Décima Lista

MAT0206 – Análise Real MAP0216 – Introdução à Análise Real

Prof. Daniel Victor Tausk 17/06/2012

A título de recordação, as definições e resultados vistos em aula foram colocados na lista.

Definição 1. Seja $f: D \to \mathbb{R}$ uma função com $D \subset \mathbb{R}$. Dado $a \in D$, dizemos que f é contínua no ponto a se para todo $\varepsilon > 0$, existe $\delta > 0$, tal que para todo $x \in D$, vale que:

$$|x - a| < \delta \Longrightarrow |f(x) - f(a)| < \varepsilon.$$

Dizemos que f é contínua se f for contínua em todo ponto de D.

Como vimos em aula, se $a \in D$ é um ponto isolado de $D \subset \mathbb{R}$, então qualquer função $f:D \to \mathbb{R}$ é contínua no ponto a. Se $a \in D$ for um ponto de acumulação de D (equivalentemente, se $a \in D$ não for um ponto isolado de D) então f é contínua no ponto a se e somente se:

$$\lim_{x \to a} f(x) = f(a).$$

Vimos em aula também que uma função constante é sempre contínua e que a função identidade Id: $\mathbb{R} \to \mathbb{R}$ é contínua. Os seguintes resultados também foram vistos em aula.

Proposição 1. Seja $f: D \to \mathbb{R}$ uma função, com $D \subset \mathbb{R}$. Seja $a \in D$. Então f é contínua no ponto a se e somente se para toda seqüência $(x_n)_{n\geq 1}$ em D tal que $x_n \to a$, vale que $f(x_n) \to f(a)$.

Proposição 2. Sejam $f: D \to \mathbb{R}$, $g: D \to \mathbb{R}$ funções, com $D \subset \mathbb{R}$. Dado $a \in D$, se f e g são contínuas no ponto a então f+g e fg são contínuas no ponto a.

Corolário 1. Se $f: \mathbb{R} \to \mathbb{R}$ é uma função polinomial então f é contínua.

Proposição 3. Sejam $f: D \to \mathbb{R}$, $g: D \to \mathbb{R}$ funções, com $D \subset \mathbb{R}$. Suponha que $g(x) \neq 0$ para todo $x \in D$ e seja $a \in D'$ um ponto de acumulação de D. Se $\lim_{x\to a} f(x) = L$ e $\lim_{x\to a} g(x) = M \neq 0$ então:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}.$$

Corolário 2. Sejam $f: D \to \mathbb{R}$, $g: D \to \mathbb{R}$ funções, com $D \subset \mathbb{R}$. Se $g(x) \neq 0$ para todo $x \in D$ e se f e g são contínuas num ponto $g \in D$ então o quociente $g(x) \neq 0$ entínuo no ponto $g(x) \neq 0$ entínuo no pon

Proposição 4. Sejam $f: D \to \mathbb{R}$, $g: E \to \mathbb{R}$ funções, com $D, E \subset \mathbb{R}$ e $f(D) \subset E$. Seja $a \in D'$ um ponto de acumulação de D e suponha que $\lim_{x\to a} f(x) = L \in E$. Se g é contínua no ponto L então:

$$\lim_{x\to a}g\big(f(x)\big)=g(L).$$

Corolário 3. Sejam $f: D \to \mathbb{R}$, $g: E \to \mathbb{R}$ funções, com $D, E \subset \mathbb{R}$ e $f(D) \subset E$. Se f é contínua num ponto $a \in D$ e g é contínua no ponto f(a) então a composição $g \circ f$ é contínua no ponto a.

O seguinte resultado segue diretamente da Proposição 2 e dos Corolários 2 e $3.\,$

Proposição 5. Sejam $f: D \to \mathbb{R}$, $g: D \to \mathbb{R}$ funções, com $D \subset \mathbb{R}$. Se f e g são contínuas então f+g e fg são contínuas. Se $g(x) \neq 0$ para todo $x \in D$ então f/g e contínua. Se $h: E \to \mathbb{R}$ e uma função com $f(D) \subset E \subset \mathbb{R}$ e se h e contínua então $h \circ f$ e contínua.

Exercício 1. Seja $f: D \to \mathbb{R}$ uma função, com $D \subset \mathbb{R}$. Sejam $E \subset D$ e $a \in E$. Se f é contínua no ponto a, mostre que $f|_E$ é contínua no ponto a. Se $E = V \cap D$, com V uma vizinhança de a, mostre que vale a recíproca, isto é, se $f|_E$ é contínua no ponto a então f é contínua no ponto a.

Exercício 2. Dê um exemplo de uma função $f: \mathbb{R} \to \mathbb{R}$ que não seja contínua em nenhum ponto de \mathbb{R} , mas tal que a restrição $f|_{\mathbb{Q}}$ seja contínua. (Esse exercício ilustra o fato que é muito diferente dizer que f é contínua em todo ponto de S e dizer que $f|_{S}$ é contínua! Pelo resultado do Exercício 1, se f é contínua em todo ponto de S então $f|_{S}$ é contínua, mas a recíproca não vale.)

Exercício 3. Sejam $D = [0, 1] \cup [2, 3]$ e $f: D \to \mathbb{R}$ definida por:

$$f(x) = x$$
, $x \in [0,1[$, $f(x) = x - 1$, $x \in [2,3]$.

Mostre que f é contínua e injetora, mas $f^{-1}:f(D)\to\mathbb{R}$ não é contínua. (Observação: você pode mostrar a continuidade de f diretamente pela definição, mas seria interessante se você soubesse fazer isso usando o resultado do Exercício 1.)

Os seguintes resultados foram vistos em aula.

Proposição 6. Seja $f: D \to \mathbb{R}$ uma função com $D \subset \mathbb{R}$ e seja $a \in D$. Então f é contínua no ponto a se e somente se para toda vizinhança V de f(a) existe uma vizinhança W de a tal que $f(W \cap D) \subset V$.

Corolário 4. Seja $f: D \to \mathbb{R}$ uma função com $D \subset \mathbb{R}$ e seja $a \in D$. Suponha que f seja contínua no ponto a. Se $c \in \mathbb{R}$ é tal que f(a) > c então existe uma vizinhança W de a tal que f(x) > c, para todo $x \in W \cap D$. Similarmente, se $c \in \mathbb{R}$ é tal que f(a) < c então existe uma vizinhança W de a tal que f(x) < c, para todo $x \in W \cap D$.

Quando c=0 o Corolário 4 é também conhecido como teorema da conservação do sinal.

Teorema 1 (do valor intermediário). Sejam $a, b, c \in \mathbb{R}$ com $a \leq b$. Se $f: [a,b] \to \mathbb{R}$ é uma função contínua e vale que $f(a) \leq c \leq f(b)$ ou $f(b) \leq c \leq f(a)$ então c pertence à imagem de f, ou seja, existe $x \in [a,b]$ tal que f(x) = c.

Exercício 4. Seja U um subconjunto aberto de \mathbb{R} e seja $f: U \to \mathbb{R}$ uma função. Mostre que f é contínua se e somente se para todo subconjunto aberto A de \mathbb{R} , vale que $f^{-1}(A)$ é também um subconjunto aberto de \mathbb{R} .

Definição 2. Um subconjunto I de \mathbb{R} é dito um *intervalo* se vale uma das seguintes condições:

- (1) I é vazio ou I é unitário;
- (2) existem $a, b \in \mathbb{R}$ com a < b e:

$$I = [a, b]$$
 ou $I = [a, b]$ ou $I = [a, b]$ ou $I = [a, b]$;

(3) existe $a \in \mathbb{R}$ com:

$$I = [a, +\infty[\quad \text{ou} \quad I =]a, +\infty[\quad \text{ou} \quad I =]-\infty, a] \quad \text{ou} \quad I =]-\infty, a[\,;$$

(4) $I = \mathbb{R}$.

Exercício 5. Mostre que um subconjunto I de \mathbb{R} é um intervalo se e somente se vale a seguinte condição: dados $x,y \in I$ e $z \in \mathbb{R}$, se x < z < y então $z \in I$. (Atenção: a solução desse exercício envolve uma tediosa análise de casos.)

Exercício 6. Sejam $I \subset \mathbb{R}$ um intervalo e $f: I \to \mathbb{R}$ uma função contínua. Mostre que a imagem de f é um intervalo. (Sugestão: use o resultado do Exercício 5.)

Definição 3. Dada uma função $f: D \to \mathbb{R}$, dizemos que $x \in D$ é um ponto de máximo de f se $f(x) \ge f(y)$, para todo $y \in D$. Dizemos que $x \in D$ é um ponto de mínimo de f se $f(x) \le f(y)$, para todo $y \in D$.

O seguinte resultado foi visto em aula.

Teorema 2 (de Weierstrass). Se K é um subconjunto compacto não vazio de \mathbb{R} e $f: K \to \mathbb{R}$ é uma função contínua então f possui um ponto de máximo e um ponto de mínimo.

Exercício 7. Se K é um subconjunto compacto de \mathbb{R} e $f:K\to\mathbb{R}$ é uma função contínua, mostre que a imagem de f é compacta. (Sugestão: use a caracterização de compacidade por seqüências.) Use esse resultado e o resultado do Exercício 8 da lista 8 para obter uma demonstração do Teorema de Weierstrass.

Exercício 8. Se K é um subconjunto compacto de \mathbb{R} e $f: K \to \mathbb{R}$ é uma função contínua e injetora, mostre que a função inversa $f^{-1}: f(K) \to \mathbb{R}$ é contínua. (Sugestão: mostre que f^{-1} é contínua usando seqüências. Tenha em mente que se uma seqüência limitada $(x_n)_{n\geq 1}$ não converge para um certo $x \in \mathbb{R}$ então ela tem um valor de aderência diferente de x.)

Definição 4. Seja $f: D \to \mathbb{R}$ uma função com $D \subset \mathbb{R}$. Dizemos que f é crescente se, para todos $x, y \in D$, vale que¹:

$$x \le y \Longrightarrow f(x) \le f(y)$$
.

Dizemos que f é decrescente se, para todos $x, y \in D$, vale que:

$$x \le y \Longrightarrow f(x) \ge f(y)$$
.

Dizemos que f é monótona se for crescente ou decrescente.

Exercício 9. Seja $f: D \to \mathbb{R}$ uma função injetora, com $D \subset \mathbb{R}$. Mostre que se f é crescente então $f^{-1}: f(D) \to \mathbb{R}$ é crescente e que se f é decrescente então $f^{-1}: f(D) \to \mathbb{R}$ é decrescente. Conclua que se f é monótona então $f^{-1}: f(D) \to \mathbb{R}$ é monótona.

 $^{^1\!\}mathrm{Aten} \zeta \tilde{\mathrm{ao}} \mathrm{c}$ a terminologia que estamos usando aqui é diferente da usada no livro do Elon.