# SOME INEQUALITIES WITH PROBABILITIES 

DANIEL V. TAUSK

## 1. The inequalities

Given $p, q \in[0,1]^{3}$, we set:

$$
\begin{equation*}
P_{i j}(p, q)=p_{i} q_{j}+\left(1-p_{i}\right)\left(1-q_{j}\right), \tag{1.1}
\end{equation*}
$$

for all $i, j \in\{1,2,3\}$. Our first goal is to prove the following:
1.1. Proposition. For any $p, q \in[0,1]^{3}$, the following inequality holds:

$$
\begin{equation*}
1+\sum_{\substack{i, j=1 \\ i \neq j}}^{3} P_{i j}(p, q) \geq \sum_{i=1}^{3} P_{i i}(p, q) . \tag{1.2}
\end{equation*}
$$

In order to prove Proposition 1.1 we need some preparatory results.
The following lemma is a particular case of a well-known result from Linear Programming, but for the reader's convenience we include here a brief proof.
1.2. Lemma. If $\alpha: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a linear functional and $Q=\prod_{i=1}^{n}\left[a_{i}, b_{i}\right]$ is a rectangular block ( $a_{i}, b_{i} \in \mathbb{R}, a_{i} \leq b_{i}, i=1, \ldots, n$ ), then the maximum of $\alpha$ on $Q$ is attained at $a$ vertex of $Q$, i.e., at an element of $\prod_{i=1}^{n}\left\{a_{i}, b_{i}\right\}$.

Proof. Since $\alpha$ is continuous and $Q$ is compact, we know that the maximum of $\alpha$ on $Q$ is attained at some point $x \in Q$. Let:

$$
I=\left\{i \in\{1,2, \ldots, n\}: x_{i}=a_{i} \text { or } x_{i}=b_{i}\right\}
$$

and consider the subspace $S$ of $\mathbb{R}^{n}$ defined by:

$$
S=\left\{u \in \mathbb{R}^{n}: u_{i}=0, \text { for all } i \in I\right\} .
$$

If $S$ is not contained in the kernel of $\alpha$ then there exists $u \in S$ with $\alpha(u)>0$; we have $x+\varepsilon u \in Q$ for $\varepsilon>0$ sufficiently small and $\alpha(x+\varepsilon u)>\alpha(x)$, contradicting the fact that $\alpha$ attains its maximum at $x$. Thus $S$ is contained in the kernel of $\alpha$. Let $x^{\prime} \in \mathbb{R}^{n}$ be defined by $x_{i}^{\prime}=x_{i}$, for $i \in I$ and $x_{i}^{\prime}=a_{i}$, for $i \in\{1,2, \ldots, n\} \backslash I$. Then $x^{\prime}$ is a vertex of $Q, x-x^{\prime} \in S$ and hence $\alpha\left(x^{\prime}\right)=\alpha(x)$.
1.3. Corollary. If $B: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a bilinear form and $Q$ is a rectangular block then $B$ attains its maximum on $Q \times Q$ at a point $(x, y)$ such that $x$ and $y$ are vertices of $Q$.

Proof. Since $B$ is continuous and $Q \times Q$ is compact, the maximum of $B$ on $Q \times Q$ is attained at some point $(x, y) \in Q \times Q$. By Lemma 1.2, the maximum of the linear functional $B(x, \cdot)$ on $Q$ is attained at some vertex $y^{\prime}$ of $Q$; then:

$$
B(x, y) \leq B\left(x, y^{\prime}\right)
$$

Similarly, the maximum of the linear functional $B\left(\cdot, y^{\prime}\right)$ on $Q$ is attained at some vertex $x^{\prime}$ of $Q$, so that:

$$
B\left(x, y^{\prime}\right) \leq B\left(x^{\prime}, y^{\prime}\right)
$$

But $\left(x^{\prime}, y^{\prime}\right) \in Q \times Q$ and $B(x, y) \leq B\left(x^{\prime}, y^{\prime}\right)$ imply $B\left(x^{\prime}, y^{\prime}\right)=B(x, y)$; hence the maximum of $B$ on $Q \times Q$ is attained at the point $\left(x^{\prime}, y^{\prime}\right)$.
1.4. Corollary. Consider the bilinear form $B: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by:

$$
B(x, y)=\sum_{i=1}^{3} x_{i} y_{i}-\sum_{\substack{i, j=1 \\ i \neq j}}^{3} x_{i} y_{j}
$$

for all $x, y \in \mathbb{R}^{3}$. Then:

$$
B(x, y) \leq \frac{5}{4}
$$

for all $x, y$ in the cube $Q=\left[-\frac{1}{2}, \frac{1}{2}\right]^{3}$.
Proof. By Corollary 1.3, the maximum of $B$ on $Q \times Q$ is attained at a point $(x, y)$ such that $x$ and $y$ are vertices of $Q$. Since $B$ is invariant by permutations of the coordinates and $B(x, y)=B(-x,-y)$, we can assume that $x=\frac{1}{2}(1,1,1)$ or $x=\frac{1}{2}(1,1,-1)$. A direct inspection of possibilities shows that the maximum is attained at $x=y=\frac{1}{2}(1,1,-1)$ and that $B(x, y)=\frac{5}{4}$.

We are now ready for:
Proof of Proposition 1.1. Set $x_{i}=p_{i}-\frac{1}{2}, y_{i}=q_{i}-\frac{1}{2}, i=1,2,3$, so that:

$$
P_{i j}(p, q)=\left(\frac{1}{2}+x_{i}\right)\left(\frac{1}{2}+y_{j}\right)+\left(\frac{1}{2}-x_{i}\right)\left(\frac{1}{2}-y_{j}\right)=\frac{1}{2}+2 x_{i} y_{j}
$$

for all $i, j \in\{1,2,3\}$ and $x, y$ belong to the cube $\left[-\frac{1}{2}, \frac{1}{2}\right]^{3}$. Then:

$$
\sum_{i=1}^{3} P_{i i}(p, q)-\sum_{\substack{i, j=1 \\ i \neq j}}^{3} P_{i j}(p, q)=-\frac{3}{2}+2 B(x, y) \leq-\frac{3}{2}+2 \cdot \frac{5}{4}=1
$$

where $B$ is defined in Corollary 1.4. The conclusion follows.
Now denote by $Q$ the unitary cube $[0,1]^{3}$ and let $\mu$ be an arbitrary probability measure ${ }^{1}$ on the cartesian product $Q^{2}=Q \times Q$. We set:

$$
\begin{equation*}
\mathcal{P}_{i j}(\mu)=\int_{Q^{2}} P_{i j}(p, q) \mathrm{d} \mu(p, q) \tag{1.3}
\end{equation*}
$$

for all $i, j \in\{1,2,3\}$.

[^0]1.5. Proposition. Given a probability measure $\mu$ on $Q^{2}$, the following inequality holds:
$$
1+\sum_{\substack{i, j=1 \\ i \neq j}}^{3} \mathcal{P}_{i j}(\mu) \geq \sum_{i=1}^{3} \mathcal{P}_{i i}(\mu)
$$

Proof. Follows immediately by taking the integral with respect to $\mu$ on both sides of inequality (1.2).

## 2. An experiment

Assume that we have a pair of boxes, call them $A$ and $B$. Each box has three buttons, numbered $1,2,3$ and two small lamps; one lamp is colored green and the other is colored red. If we press one of the buttons in a box then one (and only one) of the colored lamps lights up. The two boxes are manufactured by the same source (let's call it the factory); then, box $A$ is sent to a far away location and box $B$ is sent to another far away location. Each box will be received by an experimenter that will randomly choose one of the three buttons and press it. The experiment is repeated a large number of times, each time with a new pair of boxes. Each time the pair of boxes is prepared, the factory chooses a pair $p, q \in Q=[0,1]^{3}$. The triple of probabilities $p=\left(p_{1}, p_{2}, p_{3}\right)$ is programmed into the box $A$ as follows: when button number $i \in\{1,2,3\}$ is pressed, the green lamp lights up with probability $p_{i}$ and the red lamp lights up with probability $1-p_{i}$. Similarly, the triple $q=\left(q_{1}, q_{2}, q_{3}\right)$ is programmed into the box $B$. The factory chooses the pairs $(p, q) \in Q^{2}$ randomly according to some probability measure $\mu$ on $Q^{2}=Q \times Q$. It seems that this procedure is general enough so that essentially any manufacturing strategy used by the factory is covered, as long as the boxes $A$ and $B$ are not allowed to interact after a button is pressed by one of the experimenters. This "impossibility of interaction" hypothesis - let's call it locality - is encoded in our formalism in the hypothesis that the lottery $p$ used by box $A$ to associate a button to a lamp is independent of the lottery $q$ used by box $B$ to associate a button to a lamp. Notice that, since $p$ and $q$ are chosen by the same source, we allow the choice of $q$ to be dependent on the choice of $p$; this is encoded in our formalism in the fact that the probability measure $\mu$ is arbitrary, i.e., it is not necessarily a product $\mu_{1} \times \mu_{2}$ of two probability measures $\mu_{1}, \mu_{2}$ on $Q$.

Now, let $p, q \in Q$ be given and assume that the boxes $A$ and $B$ are programmed respectively with the triples $p$ and $q$. Given, $i, j \in\{1,2,3\}$, if button number $i$ is pressed in box $A$ and button number $j$ is pressed in box $B$, the probability that both boxes will light up the same color is $P_{i j}(p, q)$ (recall (1.1)). Now recall that the experiment is repeated a large number $N$ of times. Given $i, j \in\{1,2,3\}$, let $N_{i j}$ denote the number of times that button number $i$ was pressed in box $A$ and button number $j$ was pressed in box $B$. Let $N_{i j}^{*}$ denote the number of times that button number $i$ was
pressed in box $A$, button number $j$ was pressed in box $j$ and the same color lit up in both boxes. We now assume that the experimenters choose the buttons they press using a lottery that is independent ${ }^{2}$ of the lottery $\mu$ used by the factory to choose the pair $(p, q)$. This hypothesis implies that the quotient of $N_{i j}^{*}$ by $N_{i j}$ is approximately equal to $\mathcal{P}_{i j}(\mu)$ (recall (1.3)); such approximation gets better as $N$ gets larger.

Now, assume that the experiment has been performed a large number $N$ of times and that we have observed:

$$
\begin{gather*}
\frac{N_{i j}^{*}}{N_{i j}} \approx \frac{1}{4}, \quad \text { for } i, j \in\{1,2,3\}, i \neq j,  \tag{2.1}\\
\frac{N_{i i}^{*}}{N_{i i}} \approx 1, \quad \text { for } i \in\{1,2,3\}, \tag{2.2}
\end{gather*}
$$

where $\approx$ denotes $^{3}$ "approximately equal". Is this possible? We have:

$$
\mathcal{P}_{i j}(\mu) \approx \frac{1}{4}, \text { for } i \neq j, \quad \mathcal{P}_{i i}(\mu) \approx 1
$$

so that:

$$
\begin{gathered}
1+\sum_{\substack{i, j=1 \\
i \neq j}}^{3} \mathcal{P}_{i j}(\mu) \approx 1+\frac{6}{4}=\frac{5}{2} \\
\sum_{i=1}^{3} \mathcal{P}_{i i}(\mu) \approx 3
\end{gathered}
$$

But this contradicts Proposition 1.5.
Now, it is a well-known fact that such an experiment can be performed ${ }^{4}$ and that both (2.1) and (2.2) are observed. What is going on? Since these observations contradict Proposition 1.5, we have to drop one of our hypotheses: either the "non clairvoyant factory hypothesis" or the "locality hypothesis". It seems that locality is gone for good!

## References

$[1]$ A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 47, 460 (1981).
[2] A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 91 (1982).
[3] A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett. 49, 1804 (1982).

[^1]
[^0]:    ${ }^{1}$ We endow $Q \times Q$ with the Borel $\sigma$-algebra.

[^1]:    ${ }^{2}$ We call this the non clairvoyant factory hypothesis: the factory cannot predict how the buttons to be pressed (far away in space and in the future) will be chosen.
    ${ }^{3}$ How good the approximation must be? Good enough so that I can get to the contradiction with Proposition 1.5 explained below.
    ${ }^{4}$ See $[1,2,3]$. The experiments confirm the quantum predictions for measurements of polarization of entangled pairs of photons. The theoretical prediction gives $N_{i i}^{*}=N_{i i}$ and $\mathcal{P}_{i i}(\mu)=1$, but we can never count on real life experiments to give us perfect correlations, so my argument allows $\mathcal{P}_{i i}(\mu) \approx 1$.

