Terceira Lista – Complemento

MAT0206 – Análise Real MAP0216 – Introdução à Análise Real

Prof. Daniel Victor Tausk 31/03/2012

Exercício 6. Seja $(A_i)_{i\in I}$ uma família¹ de conjuntos. Mostre que se I é enumerável e A_i é enumerável para todo $i \in I$ então a união $\bigcup_{i\in I} A_i$ é enumerável.

Exercício 7.

- (a) Mostre que se A, B são conjuntos enumeráveis então o produto cartesiano $A \times B$ é enumerável;
- (b) mostre que se A_1,\ldots,A_n são conjuntos enumeráveis então o produto cartesiano $\prod_{i=1}^n A_i=A_1\times\cdots\times A_n$ é enumerável.

Exercício 8. Seja $(A_n)_{n\geq 1}$ uma seqüência de conjuntos. Mostre que se A_n tem pelo menos dois elementos para todo n então o produto cartesiano $\prod_{n=1}^{\infty} A_n$ não é enumerável. (Sugestão: lembre-se do argumento diagonal de Cantor.)

 $^{^1}Família$ é uma generalização de seqüência em que o conjunto de índices não precisa ser o conjunto dos naturais. A definição é simplesmente a seguinte: uma família $(A_i)_{i\in I}$ é uma função cujo domínio é I. O valor no ponto $i\in I$ dessa função é denotado por A_i .