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1. The inequalities

Let C denote the set of all maps α : {1, 2, 3} → {0, 1}. We think of 0, 1
as colors (say, 0 for green and 1 for red) and of an element α ∈ C as a triple
of colors. Given α, β ∈ C, we set:

n(α, β) =
∣∣{(i, j) ∈ {1, 2, 3}2 : i 6= j and α(i) = β(j)

}∣∣,
m(α, β) =

∣∣{i ∈ {1, 2, 3} : α(i) = β(i)
}∣∣,

where |X| denotes the number of elements of a finite set X.

1.1. Lemma. For any α, β ∈ C, we have:

1 + n(α, β) ≥ m(α, β).

Proof. The inequality is trivial if m(α, β) is either 0 or 1. If m(α, β) = 2,
a simple inspection of possibilities shows that n(α, β) ≥ m(α, β). Finally, if
m(α, β) = 3 then α = β and n(α, β) = n(α, α) ≥ 2. �

By a probability distribution on C we mean a map p : C → [0, 1] such
that: ∑

α∈C
p(α) = 1.

We denote by ∆ the set of all probability distributions on C. Given p, q ∈ ∆,
i, j ∈ {1, 2, 3}, we set:

(1.1) Pij(p, q) =
∑
α,β∈C

α(i)=β(j)

p(α)q(β).

1.2. Lemma. Given p, q ∈ ∆ then:

(1.2) 1 +
3∑

i,j=1
i 6=j

Pij(p, q) ≥
3∑
i=1

Pii(p, q).

Proof. We have:
3∑

i,j=1
i 6=j

Pij(p, q) =
3∑

i,j=1
i 6=j

∑
α,β∈C

α(i)=β(j)

p(α)q(β) =
3∑

i,j=1
i 6=j

∑
α,β∈C

χ(i, j, α, β)p(α)q(β),
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where χ(i, j, α, β) = 1 for α(i) = β(j) and χ(i, j, α, β) = 0 for α(i) 6= β(j).
But:

3∑
i,j=1
i 6=j

∑
α,β∈C

χ(i, j, α, β)p(α)q(β) =
∑
α,β∈C

3∑
i,j=1
i 6=j

χ(i, j, α, β)p(α)q(β)

=
∑
α,β∈C

n(α, β)p(α)q(β),

and therefore:

(1.3)
3∑

i,j=1
i 6=j

Pij(p, q) =
∑
α,β∈C

n(α, β)p(α)q(β).

A similar computation gives:

(1.4)
3∑
i=1

Pii(p, q) =
3∑
i=1

∑
α,β∈C
α(i)=β(i)

p(α)q(β) =
∑
α,β∈C

m(α, β)p(α)q(β).

Hence:

1 +
3∑

i,j=1
i 6=j

Pij(p, q)
(1.3)
= 1 +

∑
α,β∈C

n(α, β)p(α)q(β)

=
∑
α,β∈C

p(α)q(β) +
∑
α,β∈C

n(α, β)p(α)q(β)

=
∑
α,β∈C

(
1 + n(α, β)

)
p(α)q(β) ≥

∑
α,β∈C

m(α, β)p(α)q(β)
(1.4)
=

3∑
i=1

Pii(p, q),

where the last inequality follows from Lemma 1.1. �

Now let µ be an arbitrary probability measure1 on the cartesian product
∆2 = ∆×∆. We set:

(1.5) Pij(µ) =
∫

∆2

Pij(p, q) dµ(p, q),

for all i, j ∈ {1, 2, 3}.

1We assume that the domain of µ is a σ-algebra of subsets of ∆ × ∆ that is large
enough to make the map (p, q) 7→ p(α)q(β) measurable, for all α, β ∈ C. Notice that ∆
can be identified with a subset of R8 (an affine simplex) and that such condition holds if
we endow ∆×∆ with the Borel σ-algebra.
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1.3. Proposition. Given a probability measure µ on ∆2, the following in-
equality holds:

1 +
3∑

i,j=1
i 6=j

Pij(µ) ≥
3∑
i=1

Pii(µ).

Proof. Follows immediately by taking the integral with respect to µ on both
sides of inequality (1.2). �

2. An experiment

Assume that we have a pair of boxes, call them A and B. Each box has
three buttons, numbered 1, 2, 3 and two small lamps; one lamp is colored
green and the other is colored red. If we press one of the buttons in a box
then one (and only one) of the colored lamps lights up. The two boxes
are manufactured by the same source (let’s call it the factory); then, box
A is sent to a far away location and box B is sent to another far away
location. Each box will be received by an experimenter that will randomly
choose one of the three buttons and press it. The experiment is repeated a
large number of times, each time with a new pair of boxes. Each time the
pair of boxes is prepared, the factory chooses a pair p, q ∈ ∆ of probability
distributions on the set C of all possible triples of colors. The probability
distribution p is programmed into the box A as follows: when button number
i ∈ {1, 2, 3} is pressed, the box randomly chooses a triple of colors α ∈ C
according to the probability distribution p and then it lights up the lamp2

colored α(i). Similarly, the probability distribution q is programmed into
the box B. The factory chooses the pairs (p, q) of probability distributions
randomly according to some probability measure µ on ∆2 = ∆×∆. It seems
that this procedure is general enough so that essentially any manufacturing
strategy used by the factory is covered, as long as the boxes A and B are
not allowed to interact after a button is pressed by one of the experimenters.
This “impossibility of interaction” hypothesis — let’s call it locality — is
encoded in our formalism in the hypothesis that the lottery p used by box A
to associate a button to a lamp is independent of the lottery q used by box
B to associate a button to a lamp. Notice that, since p and q are chosen by
the same source, we allow the choice of q to be dependent on the choice of
p; this is encoded in our formalism in the fact that the probability measure
µ is arbitrary, i.e., it is not necessarily a product µ1 × µ2 of two probability
measures µ1, µ2 on ∆.

Now, let p, q ∈ ∆ be given and assume that the boxes A and B are
programmed respectively with the probability distributions p and q. Given,
i, j ∈ {1, 2, 3}, if button number i is pressed in box A and button number j

2The factory could choose a triple p1, p2, p3 ∈ [0, 1] and programme box A to behave
as follows: if button number i ∈ {1, 2, 3} is pressed then the green lamp lights up with
probability pi (and the red lamp lights up with probability 1 − pi). This would amount

to defining p ∈ ∆ by the formula: p(α) =
∏3

i=1

(
pi + α(i)(1− 2pi)

)
, for all α ∈ C.
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is pressed in box B, the probability that both boxes will light up the same
color is Pij(p, q) (recall (1.1)). Now recall that the experiment is repeated a
large number N of times. Given i, j ∈ {1, 2, 3}, let Nij denote the number of
times that button number i was pressed in box A and button number j was
pressed in box B. Let N∗ij denote the number of times that button number
i was pressed in box A, button number j was pressed in box j and the same
color lit up in both boxes. We now assume that the experimenters choose
the buttons they press using a lottery that is independent3 of the lottery µ
used by the factory to choose the pair (p, q). This hypothesis implies that
the quotient of N∗ij by Nij is approximately equal to Pij(µ) (recall (1.5));
such approximation gets better as N gets larger.

Now, assume that the experiment has been performed a large number N
of times and that we have observed:

N∗ij
Nij
≈ 1

4
, for i, j ∈ {1, 2, 3}, i 6= j,(2.1)

N∗ii
Nii
≈ 1, for i ∈ {1, 2, 3},(2.2)

where ≈ denotes4 “approximately equal”. Is this possible? We have:

Pij(µ) ≈ 1
4
, for i 6= j, Pii(µ) ≈ 1,

so that:

1 +
3∑

i,j=1
i 6=j

Pij(µ) ≈ 1 +
6
4

=
5
2
,

3∑
i=1

Pii(µ) ≈ 3.

But this contradicts Proposition 1.3.
Now, it is a well-known fact that such an experiment can be performed5

and that both (2.1) and (2.2) are observed. What is going on? Since these
observations contradict Proposition 1.3, we have to drop one of our hy-
potheses: either the “non clairvoyant factory hypothesis” or the “locality
hypothesis”. It seems that locality is gone for good!

3We call this the non clairvoyant factory hypothesis: the factory cannot predict how
the buttons to be pressed (far away in space and in the future) will be chosen.

4How good the approximation must be? Good enough so that I can get to the contra-
diction with Proposition 1.3 explained below.

5See [1, 2, 3]. The experiments confirm the quantum predictions for measurements of
polarization of entangled pairs of photons. The theoretical prediction gives N∗

ii = Nii and
Pii(µ) = 1, but we can never count on real life experiments to give us perfect correlations,
so my argument allows Pii(µ) ≈ 1.
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