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1. General abstract results

In this section, a map is called differentiable if it admits a derivative.

Lemma 1. Let V be a real finite-dimensional vector space and vi : I → V ,
i = 1, . . . , k, be differentiable maps defined in an interval I ⊂ R. Denote

by Vt the linear span of {vi(t) : i = 1, . . . , k}, for all t ∈ I. If
(
vi(t)

)k
i=1

is

linearly independent for every t ∈ I and v′i(t) belongs to Vt for all i = 1, . . . , k
and all t ∈ I then Vt is independent of t ∈ I.

Proof. This can be proven by noting that I 3 t 7→ Vt is a differentiable
curve in the Grassmannian of k-dimensional subspaces of V whose derivative
vanishes1. Here is a more elementary proof in case one wishes to avoid the
theory of Grassmannians: let t0 ∈ I and let us prove that the map t 7→ Vt
is constant near t0. Pick a subspace W of V such that V = Vt0 ⊕W and
write vi(t) = xi(t) + yi(t), with xi(t) ∈ Vt0 and yi(t) ∈ W , for all t ∈ I and

all i = 1, . . . , k. By continuity,
(
xi(t)

)k
i=1

is a basis of Vt0 for t ∈ I near
t0 and for such t there exists a unique linear map Lt : Vt0 → W such that
Lt

(
xi(t)

)
= yi(t), for i = 1, . . . , k; moreover, the maps t 7→ xi(t), t 7→ yi(t)

and t 7→ Lt are all differentiable. Note that Vt is the graph of Lt, i.e.,
Vt =

{
x+ Lt(x) : x ∈ Vt0

}
. Thus, since v′i(t) = x′i(t) + y′i(t) and v′i(t) ∈ Vt,

we have y′i(t) = Lt

(
x′i(t)

)
, for all i = 1, . . . , k. Now differentiating both sides

of the equality Lt

(
xi(t)

)
= yi(t) with respect to t we obtain L′t

(
xi(t)

)
= 0

and therefore the derivative of t 7→ Lt vanishes, so that t 7→ Lt and hence
t 7→ Vt is constant for t ∈ I near t0. �

In what follows, if M is a set and (Ex)x∈M is a family of vector spaces
then, for each subset F of M , we denote by ρF :

∏
x∈M Ex →

∏
x∈F Ex the

restriction map given by ρF (v) = v|F , for all v ∈
∏

x∈M Ex.

Lemma 2. Let M be a set and (Ex)x∈M be a family of vector spaces. If V
is a finite-dimensional subspace of

∏
x∈M Ex then there exists a finite subset

F of M with at most dim(V ) elements such that ρF |V is injective.
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1The tangent space of the Grassmannian at Vt can be identified with the space of linear

maps from Vt to V/Vt and the derivative V ′t is identified with the linear map that carries
vi(t) to v′i(t) + Vt ∈ V/Vt. See [1, Proposition 2.3.3].
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Proof. By induction on the dimension of V . If V is null, take F to be the
empty set. If V has codimension one in V ′ and F is a finite subset of M
with at most dim(V ) elements such that ρF |V is injective, then either ρF |V ′
is also injective or its kernel is spanned by a nonzero element v ∈ V ′. In the
latter case, we pick x ∈M with v(x) 6= 0 and we set F ′ = F ∪ {x}, so that
F ′ has at most dim(V ′) elements and ρF ′ |V ′ is injective. �

Lemma 3. Let M be a set, (Ex)x∈M be a family of vector spaces and V1
and V2 be subspaces of

∏
x∈M Ex. Assume that F is a subset of M such that

ρF |V2 is injective. If ρF∪{x}[V1] ⊂ ρF∪{x}[V2] for all x ∈ M , then V1 ⊂ V2.
In particular, if ρF |V1 is also injective and if ρF∪{x}[V1] = ρF∪{x}[V2] for all
x ∈M , then V1 = V2.

Proof. Note that our assumptions imply that ρF [V1] ⊂ ρF [V2]. Given v ∈ V1,
we can thus find w ∈ V2 with v|F = w|F . To conclude the proof, we show
that v(x) = w(x) for arbitrary x ∈M . Since ρF∪{x}[V1] ⊂ ρF∪{x}[V2], there
exists w′ ∈ V2 with v|F∪{x} = w′|F∪{x}. We then have w|F = w′|F and the
injectivity of ρF |V2 implies that w = w′. �

If M is a set and (Ex)x∈M is a family of finite-dimensional real vector
spaces, we call a map v : I →

∏
x∈M Ex defined in an interval I ⊂ R

pointwise differentiable if the map I 3 t 7→ v(t)(x) ∈ Ex is differentiable,
for every x ∈ M . If v is pointwise differentiable, we define the pointwise
derivative v′ : I →

∏
x∈M Ex by letting I 3 t 7→ v′(t)(x) ∈ Ex be the

derivative of the map I 3 t 7→ v(t)(x) ∈ Ex, for all x ∈M .

Lemma 4. Let M be a set, (Ex)x∈M be a family of finite-dimensional real
vector spaces and vi : I →

∏
x∈M Ex, i = 1, . . . , k, be pointwise differentiable

maps defined in an interval I ⊂ R. Denote by Vt ⊂
∏

x∈M Ex the linear span

of {vi(t) : i = 1, . . . , k}, for all t ∈ I. If
(
vi(t)

)k
i=1

is linearly independent

for every t ∈ I and v′i(t) belongs to Vt for all i = 1, . . . , k and all t ∈ I then
Vt is independent of t ∈ I.

Proof. Fix t0 ∈ I and let us show that Vt is independent of t for t ∈ I
near t0. By Lemma 2, there exists a finite subset F of M such that ρF is

injective on Vt0 . Thus
(
vi(t0)|F

)k
i=1

is linearly independent and by continuity

we have that
(
vi(t)|F

)k
i=1

is linearly independent for all t in a connected
neighborhood J of t0 in I. This implies that ρF is injective on Vt for all
t ∈ J . By Lemma 3, to prove that Vt is independent of t for t ∈ J it is
sufficient to check that ρG[Vt] is independent of t ∈ J for an arbitrary finite

subset G of M containing F . Since
(
vi(t)|G

)k
i=1

is linearly independent for
all t ∈ J and

∏
x∈GEx is finite-dimensional, the latter statement follows

from Lemma 1. �

Lemma 5. Let M be a set and (Ex)x∈M be a family of finite-dimensional
real vector spaces. If V is a finite-dimensional subspace of

∏
x∈M Ex then V

is closed with respect to the pointwise convergence topology.
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Proof. This follows from the general fact that a finite-dimensional subspace
is always closed in a Hausdorff topological vector space. Here is a more
elementary proof: pick w ∈

∏
x∈M Ex in the closure of V with respect to the

pointwise convergence topology. By Lemma 2, there exists a finite subset
F of M such that ρF is injective on the linear span of V ∪ {w}. Since
ρF is continuous with respect to the pointwise convergence topology, we
have that ρF (w) is in the closure of ρF [V ]. But the pointwise convergence
topology in the finite-dimensional vector space

∏
x∈F Ex coincides with the

canonical topology (induced by an arbitrary norm) and thus ρF [V ] is closed
in
∏

x∈F Ex. Hence ρF (w) is in ρF [V ] and the injectivity of ρF on V ∪ {w}
implies that w ∈ V . �

2. Results on manifolds and vector fields

Given a differentiable manifold M , we denote by X(M) the space of all
smooth vector fields over M , where smooth means “of class C∞”. If V is
a subspace of X(M) and A is an open subset of M , we denote by V |A the
subspace of X(A) given by V |A =

{
X|A : X ∈ V

}
. If φ : N → M is

a smooth local diffeomorphism between differentiable manifolds, we denote
by φ∗ : X(M) → X(N) the pull-back linear map induced by φ defined by
(φ∗X)(x) = dφ−1x

(
X(φ(x))

)
, for all x ∈ N . If V is a subspace of X(M) then

φ∗[V ] denotes the subspace of X(N) which is the image of V under φ∗.
Given X ∈ X(M), recall that the maximal flow of the vector field X is the

map F : D →M , with D ⊂ R×M , such that for every x ∈M we have that{
t ∈ R : (t, x) ∈ D

}
3 t 7→ F (t, x) ∈ M is the maximal integral curve of X

passing through x at t = 0. It holds thatD is open inR×M and F is smooth.
Moreover, for every t ∈ R, the map Ft : Dt → D−t defined by Ft(x) = F (t, x)
is a smooth diffeomorphism, where Dt =

{
x ∈ M : (t, x) ∈ D

}
. We note

also that the domain Dt of Ft is decreasing in t for t ≥ 0, i.e., Ds ⊂ Dt if
0 ≤ t ≤ s.
Theorem 6. Let M be a differentiable manifold, V be a finite-dimensional
subspace of X(M) and X ∈ X(M) be such that the Lie bracket [X,Y ] belongs
to V , for all Y ∈ V . If F : D → M denotes the maximal flow of X then
F ∗t [V ] = V |Dt, for all t ∈ R.

As an immediate consequence of Theorem 6 we have the following result.

Corollary 7. Let M be a differentiable manifold and g be a finite-dimen-
sional Lie subalgebra of X(M). For every X ∈ g, if F : D →M denotes the
maximal flow of X, then F ∗t [g] = g|Dt, for all t ∈ R. �

We start by proving a particular case of Theorem 6.

Lemma 8. Under the assumptions of Theorem 6, it holds that F ∗t [V ] is
contained in V |Dt, for all t ≥ 0.

Proof. Set

I =
{
t ∈ [0,+∞[ : F ∗s [V ] ⊂ V |Ds , for all s ∈ [0, t]

}
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so that 0 ∈ I and t ∈ I implies [0, t] ⊂ I. To conclude the proof, we show
that I must be unbounded from above by establishing the following facts:

(a) if t > 0 and [0, t[ ⊂ I, then t ∈ I;

(b) if t ∈ I, then [t, t+ ε] ⊂ I, for some ε > 0.

Note that if I were bounded from above then (a) would imply that t = sup I
belongs to I and this would contradict (b). Now let us proceed with the
proof of (a) and (b). To prove (a), simply note that for all Y ∈ V we have
that lims→t− F

∗
s (Y )|Dt = F ∗t (Y ) with respect to the pointwise convergence

topology of X(Dt) and that V |Dt is closed in X(Dt) with respect to such
topology, being a finite-dimensional subspace (Lemma 5). To prove (b), let

t ∈ I be fixed and pick Y1, . . . , Yk ∈ V such that
(
F ∗t (Yi)

)k
i=1

is a basis
of F ∗t [V ]. By Lemma 2, there exists a finite subset A of Dt such that(
F ∗t (Yi)|A

)k
i=1

is linearly independent. Since D is open and F is continuous,

we can then find ε > 0 such that A ⊂ Dt+ε and
(
F ∗s (Yi)|A

)k
i=1

is linearly

independent for all s ∈ [t, t + ε]. Fix t′ ∈ ]t, t+ ε] and let us prove that
F ∗t′ [V ] ⊂ V |Dt′ . To this aim, we will apply Lemma 4 to the pointwise
differentiable maps

[t, t′] 3 s 7−→ F ∗s (Yi)|Dt′ ∈
∏

x∈Dt′

TxM, i = 1, . . . , k.

Since A is contained in Dt′ , we have that
(
F ∗s (Yi)|Dt′

)k
i=1

is linearly indepen-

dent for s ∈ [t, t′]. Moreover, for s ≥ t, since Fs = Ft◦(Fs−t|Ds) we have that{
F ∗s (Yi) : i = 1, . . . , k

}
spans F ∗s [V ]. Now d

dsF
∗
s (Yi) = F ∗s

(
[X,Yi]

)
∈ F ∗s [V ]

for i = 1, . . . , k and thus the assumptions of Lemma 4 are verified. The
lemma now yields F ∗t′ [V ] = F ∗t [V ]|Dt′ ⊂ V |Dt′ and we are done. �

Proof of Theorem 6. Replacing X with −X and using Lemma 8 we obtain
that F ∗t [V ] ⊂ V |Dt , for all t ∈ R. Moreover, since F−t is the inverse of Ft,
F ∗t [V ] ⊂ V |Dt implies V |D−t ⊂ F ∗−t[V ], for all t ∈ R and this concludes the
proof. �
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