) is unique if one assumes the validity of Proposi-
tions 2.12, 2.13 and 2.14. Namely, the validity of such propositions implies the validity
of Corollary 2.16; thus, if one chooses a smooth embeddingM — IR™ into Eu-
clidean space thehC(¢) must be a smooth embedding®%($2, M) into the Banachble
space(2, IR™). But there can be at most one manifold structur@a(s2, M) for which
LC(¢) is a smooth embedding.

3. CONCRETEEXAMPLES

In this section we present several concrete examples of Mildkat satisfy axioms
(A0)—(A7) of Section 2. We start by listing some simple examples where the topological
spaceli(2, M) can be easily described for every manifdll Then, we present a method
for obtaining the space®1(2, M) from a prescribed Banachble spa€e= (2, IR)
satisfying two simple properties.

3.1 Example. Let (2 be an arbitrary set and for each manifdlfilet:

M(Q, M) =B(Q, M)
be the space of all maps: @ — M with relatively compact image. Choose a metric
d on the manifoldM compatible with its topology and consid# (2, M) endowed with
the uniform convergence topology. ¢f: (M,d) — (N,d’) is a continuous map then it
is easy to see that the m&f’(¢) : B(Q, M) — B(Q, N) is continuous. This implies in

particular that the topology dB (2, M) does not depend on the metiicso that we indeed
have a topological spag(f2, M) associated to each manifald. The verification of the
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axioms (AO)—(A7) is straightforward. For axiom (A7), observe t8(2, IR) is simply
the space of bounded magis 2 — IR, whose topology can be induced by the usual sup

norm || flsup = supyeq |£(a)|.

3.2 Example. Let (€2, .4) be ameasurable spagé.e., Q) is a set and4 is a o-algebra

of subsets of). A map defined orf2 and taking values in a given topological space is
calledmeasurabléf the inverse image of every open set is.4n For each manifold/,

let (2, M) = My, (£2, M) be the set of all measurable maps 2 — M with relatively
compact image; conside¥,, (2, M) endowed with the topology induced (2, M).
One easily checks axioms (A0)—(A7). For axiom (A7), observe th&3(2, IR) is a
closed subspace & (12, IR).

3.3 Example. Let 2 be an arbitrary topological space and 98(2, M) = CP(Q2, M)

be the set of all continuous mags: Q@ — M with relatively compact image; consider
CP(Q, M) endowed with the topology induced B§(Q2, M). Axioms (A0)—(A7) are
easily checked. Observe thaf (Q, IR) is the Banachble space of bounded real valued
continuous maps of}, whose topology is induced by the sup norm.

3.4. Example. Let Q be an open subset dR™ andk > 1 be fixed. Given a manifold
M, the k-th jet bundleJ*(IR™, M) is a fiber bundle ovei/ constructed as follows; for
eachr € M, the fiber of J*(IR™, M) overz is the set of equivalence classes\dfvalued
mapsf of classC* defined in a neighborhood of the origin IR™ and with f(0) = .
The equivalence relation i, ~ f5 iff f; and f, have the same Taylor polynomial of
order k at the origin, when some coordinate chartidfis used around:. There are
well-known natural local trivializations off*(IR™, M) induced by local charts ol/.
Given a mapf : © — M of classC* we define thek-th jet of f as the continuous
map J*(f) : Q — J*(IR™, M) such that/*(f)(a) € J*(IR™, M) is the equivalence
class off o t,, wheret, : IR™ — IR™ denotes the translation by We defineC(Q, M)

to be the set of maps: Q@ — M of classC* such that/*( f) has relatively compact image
in J¥(IR™, M). The topology orC} (€2, M) will be induced frontB (Q, J*(IR™, M)) by
the mapf — J*(f). Itis easy to see than = Cf satisfies axioms (A0)—(A7). Observe
thatC(;(Q, IR) is the Banachble space of bounded m#ps2 — IR of classC* having
bounded partial derivatives up to ordgrwhose topology is induced by the stand&rtl

norm:
£ =" 105 Fllsups
A<k
whereX = (A,..., \,) € IN™ denotes a multi-index and| = >0 | A;.
This exampledo notgeneralize directly to the case tHatis a manifold. In order to
make sense of the spa€¥ (2, M) in this case, one needs for instance a connection and a
Riemannian metric o (this will be dealt with in Example 3.11 below).

We now present a more systematic method for producing examples ofRudasisfying
axioms (A0)—(A7). The idea is the following. We start with an arbitrary Qetind a
Banachble spacé of mapsf : Q@ — IR satisfying a suitable property and we will then
show how to construct a rult satisfying axioms (A0)—(A7) for whicB(Q, IR) = £.

LetQ) be an arbitrary set. As in Example 3.1, we denot@fy), IR") the Banach space
of all bounded mapg : 2 — IR™ endowed with the sup norm. We give the following:

3.5. Definition. A Banachble space of bounded map<bis a Banachble spacwhich
is a vector subspace &(2, IR) and such that the inclusion mgp— B(Q, IR) is con-
tinuous. For allx > 1, we identify the Banachble spag& = &, £ with the subspace of
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B(Q, IR™) consisting of those mapé: 2 — IR™ all of whose coordinateg; : 2 — R
are in€. We say that has theleft composition propertyf for everyn > 1 and every
smooth mapb : IR™ — IR the left composition map:

LC(¢):E" > fr—gofel
is well-defined and continuous.

We insist on callingg a Banachble space, rather than a Banach space, to emphasize that
only the topology of is relevant, and not a particular choice of norm.

Let 2 be a set and be a fixed Banachble space of bounded map8 satisfying the
left composition property. Given manifoldd, N, we will denote byC*>° (M, N) the set
of all smooth maps frond/ to N. For an arbitrary manifold/, we set:

MQ,M)={feM?:aofecéforallacC®(M,R)}.
We endow)t(2, M) with the topology induced by the left composition maps:
LC(w) : M(Q, M) — €,

wherea runs over the sef'>° (M, IR). More explicitly, (€2, M) has the coarsest topol-
ogy for whichLC(«) is continuous for every € C>°(M, IR). Thus, ifp is an9(Q, M )-
valued map defined on an arbitrary topological space, thisncontinuous if and only if
LC(a) o p is an&-valued continuous map for evetye C>°(M, IR).

Now we prove that the rul®t defined above satisfies axioms (A0)—(A7). First, we
have the following:

3.6. Lemma. If £ is a Banachble space of bounded maps on &ssatisfying the left
composition property and if the ru®t is defined as above then, for every> 1, the
topological spacet (2, IR™) and&™ are equal.

Proof. The fact that satisfies the left composition property implies thatis contained in
M($2, IR™) and that the inclusion mafy* — (2, IR™) is continuous. Ifr; : R™ — IR
denotes projection onto thieth coordinate, then the fact thR€C(r;) : M(Q, R™) — £ is
(well-defined and) continuous for all= 1,...,n implies thatht(Q, IR™) is contained in
E™ and that the inclusion mapt(Q2, IR™) — £™ is continuous. O

3.7. Theorem. If  is a set ancf is a Banachble space of bounded mapgosatisfying
the left composition property then the rilg defined above satisfies axioms (A0)—(A7) of
Section 2.

Proof. Axioms (AO) and (A7) follow from Lemma 3.6. We now prove the other axioms.
Proof of axiom (A1) It is easy to see thdtC(¢) carriesI (2, M) to M(2, N). For the
continuity, it suffices to show thdtC(«) o LC(¢) is continuous for ale € C*°(N, IR);
butLC(a) o LC(¢) = LC(a 0 ¢) anda o ¢ € C°(M, R).

Proof of axiom (A3) If there were som¢ € (2, M) with non relatively compactimage,
we could find a smooth map : M — IR which is unbounded ofm(f) (for instance,
there exists a smooth proper map M — IR). But this contradicts the fact thato f € £
and€ C B(Q, R).

Proof of axiom (A4) Choosef € (2, M) with Im(f) C U andX € C*°(M, IR) with

A = 1 onIm(f) andsupp(A) C U. Givena € C*(U, IR), thena = A\« extends to a
smooth map o/ that vanishes outsidé; moreoverp o f = @o f € £. This proves that
fem,U).

3ObviouslyweII—definedneans thaf € £™ impliesgpo f € £.
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Proof of axiom (A5) Given f € M (2, U), choose\ € C*>°(M, IR) with A = 1 onIm(f)
andsupp(\) C U. If P denotes the open subsetBf(2, IR) consisting of bounded maps
u: Q — R with inf,cq u(a) > 0 then:

feLCN)H(PNE) cMm(,U),

and thereforét(Q2, U) is open in?t(2, M). Now letdi(£2, U) temporarily denote the
spaceNt (2, U) endowed with the topology induced fro®i (2, A7) and let us show that
M(Q, V) equalsi(£2,U) as a topological space. By axiom (Al), the inclusion map of
M(Q,U) in M(Q, M) is continuous and hence the identity map:

Id : M(Q,U) — M(Q, V)

is continuous. To prove the continuity & : 9t(Q,U)e — MM(Q,U), we show that
LC(a) : M(Q,U)e — & is continuous for everyw € C°(U, IR). Let f € M(Q,U) be
fixed and choose an open subgetc M with Im(f) € V c V C U. Choose a map
@ € C*(M, IR) that equalsr on V. Then the map.C(a) is continuous o®i(£2, M) and
hence o (2, U); moreoverL.C(@) agrees witi.C(«) on90t(2, V'), which is an open
neighborhood of in 9(2, M). This proves the continuity diC(«) on9(Q, U) .

Proof of axiom (A6) Leta € Q be fixed. We show thatval, * (U7) is open in9t(Q2, M)
for every open set/ ¢ M. Choosef € eval, ' (U); then f(a) € U. Now consider the
open subseP, C B(Q, IR) of bounded maps : Q@ — IR with u(a) > 0 and choose
o € C*°(M, IR) with o f(a)) = 1 andsupp(a) C U; we have:

feLC(a)  (P.NE) Ceval, ' (U),

which proves thatval, ' (U) is open.

Proof of axiom (A2) In order to prove that (2.1) is surjective and that its inverse is contin-
uous, we have to show that for everye C*°(M; x Ms, IR), the map:

(31) 2‘D’t(Qvl\4l) X 2‘):)’t(97]\42) 3 (f»g) = ao (f7 Q)

takes values ig and is continuous. Denote I8y C C*°(M; x M>, IR) the set of thosex
for which (3.1) takes values ifi and is continuous. It is obvious thatis a subspace
of C*(M; x Ms,IR). In fact, S is a subalgebra (under pointwise multiplication) of
C>(M; x Mo, IR), because the mapC(m) : £2 — & of left composition with the
multiplication mapm : IR x IR — IR is continuous. It is also obvious th&tcontains
thosea that are independent of one of the two variables. Denote;lihie dimension of
M;, 1 = 1,2. For the rest of the proof, we will say that a mag C>°(M; x M, IR) has
small supporif there exists closed sets C M;, open set&/; C M; and diffeomorphisms
w; : U — R™ with F; C U;,i = 1,2 andsupp(a) C Fy x Fy. We claim thatS contains
all « € C°(M; x Ms, IR) with small support. Namely, foi = 1,2, choose an open
subset; ¢ M; with F; C V; C V; C U;, amapp; € C*°(M;, IR™) that equalsy; on'V;
and a map\; € C*°(M;, IR) with A; = 1 on F; andsupp();) C V;. Set:

a=ao(p; xpa) ™t € C®(R™ x IR™,R), @@= ao (P, xPy) € C®(M; x My, IR).

It is easy to see that(x,y) = A\ (z)\2(y)a(z,y), for all x € My, y € Ms. Thus, to
prove thatw € S, it suffices to show that is in S. But this follows by observing that the
map(f,g) — @o (f,g)is equal to the composifeC(a) o (LC(p;) x LC(B,)).

We will now conclude the proof by showing that everye C*°(M; x M, IR) is in
S. Let fo € M(Q, My) andgy € M(Q, Ms) be fixed. Sincdm(fy) andIm(gy) are
relatively compact, a simple argument using a partition of unity shows that we can find
mapsas, ..., a, € C®(M; x Mo, IR) with small support such that equalsy_’_, «;
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on an open subset of the forth x Uy C M; x M, containingIm( fo) x Im(go). Then
Z;zl a; is in S and thus the mapf, g) — « o (f, g) is £-valued and continuous on the
neighborhoodn(2, Uy) x M(Q, Us) of (fo, go). Sincefy andgy are arbitrary, we have
«a € S. This concludes the proof. O

Let us now give some examples of Banachble spaces of bounded maps satisfying the
left composition property.

3.8 Example. Let 2 be a metric space (or, more generally, a uniform space). The space
& = C? (2, IR) of uniformly continuous bounded maps 2 — IR endowed with the sup
norm is a Banach space of bounded maps. It is easy to se€ bzt the left composition

property.

3.9 Example. Let (2, d) be a metric spacey € ]0,1] and let€ = C%*(Q, IR) be the
space of alk-Holderian bounded maps: Q2 — IR. We define a norm o8 by:

f@) — 50)]

= sup T SU
1= 1y + s 20

a#b
Then¢& is a Banach space of bounded maps with the left composition property.

3.10 Example. Let() be an open subset @™, o € |0, 1], k > 1 and let€ = C*(Q, IR)
be the space of all maps: Q — IR of classC* such thatf and its partial derivatives up
to orderk are bounded and-Holderian. We define a norm dhby:

1= "3 0afllop + > sup !%f(a)—axf(b)y’

beQ lla — bl
A<k A<k 0%

whered = (Aq,...,\,) € IN™ denotes a multi-index. Thefi is a Banach space of
bounded maps with the left composition property.

3.11 Example. Let 2 be a manifold endowed with a connection on the tangent bufdle
and with a Riemannian metric. Jf: Q@ — IR is a map of clas§'* then fori = 1,. .., k,
thei-th covariant derivativé/’ f of f is a section of the tensor bund§®, 7*(2, on which
there is a natural Riemannian structure induced by the Riemannian me®id/¢é denote
by £ = CF(Q, IR) the space of all bounded maps 2 — IR of classC* for which ||V f||
is bounded for alt = 1, ... k. We define a norm o8 by:

k
1= 1 llswp + D IV £
=1

Thené& is a Banach space of bounded maps with the left composition property.

3.12 Example. Let Q be a set and lef;, & be Banachble spaces of bounded maps in
Q with the left composition property. Sét= &£, N & and conside€ endowed with the
topology induced by the two inclusion mags— &;,i = 1,2. If || - ||; is a norm for&;,
i=1,2,then| -|| = |- llile + |l - llz]l¢ is @ norm for€. Obviously€ is a Banach space
with continuous inclusion in bothi; and&; (and hence ifB (€2, IR)). Moreover, it is easy

to see that also has the left composition property.

3.13 Remark.If £ is a Banachble space of bounded maps on &sstisfying the left
composition property then there existaiaiqueway of defining the topological spaces
M($2, M) so that axioms (AQ)—(A7) are satisfied afil((2, IR) = £. Namely, if M is a
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manifold andy : M — IR™ is an embedding into Euclidean space then, by Lemma 2.2,
LC(¢) has to be a homeomorphism onto the space:

{f eMQ,R"): Im(f) C Im(¢)},

with the topology induced frort (2, IR™). But axiom (A2) implies thati(Q2, R"™) =
En.

3.14 Remark.If 91 is a rule satisfying axioms (A0)—(A7) theh = (2, IR) must be

a Banachble space contained®{(?, IR), by axioms (A3) and (A7). By axiom (A6), the
inclusion mapf — B(, IR) has closed graph and it is therefore continuous. Moreover,
axioms (A1) and (A2) imply thaf must have the left composition property. Thus (keeping
in mind Lemma 3.6, Theorem 3.7 and Remark 3.9B)i— £ = M(Q, IR) gives a one to
one correspondence between rdlBsatisfying axioms (A0)—(A7) and Banachble spaces
£ of bounded maps satisfying the left composition property.

3.1. When constant maps are missingLet 2 be a set and lef be a Banachble space

of bounded maps ofe. If £ satisfies the left composition property, th€mmust contain

the constant maps; namely, df : IR — IR is a constant map thehC(¢) must take
values ing. Thus, if a Banachble space of bounded m&p®es not contain the constants,
one cannot hope that could have the left composition property. But there are important
natural function spaces that do not contain the constants. We will deal with this problem
now.

3.15 Definition. Let Q be a set and lef be a Banachble space of bounded map$on
We say that has theeft composition property of type zeifcfor every n > 1 and every
smooth mapp : IR™ — IR with ¢(0) = 0 the left composition map.C(¢) : E™ — £ is
well-defined and continuous.

We have a simple lemma.

3.16 Lemma. Let& be a Banachble space of bounded maps on &ssdtisfying the left
composition property of type zero.dfcontains the constant maps thérsatisfies the left
composition property.

Proof. Given ¢ € C*(IR", R), setyy = ¢ — ¢(0) € C*°(IR™,IR) and observe that
LC(¢) = LC(¢)) + ¢, wherec : £ — £ denotes the constant map equaptd) € £. O

If a Banachble space of bounded ma@pdoes not contain the constants, one may hope
that, by adding the constants§owe may obtain a space that satisfies the left composition
property. With this in mind, we give the following:

3.17. Definition. Let(2 be a set and |lef be a Banachble space of bounded map& owWe
say thatf has theparametric left composition property of type zéfréor every s,n > 1
and every smooth map: IR" x IR® — IR such thai(0,c) = 0, for all ¢ € IR®, the map:

E" X IR > (f,c) — ¢co fEE,
is well-defined and continuous, whetg = ¢(-,¢) : IR" — IR, forall c € IR®.

Obviously the parametric left composition property of type zero implies the left com-
position property of type zero.

If Q is a set we denote byt (Q2) the unidimensional space of constant map<? — IR;
we identify Ct(€2)™ with the space of constant mapis 2 — IR".
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3.18 Lemma. Let &, be a Banachble space of bounded maps on dssatisfying the
parametric left composition property of type zero. Of(Q2) ¢ &, (or, equivalently, if
Ct(Q)N&y = {0}) thenE = & @ Ct(N) is a Banachble space of bounded maps satisfying
the left composition property.

Proof. Obviously& has continuous inclusion #(Q2, IR). Let¢ : IR™ — IR be a smooth
map. If we write the elements & as pairy f, ¢) with f € &}, c € IR™ = Ct(Q)", then
the left composition mapC(¢) is given by:

LC(¢) : €™ > (f,¢) — (Yeo f.0(c)) €€,
wherey : R™ x IR" — IR is given byi(z, ¢) = ¢(z + ¢) — ¢(c) andyp. = ¢(-,¢). O
We now use the trick of “adding the constants” explained above to deal with some
interesting examples.
Let (92, A, 1) be a measure space, i.8.js a set,A is ac-algebra of subsets 6t and

w: A —[0,+00] is a countably additive measure. Choose a real numkefl, +oo[ and
consider the spacg} (€2, IR) consisting of bounded measurable mgpsQ — IR such

that: s
11 = ([ 117 d)" < +oc.

Itis easy to see that} (2, IR) endowed with the norm:

1= 1 lsup + £ 1l

is a Banach spae If () < +oo thenL?(Q, IR) coincides with the closed subspace
My(Q, R) of B(Q, IR) (see Example 3.2) and the norm above is equivalent to the sup
norm. We will therefore focuss on the cagé?) = +oo; observe that in this case

LY (22, IR) does not contain the constant maps.

3.19 Lemma. The spac€ = L} (), IR) is a Banachble space of bounded maps satisfying
the parametric left composition property of type zero.
Proof. Obviously€ has continuous inclusion (£, IR). Let¢ : IR™ x IR®* — IR be a
smooth map withp(0, ¢) = 0 for all ¢ € IR®; let us show that the map:
(3.2 E"X IR 3 (f,c)r— ¢cofeE
is well-defined and continuous, whege = ¢(-,¢). For fixedc € IR®, the mapg. is
Lipschitz on every bounded subsetif* and, since).(0) = 0, we have:

6c(f(a))] < Cf(a)
for some constant’ > 0 dependent orf € £™. This shows thafj¢. o f||, < +oc and
obviously ¢. o f is measurable and bounded. Thus (3.2) is well-defined. To prove the
continuity of (3.2), letf € £™ andc € IR*® be fixed and choose a compact convex set
K C IR™ containing the origin and witlim(f) contained in the interior of. Then the

set of thosgy € £™ with Im(g) C K is a neighborhood of in £”; for suchg and any
d € IR?, a € (), we compute:

‘¢(f(a)7c) - Qb(g(a)vd)‘ < }¢(f(a)7c) - ¢(9(a)’c)| + ’¢(g(a)’c) - (b(g(a)vd)‘
< O f(a) = g(a)|| + sup |dge(@) — dga(@)]| [|g(a),

where(C' is a Lipschitz constant fap. on K. From the inequalities above it is easy to see
thatg, o g tends top.. o f in £ asd tends tac in IR® andg tends tof in £™. O

, a €€

4We do not identify maps that are equal almost everywhere!
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3.2Q Corollary. If u(2) = +oc then the spac€ = LY (Q, R) & Ct(9) is a Banachble
space of bounded maps satisfying the left composition property.

Proof. Follows from Lemmas 3.18 and 3.19. O

If 2is an open subset dR™ andp € [1, +oo[ is a real number, we denote as usual by
L?(Q, IR) the space of (equivalence classes of almost everywhere equal) measurable maps
f:Q — Rwith ||f|, < +oo. For every integet > 1, we denote byV*?(Q2, IR) the
Sobolev space of maps € LP(Q2, IR) such thald, f € LP(, IR) for every multi-index
A= (A1,...,Am) € IN™ with |A| < k; the partial derivativedy is understood in the
distributional sense. As usual, the normiéit*(Q, IR) is defined by:

171 =D 1oaslls

A<k

and || - || turns W*P(Q, IR) into a Banach space. For all the results that we will use
about Sobolev spaces we refer to [1].(Ifis a bounded domain with smooth boundary
then the theory of Banach manifolds modelled on the Sobolev speées(?, IR) is well-
known. For instance, it > thenW*?(Q, IR) has continuous inclusion af (€2, IR)
and it satisfies the left composition property (see [4, Lemma 9.9]). We will therefore
focuss only on the case th@tis unbounded and, for simplicity, we take= IR™. Ob-
viously, W*P(IR™, IR) doesn't contain the constant maps becali®@R™, IR) doesn'’t.
If & > 2, the spacdV*?(IR™, IR) has continuous inclusion i@ (IR™, IR). Since the
spaceC:*(IR™, IR) of smooth real valued maps with compact supportf®fi is dense
in Wk»(IR™, IR), it follows that the elements diV*»(IR™, IR) tend to zero at infinity.
We are now going to look for conditions under which the spdace? (IR™, IR) satisfies
the parametric left composition property of type zero. Unfortunately, contrary to the case
of bounded?, the conditionk > ™ alone does not imply such propettyNot all is lost,
though, as it is shown in the following:
3.21 Lemma. If m < pandk > 1 then the Sobolev spad&*?(IR™, IR) is a Banachble
space of bounded maps IR™ satisfying the parametric left composition property of type
zero.
Proof. Sincek > 1 > %, the space& = WkP(IR™, IR) has continuous inclusion in
CP(IR™, R) and thus infB(IR™, R). Let¢ : IR™ x IR® — IR be a smooth map with
#(0,c) = 0 for all ¢ € IR*; let us show that the mafi* x IR* > (f,c) — ¢.o f € £ is
well-defined and continuous, whege = ¢(-, ¢). SinceC*(IR™, IR") is dense ir€™, by
standard arguments, it suffices to show that the map:

C&(R™, R") x IR* 3 (f,¢) — a(dc o f) € LV(R™, ),
has a continuous extensiond8 x IR*® for every multi-index\ = (A1, ..., A,,) € IN™
with |A\| < k. The case\ = 0 (i.e., dr(¢. o f) = ¢, o f) follows from Lemma 3.19,

observing tha€ has continuous inclusion ib{ (R™, IR). If A # 0 then, fora € R™,
Ox(¢¢ o f)(a) is a linear combination of terms of the form:

(Dp¢e) (f(a)) (95, fi))(a) (O, fi)(a) -+ (05, fi,)(a),

wheref = (f1,...,fn), i1,...,4 € {1,...,n} andps € IN", v, ..., € IN™ are
nonzero multi-indices with3| < |A| and_._, |ys] = |A|. Since&™ has continuous

5The difficulty of the cas&2 = IR™ lies on the fact that the continuous embeddiig P (R™, R) —
LA9(IR™, IR) holds only for% = % — £ and not in general fo% > % — £ asitdoes in the case of bounded

domains. Thus the proof of [4, Theorem 9.4] doesn’t work if the domain is unbounded.
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inclusion inCY(IR™, IR™), we have thatf, c) — (9s¢.)o f defines aCp (IR™, IR)-valued
continuous map o™ x IR*. Since the multiplication map:

(33) Cg(Bm7B) X Lp(BmaR) 2 (91592) = 0192 € Lp(Bmvm)

is continuous, to complete the proof it suffices to show that [[,_, d,, f;, defines a
continuousL? (IR™, IR)-valued map or€™. If r = 1then|y;| < kandf — 0., f;, Is
a continuousL? (IR™, IR)-valued map or€™. Assume now that > 1. Then|y,| < k
forallu = 1,...,r and thenf — 9, f;, defines a continuout’*-*(IR™, IR)-valued
map on&™. The hypothesisn < p implies thatW»(IR™, IR) has continuous inclusion
in CY(IR™, IR) and, since the multiplication map 6§ (IR™, IR) is continuous, it follows
that the map:

r—1
&> fr— [] 0. fin € COUR™, R)
u=1
is continuous. Finally, sincé™ > f — 0, f;. € LP(IR™, IR) is continuous, the conclu-
sion follows from the continuity of (3.3). |

3.22 Corollary. Under the hypothesis of Lemma 3.2¥F?(IR™, IR) & Ct(IR™) is a
Banachble space of bounded mapdhfi satisfying the left composition property.

Proof. Follows from Lemmas 3.18 and 3.21. O

Observe that the important cag¥ (IR, IR) = W*2(IR, IR) satisfies the hypothesis of
Lemma 3.21.
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