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ABSTRACT. We present a method for introducing a Banach manifold structure on sets of
mapsf : Ω → M , whereΩ is a set andM is a manifold. This new approach generalizes
and simplifies the classical work developed on [4] and also the more recent work [5].

1. INTRODUCTION

The introduction of infinite-dimensional manifold structures on sets of maps is the foun-
dation of modern calculus of variations and global analysis. It also plays the central role
in concrete applications of infinite-dimensional Morse theory and general critical point
theory.

In this paper we give conditions under which sets of maps can be endowed with Banach
manifold structures. More specifically, we consider the following setup. LetΩ be an
arbitrary setand assume that we are given a ruleM that assigns to each smooth manifold
M a setM(Ω,M) of mapsf : Ω → M and a topology on the setM(Ω,M). We assume
the validity of eight natural axioms for the ruleM and we show that for every manifoldM
the topological spaceM(Ω,M) can be endowed with the structure of a Banach manifold.
Such structure will be explicitly described in terms of local charts. Moreover, the Banach
manifold structure ofM(Ω,M) is unique under some naturality conditions. The eight
axioms and the detailed construction of the Banach manifold structure onM(Ω,M) is
presented in Section 2. In Section 3 some concrete examples where the theory applies are
discussed; first, we list a few rulesM for which the topological spacesM(Ω,M) can be
easily described for arbitrary manifoldsM . Then we give a general theorem showing that,
given a Banach spaceE of mapsf : Ω → IR satisfying two simple conditions, then there
exists a unique ruleM satisfying the eight axioms of Section 2 and withM(Ω, IR) = E .
Using this theorem we are able to construct several other examples of rulesM for which
the theory of Section 2 applies. We emphasize that the mapsf : Ω →M belonging to our
Banach manifoldsM(Ω,M) need not be continuousand in fact, in some examples,one
does not even need to fix a topology onΩ. For example, for any setΩ, we obtain a Banach
manifold structure on the setB(Ω,M) of all mapsf : Ω → M with relatively compact
image. IfΩ is an arbitrary measure space, we also define a Banach manifold based on the
space of bounded mapsf : Ω → IR with f ∈ Lp(Ω, IR).

In what follows we will make a comparison between the constructions presented in this
paper and others appearing in the literature. We also sketch the idea behind our construc-
tion of the manifold structure ofM(Ω,M).

It should be pointed out that in this paper we only consider Banach and Hilbert manifold
structures, which are in practice more applicable from the point of view of critical point
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theory. The theory of manifolds modelled on more general locally convex topological
vector spaces have been recently developed in detail in [2].

The classical work [4] introduces a Banach manifold structure on a set of sectionsM(E)
of a smooth fiber bundleE over a smooth compact manifold with boundaryΩ. The Banach
manifold M(E) is modelled on Banach spaces of the formM(ξ), whereξ is a vector
bundle neighborhoodonE, i.e.,ξ is an open subset ofE endowed with the structure of a
vector bundle overΩ. The ruleM that assigns to each vector bundleξ a Banach space of
sectionsM(ξ) of ξ is supposed to satisfy some axioms. For example,M(ξ) should have a
continuous inclusion on the space of continuous sections ofξ (endowed with the compact-
open topology) and the left composition mapsM(ξ) → M(η) induced by smooth fiber
bundle morphismsφ : ξ → η should be continuous. Banach manifold structures for sets
of mapsf : Ω → M , whereM is an arbitrary manifold, are obtained by identifying such
maps with sections of the trivial fiber bundleΩ×M → Ω.

Following the approach of [4], one would not expect to obtain Banach manifold struc-
tures on sets of sectionsM(E) of a fiber bundleE whose base manifoldΩ is not compact.
For the case of noncompact bases, the standard literature on the subject tends to present
Frech́et manifold structures; typically, the topology ofM(E) is induced by the restriction
mapsM(E) → M(E|K), whereK ⊂ Ω is a compact domain andM(E|K) is endowed
with a Banach manifold structure.

In [5], Banach manifold structures for sets of maps with noncompact domains are stud-
ied. The basic example of the theory of [5] is the nonlinear version of the Banach space
C0

b(Ω, IR) of bounded continuous mapsf : Ω → IR defined on a (not necessarily com-
pact) topological spaceΩ, endowed with the sup norm. More precisely, it is introduced
a Banach manifold structure on the setC0

b(Ω,M) of continuous mapsf : Ω → M with
relatively compact image onM . The technique for introducing the Banach manifold struc-
ture onC0

b(Ω,M) is based on an infinite-dimensional version of the rank theorem, which
is used to show thatC0

b(Ω,M) is a smooth (embedded) submanifold of the Banach space
C0

b(Ω, IRn), whereM is embedded inIRn using Whitney’s theorem. Later, it is shown
that the manifold structure ofC0

b(Ω,M) does not depend on the particular embedding of
M in the Euclidean space. We point out that there is no explicit description of a smooth
atlas for the Banach manifoldC0

b(Ω,M) in [5].
From [5] it becomes clear that compactness of the domainΩ is not a crucial property

for the introduction of a Banach manifold structure on a set of mapsM(Ω,M); indeed,
one only needs compactness on theimage(or in the closure of the image) of the maps in
M(Ω,M). The problem is that this new view is in principle conflicting with the spirit of
[4]; namely, if s : Ω → E is a continuous section of a fiber bundleE → Ω then the
image ofs is always closed inE and homeomorphic toΩ, so that compactness in the
image is actually equivalent to compactness in the domain. One is therefore not expected
to obtain examples of Banach manifolds of maps with noncompact domain if spaces of
mapsf : Ω →M are considered as particular cases of spaces of sections of fiber bundles.

Any axiomatization for a ruleM that leads to the introduction of Banach manifold
structures on sets of mapsM(Ω,M) (or M(E)) should include some sort of axiom re-
quiring continuity of left composition mapsf 7→ φ ◦ f (at the very least, one needs
continuity of f 7→ φ ◦ f whenφ is a smooth diffeomorphism). If, as in [4], one mod-
els the Banach manifolds on Banach spacesM(ξ) of sections of a vector bundleξ → Ω
then the natural left composition mapsf 7→ φ ◦ f to be considered are the ones induced
by smooth fiber bundle morphismsφ : ξ → η (see [4, Axiom§5]). In the case where
ξ = Ω × IRm, η = Ω × IRn are trivial vector bundles, such morphismsφ take the form
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Ω× IRm 3 (a, x) 7→
(
a, φ(a, x)

)
∈ Ω× IRn and the corresponding left composition map

carriesf : Ω → IRm to Ω 3 a 7→ φ
(
a, f(a)

)
∈ IRn. If Ω is not compact then, in most

examples, such left composition maps are not continuous or even well-defined, i.e., they
do not take values inM(Ω, IRn). Instead, one usually has only the continuity of the left
composition mapf 7→ φ ◦ f whereφ is applied only tof(a) and not toa. This gives an-
other hint of the fact that it is more natural to work directly with sets of mapsf : Ω →M
and not with sections of trivial fiber bundles.

It should be mentioned that the use of Banach differentiable structures on sets of maps
with noncompact domains is indeed relevant. For instance, in the study ofMorse homology
in [6], one is lead to consider Sobolev spaces of maps of the formH1(IR,M) (see the
introduction of [5] for more examples where noncompact domains are used).

We emphasize that, differently from [5], the constructions and the main1 results of this
papernever use embeddings of the manifolds into Euclidean space. This is possibly a
matter of personal taste, but the author feels that this is the most elegant way of dealing
with manifolds. Also, the explicit description of coordinate charts forM(Ω,M) is often
useful when dealing with spaces of maps in practical applications.

Let us now give a sketch of the main ideas behind the construction of the differentiable
structure ofM(Ω,M). The most tempting way of defining a coordinate chart onM(Ω,M)
is to consider the left composition mapf 7→ ϕ ◦ f , whereϕ : U ⊂ M → IRn is a
coordinate chart onM . This kind of charts are indeed smoothly compatible with each
other in the examples we consider, but obviously one cannot expect that they form an atlas
for M(Ω,M); namely, there may be mapsf ∈ M(Ω,M) whose image is not contained
in the domain of a chart ofM . Since we only consider mapsf with relatively compact
image, one can cover the image off with a finite number of coordinate chartsϕi, i =
1, . . . , r, but there is no visible way of combining the chartsϕi, i = 1, . . . , r into a chart
for M(Ω,M) aroundf . Instead, let us take a look at the vector bundle neighborhoods of
[4]. As explained before in this introduction, a vector bundle neighborhoodξ on a fiber
bundleE → Ω is an open setξ ⊂ E which has the structure of a vector bundle over
Ω. Obviously, in our case,Ω may not even be a topological space, so we shouldn’t talk
about fiber bundles overΩ; but let us just for the moment assume thatΩ is a manifold.
For eacha ∈ Ω, the fiberξa of ξ overa is an open subset of the fiberEa of E overa;
moreover,ξa is endowed with the structure of a real finite-dimensional vector space. Just
for psychological reasons, it seems simpler to picture this situation in terms of a smooth
diffeomorphismϕa : Va → ξa, whereVa ⊂ Ea is open andξa is a real finite-dimensional
vector space. Nowϕa is just a chart onEa; in the case thatE = Ω×M is a trivial bundle,
the vector bundle neighborhoodξ can be thought of as a family of charts(ϕa)a∈Ω onM ,
where the domain ofϕa is an open subsetVa of M (depending ona) and the counter-
domain ofϕa is a vector spaceξa (also depending ona). So, rather than trying to cover the
image of a mapf : Ω → M with a finite number of charts, we cover it with acontinuous
family of charts(ϕa)a∈Ω, wheref(a) belongs to the domain ofϕa for everya ∈ Ω. This
yields a chart onM(Ω,M) aroundf taking values in the space of sections of a vector
bundle.

Now, the key observation here is that theindex setfor the family of charts(ϕa)a∈Ω

doesn’t need to have anything to do with the domainΩ of the mapsf . Instead, we consider
anarbitrary smooth manifoldX to parameterize the chartsϕa and we consider an arbitrary
vector bundleξ overX playing the role of the old vector bundle neighborhood. We then
consider a smooth diffeomorphismϕ : V → Ṽ between open subsetsV ⊂ X ×M and

1We did use the existence of embeddings into Euclidean space occasionally in some less important remarks.
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Ṽ ⊂ ξ such that for everyx ∈ X, the mapϕx = ϕ(x, ·) carriesVx = V ∩
(
{x} ×M

)
to

Ṽx = Ṽ ∩ ξx. Thus(ϕx)x∈X is now a parameterized family of charts onM . In order to
complete the construction of the chart onM(Ω,M) aroundf : Ω → M , we need a map
σ : Ω → X that tells us for eacha ∈ Ω, which of the chartsϕx should be used around
f(a); more explicitly, the chart onM(Ω,M) is of the formf 7→ ϕ ◦ (σ, f) and it takes
values on the space of sectionss : Ω → ξ of ξ alongσ. It may sound a bit surprising that
the construction of a chart aroundf does not use any sort of continuity off and does not
use approximations by smooth maps as in [4].

2. THE GENERAL AXIOMATIZATION

Given setsA, B we will denote byBA the set of all maps fromA to B. Throughout
this section we will consider fixed a setΩ and a ruleM that assigns to each manifoldM
a subsetM(Ω,M) of MΩ and a topology on the setM(Ω,M). By a manifoldwe will
mean a smooth finite-dimensional real manifold whose topology is Hausdorff and second
countable, wheresmoothmeans “of classC∞”.

Below we will list a few axioms concerning the ruleM that will allow us to construct a
Banach manifold structure on the topological spaceM(Ω,M).

Axiom A0. There exists a manifoldM0 for whichM(Ω,M0) is nonempty.

Axiom A1. Given manifoldsM ,N and a smooth mapφ : M → N thenφ◦f ∈ M(Ω, N)
for all f ∈ M(Ω,M); moreover, theleft composition map:

LC(φ) : M(Ω,M) −→ M(Ω, N)

defined byLC(φ)(f) = φ ◦ f is continuous.

Obviously axiom (A1) implies that ifφ : M → N is a smooth diffeomorphism then
LC(φ) is a homeomorphism. Also, from axioms (A0) and (A1) we obtain thatM(Ω,M)
contains all constant maps; to see that, simply evaluateLC(φ) in an arbitrary element of
M(Ω,M0), whereφ : M0 →M is an arbitrary constant map.

Axiom A2. LetM1,M2 be manifolds and denote bypr1, pr2 the projections of the product
M1 ×M2. The map:

(2.1)
(
LC(pr1),LC(pr2)

)
: M(Ω,M1 ×M2) −→ M(Ω,M1)×M(Ω,M2)

is a homeomorphism, where the counter-domain of (2.1) is endowed with the standard
product topology.

Obviously one can show by induction a version of axiom (A2) for arbitrary finite prod-
ucts of manifolds.

Axiom A3. For any manifoldM the elements ofM(Ω,M) have relatively compact image
in M , i.e., the setIm(f) is compact for allf ∈ M(Ω,M).

Axiom A4. LetM be a manifold andU ⊂ M be an open subset. Iff ∈ M(Ω,M) and
Im(f) ⊂ U then the mapf : Ω → U is in M(Ω, U).

If U is open inM then axiom (A1) implies thatM(Ω, U) is a subset ofM(Ω,M),
provided that we identifyUΩ with a subset ofMΩ in the obvious way. Moreover, axioms
(A3) and (A4) imply that:

(2.2) M(Ω, U) =
{
f ∈ M(Ω,M) : Im(f) ⊂ U

}
.
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For later use we observe that (2.2) implies:

(2.3) M(Ω, U ∩ V ) = M(Ω, U) ∩M(Ω, V ),

for any open subsetsU, V ⊂M . Also, axioms (A3) and (A4) imply that:

(2.4) M
(
Ω, φ−1(U)

)
= LC(φ)−1

(
M(Ω, U)

)
,

for every smooth mapφ : M → N and every open subsetU ⊂ N .

Axiom A5. By identifyingUΩ with a subset ofMΩ thenM(Ω, U) is open inM(Ω,M)
and has the topology induced fromM(Ω,M).

Axiom A6. Given a manifoldM and a pointa ∈ Ω then theevaluation map:

(2.5) evala : M(Ω,M) −→M

given byevala(f) = f(a) is continuous.

Observe that axiom (A6) means that the topology ofM(Ω,M) is finer than pointwise
convergence topology, i.e., the topology induced from the product topology onMΩ. In
particular, all spacesM(Ω,M) are Hausdorff.

Before stating the last axiom, we prove the following:

2.1. Lemma. If E is a finite-dimensional real vector space (regarded as a manifold in the
canonical way) then the setM(Ω, E) is a subspace of the vector spaceEΩ. For t ∈ IR,
denote byct : Ω → IR the constant map equal tot; assuming that the map:

(2.6) IR 3 t 7−→ ct ∈ M(Ω, IR)

is continuous thenM(Ω, E) is a topological vector space, i.e., the vector space operations
of M(Ω, E) are continuous.

Proof. We know thatM(Ω, E) contains the constant maps, so it contains the identically
zero map. Moreover, by axiom (A2),M(Ω, E × E) can be identified with the product
M(Ω, E) × M(Ω, E); since the sum mapE × E 3 (v, w) 7→ v + w ∈ E is smooth,
axiom (A1) implies thatM(Ω, E) is closed under addition and that the sum ofM(Ω, E)
is continuous. For fixedt ∈ IR, the homotetyE 3 v 7→ tv ∈ E is smooth, and thus axiom
(A1) implies thatM(Ω, E) is closed under scalar multiplication. Finally, by axioms (A1)
and (A2), the mapM(Ω, IR)×M(Ω, E) → M(Ω, E) induced by scalar multiplication is
continuous; thus, if (2.6) is continuous, then the scalar multiplication ofM(Ω, E) is also
continuous. �

Axiom A7. The real vector spaceM(Ω, IR) is Banachble, i.e., there exists a norm on
M(Ω, IR) that induces its topology and that makes it into a Banach space.

Obviously axiom (A2) implies thatM(Ω, IRn) is linearly homeomorphic to the topo-
logical direct sum

⊕
n M(Ω, IR) and thusM(Ω, IRn) is also a Banachble space, for all

n. More generally,M(Ω, E) is a Banachble space for every real finite-dimensional vector
spaceE, by axiom (A1).

2.2. Lemma. Given manifoldsM ,N and a smooth embeddingφ : N →M then the map
LC(φ) : M(Ω, N) → M(Ω,M) is a homeomorphism onto its image, which is given by:

(2.7) Im
(
LC(φ)

)
=

{
f ∈ M(Ω,M) : Im(f) ⊂ Im(φ)

}
.

Moreover, if Im(φ) is closed inM thenIm
(
LC(φ)

)
is closed inM(Ω,M).
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Proof. Sinceφ : N → Im(φ) is a smooth diffeomorphism, by axiom (A1), we can assume
without loss of generality thatN is a submanifold ofM and thatφ is the inclusion map.
We then identifyM(Ω, N) with a subset ofM(Ω,M), beingLC(φ) the inclusion map.
Using a tubular neighborhood ofN in M we can find an open setU ⊂ M containing
N and a smooth retractionr : U → N , i.e., r|N = IdN . ThenLC(r) is a continuous
left inverse of the inclusion ofM(Ω, N) in M(Ω, U); observing that, by axiom (A5),
M(Ω, U) has the topology induced fromM(Ω,M), we conclude thatM(Ω, N) has the
topology induced fromM(Ω,M), i.e., LC(φ) is a homeomorphism onto its image. The
inclusion of the lefthand side of (2.7) into the righthand side of (2.7) follows from axiom
(A3). Moreover, iff ∈ M(Ω,M) andIm(f) ⊂ N thenf ∈ M(Ω, U), by axiom (A4)
and thusf = LC(r)(f) is in M(Ω, N). This proves (2.7). Finally, the fact thatM(Ω, N)
is closed inM(Ω,M) if N is closed inM follows from axiom (A6). �

Let π : ξ → X be a smooth vector bundle over a manifoldX. Givenσ ∈ M(Ω, X) we
set:

M(Ω, ξ;σ) =
{
s ∈ M(Ω, ξ) : π ◦ s = σ

}
,

and we endowM(Ω, ξ;σ) with the topology induced byM(Ω, ξ). If U ⊂ ξ is open then
we also write:

M(Ω, U ;σ) = M(Ω, U) ∩M(Ω, ξ;σ),
and we endowM(Ω, U ;σ) with the topology induced byM(Ω, ξ), which, by axiom (A5),
coincides with the topology induced byM(Ω, U). Moreover,M(Ω, U ;σ) is open in
M(Ω, ξ;σ).

2.3. Lemma. If π : ξ → X is a smooth vector bundle over a manifoldX and σ is in
M(Ω, X) thenM(Ω, ξ;σ) is a subspace of the vector space of all mapss : Ω → ξ with
π ◦ s = σ. Moreover,M(Ω, ξ;σ) is a Banachble space.

Proof. By axiom (A3) we can coverIm(σ) with a finite number of open setsUi ⊂ X,
i = 1, . . . , r, such thatξ is trivial overUi for eachi. Denote byn the dimension of the
fibers ofξ and for eachi = 1, . . . , r let φi : π−1(Ui) → IRn be a smooth map whose
restriction to each fiber is an isomorphism. Let(λi)r

i=1 be a smooth partition of unity on
the open setU =

⋃r
i=1 Ui such thatsupp(λi) ⊂ Ui for all i. Consider the smooth map

φ : π−1(U) −→
⊕

r

IRn ∼= IRrn

whosei-th coordinate equals(λi ◦ π)φi onπ−1(Ui) and equals zero onπ−1(U \ Ui), for
i = 1, . . . , r. Then(π, φ) : π−1(U) → U × IRrn is a smooth vector bundle isomorphism
from π−1(U) = ξ|U onto a vector subbundlẽξ of the trivial bundleU × IRrn. Observe
that if s ∈ M(Ω, ξ;σ) then Im(s) ⊂ ξ|U and thus, by axioms (A4) and (A5), we have
M(Ω, ξ;σ) = M(Ω, ξ|U ;σ). Sinceξ̃ is a closed submanifold ofU × IRrn, Lemma 2.2
implies thatLC(π, φ) is a linear homeomorphism betweenM(Ω, ξ|U ;σ) and the closed
subspaceM(Ω, ξ̃;σ) of the Banachble spaceM(Ω, U × IRrn;σ) ∼= M(Ω, IRrn). �

In order to construct a smooth atlas on the spacesM(Ω,M), we will have to prove the
smoothness of certain left composition maps on Banachble spaces of the formM(Ω, ξ;σ).
To that aim, we will employ a general lemma that allows one to establish differentiability
of maps between Banach spaces.

2.4. Definition. LetE be a Banachble space. Aseparating set of continuous linear maps
for E is a setΛ of continuous linear mapsλ : E → F , whereF is a Banachble space that
may depend onλ, such that for every nonzerov ∈ E there existsλ ∈ Λ with λ(v) 6= 0.
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Given Banachble spacesE, F , we denote byLin(E,F ) the Banachble space of contin-
uous linear maps fromE to F .

2.5. Lemma (weak differentiation principle). LetE, F be Banachble spaces,U ⊂ E an
open subset,f : U → F a map andΛ a separating set of continuous linear maps forF . If
there exists a continuous mapg : U → Lin(E,F ) such that:

(2.8)
d
dt

(λ ◦ f)(x+ tv)
∣∣∣
t=0

= λ
(
g(x)v

)
,

for all x ∈ U , v ∈ E, λ ∈ Λ thenf is of classC1 anddf = g.

Proof. See [5, Proposition 3.2]. �

Let X be a manifold andπ1 : ξ1 → X, π2 : ξ2 → X be smooth vector bundles
overX. We denote byξ1 ⊕ ξ2 the Whitney sumof ξ1 and ξ2, i.e., the vector bundle
overX whose fiber overx ∈ X is ξ1x ⊕ ξ2x. There exists an obvious diffeomorphism
betweenξ1 ⊕ ξ2 and the closed submanifold of the productξ1 × ξ2 consisting of pairs
(v, w) ∈ ξ1 × ξ2 with π1(v) = π2(w). Thus, using Lemma 2.2 and axiom (A2) we obtain
a linear homeomorphism:

(2.9) M(Ω, ξ1 ⊕ ξ2;σ) ∼= M(Ω, ξ1;σ)⊕M(Ω, ξ2;σ),

for anyσ ∈ M(Ω, X).
Denote byLin(ξ1, ξ2) the vector bundle overX whose fiber overx ∈ X is the space

Lin(ξ1x, ξ
2
x) of linear maps fromξ1x to ξ2x. Consider the smooth map:

C : Lin(ξ1, ξ2)⊕ ξ1 −→ ξ2

defined byC(T, v) = T (v), for all T ∈ Lin(ξ1x, ξ
2
x), v ∈ ξ1x, x ∈ X. By axiom (A1), the

mapLC(C) is continuous and using the identification given in (2.9) we obtain a continuous
bilinear map:

LC(C) : M
(
Ω,Lin(ξ1, ξ2);σ

)
×M(Ω, ξ1;σ) −→ M(Ω, ξ2;σ).

The continuous bilinear mapLC(C) above then induces in a natural way a continuous
linear map:

(2.10) O : M
(
Ω,Lin(ξ1, ξ2);σ

)
−→ Lin

(
M(Ω, ξ1;σ),M(Ω, ξ2;σ)

)
;

more explicitly, we haveO(T )(s)(a) = T (a)s(a), for everyT ∈ M
(
Ω,Lin(ξ1, ξ2);σ

)
,

s ∈ M(Ω, ξ1;σ) and a ∈ Ω. The construction above will be used in the proof of
Lemma 2.6 below.

Recall that, given smooth vector bundlesπ1 : ξ1 → X, π2 : ξ2 → X over a manifold
X then a mapφ defined on a subset ofξ1, taking values inξ2 is calledfiber preservingif
π2

(
φ(v)

)
= π1(v), for all v in the domain ofφ.

2.6. Lemma. Letπ1 : ξ1 → X, π2 : ξ2 → X be smooth vector bundles over a manifold
X and letφ : U → ξ2 be a smooth fiber preserving map defined on an open subsetU ⊂ ξ1.
Givenσ ∈ M(Ω, X) then:

LC(φ) : M(Ω, U ;σ) −→ M(Ω, ξ2;σ)

is a smooth map on the open subsetM(Ω, U ;σ) of the Banachble spaceM(Ω, ξ1;σ).

Proof. Denote byFφ thefiber derivativeof φ which is the smooth fiber preserving map:

Fφ : U −→ Lin(ξ1, ξ2)
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defined byFφ(v) = d(φ|ξ1
x∩U )(v), for all v ∈ ξ1x ∩ U , x ∈ X. Our strategy is to use

Lemma 2.5 to show thatLC(φ) is of classC1 and that:

d
(
LC(φ)

)
= O ◦ LC(Fφ).

The smoothness ofLC(φ) will then follow by induction. We already know thatO is
continuous and thatLC(Fφ) is continuous, by axiom (A1). For eacha ∈ Ω, denote by:

evala : M(Ω, ξ2;σ) −→ ξ2σ(a)

the map of evaluation ata. We know from axiom (A6) thatevala is a continuous linear
map and then obviouslyΛ =

{
evala : a ∈ Ω

}
is a separating set of continuous linear maps

for M(Ω, ξ2;σ). The verification of the hypothesis (2.8) on Lemma 2.5, withf = LC(φ),
g = O ◦ LC(Fφ), is now straightforward. �

We will now consider a fixed manifoldM and we will construct a smooth atlas for
M(Ω,M). Letπ : ξ → X be a smooth vector bundle over a manifoldX and let:

ϕ : X ×M ⊃ V −→ Ṽ ⊂ ξ

be a smooth diffeomorphism, whereV is open inX ×M andṼ is open inξ; we assume
in addition thatϕ is fiber preservingin the sense thatπ ◦ ϕ = pr1|V , wherepr1 denotes
the first projection of the productX ×M . Givenσ ∈ M(Ω, X) we write:

(2.11) M(Ω,M ;σ, V ) =
{
f ∈ M(Ω,M) : (σ, f) ∈ M(Ω, V )

}
⊂ M(Ω,M),

and we consider the map:

(2.12) LC(ϕ;σ) : M(Ω,M ;σ, V ) −→ M(Ω, Ṽ ;σ) ⊂ M(Ω, ξ;σ),

defined byLC(ϕ;σ)(f) = ϕ ◦ (σ, f). The setM(Ω,M ;σ, V ) is open inM(Ω, V ), by
axioms (A2) and (A5); moreover,M(Ω, Ṽ ;σ) is open in the Banachble spaceM(Ω, ξ;σ)
andLC(ϕ;σ) is a homeomorphism, by axiom (A1). ThusLC(ϕ;σ) is a (topological) local
chart in the topological spaceM(Ω,M). We will call X theauxiliary manifoldandσ the
auxiliary mapcorresponding to the chartLC(ϕ;σ).

Our goal now is to show that the local charts (2.12) form a smooth atlas onM(Ω,M).

2.7. Lemma. Let π : ξ → X, π′ : η → Y be smooth vector bundles over manifolds
X, Y and letσ ∈ M(Ω, X), τ ∈ M(Ω, Y ) be fixed. Given smooth fiber preserving
diffeomorphisms:

ϕ : X ×M ⊃ V −→ Ṽ ⊂ ξ, ψ : Y ×M ⊃W −→ W̃ ⊂ η

between open setsV , Ṽ ,W , W̃ then the local chartsLC(ϕ;σ) andLC(ψ; τ) onM(Ω,M)
are smoothly compatible, i.e., the transition mapLC(ψ; τ) ◦ LC(ϕ;σ)−1 is a smooth dif-
feomorphism between open sets.

Proof. The strategy of the proof is two modify the chartsLC(ϕ;σ) andLC(ψ; τ) so that
they both correspond to the same auxiliary manifoldX × Y and the same auxiliary map
(σ, τ) ∈ M(Ω, X × Y ). To this aim, consider the smooth vector bundles:

π × IdY : ξ × Y −→ X × Y, IdX × π′ : X × η −→ X × Y

over the manifoldX × Y . By axiom (A2), we have obvious linear homeomorphisms:

M(Ω, ξ;σ) ∼= M
(
Ω, ξ × Y ; (σ, τ)

)
, M(Ω, η; τ) ∼= M

(
Ω, X × η; (σ, τ)

)
,
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where(σ, τ) ∈ M(Ω, X×Y ). By taking restrictions of the linear homeomorphisms above
we obtain the following homeomorphisms:

(2.13) M(Ω, Ṽ ;σ) ∼= M
(
Ω, Ṽ × Y ; (σ, τ)

)
, M(Ω, W̃ ; τ) ∼= M

(
Ω, X × W̃ ; (σ, τ)

)
.

Also, by axiom (A2), we have (recall (2.11)):

M(Ω,M ;σ, V ) = M
(
Ω,M ; (σ, τ), s(Y × V )

)
,(2.14)

M(Ω,M ; τ,W ) = M
(
Ω,M ; (σ, τ), X ×W

)
,(2.15)

wheres : Y × X ×M → X × Y ×M is the map that swaps the first two coordinates.
Consider the smooth fiber preserving diffeomorphisms:

ϕ : X × Y ×M ⊃ s(Y × V ) −→ Ṽ × Y ⊂ ξ × Y,

ψ : X × Y ×M ⊃ X ×W −→ X × W̃ ⊂ X × η,

defined byϕ(x, y,m) =
(
ϕ(x,m), y

)
, ψ(x, y,m) =

(
x, ψ(y,m)

)
. Using the identities

(2.14), (2.15) and the identifications (2.13), the chartsLC(ϕ;σ) andLC(ψ; τ) are identi-
fied respectively with the charts:

LC
(
ϕ; (σ, τ)

)
: M

(
Ω,M ; (σ, τ), s(Y × V )

)
−→ M

(
Ω, Ṽ × Y ; (σ, τ)

)
,(2.16)

LC
(
ψ; (σ, τ)

)
: M

(
Ω,M ; (σ, τ), X ×W )

)
−→ M

(
Ω, X × W̃ ; (σ, τ)

)
.(2.17)

By (2.3), the intersection of the domains of the charts above isM
(
Ω,M ; (σ, τ), Z

)
, where:

Z = s(Y × V ) ∩ (X ×W ) ⊂ X × Y ×M.

Hence, the transition map between the chartsLC
(
ϕ; (σ, τ)

)
andLC

(
ψ; (σ, τ)

)
, which, up

to the identifications (2.13), is equal to the transition map betweenLC(ϕ;σ) andLC(ψ; τ),
is given by:

LC
(
ψ ◦ ϕ−1) : M

(
Ω, ϕ(Z); (σ, τ)

)
−→ M

(
Ω, ψ(Z); (σ, τ)

)
;

sinceψ ◦ ϕ−1 : ϕ(Z) → ψ(Z) is a smooth fiber preserving diffeomorphism, Lemma 2.6
implies that the map above is a smooth diffeomorphism between open sets, which proves
thatLC(ϕ;σ) andLC(ψ; τ) are smoothly compatible. �

A topological spaceX is calledhereditarily paracompactif every subspace ofX is
paracompact (or, equivalently, if every open subspace ofX is paracompact). Under our
conventions, all manifolds are hereditarily paracompact. We have the following:

2.8. Lemma. Let f : X → Y be a local homeomorphism, whereX , Y are topological
spaces, withY Hausdorff and hereditarily paracompact. IfS ⊂ X is a subset2 such that
f |S : S → f(S) is a homeomorphism then there exists an open setZ ⊂ X containingS
such thatf |Z : Z → f(Z) is a homeomorphism.

Proof. The proof follows a standard argument that is used in some proofs on the existence
of tubular neighborhoods (see for instance [3,§5, Chapter IV]). �

2.9. Proposition. The local charts of the form(2.12)form a smooth atlas on the topologi-
cal spaceM(Ω,M).

2Actually, if one assumes thatf(S) be closed inY then it would be sufficient to assume thatY be Hausdorff
and paracompact, rather than hereditarily paracompact.



BANACH MANIFOLD STRUCTURE FOR GENERAL SETS OF MAPS 10

Proof. By Lemma 2.7, it suffices to find for everyf ∈ M(Ω,M) a chart of the form (2.12)
onM(Ω,M) whose domain containsf . Choose an arbitrary Riemannian metric onM (or
an arbitrary connection onTM ) and denote byexp the corresponding exponential map,
which is a smoothM -valued map on an open subsetD of TM . If π : TM → M denotes
the projection then, by the inverse function theorem, the map(π, exp) : D →M ×M is a
smooth local diffeomorphism on an open subset ofD containing the zero section ofTM ;
thus, by Lemma 2.8, there exists an open setṼ ⊂ TM containing the zero section which
is mapped diffeomorphically by(π, exp) onto an open subsetV ⊂ M ×M containing
the diagonal. The desired chartLC(ϕ;σ) is now obtained by takingξ = TM , X = M ,
ϕ = (π, exp)−1 : V → Ṽ andσ = f . �

2.10. Remark.As we have already observed, axiom (A6) implies that the spaceM(Ω,M)
is Hausdorff. Actually, sinceM can be embedded inIRn for somen by Whitney’s theorem,
Lemma 2.2 implies thatM(Ω,M) is homeomorphic to a subspace of the Banachble space
M(Ω, IRn). ThusM(Ω,M) is T4, metrizable and hereditarily paracompact. Moreover,
M(Ω,M) is second countable if the Banachble spaceM(Ω, IR) is separable.

2.11. Remark.Obviously if the Banachble spaceM(Ω, IR) is Hilbertablethen the proof of
Lemma 2.3 shows that the spacesM(Ω, ξ;σ) are also Hilbertable and thereforeM(Ω,M)
is a Hilbert manifold for any manifoldM .

From now on, on this section, we will assume that the spacesM(Ω,M) are endowed
with the Banach manifold structure defined by the charts (2.12) and we will prove a few
basic results about such manifold structure.

The next two propositions are rather trivial though important for the completeness of
the theory.

2.12. Proposition. If E is a finite-dimensional real vector space (regarded as a mani-
fold in the canonical way) then the Banachble spaceM(Ω, E) has its canonical manifold
structure, i.e., the manifold structure induced by the atlas containing the identity map of
M(Ω, E).

Proof. Let X be a one point (zero-dimensional) manifold,ξ = E → X be the trivial
bundle overX whose unique fiber isE and letσ ∈ M(Ω, X) be the unique constant
map. The chartLC(ϕ;σ) : M(Ω, E;σ,X × E) = M(Ω, E) → M(Ω, ξ;σ) = M(Ω, E)
induced by the obvious diffeomorphismϕ : X × E → ξ is equal to the identity map. �

2.13. Proposition. If M is a manifold andU ⊂ M is an open subset thenM(Ω, U) is an
open submanifold ofM(Ω,M).

Proof. By axiom (A5), M(Ω, U) is open inM(Ω,M). Moreover, the charts we have
defined forM(Ω, U) are also charts forM(Ω,M). �

2.14. Proposition. Given manifoldsM , N and a smooth mapφ : M → N then the left
composition mapLC(φ) : M(Ω,M) → M(Ω, N) is smooth.

Proof. Let f ∈ M(Ω,M) be fixed and choose local charts:

LC(ϕ;σ) : M(Ω,M ;σ, V ) −→ M(Ω, Ṽ ;σ),

LC(ψ; τ) : M(Ω, N ; τ,W ) −→ M(Ω, W̃ ; τ),

whose domains contain respectivelyf andφ ◦ f . As usual, the definition of the charts
above involve manifoldsX, Y , mapsσ ∈ M(Ω, X), τ ∈ M(Ω, Y ), smooth vector bundles
ξ → X, η → Y , open setsV ⊂ X ×M , W ⊂ Y × N , Ṽ ⊂ ξ, W̃ ⊂ η and smooth
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fiber preserving diffeomorphismsϕ : V → Ṽ , ψ : W → W̃ . Now we proceed as in
the proof of Lemma 2.7 in order to modify the chartsLC(ϕ;σ) andLC(ψ; τ) so that they
correspond to the same auxiliary manifoldX × Y and the same auxiliary map(σ, τ). We
will then obtain chartsLC

(
ϕ; (σ, τ)

)
andLC

(
ψ; (σ, τ)

)
similar to (2.16) and (2.17); here

the domain ofϕ is open inX × Y ×M while the domain ofψ is open inX × Y × N .
The coordinate representation of the mapLC(φ) with respect to the chartsLC

(
ϕ; (σ, τ)

)
andLC

(
ψ; (σ, τ)

)
is given by (see also (2.4)):

LC
(
ψ; (σ, τ)

)
◦ LC(φ) ◦ LC

(
ϕ; (σ, τ)

)−1 = LC
(
ψ ◦ φ ◦ ϕ−1)

,

whereφ = Id × Id × φ : X × Y ×M → X × Y × N . Sinceψ ◦ φ ◦ ϕ−1
is a smooth

fiber preserving map between open subsets of the vector bundlesξ × Y andX × η, the
conclusion follows from Lemma 2.6. �

2.15. Corollary. Given manifoldsM , N and a smooth diffeomorphismφ : M → N then
alsoLC(φ) : M(Ω,M) → M(Ω, N) is a smooth diffeomorphism. �

2.16. Corollary. Given manifoldsM , N and a smooth embeddingφ : N → M then the
left composition mapLC(φ) : M(Ω, N) → M(Ω,M) is a smooth embedding.

Proof. As in the proof of Lemma 2.2, we can find an open subsetU ⊂M containingIm(φ)
and a smooth left inverser : U → N for φ : N → U . Then, by Proposition 2.14,LC(r)
is a smooth left inverse ofLC(φ) : M(Ω, N) → M(Ω, U). This implies thatLC(φ) is a
smooth embedding inM(Ω, U). The conclusion now follows from Proposition 2.13.�

We finish the section by showing the usual identification between the tangent bundle
TM(Ω,M) andM(Ω, TM).

2.17. Proposition. For every manifoldM and everya ∈ Ω, the evaluation map(2.5) is
smooth. Givenf ∈ M(Ω,M) andv ∈ TfM(Ω,M) then the map̂v : Ω → TM defined
by:

v̂(a) = d(evala)(f)v ∈ Tf(a)M, a ∈ Ω,

is in M(Ω, TM). Moreover, the map:

(2.18) TM(Ω,M) 3 v 7−→ v̂ ∈ M(Ω, TM)

is a smooth diffeomorphism.

Proof. Let f ∈ M(Ω,M) be fixed and consider a chart of the form (2.12) onM(Ω,M)
whose domain containsf . Givena ∈ Ω then the fiber preserving smooth diffeomorphism:

ϕ : X ×M ⊃ V −→ Ṽ ⊂ ξ

induces a chartϕ
(
σ(a), ·

)
aroundf(a) on M , taking values inξσ(a). The coordinate

representation ofevala with respect to the chartsLC(ϕ;σ) andϕ
(
σ(a), ·

)
is simply the

restriction toM(Ω, Ṽ ;σ) of the evaluation map:

M(Ω, ξ;σ) 3 s 7−→ s(a) ∈ ξσ(a),

which is obviously linear and continuous by axiom (A6). Thusevala is smooth and for
v ∈ TfM(Ω,M) we have:

(2.19) ∂2ϕ
(
σ(a), f(a)

)
v̂(a) =

[
dLC(ϕ;σ)(f)v

]
(a),

where∂2ϕ denotes differentiation of the mapϕ with respect to the variable inM .
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Denoting byπ : TM →M the canonical projection and bypr1 : ξ⊕ ξ → ξ the projec-
tion onto the first component thenϕ induces a fiber preserving smooth diffeomorphism:

Fϕ : X × TM ⊃ (Id× π)−1(V ) −→ pr−1
1 (Ṽ ) ⊂ ξ ⊕ ξ,

defined by:
Fϕ(x, z) =

(
ϕ(x,m), ∂2ϕ(x,m)z

)
∈ ξx ⊕ ξx,

for all (x, z) ∈ X × TM with (x,m) ∈ V , wherem = π(z) ∈ M . The mapFϕ induces
the chart:

LC(Fϕ;σ) : M
(
Ω, TM ;σ, (Id× π)−1(V )

)
−→ M

(
Ω,pr−1

1 (Ṽ );σ) ⊂ M(Ω, ξ ⊕ ξ;σ)

onM(Ω, TM). Moreover, the chartLC(ϕ;σ) onM(Ω,M) induces the chart:(
LC(ϕ;σ) ◦ p,dLC(ϕ;σ)

)
: TM(Ω,M ;σ, V ) −→ M(Ω, Ṽ ;σ)×M(Ω, ξ;σ)

on TM(Ω,M), wherep : TM(Ω,M) → M(Ω,M) denotes the canonical projection.
IdentifyingM(Ω, ξ ⊕ ξ;σ) with M(Ω, ξ;σ)⊕M(Ω, ξ;σ) (recall (2.9)) then by (2.19) the
coordinate representation of (2.18) with respect to the charts

(
LC(ϕ;σ) ◦ p,dLC(ϕ;σ)

)
andLC(Fϕ;σ) is simply the identity map ofM(Ω, Ṽ ;σ)×M(Ω, ξ;σ). This shows at the
same time that̂v ∈ M(Ω, TM) and that (2.18) is a smooth diffeomorphism. �

2.18. Remark. It is possible to generalize the theory of this section to include spaces of
mapsM(Ω,M) whereM is infinite-dimensional. For instance, one can allowM to belong
to the class of Hausdorff paracompact Banach manifolds modelled on a class of Banach
spaces that admit a nonzero real valued smooth map with bounded support (for instance,
Hilbert spaces). In this case one has to strengthen axiom (A7), so thatM(Ω, E) is Banach-
ble for every Banach spaceE in the class under consideration.

2.19. Remark. Given a ruleM satisfying axioms (A0)—(A7) then the manifold struc-
ture in the topological spacesM(Ω,M) is unique if one assumes the validity of Proposi-
tions 2.12, 2.13 and 2.14. Namely, the validity of such propositions implies the validity
of Corollary 2.16; thus, if one chooses a smooth embeddingφ : M → IRn into Eu-
clidean space thenLC(φ) must be a smooth embedding ofM(Ω,M) into the Banachble
spaceM(Ω, IRn). But there can be at most one manifold structure onM(Ω,M) for which
LC(φ) is a smooth embedding.

3. CONCRETEEXAMPLES

In this section we present several concrete examples of rulesM that satisfy axioms
(A0)—(A7) of Section 2. We start by listing some simple examples where the topological
spaceM(Ω,M) can be easily described for every manifoldM . Then, we present a method
for obtaining the spacesM(Ω,M) from a prescribed Banachble spaceE = M(Ω, IR)
satisfying two simple properties.

3.1. Example. Let Ω be an arbitrary set and for each manifoldM let:

M(Ω,M) = B(Ω,M)

be the space of all mapsf : Ω → M with relatively compact image. Choose a metric
d on the manifoldM compatible with its topology and considerB(Ω,M) endowed with
the uniform convergence topology. Ifφ : (M,d) → (N, d′) is a continuous map then it
is easy to see that the mapLC(φ) : B(Ω,M) → B(Ω, N) is continuous. This implies in
particular that the topology onB(Ω,M) does not depend on the metricd, so that we indeed
have a topological spaceB(Ω,M) associated to each manifoldM . The verification of the
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axioms (A0)—(A7) is straightforward. For axiom (A7), observe thatB(Ω, IR) is simply
the space of bounded mapsf : Ω → IR, whose topology can be induced by the usual sup
norm‖f‖sup = supa∈Ω

∣∣f(a)
∣∣.

3.2. Example. Let (Ω,A) be ameasurable space, i.e., Ω is a set andA is a σ-algebra
of subsets ofΩ. A map defined onΩ and taking values in a given topological space is
calledmeasurableif the inverse image of every open set is inA. For each manifoldM ,
let M(Ω,M) = Mb(Ω,M) be the set of all measurable mapsf : Ω →M with relatively
compact image; considerMb(Ω,M) endowed with the topology induced byB(Ω,M).
One easily checks axioms (A0)—(A7). For axiom (A7), observe thatMb(Ω, IR) is a
closed subspace ofB(Ω, IR).

3.3. Example. Let Ω be an arbitrary topological space and letM(Ω,M) = C0
b(Ω,M)

be the set of all continuous mapsf : Ω → M with relatively compact image; consider
C0

b(Ω,M) endowed with the topology induced byB(Ω,M). Axioms (A0)—(A7) are
easily checked. Observe thatC0

b(Ω, IR) is the Banachble space of bounded real valued
continuous maps onΩ, whose topology is induced by the sup norm.

3.4. Example. Let Ω be an open subset ofIRm andk ≥ 1 be fixed. Given a manifold
M , thek-th jet bundleJk(IRm,M) is a fiber bundle overM constructed as follows; for
eachx ∈M , the fiber ofJk(IRm,M) overx is the set of equivalence classes ofM -valued
mapsf of classCk defined in a neighborhood of the origin inIRm and withf(0) = x.
The equivalence relation isf1 ∼ f2 iff f1 andf2 have the same Taylor polynomial of
order k at the origin, when some coordinate chart ofM is used aroundx. There are
well-known natural local trivializations ofJk(IRm,M) induced by local charts ofM .
Given a mapf : Ω → M of classCk we define thek-th jet of f as the continuous
mapJk(f) : Ω → Jk(IRm,M) such thatJk(f)(a) ∈ Jk(IRm,M) is the equivalence
class off ◦ ta, whereta : IRm → IRm denotes the translation bya. We defineCk

b (Ω,M)
to be the set of mapsf : Ω →M of classCk such thatJk(f) has relatively compact image
in Jk(IRm,M). The topology onCk

b (Ω,M) will be induced fromB
(
Ω, Jk(IRm,M)

)
by

the mapf 7→ Jk(f). It is easy to see thatM = Ck
b satisfies axioms (A0)—(A7). Observe

thatCk
b (Ω, IR) is the Banachble space of bounded mapsf : Ω → IR of classCk having

bounded partial derivatives up to orderk, whose topology is induced by the standardCk

norm:
‖f‖ =

∑
|λ|≤k

‖∂λf‖sup,

whereλ = (λ1, . . . , λm) ∈ INm denotes a multi-index and|λ| =
∑m

i=1 λi.
This exampledo notgeneralize directly to the case thatΩ is a manifold. In order to

make sense of the spaceCk
b (Ω,M) in this case, one needs for instance a connection and a

Riemannian metric onΩ (this will be dealt with in Example 3.11 below).

We now present a more systematic method for producing examples of rulesM satisfying
axioms (A0)—(A7). The idea is the following. We start with an arbitrary setΩ and a
Banachble spaceE of mapsf : Ω → IR satisfying a suitable property and we will then
show how to construct a ruleM satisfying axioms (A0)—(A7) for whichM(Ω, IR) = E .

Let Ω be an arbitrary set. As in Example 3.1, we denote byB(Ω, IRn) the Banach space
of all bounded mapsf : Ω → IRn endowed with the sup norm. We give the following:

3.5. Definition. A Banachble space of bounded maps onΩ is a Banachble spaceE which
is a vector subspace ofB(Ω, IR) and such that the inclusion mapE ↪→ B(Ω, IR) is con-
tinuous. For alln ≥ 1, we identify the Banachble spaceEn =

⊕
n E with the subspace of
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B(Ω, IRn) consisting of those mapsf : Ω → IRn all of whose coordinatesfi : Ω → IR
are inE . We say thatE has theleft composition propertyif for every n ≥ 1 and every
smooth mapφ : IRn → IR the left composition map:

LC(φ) : En 3 f 7−→ φ ◦ f ∈ E
is well-defined3 and continuous.

We insist on callingE a Banachble space, rather than a Banach space, to emphasize that
only the topology ofE is relevant, and not a particular choice of norm.

Let Ω be a set andE be a fixed Banachble space of bounded maps onΩ satisfying the
left composition property. Given manifoldsM , N , we will denote byC∞(M,N) the set
of all smooth maps fromM toN . For an arbitrary manifoldM , we set:

M(Ω,M) =
{
f ∈MΩ : α ◦ f ∈ E , for all α ∈ C∞(M, IR)

}
.

We endowM(Ω,M) with the topology induced by the left composition maps:

LC(α) : M(Ω,M) −→ E ,
whereα runs over the setC∞(M, IR). More explicitly,M(Ω,M) has the coarsest topol-
ogy for whichLC(α) is continuous for everyα ∈ C∞(M, IR). Thus, ifρ is anM(Ω,M)-
valued map defined on an arbitrary topological space, thenρ is continuous if and only if
LC(α) ◦ ρ is anE-valued continuous map for everyα ∈ C∞(M, IR).

Now we prove that the ruleM defined above satisfies axioms (A0)—(A7). First, we
have the following:

3.6. Lemma. If E is a Banachble space of bounded maps on a setΩ satisfying the left
composition property and if the ruleM is defined as above then, for everyn ≥ 1, the
topological spacesM(Ω, IRn) andEn are equal.

Proof. The fact thatE satisfies the left composition property implies thatEn is contained in
M(Ω, IRn) and that the inclusion mapEn ↪→ M(Ω, IRn) is continuous. Ifπi : IRn → IR
denotes projection onto thei-th coordinate, then the fact thatLC(πi) : M(Ω, IRn) → E is
(well-defined and) continuous for alli = 1, . . . , n implies thatM(Ω, IRn) is contained in
En and that the inclusion mapM(Ω, IRn) ↪→ En is continuous. �

3.7. Theorem. If Ω is a set andE is a Banachble space of bounded maps onΩ satisfying
the left composition property then the ruleM defined above satisfies axioms (A0)—(A7) of
Section 2.

Proof. Axioms (A0) and (A7) follow from Lemma 3.6. We now prove the other axioms.

Proof of axiom (A1). It is easy to see thatLC(φ) carriesM(Ω,M) to M(Ω, N). For the
continuity, it suffices to show thatLC(α) ◦ LC(φ) is continuous for allα ∈ C∞(N, IR);
butLC(α) ◦ LC(φ) = LC(α ◦ φ) andα ◦ φ ∈ C∞(M, IR).
Proof of axiom (A3). If there were somef ∈ M(Ω,M) with non relatively compact image,
we could find a smooth mapα : M → IR which is unbounded onIm(f) (for instance,
there exists a smooth proper mapα : M → IR). But this contradicts the fact thatα◦f ∈ E
andE ⊂ B(Ω, IR).
Proof of axiom (A4). Choosef ∈ M(Ω,M) with Im(f) ⊂ U andλ ∈ C∞(M, IR) with
λ ≡ 1 on Im(f) andsupp(λ) ⊂ U . Givenα ∈ C∞(U, IR), thenα = λα extends to a
smooth map onM that vanishes outsideU ; moreover,α ◦ f = α ◦ f ∈ E . This proves that
f ∈ M(Ω, U).

3Obviouslywell-definedmeans thatf ∈ En impliesφ ◦ f ∈ E .
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Proof of axiom (A5). Givenf ∈ M(Ω, U), chooseλ ∈ C∞(M, IR) with λ ≡ 1 on Im(f)
andsupp(λ) ⊂ U . If P denotes the open subset ofB(Ω, IR) consisting of bounded maps
u : Ω → IR with infa∈Ω u(a) > 0 then:

f ∈ LC(λ)−1(P ∩ E) ⊂ M(Ω, U),

and thereforeM(Ω, U) is open inM(Ω,M). Now letM(Ω, U)♦ temporarily denote the
spaceM(Ω, U) endowed with the topology induced fromM(Ω,M) and let us show that
M(Ω, U)♦ equalsM(Ω, U) as a topological space. By axiom (A1), the inclusion map of
M(Ω, U) in M(Ω,M) is continuous and hence the identity map:

Id : M(Ω, U) −→ M(Ω, U)♦

is continuous. To prove the continuity ofId : M(Ω, U)♦ → M(Ω, U), we show that
LC(α) : M(Ω, U)♦ → E is continuous for everyα ∈ C∞(U, IR). Let f ∈ M(Ω, U) be
fixed and choose an open subsetV ⊂ M with Im(f) ⊂ V ⊂ V ⊂ U . Choose a map
α ∈ C∞(M, IR) that equalsα onV . Then the mapLC(α) is continuous onM(Ω,M) and
hence onM(Ω, U)♦; moreover,LC(α) agrees withLC(α) onM(Ω, V ), which is an open
neighborhood off in M(Ω,M). This proves the continuity ofLC(α) onM(Ω, U)♦.

Proof of axiom (A6). Let a ∈ Ω be fixed. We show thateval−1
a (U) is open inM(Ω,M)

for every open setU ⊂ M . Choosef ∈ eval−1
a (U); thenf(a) ∈ U . Now consider the

open subsetPa ⊂ B(Ω, IR) of bounded mapsu : Ω → IR with u(a) > 0 and choose
α ∈ C∞(M, IR) with α

(
f(a)

)
= 1 andsupp(α) ⊂ U ; we have:

f ∈ LC(α)−1(Pa ∩ E) ⊂ eval−1
a (U),

which proves thateval−1
a (U) is open.

Proof of axiom (A2). In order to prove that (2.1) is surjective and that its inverse is contin-
uous, we have to show that for everyα ∈ C∞(M1 ×M2, IR), the map:

(3.1) M(Ω,M1)×M(Ω,M2) 3 (f, g) 7−→ α ◦ (f, g)

takes values inE and is continuous. Denote byS ⊂ C∞(M1 ×M2, IR) the set of thoseα
for which (3.1) takes values inE and is continuous. It is obvious thatS is a subspace
of C∞(M1 × M2, IR). In fact, S is a subalgebra (under pointwise multiplication) of
C∞(M1 × M2, IR), because the mapLC(m) : E2 → E of left composition with the
multiplication mapm : IR × IR → IR is continuous. It is also obvious thatS contains
thoseα that are independent of one of the two variables. Denote byni the dimension of
Mi, i = 1, 2. For the rest of the proof, we will say that a mapα ∈ C∞(M1 ×M2, IR) has
small supportif there exists closed setsFi ⊂Mi, open setsUi ⊂Mi and diffeomorphisms
ϕi : Ui → IRni with Fi ⊂ Ui, i = 1, 2 andsupp(α) ⊂ F1×F2. We claim thatS contains
all α ∈ C∞(M1 ×M2, IR) with small support. Namely, fori = 1, 2, choose an open
subsetVi ⊂Mi with Fi ⊂ Vi ⊂ Vi ⊂ Ui, a mapϕi ∈ C∞(Mi, IR

ni) that equalsϕi onVi

and a mapλi ∈ C∞(Mi, IR) with λi ≡ 1 onFi andsupp(λi) ⊂ Vi. Set:

α̃ = α◦(ϕ1×ϕ2)−1 ∈ C∞(IRn1×IRn2 , IR), α = α̃◦(ϕ1×ϕ2) ∈ C∞(M1×M2, IR).

It is easy to see thatα(x, y) = λ1(x)λ2(y)α(x, y), for all x ∈ M1, y ∈ M2. Thus, to
prove thatα ∈ S, it suffices to show thatα is in S. But this follows by observing that the
map(f, g) 7→ α ◦ (f, g) is equal to the compositeLC(α̃) ◦

(
LC(ϕ1)× LC(ϕ2)

)
.

We will now conclude the proof by showing that everyα ∈ C∞(M1 ×M2, IR) is in
S. Let f0 ∈ M(Ω,M1) andg0 ∈ M(Ω,M2) be fixed. SinceIm(f0) and Im(g0) are
relatively compact, a simple argument using a partition of unity shows that we can find
mapsα1, . . . , αr ∈ C∞(M1 ×M2, IR) with small support such thatα equals

∑r
j=1 αj
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on an open subset of the formU1 × U2 ⊂ M1 ×M2 containingIm(f0) × Im(g0). Then∑r
j=1 αj is in S and thus the map(f, g) 7→ α ◦ (f, g) is E-valued and continuous on the

neighborhoodM(Ω, U1) ×M(Ω, U2) of (f0, g0). Sincef0 andg0 are arbitrary, we have
α ∈ S. This concludes the proof. �

Let us now give some examples of Banachble spaces of bounded maps satisfying the
left composition property.

3.8. Example. Let Ω be a metric space (or, more generally, a uniform space). The space
E = C0

bu(Ω, IR) of uniformly continuous bounded mapsf : Ω → IR endowed with the sup
norm is a Banach space of bounded maps. It is easy to see thatE has the left composition
property.

3.9. Example. Let (Ω, d) be a metric space,α ∈ ]0, 1] and letE = C0,α(Ω, IR) be the
space of allα-Hölderian bounded mapsf : Ω → IR. We define a norm onE by:

‖f‖ = ‖f‖sup + sup
a,b∈Ω
a6=b

∣∣f(a)− f(b)
∣∣

d(a, b)α
.

ThenE is a Banach space of bounded maps with the left composition property.

3.10. Example. LetΩ be an open subset ofIRm,α ∈ ]0, 1], k ≥ 1 and letE = Ck,α(Ω, IR)
be the space of all mapsf : Ω → IR of classCk such thatf and its partial derivatives up
to orderk are bounded andα-Hölderian. We define a norm onE by:

‖f‖ =
∑
|λ|≤k

‖∂λf‖sup +
∑
|λ|≤k

sup
a,b∈Ω
a6=b

∣∣∂λf(a)− ∂λf(b)
∣∣

‖a− b‖α
,

whereλ = (λ1, . . . , λm) ∈ INm denotes a multi-index. ThenE is a Banach space of
bounded maps with the left composition property.

3.11. Example. Let Ω be a manifold endowed with a connection on the tangent bundleTΩ
and with a Riemannian metric. Iff : Ω → IR is a map of classCk then fori = 1, . . . , k,
thei-th covariant derivative∇if of f is a section of the tensor bundle

⊗
i T

∗Ω, on which
there is a natural Riemannian structure induced by the Riemannian metric ofΩ. We denote
byE = Ck

b (Ω, IR) the space of all bounded mapsf : Ω → IR of classCk for which‖∇if‖
is bounded for alli = 1, . . . , k. We define a norm onE by:

‖f‖ = ‖f‖sup +
k∑

i=1

∥∥∇if
∥∥

sup
.

ThenE is a Banach space of bounded maps with the left composition property.

3.12. Example. Let Ω be a set and letE1, E2 be Banachble spaces of bounded maps in
Ω with the left composition property. SetE = E1 ∩ E2 and considerE endowed with the
topology induced by the two inclusion mapsE → Ei, i = 1, 2. If ‖ · ‖i is a norm forEi,
i = 1, 2, then‖ · ‖ = ‖ · ‖1|E + ‖ · ‖2|E is a norm forE . ObviouslyE is a Banach space
with continuous inclusion in bothE1 andE2 (and hence inB(Ω, IR)). Moreover, it is easy
to see thatE also has the left composition property.

3.13. Remark. If E is a Banachble space of bounded maps on a setΩ satisfying the left
composition property then there exists auniqueway of defining the topological spaces
M(Ω,M) so that axioms (A0)—(A7) are satisfied andM(Ω, IR) = E . Namely, ifM is a
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manifold andφ : M → IRn is an embedding into Euclidean space then, by Lemma 2.2,
LC(φ) has to be a homeomorphism onto the space:{

f ∈ M(Ω, IRn) : Im(f) ⊂ Im(φ)
}
,

with the topology induced fromM(Ω, IRn). But axiom (A2) implies thatM(Ω, IRn) =
En.

3.14. Remark.If M is a rule satisfying axioms (A0)—(A7) thenE = M(Ω, IR) must be
a Banachble space contained inB(Ω, IR), by axioms (A3) and (A7). By axiom (A6), the
inclusion mapE → B(Ω, IR) has closed graph and it is therefore continuous. Moreover,
axioms (A1) and (A2) imply thatE must have the left composition property. Thus (keeping
in mind Lemma 3.6, Theorem 3.7 and Remark 3.13),M 7→ E = M(Ω, IR) gives a one to
one correspondence between rulesM satisfying axioms (A0)—(A7) and Banachble spaces
E of bounded maps satisfying the left composition property.

3.1. When constant maps are missing.Let Ω be a set and letE be a Banachble space
of bounded maps onΩ. If E satisfies the left composition property, thenE must contain
the constant maps; namely, ifφ : IR → IR is a constant map thenLC(φ) must take
values inE . Thus, if a Banachble space of bounded mapsE does not contain the constants,
one cannot hope thatE could have the left composition property. But there are important
natural function spaces that do not contain the constants. We will deal with this problem
now.

3.15. Definition. Let Ω be a set and letE be a Banachble space of bounded maps onΩ.
We say thatE has theleft composition property of type zeroif for everyn ≥ 1 and every
smooth mapφ : IRn → IR with φ(0) = 0 the left composition mapLC(φ) : En → E is
well-defined and continuous.

We have a simple lemma.

3.16. Lemma. LetE be a Banachble space of bounded maps on a setΩ satisfying the left
composition property of type zero. IfE contains the constant maps thenE satisfies the left
composition property.

Proof. Given φ ∈ C∞(IRn, IR), setψ = φ − φ(0) ∈ C∞(IRn, IR) and observe that
LC(φ) = LC(ψ) + c, wherec : En → E denotes the constant map equal toφ(0) ∈ E . �

If a Banachble space of bounded mapsE does not contain the constants, one may hope
that, by adding the constants toE , we may obtain a space that satisfies the left composition
property. With this in mind, we give the following:

3.17. Definition. Let Ω be a set and letE be a Banachble space of bounded maps onΩ. We
say thatE has theparametric left composition property of type zeroif for every s, n ≥ 1
and every smooth mapφ : IRn × IRs → IR such thatφ(0, c) = 0, for all c ∈ IRs, the map:

En × IRs 3 (f, c) 7−→ φc ◦ f ∈ E ,

is well-defined and continuous, whereφc = φ(·, c) : IRn → IR, for all c ∈ IRs.

Obviously the parametric left composition property of type zero implies the left com-
position property of type zero.

If Ω is a set we denote byCt(Ω) the unidimensional space of constant mapsf : Ω → IR;
we identifyCt(Ω)n with the space of constant mapsf : Ω → IRn.
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3.18. Lemma. Let E0 be a Banachble space of bounded maps on a setΩ satisfying the
parametric left composition property of type zero. IfCt(Ω) 6⊂ E0 (or, equivalently, if
Ct(Ω)∩E0 = {0}) thenE = E0⊕Ct(Ω) is a Banachble space of bounded maps satisfying
the left composition property.

Proof. ObviouslyE has continuous inclusion inB(Ω, IR). Letφ : IRn → IR be a smooth
map. If we write the elements ofEn as pairs(f, c) with f ∈ En

0 , c ∈ IRn ∼= Ct(Ω)n, then
the left composition mapLC(φ) is given by:

LC(φ) : En 3 (f, c) 7−→
(
ψc ◦ f, φ(c)

)
∈ E ,

whereψ : IRn × IRn → IR is given byψ(x, c) = φ(x+ c)− φ(c) andψc = ψ(·, c). �

We now use the trick of “adding the constants” explained above to deal with some
interesting examples.

Let (Ω,A, µ) be a measure space, i.e.,Ω is a set,A is aσ-algebra of subsets ofΩ and
µ : A → [0,+∞] is a countably additive measure. Choose a real numberp ∈ [1,+∞[ and
consider the spaceLp

b(Ω, IR) consisting of bounded measurable mapsf : Ω → IR such
that:

‖f‖p =
( ∫

Ω

|f |p dµ
) 1

p

< +∞.

It is easy to see thatLp
b(Ω, IR) endowed with the norm:

‖f‖ = ‖f‖sup + ‖f‖p

is a Banach space4. If µ(Ω) < +∞ thenLp
b(Ω, IR) coincides with the closed subspace

Mb(Ω, IR) of B(Ω, IR) (see Example 3.2) and the norm above is equivalent to the sup
norm. We will therefore focuss on the caseµ(Ω) = +∞; observe that in this case
Lp

b(Ω, IR) does not contain the constant maps.

3.19. Lemma. The spaceE = Lp
b(Ω, IR) is a Banachble space of bounded maps satisfying

the parametric left composition property of type zero.

Proof. ObviouslyE has continuous inclusion inB(Ω, IR). Let φ : IRn × IRs → IR be a
smooth map withφ(0, c) = 0 for all c ∈ IRs; let us show that the map:

(3.2) En × IRs 3 (f, c) 7−→ φc ◦ f ∈ E
is well-defined and continuous, whereφc = φ(·, c). For fixedc ∈ IRs, the mapφc is
Lipschitz on every bounded subset ofIRn and, sinceφc(0) = 0, we have:∣∣φc

(
f(a)

)∣∣ ≤ C
∥∥f(a)

∥∥, a ∈ Ω,

for some constantC ≥ 0 dependent onf ∈ En. This shows that‖φc ◦ f‖p < +∞ and
obviouslyφc ◦ f is measurable and bounded. Thus (3.2) is well-defined. To prove the
continuity of (3.2), letf ∈ En andc ∈ IRs be fixed and choose a compact convex set
K ⊂ IRn containing the origin and withIm(f) contained in the interior ofK. Then the
set of thoseg ∈ En with Im(g) ⊂ K is a neighborhood off in En; for suchg and any
d ∈ IRs, a ∈ Ω, we compute:∣∣φ(

f(a), c
)
− φ

(
g(a), d

)∣∣ ≤ ∣∣φ(
f(a), c

)
− φ

(
g(a), c

)∣∣ +
∣∣φ(

g(a), c
)
− φ

(
g(a), d

)∣∣
≤ C

∥∥f(a)− g(a)
∥∥ + sup

x∈K

∥∥dφc(x)− dφd(x)
∥∥ ∥∥g(a)∥∥,

whereC is a Lipschitz constant forφc onK. From the inequalities above it is easy to see
thatφd ◦ g tends toφc ◦ f in E asd tends toc in IRs andg tends tof in En. �

4We do not identify maps that are equal almost everywhere!
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3.20. Corollary. If µ(Ω) = +∞ then the spaceE = Lp
b(Ω, IR) ⊕ Ct(Ω) is a Banachble

space of bounded maps satisfying the left composition property.

Proof. Follows from Lemmas 3.18 and 3.19. �

If Ω is an open subset ofIRm andp ∈ [1,+∞[ is a real number, we denote as usual by
Lp(Ω, IR) the space of (equivalence classes of almost everywhere equal) measurable maps
f : Ω → IR with ‖f‖p < +∞. For every integerk ≥ 1, we denote byW k,p(Ω, IR) the
Sobolev space of mapsf ∈ Lp(Ω, IR) such that∂λf ∈ Lp(Ω, IR) for every multi-index
λ = (λ1, . . . , λm) ∈ INm with |λ| ≤ k; the partial derivative∂λ is understood in the
distributional sense. As usual, the norm onW k,p(Ω, IR) is defined by:

‖f‖ =
∑
|λ|≤k

‖∂λf‖p

and ‖ · ‖ turnsW k,p(Ω, IR) into a Banach space. For all the results that we will use
about Sobolev spaces we refer to [1]. IfΩ is a bounded domain with smooth boundary
then the theory of Banach manifolds modelled on the Sobolev spacesW k,p(Ω, IR) is well-
known. For instance, ifk > m

p thenW k,p(Ω, IR) has continuous inclusion onC0
b(Ω, IR)

and it satisfies the left composition property (see [4, Lemma 9.9]). We will therefore
focuss only on the case thatΩ is unbounded and, for simplicity, we takeΩ = IRm. Ob-
viously,W k,p(IRm, IR) doesn’t contain the constant maps becauseLp(IRm, IR) doesn’t.
If k > m

p , the spaceW k,p(IRm, IR) has continuous inclusion inC0
b(IRm, IR). Since the

spaceC∞c (IRm, IR) of smooth real valued maps with compact support onIRm is dense
in W k,p(IRm, IR), it follows that the elements ofW k,p(IRm, IR) tend to zero at infinity.
We are now going to look for conditions under which the spaceW k,p(IRm, IR) satisfies
the parametric left composition property of type zero. Unfortunately, contrary to the case
of boundedΩ, the conditionk > m

p alone does not imply such property5. Not all is lost,
though, as it is shown in the following:

3.21. Lemma. If m < p andk ≥ 1 then the Sobolev spaceW k,p(IRm, IR) is a Banachble
space of bounded maps inIRm satisfying the parametric left composition property of type
zero.

Proof. Sincek ≥ 1 > m
p , the spaceE = W k,p(IRm, IR) has continuous inclusion in

C0
b(IRm, IR) and thus inB(IRm, IR). Let φ : IRn × IRs → IR be a smooth map with

φ(0, c) = 0 for all c ∈ IRs; let us show that the mapEn × IRs 3 (f, c) 7→ φc ◦ f ∈ E is
well-defined and continuous, whereφc = φ(·, c). SinceC∞c (IRm, IRn) is dense inEn, by
standard arguments, it suffices to show that the map:

C∞c (IRm, IRn)× IRs 3 (f, c) 7−→ ∂λ(φc ◦ f) ∈ Lp(IRm, IR),

has a continuous extension toEn × IRs for every multi-indexλ = (λ1, . . . , λm) ∈ INm

with |λ| ≤ k. The caseλ = 0 (i.e., ∂λ(φc ◦ f) = φc ◦ f ) follows from Lemma 3.19,
observing thatE has continuous inclusion inLp

b(IRm, IR). If λ 6= 0 then, fora ∈ IRm,
∂λ(φc ◦ f)(a) is a linear combination of terms of the form:

(∂βφc)
(
f(a)

)
(∂γ1fi1)(a) (∂γ2fi2)(a) · · · (∂γrfir )(a),

wheref = (f1, . . . , fn), i1, . . . , ir ∈ {1, . . . , n} andβ ∈ INn, γ1, . . . , γr ∈ INm are
nonzero multi-indices with|β| ≤ |λ| and

∑r
i=1 |γi| = |λ|. SinceEn has continuous

5The difficulty of the caseΩ = IRm lies on the fact that the continuous embeddingW k,p(IRm, IR) ↪→
Lq(IRm, IR) holds only for1

q
= 1

p
− k

m
and not in general for1

q
≥ 1

p
− k

m
, as it does in the case of bounded

domains. Thus the proof of [4, Theorem 9.4] doesn’t work if the domain is unbounded.



BANACH MANIFOLD STRUCTURE FOR GENERAL SETS OF MAPS 20

inclusion inC0
b(IRm, IRn), we have that(f, c) 7→ (∂βφc)◦f defines aC0

b(IRm, IR)-valued
continuous map onEn × IRs. Since the multiplication map:

(3.3) C0
b(IRm, IR)× Lp(IRm, IR) 3 (g1, g2) 7−→ g1g2 ∈ Lp(IRm, IR)

is continuous, to complete the proof it suffices to show thatf 7→
∏r

u=1 ∂γufiu defines a
continuousLp(IRm, IR)-valued map onEn. If r = 1 then |γ1| ≤ k andf 7→ ∂γ1fi1 is
a continuousLp(IRm, IR)-valued map onEn. Assume now thatr > 1. Then|γu| < k
for all u = 1, . . . , r and thenf 7→ ∂γu

fiu
defines a continuousW 1,p(IRm, IR)-valued

map onEn. The hypothesism < p implies thatW 1,p(IRm, IR) has continuous inclusion
in C0

b(IRm, IR) and, since the multiplication map ofC0
b(IRm, IR) is continuous, it follows

that the map:

En 3 f 7−→
r−1∏
u=1

∂γu
fiu

∈ C0
b(IRm, IR)

is continuous. Finally, sinceEn 3 f 7→ ∂γrfir ∈ Lp(IRm, IR) is continuous, the conclu-
sion follows from the continuity of (3.3). �

3.22. Corollary. Under the hypothesis of Lemma 3.21,W k,p(IRm, IR) ⊕ Ct(IRm) is a
Banachble space of bounded maps inIRm satisfying the left composition property.

Proof. Follows from Lemmas 3.18 and 3.21. �

Observe that the important caseHk(IR, IR) = W k,2(IR, IR) satisfies the hypothesis of
Lemma 3.21.
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