LIE ALGEBRAS AND FLOWS

DANIEL V. TAUSK

1. General Abstract results

In this section, a map is called *differentiable* if it admits a derivative.

Lemma 1. Let V be a real finite-dimensional vector space and $v_i : I \to V$, i = 1, ..., k, be differentiable maps defined in an interval $I \subset \mathbb{R}$. Denote by V_t the linear span of $\{v_i(t) : i = 1, ..., k\}$, for all $t \in I$. If $(v_i(t))_{i=1}^k$ is linearly independent for every $t \in I$ and $v'_i(t)$ belongs to V_t for all i = 1, ..., k and all $t \in I$ then V_t is independent of $t \in I$.

Proof. This can be proven by noting that $I \ni t \mapsto V_t$ is a differentiable curve in the Grassmannian of k-dimensional subspaces of V whose derivative vanishes¹. Here is a more elementary proof in case one wishes to avoid the theory of Grassmannians: let $t_0 \in I$ and let us prove that the map $t \mapsto V_t$ is constant near t_0 . Pick a subspace W of V such that $V = V_{t_0} \oplus W$ and write $v_i(t) = x_i(t) + y_i(t)$, with $x_i(t) \in V_{t_0}$ and $y_i(t) \in W$, for all $t \in I$ and all $i = 1, \ldots, k$. By continuity, $(x_i(t))_{i=1}^k$ is a basis of V_{t_0} for $t \in I$ near t_0 and for such t there exists a unique linear map $L_t : V_{t_0} \to W$ such that $L_t(x_i(t)) = y_i(t)$, for $i = 1, \ldots, k$; moreover, the maps $t \mapsto x_i(t), t \mapsto y_i(t)$ and $t \mapsto L_t$ are all differentiable. Note that V_t is the graph of L_t , i.e., $V_t = \{x + L_t(x) : x \in V_{t_0}\}$. Thus, since $v'_i(t) = x'_i(t) + y'_i(t)$ and $v'_i(t) \in V_t$, we have $y'_i(t) = L_t(x'_i(t)) = y_i(t)$ with respect to t we obtain $L'_t(x_i(t)) = 0$ and therefore the derivative of $t \mapsto L_t$ vanishes, so that $t \mapsto L_t$ and hence $t \mapsto V_t$ is constant for $t \in I$ near t_0 .

In what follows, if M is a set and $(E_x)_{x \in M}$ is a family of vector spaces then, for each subset F of M, we denote by $\rho_F : \prod_{x \in M} E_x \to \prod_{x \in F} E_x$ the restriction map given by $\rho_F(v) = v|_F$, for all $v \in \prod_{x \in M} E_x$.

Lemma 2. Let M be a set and $(E_x)_{x \in M}$ be a family of vector spaces. If V is a finite-dimensional subspace of $\prod_{x \in M} E_x$ then there exists a finite subset F of M with at most dim(V) elements such that $\rho_F|_V$ is injective.

Date: February 21st, 2022.

¹The tangent space of the Grassmannian at V_t can be identified with the space of linear maps from V_t to V/V_t and the derivative V'_t is identified with the linear map that carries $v_i(t)$ to $v'_i(t) + V_t \in V/V_t$. See [1, Proposition 2.3.3].

Proof. By induction on the dimension of V. If V is null, take F to be the empty set. If V has codimension one in V' and F is a finite subset of M with at most dim(V) elements such that $\rho_F|_V$ is injective, then either $\rho_F|_{V'}$ is also injective or its kernel is spanned by a nonzero element $v \in V'$. In the latter case, we pick $x \in M$ with $v(x) \neq 0$ and we set $F' = F \cup \{x\}$, so that F' has at most dim(V') elements and $\rho_{F'}|_{V'}$ is injective.

Lemma 3. Let M be a set, $(E_x)_{x \in M}$ be a family of vector spaces and V_1 and V_2 be subspaces of $\prod_{x \in M} E_x$. Assume that F is a subset of M such that $\rho_F|_{V_2}$ is injective. If $\rho_{F\cup\{x\}}[V_1] \subset \rho_{F\cup\{x\}}[V_2]$ for all $x \in M$, then $V_1 \subset V_2$. In particular, if $\rho_F|_{V_1}$ is also injective and if $\rho_{F\cup\{x\}}[V_1] = \rho_{F\cup\{x\}}[V_2]$ for all $x \in M$, then $V_1 = V_2$.

Proof. Note that our assumptions imply that $\rho_F[V_1] \subset \rho_F[V_2]$. Given $v \in V_1$, we can thus find $w \in V_2$ with $v|_F = w|_F$. To conclude the proof, we show that v(x) = w(x) for arbitrary $x \in M$. Since $\rho_{F \cup \{x\}}[V_1] \subset \rho_{F \cup \{x\}}[V_2]$, there exists $w' \in V_2$ with $v|_{F \cup \{x\}} = w'|_{F \cup \{x\}}$. We then have $w|_F = w'|_F$ and the injectivity of $\rho_F|_{V_2}$ implies that w = w'.

If M is a set and $(E_x)_{x\in M}$ is a family of finite-dimensional real vector spaces, we call a map $v : I \to \prod_{x\in M} E_x$ defined in an interval $I \subset \mathbb{R}$ *pointwise differentiable* if the map $I \ni t \mapsto v(t)(x) \in E_x$ is differentiable, for every $x \in M$. If v is pointwise differentiable, we define the *pointwise derivative* $v' : I \to \prod_{x\in M} E_x$ by letting $I \ni t \mapsto v'(t)(x) \in E_x$ be the derivative of the map $I \ni t \mapsto v(t)(x) \in E_x$, for all $x \in M$.

Lemma 4. Let M be a set, $(E_x)_{x \in M}$ be a family of finite-dimensional real vector spaces and $v_i : I \to \prod_{x \in M} E_x$, i = 1, ..., k, be pointwise differentiable maps defined in an interval $I \subset \mathbb{R}$. Denote by $V_t \subset \prod_{x \in M} E_x$ the linear span of $\{v_i(t) : i = 1, ..., k\}$, for all $t \in I$. If $(v_i(t))_{i=1}^k$ is linearly independent for every $t \in I$ and $v'_i(t)$ belongs to V_t for all i = 1, ..., k and all $t \in I$ then V_t is independent of $t \in I$.

Proof. Fix $t_0 \in I$ and let us show that V_t is independent of t for $t \in I$ near t_0 . By Lemma 2, there exists a finite subset F of M such that ρ_F is injective on V_{t_0} . Thus $(v_i(t_0)|_F)_{i=1}^k$ is linearly independent and by continuity we have that $(v_i(t)|_F)_{i=1}^k$ is linearly independent for all t in a connected neighborhood J of t_0 in I. This implies that ρ_F is injective on V_t for all $t \in J$. By Lemma 3, to prove that V_t is independent of t for $t \in J$ it is sufficient to check that $\rho_G[V_t]$ is independent of $t \in J$ for an arbitrary finite subset G of M containing F. Since $(v_i(t)|_G)_{i=1}^k$ is linearly independent for all $t \in J$ and $\prod_{x \in G} E_x$ is finite-dimensional, the latter statement follows from Lemma 1.

Lemma 5. Let M be a set and $(E_x)_{x \in M}$ be a family of finite-dimensional real vector spaces. If V is a finite-dimensional subspace of $\prod_{x \in M} E_x$ then V is closed with respect to the pointwise convergence topology.

Proof. This follows from the general fact that a finite-dimensional subspace is always closed in a Hausdorff topological vector space. Here is a more elementary proof: pick $w \in \prod_{x \in M} E_x$ in the closure of V with respect to the pointwise convergence topology. By Lemma 2, there exists a finite subset F of M such that ρ_F is injective on the linear span of $V \cup \{w\}$. Since ρ_F is continuous with respect to the pointwise convergence topology, we have that $\rho_F(w)$ is in the closure of $\rho_F[V]$. But the pointwise convergence topology in the finite-dimensional vector space $\prod_{x \in F} E_x$ coincides with the canonical topology (induced by an arbitrary norm) and thus $\rho_F[V]$ is closed in $\prod_{x \in F} E_x$. Hence $\rho_F(w)$ is in $\rho_F[V]$ and the injectivity of ρ_F on $V \cup \{w\}$ implies that $w \in V$.

2. Results on manifolds and vector fields

Given a differentiable manifold M, we denote by $\mathfrak{X}(M)$ the space of all smooth vector fields over M, where smooth means "of class C^{∞} ". If V is a subspace of $\mathfrak{X}(M)$ and A is an open subset of M, we denote by $V|_A$ the subspace of $\mathfrak{X}(A)$ given by $V|_A = \{X|_A : X \in V\}$. If $\phi : N \to M$ is a smooth local diffeomorphism between differentiable manifolds, we denote by $\phi^* : \mathfrak{X}(M) \to \mathfrak{X}(N)$ the pull-back linear map induced by ϕ defined by $(\phi^*X)(x) = \mathrm{d}\phi_x^{-1}(X(\phi(x)))$, for all $x \in N$. If V is a subspace of $\mathfrak{X}(M)$ then $\phi^*[V]$ denotes the subspace of $\mathfrak{X}(N)$ which is the image of V under ϕ^* .

Given $X \in \mathfrak{X}(M)$, recall that the maximal flow of the vector field X is the map $F: D \to M$, with $D \subset \mathbb{R} \times M$, such that for every $x \in M$ we have that $\{t \in \mathbb{R} : (t, x) \in D\} \ni t \mapsto F(t, x) \in M$ is the maximal integral curve of X passing through x at t = 0. It holds that D is open in $\mathbb{R} \times M$ and F is smooth. Moreover, for every $t \in \mathbb{R}$, the map $F_t: D_t \to D_{-t}$ defined by $F_t(x) = F(t, x)$ is a smooth diffeomorphism, where $D_t = \{x \in M : (t, x) \in D\}$. We note also that the domain D_t of F_t is decreasing in t for $t \ge 0$, i.e., $D_s \subset D_t$ if $0 \le t \le s$.

Theorem 6. Let M be a differentiable manifold, V be a finite-dimensional subspace of $\mathfrak{X}(M)$ and $X \in \mathfrak{X}(M)$ be such that the Lie bracket [X, Y] belongs to V, for all $Y \in V$. If $F : D \to M$ denotes the maximal flow of X then $F_t^*[V] = V|_{D_t}$, for all $t \in \mathbb{R}$.

As an immediate consequence of Theorem 6 we have the following result.

Corollary 7. Let M be a differentiable manifold and \mathfrak{g} be a finite-dimensional Lie subalgebra of $\mathfrak{X}(M)$. For every $X \in \mathfrak{g}$, if $F: D \to M$ denotes the maximal flow of X, then $F_t^*[\mathfrak{g}] = \mathfrak{g}|_{D_t}$, for all $t \in \mathbb{R}$.

We start by proving a particular case of Theorem 6.

Lemma 8. Under the assumptions of Theorem 6, it holds that $F_t^*[V]$ is contained in $V|_{D_t}$, for all $t \ge 0$.

Proof. Set

$$I = \left\{ t \in [0, +\infty[: F_s^*[V] \subset V|_{D_s}, \text{ for all } s \in [0, t] \right\}$$

so that $0 \in I$ and $t \in I$ implies $[0, t] \subset I$. To conclude the proof, we show that I must be unbounded from above by establishing the following facts:

- (a) if t > 0 and $[0, t] \subset I$, then $t \in I$;
- (b) if $t \in I$, then $[t, t + \varepsilon] \subset I$, for some $\varepsilon > 0$.

Note that if I were bounded from above then (a) would imply that $t = \sup I$ belongs to I and this would contradict (b). Now let us proceed with the proof of (a) and (b). To prove (a), simply note that for all $Y \in V$ we have that $\lim_{s \to t^-} F_s^*(Y)|_{D_t} = F_t^*(Y)$ with respect to the pointwise convergence topology of $\mathfrak{X}(D_t)$ and that $V|_{D_t}$ is closed in $\mathfrak{X}(D_t)$ with respect to such topology, being a finite-dimensional subspace (Lemma 5). To prove (b), let $t \in I$ be fixed and pick $Y_1, \ldots, Y_k \in V$ such that $(F_t^*(Y_i))_{i=1}^k$ is a basis of $F_t^*[V]$. By Lemma 2, there exists a finite subset A of D_t such that $(F_t^*(Y_i)|_A)_{i=1}^k$ is linearly independent. Since D is open and F is continuous, we can then find $\varepsilon > 0$ such that $A \subset D_{t+\varepsilon}$ and $(F_s^*(Y_i)|_A)_{i=1}^k$ is linearly independent for all $s \in [t, t + \varepsilon]$. Fix $t' \in [t, t + \varepsilon]$ and let us prove that $F_{t'}^*[V] \subset V|_{D_{t'}}$. To this aim, we will apply Lemma 4 to the pointwise differentiable maps

$$[t,t'] \ni s \longmapsto F_s^*(Y_i)|_{D_{t'}} \in \prod_{x \in D_{t'}} T_x M, \quad i = 1, \dots, k.$$

Since A is contained in $D_{t'}$, we have that $(F_s^*(Y_i)|_{D_{t'}})_{i=1}^k$ is linearly independent for $s \in [t, t']$. Moreover, for $s \ge t$, since $F_s = F_t \circ (F_{s-t}|_{D_s})$ we have that $\{F_s^*(Y_i) : i = 1, \ldots, k\}$ spans $F_s^*[V]$. Now $\frac{\mathrm{d}}{\mathrm{ds}}F_s^*(Y_i) = F_s^*([X, Y_i]) \in F_s^*[V]$ for $i = 1, \ldots, k$ and thus the assumptions of Lemma 4 are verified. The lemma now yields $F_{t'}^*[V] = F_t^*[V]|_{D_{t'}} \subset V|_{D_{t'}}$ and we are done.

Proof of Theorem 6. Replacing X with -X and using Lemma 8 we obtain that $F_t^*[V] \subset V|_{D_t}$, for all $t \in \mathbb{R}$. Moreover, since F_{-t} is the inverse of F_t , $F_t^*[V] \subset V|_{D_t}$ implies $V|_{D_{-t}} \subset F_{-t}^*[V]$, for all $t \in \mathbb{R}$ and this concludes the proof.

References

 P. Piccione & D. V. Tausk, A Student's Guide to Symplectic Spaces, Grassmannians and Maslov Index, https://www.ime.usp.br/piccione/Downloads/MaslovBook.pdf

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE SÃO PAULO, BRAZIL Email address: tausk@ime.usp.br URL: http://www.ime.usp.br/~tausk