Terceira Lista

MAT0216 - Cálculo Diferencial e Integral III

Prof. Daniel Victor Tausk 13/03/2019

Exercício 1. Sejam $f: U \to \mathbb{R}^3$ uma função definida num subconjunto U de \mathbb{R}^4 , $g: V \to \mathbb{R}^5$ uma função definida num subconjunto V de \mathbb{R}^3 que contém a imagem de f e $h = g \circ f: U \to \mathbb{R}^5$ a função composta. Seja p um ponto interior de U tal que f(p) seja um ponto interior de V. Suponha que f seja diferenciável no ponto f0 e que as matrizes Jacobianas de f1 e f2 nesses pontos sejam dadas por:

$$Jf(p) = \begin{pmatrix} 2 & -1 & 0 & 4 \\ 1 & 1 & -2 & 3 \\ -3 & 1 & 4 & 5 \end{pmatrix} \quad e \quad Jg(f(p)) = \begin{pmatrix} 2 & 1 & 5 \\ 1 & 3 & -2 \\ -1 & -1 & 0 \\ 1 & 2 & 3 \\ 5 & 1 & -3 \end{pmatrix}.$$

- (a) Determine a matriz Jacobiana de h no ponto p.
- (b) Determine a derivada parcial na segunda variável da quarta função coordenada de h no ponto p, isto é, calcule $(\partial_2 h_4)(p)$.
- (c) Determine a derivada parcial na terceira variável de h no ponto p, isto é, calcule $(\partial_3 h)(p)$.
- (d) Determine o gradiente no ponto p da quinta função coordenada da função h.
- (e) Determine a derivada direcional $\frac{\partial h}{\partial \vec{v}}(p)$, em que $\vec{v} = (2, 1, -1, 4)$.

Exercício 2. Seja $f: \mathbb{R}^3 \to \mathbb{R}^2$ uma função diferenciável e suponha que:

$$Jf(1,0,2) = \begin{pmatrix} 2 & 1 & 3 \\ -1 & 2 & 4 \end{pmatrix} \quad \text{e} \quad Jf(1,0,1) = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & 1 \end{pmatrix}.$$

Considere as curvas parametrizadas $\gamma: \mathbb{R} \to \mathbb{R}^2$ e $\mu: \mathbb{R} \to \mathbb{R}^2$ definidas por $\gamma(t) = f(t^3, t-1, t+t^2)$ e $\mu(t) = f(\cos t, \sin t, e^t) + (t^2+1)f(t+1, t, t^2+2)$, para todo $t \in \mathbb{R}$. Calcule $\gamma'(1)$ e $\mu'(0)$.

Exercício 3. Seja $f: U \to \mathbb{R}^4$ uma função diferenciável num ponto p que está no interior de um subconjunto U de \mathbb{R}^3 . Suponha que a matriz Jacobiana de f no ponto p seja dada por:

$$Jf(p) = \begin{pmatrix} 1 & 2 & 1\\ 0 & 1 & 1\\ -1 & 1 & 1\\ 1 & 2 & 2 \end{pmatrix}.$$

Determine quais são os vetores $\vec{v} \in \mathbb{R}^3$ tais que $\frac{\partial f}{\partial \vec{v}}(p) = (6,4,3,9)$.

Exercício 4. Sejam $f: U \to \mathbb{R}^n$ uma função definida num subconjunto U de \mathbb{R}^m , $g: V \to \mathbb{R}^p$ uma função definida num subconjunto V de \mathbb{R}^n que contém a imagem de f e seja $h = g \circ f$. Suponha que x seja um ponto interior de U, f(x) seja um ponto interior de V, f seja diferenciável no ponto x e y seja diferenciável no ponto y e

$$\frac{\partial h}{\partial \vec{v}}(x) = Jg(f(x))\frac{\partial f}{\partial \vec{v}}(x),$$

para todo $\vec{v} \in \mathbb{R}^m$, em que na fórmula acima o vetor $\frac{\partial f}{\partial \vec{v}}(x) \in \mathbb{R}^n$ é escrito como matriz coluna.

Nos próximos exercícios você pode usar livremente os seguintes fatos, vistos em Cálculo II:

- (A) se duas funções a valores reais são diferenciáveis num ponto, então seu produto é diferenciável nesse ponto.
- (B) Se duas funções a valores reais são de classe C^k , então seu produto é de classe C^k .
- (C) Sejam $I \subset \mathbb{R}$, $t_0 \in I$ um ponto de acumulação de I e $f: I \to \mathbb{R}^m$ e $g: I \to \mathbb{R}^n$ funções deriváveis no ponto t_0 . Se m = 1, então a função $h: I \to \mathbb{R}^n$ definida por

$$h(t) = f(t)g(t),$$

para todo $t \in I$, é derivável em t_0 e sua derivada é dada por:

$$h'(t_0) = f'(t_0)g(t_0) + f(t_0)g'(t_0).$$

Se m=n, então a função $h:I\to\mathbb{R}$ definida por

$$h(t) = f(t) \cdot g(t),$$

para todo $t \in I$, é derivável em t_0 e sua derivada é dada por:

$$h'(t_0) = f'(t_0) \cdot g(t_0) + f(t_0) \cdot g'(t_0).$$

Se m=n=3, então a função $h:I\to\mathbb{R}^3$ definida por

$$h(t) = f(t) \wedge q(t)$$
,

para todo $t \in I$, é derivável em t_0 e sua derivada é dada por:

$$h'(t_0) = f'(t_0) \wedge q(t_0) + f(t_0) \wedge q'(t_0).$$

Observação. Note que, em todos os casos considerados no item (C) acima, a função h é uma espécie de "produto" de f por g: no primeiro caso, o "produto" é o produto de escalar por vetor; no segundo caso, o "produto" é o produto escalar de vetores e no terceiro caso o "produto" é o produto vetorial de vetores. Em todos os casos, segue que h é derivável no ponto t_0 e que sua derivada é dada por uma "regra do produto" do tipo "derivada da primeira pela segunda mais a primeira pela derivada da segunda". O que há de comum a todos esses "produtos" que faz essa regra valer? A resposta é que todos eles são operações bilineares. Uma função $B: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^p$ é dita bilinear quando for linear separadamente em cada uma de suas duas variáveis, isto é, quando

$$B(v_1 + v_2, w) = B(v_1, w) + B(v_2, w)$$
 e $B(\lambda v, w) = \lambda B(v, w)$

para todos $v_1, v_2, v \in \mathbb{R}^m, w \in \mathbb{R}^n, \lambda \in \mathbb{R}$ e

$$B(v, w_1 + w_2) = B(v, w_1) + B(v, w_2)$$
 e $B(v, \lambda w) = \lambda B(v, w)$

para todos $v \in \mathbb{R}^m$, $w_1, w_2, w \in \mathbb{R}^n$ e $\lambda \in \mathbb{R}$. Nas condições do item (C), vale que se B é bilinear e definimos h por

$$h(t) = B(f(t), g(t)),$$

para todo $t \in I$, então h é derivável em t_0 e vale a regra do produto:

$$h'(t_0) = B(f'(t_0), g(t_0)) + B(f(t_0), g'(t_0)).$$

Outro exemplo importante de operação bilinear é a multiplicação de matrizes. Os resultados que aparecem nos exercícios subsequentes podem ser generalizados para quaisquer operações bilineares.

Exercício 5. Sejam $f: U \to \mathbb{R}$ e $g: U \to \mathbb{R}^n$ funções definidas num subconjunto U de \mathbb{R}^m e seja p_0 um ponto interior de U. Suponha que f e g sejam diferenciáveis no ponto p_0 . Considere a função $h: U \to \mathbb{R}^n$ definida por

$$h(p) = f(p)g(p),$$

para todo $p \in U$.

- (a) Verifique que h é diferenciável no ponto p_0 .
- (b) Verifique que se f e g são de classe C^k , então h é de classe C^k .
- (c) Verifique que

$$\frac{\partial h}{\partial \vec{v}}(p_0) = \frac{\partial f}{\partial \vec{v}}(p_0)g(p_0) + f(p_0)\frac{\partial g}{\partial \vec{v}}(p_0),$$

para todo vetor $\vec{v} \in \mathbb{R}^m$.

(d) Verifique que

$$Jh(p_0) = g(p_0)Jf(p_0) + f(p_0)Jg(p_0),$$

em que na fórmula acima o vetor $g(p_0) \in \mathbb{R}^n$ deve ser escrito como uma matriz coluna. Note que se n = 1, então essa igualdade se reduz à fórmula:

$$\nabla h(p_0) = g(p_0)\nabla f(p_0) + f(p_0)\nabla g(p_0).$$

Exercício 6. Sejam $f: U \to \mathbb{R}^n$ e $g: U \to \mathbb{R}^n$ funções definidas num subconjunto U de \mathbb{R}^m e seja p_0 um ponto interior de U. Suponha que f e g sejam diferenciáveis no ponto p_0 . Considere a função $h: U \to \mathbb{R}$ definida por

$$h(p) = f(p) \cdot g(p),$$

para todo $p \in U$.

- (a) Verifique que h é diferenciável no ponto p_0 .
- (b) Verifique que se f e g são de classe C^k , então h é de classe C^k .
- (c) Verifique que

$$\frac{\partial h}{\partial \vec{v}}(p_0) = \frac{\partial f}{\partial \vec{v}}(p_0) \cdot g(p_0) + f(p_0) \cdot \frac{\partial g}{\partial \vec{v}}(p_0),$$

para todo vetor $\vec{v} \in \mathbb{R}^m$.

(d*) Verifique que

$$Jh(p_0) = g(p_0)^{t} Jf(p_0) + f(p_0)^{t} Jg(p_0),$$

em que na fórmula acima os vetores $f(p_0) \in \mathbb{R}^n$ e $g(p_0) \in \mathbb{R}^n$ devem ser escritos como matrizes coluna (de modo que as matrizes transpostas $f(p_0)^t$ e $g(p_0)^t$ são matrizes linha). Tomando a transposição dos dois lados dessa igualdade, conclua que se o vetor gradiente $\nabla h(p_0) \in \mathbb{R}^m$ for escrito como matriz coluna, então:

$$\nabla h(p_0) = Jf(p_0)^{t}g(p_0) + Jg(p_0)^{t}f(p_0).$$

Exercício 7. Sejam $f: U \to \mathbb{R}^3$ e $g: U \to \mathbb{R}^3$ funções definidas num subconjunto U de \mathbb{R}^m e seja p_0 um ponto interior de U. Suponha que f e g sejam diferenciáveis no ponto p_0 . Considere a função $h: U \to \mathbb{R}^3$ definida por

$$h(p) = f(p) \wedge g(p),$$

para todo $p \in U$.

- (a) Verifique que h é diferenciável no ponto p_0 .
- (b) Verifique que se f e g são de classe C^k , então h é de classe C^k .
- (c) Verifique que

$$\frac{\partial h}{\partial \vec{v}}(p_0) = \frac{\partial f}{\partial \vec{v}}(p_0) \wedge g(p_0) + f(p_0) \wedge \frac{\partial g}{\partial \vec{v}}(p_0),$$

para todo vetor $\vec{v} \in \mathbb{R}^m$.

Exercício* 8. Dado um vetor $\vec{v} \in \mathbb{R}^3$, verifique que a função $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$T(\vec{w}) = \vec{v} \wedge \vec{w},$$

para todo $\vec{w} \in \mathbb{R}^3$, é linear. Se $\Omega_{\vec{v}}$ denota a matriz que representa T, verifique que

$$\Omega_{\vec{v}} = \begin{pmatrix} 0 & -v_3 & v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{pmatrix},$$

em que $\vec{v} = (v_1, v_2, v_3)$. (Observação: essa matriz já apareceu no Exercício 3 da sexta lista de Cálculo II. O contexto ali era velocidade angular vetorial de um referencial ortonormal móvel.)

Exercício* 9. Sob as condições do Exercício 7, verifique que

$$Jh(p_0) = -\Omega_{g(p_0)} Jf(p_0) + \Omega_{f(p_0)} Jg(p_0),$$

em que, para todo $\vec{v} \in \mathbb{R}^3$, a matriz $\Omega_{\vec{v}}$ é definida como no Exercício 8.

Sugestões

Exercício 5. (a) Uma função é diferenciável num ponto se, e somente se, cada uma de suas funções coordenadas for diferenciável nesse ponto. Use isso e o fato (A) da página 2.

- (b) Uma função é de classe C^k se, e somente se, cada uma de suas funções coordenadas for de classe C^k . Use isso e o fato (B) da página 2.
 - (c) Se $\gamma(t) = p_0 + t\vec{v}$, então

$$\frac{\partial h}{\partial \vec{v}}(p_0) = (h \circ \gamma)'(0), \quad \frac{\partial f}{\partial \vec{v}}(p_0) = (f \circ \gamma)'(0) \quad e \quad \frac{\partial g}{\partial \vec{v}}(p_0) = (g \circ \gamma)'(0).$$

Use isso e o fato (C) da página 2 com as funções $h \circ \gamma$, $f \circ \gamma$ e $g \circ \gamma$ no lugar de h, f e g.

(d) Note que:

$$Jh(p_0)\vec{v} = \frac{\partial h}{\partial \vec{v}}(p_0) = \frac{\partial f}{\partial \vec{v}}(p_0)g(p_0) + f(p_0)\frac{\partial g}{\partial \vec{v}}(p_0)$$
$$= g(p_0) \left(Jf(p_0)\vec{v}\right) + f(p_0) \left(Jg(p_0)\vec{v}\right)$$
$$= \left(g(p_0)Jf(p_0) + f(p_0)Jg(p_0)\right)\vec{v}.$$

Exercício 6. Para os itens (a), (b) e (c), use as mesmas sugestões dos itens correspondentes do Exercício 5. Para o item (d), note que:

$$Jh(p_0)\vec{v} = \frac{\partial h}{\partial \vec{v}}(p_0) = \frac{\partial f}{\partial \vec{v}}(p_0) \cdot g(p_0) + f(p_0) \cdot \frac{\partial g}{\partial \vec{v}}(p_0)$$

$$= g(p_0) \cdot (Jf(p_0)\vec{v}) + f(p_0) \cdot (Jg(p_0)\vec{v})$$

$$= g(p_0)^{t} (Jf(p_0)\vec{v}) + f(p_0)^{t} (Jg(p_0)\vec{v})$$

$$= (g(p_0)^{t} Jf(p_0) + f(p_0)^{t} Jg(p_0))\vec{v}.$$

Exercício 7. Use as mesmas sugestões dos itens correspondentes do Exercício 5.

Exercício 9. Note que:

$$Jh(p_0)\vec{v} = \frac{\partial h}{\partial \vec{v}}(p_0) = \frac{\partial f}{\partial \vec{v}}(p_0) \wedge g(p_0) + f(p_0) \wedge \frac{\partial g}{\partial \vec{v}}(p_0)$$
$$= -g(p_0) \wedge \left(Jf(p_0)\vec{v}\right) + f(p_0) \wedge \left(Jg(p_0)\vec{v}\right)$$
$$= \left(-\Omega_{g(p_0)}Jf(p_0) + \Omega_{f(p_0)}Jg(p_0)\right)\vec{v}.$$

Respostas

Exercício 1. (a) A matriz Jh(p) é igual a:

$$\begin{pmatrix} -10 & 4 & 18 & 36 \\ 11 & 0 & -14 & 3 \\ -3 & 0 & 2 & -7 \\ -5 & 4 & 8 & 25 \\ 20 & -7 & -14 & 8 \end{pmatrix}.$$

- (b) $(\partial_2 h_4)(p) = 4$.
- (c) $(\partial_3 h)(p) = (18, -14, 2, 8, -14).$
- (d) $(\nabla h_5)(p) = (20, -7, -14, 8).$
- (e) $\frac{\partial h}{\partial \vec{v}}(p) = (110, 48, -36, 86, 79).$

Exercício 2. $\gamma'(1) = (16, 11) e \mu'(0) = (3, 2).$

Exercício 3. A única solução é $\vec{v} = (1, 1, 3)$.