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1. GENERAL ABSTRACT RESULTS
In this section, a map is called differentiable if it admits a derivative.

Lemma 1. Let V be a real finite-dimensional vector space and v; : I — 'V,
1 =1,...,k, be differentiable maps defined in an interval I C R. Denote

by Vi the linear span of {vi(t) : i =1,...,k}, forallt € I. If (vi(t))le is
linearly independent for everyt € I and vi(t) belongs to Vi for alli =1,...,k

and all t € I then Vi is independent of t € I.

Proof. This can be proven by noting that I > ¢t — V; is a differentiable
curve in the Grassmannian of k-dimensional subspaces of V' whose derivative
vanishesﬂ Here is a more elementary proof in case one wishes to avoid the
theory of Grassmannians: let {5 € I and let us prove that the map ¢ — V;
is constant near ty. Pick a subspace W of V' such that V = V;; ® W and
write v;(t) = () + yi(t), with z;(t) € Vi, and y;(t) € W, for all t € I and
all i = 1,...,k. By continuity, (a:i(t))le is a basis of V, for ¢t € I near
to and for such ¢ there exists a unique linear map L; : V;;, — W such that
Li(%i(t)) = wi(t), for i = 1,..., k; moreover, the maps t — z;(t), t — y;(t)
and t — L; are all differentiable. Note that V; is the graph of L., i.e.,
Vi = {z + Li(x) : © € V3, }. Thus, since v}(t) = @(t) + y,(t) and vj(t) € V;,
we have y}(t) = Ly(z}(t)), for all i = 1,..., k. Now differentiating both sides
of the equality L (z;i(t)) = vi(t) with respect to t we obtain Lj(z;(t)) = 0
and therefore the derivative of ¢ — L; vanishes, so that ¢ — L; and hence
t — V; is constant for ¢ € I near tg. O

In what follows, if M is a set and (FE;)zen is a family of vector spaces
then, for each subset F' of M, we denote by pr : [[,cas Bz = [ cp Er the
restriction map given by pr(v) = v|p, for all v € [] s Es.

Lemma 2. Let M be a set and (E;)zenm be a family of vector spaces. If V
is a finite-dimensional subspace of [],cps Ex then there exists a finite subset
F of M with at most dim(V') elements such that pp|y is injective.
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IThe tangent space of the Grassmannian at V; can be identified with the space of linear
maps from V; to V/V; and the derivative V; is identified with the linear map that carries
v;(t) to vi(t) + V; € V/V;. See [1| Proposition 2.3.3].
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Proof. By induction on the dimension of V. If V is null, take F' to be the
empty set. If V has codimension one in V' and F is a finite subset of M
with at most dim(V') elements such that pr|y is injective, then either pp|y-
is also injective or its kernel is spanned by a nonzero element v € V'. In the
latter case, we pick # € M with v(z) # 0 and we set F/ = F U {z}, so that
F’ has at most dim(V”) elements and ppr|y/ is injective. O

Lemma 3. Let M be a set, (Ey)zenm be a family of vector spaces and Vi
and Vo be subspaces of [[,cps Ez. Assume that F is a subset of M such that
prlv, is injective. If ppugey[Vi] C ppugay[Val for all x € M, then Vi C Va.
In particular, if prlv, is also injective and if ppugay [Vi] = prugey Ve for all
x € M, then Vi = Vs.

Proof. Note that our assumptions imply that pp[V1] C pr[V2]. Givenv € Vi,
we can thus find w € V5 with v|p = w|p. To conclude the proof, we show
that v(z) = w(wr) for arbitrary x € M. Since ppy(1[Vi] C prugay[Val, there
exists w' € Vo with v|pygay = w'|pugay. We then have w|p = w'[F and the
injectivity of ppl|y, implies that w = w'. O

If M is a set and (Ey)zen is a family of finite-dimensional real vector
spaces, we call a map v : I — [[ cu Bz defined in an interval I C R
pointwise differentiable if the map I > t — v(t)(x) € E, is differentiable,
for every x € M. If v is pointwise differentiable, we define the pointwise
derivative v' : I — [],cp Bz by letting I 5 t — 2/(t)(z) € E; be the
derivative of the map I 5t +— v(t)(x) € E,, for all x € M.

Lemma 4. Let M be a set, (E;)zem be a family of finite-dimensional real
vector spaces and v; : I — [[,car Bz, i = 1,..., k, be pointwise differentiable
maps defined in an interval I C R. Denote by Vi C [[,cpr Ex the linear span
of {vi(t) : 1 =1,...,k}, forallt € I. If (vi(t))le is linearly independent
for every t € I and v(t) belongs to V; for alli=1,...,k and all t € I then
V4 is independent of t € I.

Proof. Fix ty € I and let us show that V; is independent of ¢ for ¢ € I
near tg. By Lemma [2] there exists a finite subset ' of M such that pp is
injective on V;,. Thus (vi(to) | F)le is linearly independent and by continuity
we have that (v;(t)| F)f:1 is linearly independent for all ¢ in a connected
neighborhood J of ty in I. This implies that pg is injective on V; for all
t € J. By Lemma [3| to prove that V; is independent of t for t € J it is
sufficient to check that pg[V;] is independent of ¢ € J for an arbitrary finite
subset G of M containing F. Since (vi(t)\(;)le is linearly independent for
all t € J and ][, .o Es is finite-dimensional, the latter statement follows
from Lemma [1 O

Lemma 5. Let M be a set and (Ey)zenm be a family of finite-dimensional
real vector spaces. If V' is a finite-dimensional subspace of [],c s Ex then V
is closed with respect to the pointwise convergence topology.
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Proof. This follows from the general fact that a finite-dimensional subspace
is always closed in a Hausdorff topological vector space. Here is a more
elementary proof: pick w € [] ¢y, Ee in the closure of V' with respect to the
pointwise convergence topology. By Lemma [2] there exists a finite subset
F of M such that pp is injective on the linear span of V U {w}. Since
pr is continuous with respect to the pointwise convergence topology, we
have that pp(w) is in the closure of pp[V]. But the pointwise convergence
topology in the finite-dimensional vector space [[ . E, coincides with the
canonical topology (induced by an arbitrary norm) and thus pp[V] is closed
in [[,cp Er. Hence pp(w) is in pp[V] and the injectivity of pr on V' U {w}
implies that w € V. ([l

2. RESULTS ON MANIFOLDS AND VECTOR FIELDS

Given a differentiable manifold M, we denote by X(M) the space of all
smooth vector fields over M, where smooth means “of class C*°”. If V is
a subspace of X(M) and A is an open subset of M, we denote by V|4 the
subspace of X(A) given by V|4 = {X|a : X € V}. If ¢ : N — M is
a smooth local diffeomorphism between differentiable manifolds, we denote
by ¢* : X(M) — X(N) the pull-back linear map induced by ¢ defined by
(0*X)(z) = do; 1 (X (¢(z))), for all z € N. If V is a subspace of X(M) then
¢*[V'] denotes the subspace of X(N) which is the image of V under ¢*.

Given X € X(M), recall that the mazimal flow of the vector field X is the
map F : D — M, with D C R x M, such that for every x € M we have that
{teR:(t,x) € D} 5t~ F(t,z) € M is the maximal integral curve of X
passing through = at ¢t = 0. It holds that D is open in Rx M and F' is smooth.
Moreover, for every ¢t € R, the map F; : Dy — D_; defined by Fy(x) = F(t, z)
is a smooth diffeomorphism, where D; = {z € M : (t,x) € D}. We note
also that the domain D; of F; is decreasing in ¢ for ¢t > 0, i.e., Dy C D, if
0<t<s.

Theorem 6. Let M be a differentiable manifold, V be a finite-dimensional
subspace of X(M) and X € X(M) be such that the Lie bracket [X,Y] belongs
toV, forallY ¢ V. If F: D — M denotes the mazimal flow of X then
Fr[V]=Vl|p,, for allt € R.

As an immediate consequence of Theorem [6] we have the following result.

Corollary 7. Let M be a differentiable manifold and g be a finite-dimen-
sional Lie subalgebra of X(M). For every X € g, if F': D — M denotes the
mazximal flow of X, then F}[g] = g|p,, for all t € R. O

We start by proving a particular case of Theorem [6]

Lemma 8. Under the assumptions of Theorem [6, it holds that F¥[V] is
contained in V|p,, for all t > 0.

Proof. Set
I={tel0,+ool: FS[V] C V|p,, for all s € [0,]}
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so that 0 € I and t € I implies [0,¢] C I. To conclude the proof, we show
that I must be unbounded from above by establishing the following facts:
(a) if t > 0 and [0,¢] C I, then t € I;
(b) if t € I, then [t,t + ¢] C I, for some € > 0.
Note that if I were bounded from above then (a) would imply that ¢t = sup I
belongs to I and this would contradict (b). Now let us proceed with the
proof of (a) and (b). To prove (a), simply note that for all Y € V' we have
that lim,_;— FX(Y)|p, = F{(Y) with respect to the pointwise convergence
topology of X(D;) and that V|p, is closed in X(D;) with respect to such
topology, being a finite-dimensional subspace (Lemma [5). To prove (b), let

t € I be fixed and pick Y7,...,Y; € V such that (Ft*(Yi))f:l is a basis

of F¥[V]. By Lemma [2| there exists a finite subset A of D; such that
(Ft* (Y)] A)le is linearly independent. Since D is open and F' is continuous,

we can then find € > 0 such that A C Dy, and (F:(YiﬂA)f:l is linearly
independent for all s € [t,t + ¢|. Fix t’ € ]t,t +¢] and let us prove that
Fi[V] € Vlp,. To this aim, we will apply Lemma W4 to the pointwise
differentiable maps

[t.t]5s— Fi(Y)lp, € [ TuM, i=1,... .k
:EGDt/

Since A is contained in Dy, we have that (F7(Y;)|p,, )le is linearly indepen-
dent for s € [t,t']. Moreover, for s > t, since Fy = Fyo(Fs_¢|p,) we have that
{Fx(Y;) :i=1,...,k} spans F[V]. Now LF*(V;) = FX([X,Y]) € FZ[V]
for ¢ = 1,...,k and thus the assumptions of Lemma [4| are verified. The
lemma now yields Fj;[V] = F{[V]|p, C V|p, and we are done. O

Proof of Theorem[6 Replacing X with —X and using Lemma [§ we obtain
that Fy'[V] C V|p,, for all t € R. Moreover, since F_; is the inverse of Fj,
Fr[V] Cc V|p, implies V|p_, C F*,[V], for all t € R and this concludes the
proof. O
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