Décima Lista

MAT0111 - Cálculo Diferencial e Integral I

Prof. Daniel Victor Tausk 19/06/2013

Exercício 1. Encontre as soluções gerais das equações diferenciais abaixo:

(a)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = (y^2 + 1)\cos x;$$

(b)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = e^y \ln x$$
.

Exercício 2. Calcule a derivada da função $f: \mathbb{R} \to \mathbb{R}$ definida por:

$$f(x) = \int_{x^2}^{\lg x} x \cos(t^2) \, \mathrm{d}t,$$

para todo $x \in \mathbb{R}$.

Exercício 3. Sejam m, n números inteiros e considere a integral indefinida:

$$\int \operatorname{tg}^m x \sec^n x \, \mathrm{d}x.$$

Investigue quais as condições sobre m e n para que:

- (a) a substituição $y = \operatorname{tg} x$ transforme o integrando numa função racional de y;
- (b) a substituição $y = \sec x$ transforme o integrando numa função racional de y.

Exercício* 4. Sejam $a:I\to\mathbb{R},\ b:I\to\mathbb{R}$ funções contínuas definidas num intervalo I. O objetivo deste exercício é determinar a solução geral da seguinte equação diferencial linear de primeira ordem:

$$(1) f'(x) = a(x)f(x) + b(x),$$

ou seja, queremos determinar o conjunto de todas as funções deriváveis $f: I \to \mathbb{R}$ tais que (1) é satisfeita, para todo $x \in I$.

(a) Seja $A:I\to\mathbb{R}$ uma primitiva da função a. Verifique que (1) é equivalente a:

$$\frac{\mathrm{d}}{\mathrm{d}x} (f(x)e^{-A(x)}) = b(x)e^{-A(x)}.$$

(b) Conclua que se $H:I\to\mathbb{R}$ é uma primitiva da função:

$$h(x) = b(x)e^{-A(x)}$$

então a solução geral de (1) é:

$$f(x) = e^{A(x)} (H(x) + c),$$

com $c \in \mathbb{R}$ arbitrário.

(c) Encontre a solução geral da equação diferencial:

$$f'(x) = xf(x) + 3x.$$

Exercício* 5. Considere uma integral indefinida cujo integrando seja uma função racional em senos e cossenos, i.e., uma integral indefinida da forma:

$$\int \frac{\sum_{m,n=0}^{p} a_{mn} \cos^{m} x \sin^{n} x}{\sum_{m,n=0}^{p} b_{mn} \cos^{m} x \sin^{n} x} dx,$$

onde p é um inteiro positivo e $a_{mn},\ b_{mn},\ m,n=0,1,\ldots,p$ são números reais. Mostre que a substituição $y=\operatorname{tg}\frac{x}{2}$ transforma o integrando numa função racional. (Sugestão: verifique que sen $x=\frac{2y}{1+y^2},\ \cos x=\frac{1-y^2}{1+y^2}$ e que $\mathrm{d}x=\frac{2}{1+y^2}\,\mathrm{d}y.$)