Quarta Lista

MAT0122 – Álgebra Linear I

Prof. Daniel Victor Tausk 12/04/2014

Exercício 1. Determine uma base para a soma e uma base para a interseção dos subespaços S_1 e S_2 do espaço vetorial V em cada um dos itens abaixo.

- (a) $V = \mathbb{R}^5$, $S_1 = [(1, 0, 1, 2, 1), (-1, 0, 0, 1, 1), (1, 0, 2, 5, 3)], <math>S_2 = [(1, 1, 2, 2, 1), (1, 1, 3, 5, 3)];$
- (b) $V = \mathcal{P}_4(\mathbb{R}), S_1 = \{ p \in \mathcal{P}_4(\mathbb{R}) : p(1) = p'(1) = 0 \},$ $S_2 = \{ p \in \mathcal{P}_4(\mathbb{R}) : p(2) = p'(2) = 0 \};$
- (c) $V = M_n(\mathbb{R}), S_1 = \{A \in M_n(\mathbb{R}) : A^t = A\}, S_2 = \{A \in M_n(\mathbb{R}) : A^t = -A\}.$

Exercício 2. Determine uma base para o núcleo e uma base para a imagem da transformação linear T em cada um dos itens abaixo.

(a) $T: \mathbb{R}^3 \to \mathbb{R}^4$ definida por T(x) = Ax, para todo $x \in \mathbb{R}^3$, onde $A \in M_{4\times 3}(\mathbb{R})$ é a matriz:

$$A = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$

- (b) $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definida por $T(A) = A + A^{\mathrm{t}}$, para todo A em $M_2(\mathbb{R})$.
- (c) $T: \mathcal{P}_3(\mathbb{R}) \to \mathbb{R}^3$ definida por T(p) = (p(1), p'(1), p(0)), para todo $p \in \mathcal{P}_3(\mathbb{R})$.

Exercício 3. Sejam V e W espaços vetoriais e $T:V\to W$ uma transformação linear. Mostre que:

(a) se Z é um subespaço de V, então a $imagem\ direta$ de Z por T, definida por:

$$T[Z] = \big\{ T(v) : v \in Z \big\}$$

é um subespaço de W;

(b) se Z é um subespaço de W, então a $imagem\ inversa$ de Z por T, definida por:

$$T^{-1}[Z] = \left\{v \in V : T(v) \in Z\right\}$$

é um subespaço de V.

Exercício 4. Sejam V um espaço vetorial e S_1 , S_2 subespaços de V. Se $\dim(V) = 5$, $\dim(S_1) = 3$ e $\dim(S_2) = 4$, quais são os possíveis valores para $\dim(S_1 \cap S_2)$?

1

Solução do Exercício 1. (a) Uma possível base para a interseção $S_1 \cap S_2$ é $\{(0,0,1,3,2)\}$ e uma possível base para a soma $S_1 + S_2$ é:

$$\{(1,0,1,2,1),(-1,0,0,1,1),(1,1,2,2,1)\}.$$

- (b) Uma possível base para a interseção $S_1 \cap S_2$ é $\{(x-1)^2(x-2)^2\}$ e a soma $S_1 + S_2$ é igual a $\mathcal{P}_4(\mathbb{R})$, de modo que uma possível base para $S_1 + S_2$ é $\{1, x, x^2, x^3, x^4\}$.
- (c) A interseção $S_1 \cap S_2$ é o espaço nulo $\{0\}$, de modo que uma base para $S_1 \cap S_2$ é o conjunto vazio; a soma $S_1 + S_2$ é igual a $M_n(\mathbb{R})$, de modo que uma possível base para $S_1 + S_2$ é o conjunto $\{E_{ij} : i, j = 1, \ldots, n\}$, onde $E_{ij} \in M_n(\mathbb{R})$ é a matriz que possui 1 na posição que está na linha i e na coluna j, e possui zero em todas as outras posições.

Solução do Exercício 2. (a) Uma possível base para Ker(T) é $\{(1, 1, -1)\}$ e uma possível base para Im(T) é $\{(1, -1, 0, 1), (1, 1, 1, 0)\}$.

- (b) Uma possível base para Ker(T) é $\left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$ e uma possível base para Im(T) é $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$.
- (c) Uma possível base para Ker(T) é $\{(x-1)^2x\}$ e $\text{Im}(T) = \mathbb{R}^3$, de modo que uma possível base para Im(T) é $\{(1,0,0),(0,1,0),(0,0,1)\}$.

Solução do Exercício 3. (a) Se $w_1, w_2 \in T[Z]$, então existem $v_1, v_2 \in Z$ com $w_1 = T(v_1), w_2 = T(v_2)$. Daí $w_1 + w_2 = T(v_1) + T(v_2) = T(v_1 + v_2)$ e, como $v_1 + v_2 \in Z$, segue que $w_1 + w_2 \in T[Z]$. Se $w \in T[Z]$ e $\lambda \in \mathbb{R}$, então existe $v \in Z$ com w = T(v) e daí $\lambda w = \lambda T(v) = T(\lambda v)$; como $\lambda v \in Z$, segue que $\lambda w \in T[Z]$. Finalmente, 0 = T(0); como $0 \in Z$, segue que $0 \in T[Z]$. (b) Se $v_1, v_2 \in T^{-1}[Z]$, então $T(v_1) \in Z$, $T(v_2) \in Z$ e

$$T(v_1 + v_2) = T(v_1) + T(v_2) \in Z,$$

de modo que $v_1 + v_2 \in T^{-1}[Z]$. Se $v \in T^{-1}[Z]$ e $\lambda \in \mathbb{R}$, então $T(v) \in Z$ e $T(\lambda v) = \lambda T(v) \in Z$, de modo que $\lambda v \in T^{-1}[Z]$. Finalmente, $T(0) = 0 \in Z$, de modo que $0 \in T^{-1}[Z]$.

Solução do Exercício 4. Temos:

$$\dim(S_1 + S_2) = \dim(S_1) + \dim(S_2) - \dim(S_1 \cap S_2),$$

donde:

$$\dim(S_1 \cap S_2) = 7 - \dim(S_1 + S_2).$$

Como $S_1 + S_2$ é um subespaço de V que contém S_2 , segue que:

$$4 = \dim(S_2) \le \dim(S_1 + S_2) \le \dim(V) = 5,$$

isto é, $\dim(S_1 + S_2) = 4$ ou $\dim(S_1 + S_2) = 5$. Logo $\dim(S_1 \cap S_2) = 3$ ou $\dim(S_1 \cap S_2) = 2$. Essas duas possibilidades podem de fato ocorrer: por exemplo, se $V = \mathbb{R}^5$, $\{e_1, e_2, e_3, e_4, e_5\}$ denota a base canônica de \mathbb{R}^5 ,

$$S_1 = [e_1, e_2, e_3], \quad S_2 = [e_1, e_2, e_3, e_4],$$

então $S_1 \cap S_2 = S_1$, donde $\dim(S_1 \cap S_2) = 3$. Por outro lado, se

$$S_1 = [e_1, e_2, e_5], \quad S_2 = [e_1, e_2, e_3, e_4],$$

então $S_1 \cap S_2 = [e_1, e_2]$, de modo que $\dim(S_1 \cap S_2) = 2$.