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Paragraph 2.2.17

There is nothing actually wrong in that paragraph, it’s just that the result
stated there contains an unnecessary assumption that is easy to remove. If
X and Y are locally compact Hausdorff spaces, f : X → Y is a continu-
ous proper map (with “proper” meaning that the inverse image of compact
subsets is compact) and φ is a Radon measure on X, then f#φ is a Radon
measure on Y . The assumption that X be a countable union of compact
sets is unnecessary. See [1, Section 35] for details.

Some remarks on Paragraphs 2.5.1 and 2.5.2

The book uses a somewhat unusual definition for a lattice of functions
on a set X. Given a set X, then the set RX of all maps f : X → R has a
natural structure of a partially ordered vector space (with both the vector
space operations and the partial order being defined pointwise). Moreover,
this partially ordered vector space is a vector lattice, meaning that every
pair of maps f, g ∈ RX admits an infimum

(f ∧ g)(x) = min{f(x), g(x)}, x ∈ X

and a supremum

(f ∨ g)(x) = max{f(x), g(x)}, x ∈ X.

A vector sublattice of RX is then (using standard terminology) a vector
subspace of RX that is closed under the lattice operations ∧ and ∨. If L is
a nonempty lattice of functions as defined in 2.5.1, then L is not in general
a vector subspace of RX , but

L− L =
{
f − g : f, g ∈ L

}
is a vector sublattice of RX and L+ = (L−L)+, i.e., the set of nonnegative
elements of L coincides with the set of nonnegative elements of L − L. If
λ : L→ R is a map satisfying the conditions

(1) λ(f + g) = λ(f) + λ(g) and λ(cf) = cλ(f),
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for all f, g ∈ L and all c ≥ 0, then λ admits a unique linear extension to
L − L. Moreover, if λ satisfies all the assumptions of Theorem 2.5.2, then
so does this extension.

These observations imply that one looses nothing by redefining a lattice
of functions on X to be a vector sublattice L of RX satisfying the additional
assumption that f ∧ c ∈ L, for all f ∈ L and for every nonnegative constant
function c. For Theorem 2.5.2 one then replaces assumptions (1) by the
assumption that λ be linear. I think that changing the definitions and
theorems in Paragraphs 2.5.1 and 2.5.2 in this way one obtains an exposition
that would be easier to follow and is more in tune with standard terminology.

Paragraph 2.5.3

There is nothing wrong there, but some missing crucial observations would
make lots of proofs simpler. Given a lattice of functions L on a set X, the
book defines collections F0, F1 and F2 of subsets of X as follows. The
collection F0 consists of all sets of the form

[f > t] =
{
x ∈ X : f(x) > t

}
with f ∈ L and t > 0 (nothing changes if one considers only functions f ∈ L
with f ≥ 0, since replacing f with its positive part f+ does not change the
set [f > t]). The collection F1 is defined as the set of unions of increasing
sequences of elements of F0 and, for a given measure φ on X, the collection
F2 is defined as the set of intersections of decreasing sequences of elements
of F1 having finite measure.

A crucial observation that makes many proofs easier is the observation
that the class F0 is closed under finite unions and intersections. Namely,
since L is closed under the operation of multiplication by a positive constant,
it follows that the collection F0 coincides with the collection of all sets of
the form

[f > 1]

with f ∈ L. Moreover

[f > 1] ∪ [g > 1] = [(f ∨ g) > 1]

and:

[f > 1] ∩ [g > 1] = [(f ∧ g) > 1].

The fact that F0 is closed under finite unions implies that F1 coincides with
the collection of all countable unions of elements of F0. Thus F1 is closed
under countable unions and finite intersections. The fact that F1 is closed
under finite intersections implies that F2 equals the collection of all countable
intersections of elements of F1 with finite measure (or countable intersections
of elements of F1 in which at least one of them has finite measure). Thus
F2 is closed under countable intersections and finite unions.

Using the observations above, one sees easily that the condition the book
calls L-regularity for a measure φ can be equivalently defined by requiring
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that1

φ(A) = inf
{
φ(B) : B ∈ F1, B ⊃ A

}
,

for every subset A of X. I’m assuming here a measure φ for which every
function in L is φ-measurable, so that every element in the classes F0, F1

and F2 is also φ-measurable.
Let λ be a monotone Daniell integral on L (i.e., λ satisfies the assumptions

of Theorem 2.5.2). I will say that a measure φ over X represents λ if every
f ∈ L is (φ-measurable and) φ-integrable and the equality λ(f) =

∫
X f dφ

holds. It is easy to see that the measure φ constructed in the proof of The-
orem 2.5.2 (i.e., the unique L-regular measure representing λ) is the largest
measure representing λ. The book claims that two measures representing
λ coincide over the class F2. This is indeed true, but a much better re-
sult can be obtained: let RL denote the σ-ring generated by F0. Since F0 is
closed under finite intersections and every measure that represents λ is finite
on elements of F0, it follows from [2, Lema 5.2.12] that any two measures
representing λ agree on RL. If

R′L =
{
X \A : A ∈ RL

}
denotes the set of all complements in X of elements of RL then the union
AL = RL ∪ R′L is the σ-algebra genetated by F0. It coincides with the
smallest σ-algebra for which every element of L is a measurable function.
If X is in F1, then AL = RL; otherwise, RL and R′L are disjoint and the
measure φ constructed in the proof of Theorem 2.5.2 gives the value +∞ for
every element of R′L (since it gives the value +∞ for every subset of X that
is not contained in an element of F1). If X is a locally compact Hausdorff
topological space and L is the lattice of continuous functions with compact
support on X, then the class F0 consists of all open subsets of X that are
both σ-compact and relatively compact and the class F1 consists of all σ-
compact open subsets of X (a subset is called σ-compact if it is a countable
union of compact subsets). If λ is a bounded (in the supremum norm)
positive linear functional on K(X), then the Radon measure representing
λ is finite, while the measure φ constructed in the proof of Theorem 2.5.2
gives the value +∞ for every element of R′L in case X is not σ-compact.
Hence, it is not in general true that two measures representing λ agree on
the whole σ-algebra AL.

Paragraph 2.5.8

It is claimed that if φ measures X (using more standard terminology, this
means that φ is an exterior measure on X) and µ is a Daniell integral on
L∞(φ), then µ is represented by a function k ∈ L1(φ), i.e., µ(f) =

∫
X fk dφ,

for every f ∈ L∞(φ). It should be noted that the spaces Lp(φ) are spaces of
functions here, not of equivalence classes of functions that are equal almost
everywhere (also the elements of L∞(φ) are assumed by definition to have

1The infimum of the empty set is +∞.
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σ-finite support — otherwise the result would not hold). So here is the
minor bug: there is nothing that ensures that if f and g in L∞(φ) are equal
almost everywhere then µ(f) = µ(g). Adding this assumption, it will indeed
follow that µ is bounded and thus represented by some k ∈ L1(φ). Without
this assumption, there are simple counterexamples: consider, for instance,
the Daniell integral µ(f) = f(x) given by evaluation at some fixed point
x ∈ X with φ

(
{x}
)

= 0.

Paragraph 2.5.19

Let X be a locally compact Hausdorff topological space and denote by
K(X) the space of real-valued continuous functions on X with compact
support. Given a map M : K(X)→ [0,+∞[, it is claimed that the set

(2)

{
µ ∈ K(X)∗ : µ is a Daniell integral and µ+(f) + µ−(f) ≤M(f),

for all f ∈ K(X)
}

is compact in the weak topology (which using more standard terminology
would be called the weak* topology). This claim is true if we assume that
M(f) = M(|f |), for all f ∈ K(X). Equivalently, we could replace “for
all f ∈ K(X)” in (2) with “for all nonnegative f ∈ K(X)”. Here is a
counterexample to the claim stated in the book: set X = [0, 1] and let
f0 : X → R be a continuous function such that f0(x) = 1 for x ∈

[
0, 13
]

and

f0(x) = −1 for x ∈
[
2
3 , 1
]
. Define M by setting M(f) = 4‖f‖sup, for f 6= f0

and M(f0) = 1. Let (xn)n≥1 be a convergent sequence in
[
2
3 , 1
]

with limit x

such that xn 6= x for all n and let y ∈
[
0, 13
]

be given. Consider the sequence
(λn)n≥1 of Daniell integrals on K(X) given by λn = δxn − δx + 2δy, for all
n ≥ 1, where δt denotes evaluation at t. We have that (λn)n≥1 converges to
λ = 2δy. Moreover, λ+n = δxn + 2δy, λ

−
n = δx, λ+ = λ and λ− = 0. It follows

that λn is in (2) for all n but λ isn’t in (2), since λ(f0) = 2 > M(f0).

1. Paragraph 2.6.4

Let X and Y be locally compact Hausdorff spaces and let λ and µ be
monotone Daniell integrals on K(X) and K(Y ), respectively. Let ν be the
Daniell integral on K(X × Y ) that extends λ⊗ µ. It is claimed that if α is
the K(X)-regular measure on X that represents λ and β is the K(Y )-regular
measure that represents µ, then the product measure α×β is the K(X×Y )-
regular measure that represents ν. It is true that α×β represents ν, but it is
not in general true that α×β is K(X×Y )-regular. For instance, if X is not a
countable union of compact sets and if there exists a nonempty β-measurable
subset S of Y with β(S) = 0, then (α × β)(X × S) = α(X)β(S) = 0.
On the other hand, if γ is a K(X × Y )-regular measure on X × Y then
γ(X × S) = +∞, since X × S is not contained in a countable union of
compact sets. The claim on the book is true if X and Y are both assumed
to be countable unions of compact sets.
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2. Paragraph 2.6.5

It is not true that the product of measures is associative (this is true
for σ-finite measures, as follows from Lemma 1 below). If m denotes the
Lebesgue exterior measure on R, c denotes the counting measure on R and
S = ∆×R, with ∆ =

{
(x, x) : x ∈ R}, then(

(m×m)× c
)
(S) = (m×m)(∆)c(R) = 0 · (+∞) = 0.

On the other hand, we will show below (Corollary 3) that
(
m× (m× c)

)
(S)

is infinite. Given a measure φ on a set X, we denote by Mφ the set of
φ-measurable sets (we note that what is being called a “measure” here is
more usually called an exterior measure).

Lemma 1. Let α, β and γ be measures on sets X, Y and Z, respectively.
If α is σ-finite (i.e., X is a countable union of α-measurable sets of finite
measure) then

(
α× (β × γ)

)
(U) equals the infimum of the set

(3)

{ ∞∑
i=1

α(Ai)β(Bi)γ(Ci) : U ⊂
∞⋃
i=1

(Ai ×Bi × Ci),

Ai ∈Mα, Bi ∈Mβ and Ci ∈Mγ

}
,

for every U ⊂ X × Y × Z.

Proof. By definition,
(
α× (β × γ)

)
(U) equals the infimum of the set:

(4)

{ ∞∑
i=1

α(Ai)(β × γ)(Pi) : U ⊂
∞⋃
i=1

(Ai × Pi),

Ai ∈Mα and Pi ∈Mβ×γ

}
.

Every element of (3) is in (4), since we can take Pi = Bi×Ci. The fact that
α is σ-finite implies that the set (4) is unchanged if we add the condition that
α(Ai) < +∞, for all i. The conclusion then follows from the observation
that (β × γ)(Pi) can be approximated by a sum

∑∞
j=1 β(Bij)γ(Cij), with

Bij ∈ Mβ and Cij ∈ Mγ so that, since α(Ai) is finite, the sum in (4) is
approximated by the sum

∑∞
i,j=1 α(Ai)β(Bij)γ(Cij). �

Corollary 2. Let α, β and γ be measures on sets X, Y and Z, respectively.
If both α and γ are σ-finite, then α× (β × γ) = (α× β)× γ. �

Corollary 3. With the notation introduced above, we have:(
m× (m× c)

)
(S) = +∞.

Proof. Assume S ⊂
⋃∞
i=1(Ai ×Bi × Ci) and let us show that

m(Ai)m(Bi)c(Ci) = +∞,
for some i. Pick y ∈ R not in the union of the sets Ci that are finite. Then
for every x ∈ R we have (x, x, y) ∈ S and therefore there exists i such that
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x ∈ Ai ∩Bi and Ci is infinite. Thus

R =
⋃{

Ai ∩Bi : Ci is infinite
}

which proves that there exists i such that Ci is infinite, m(Ai) > 0 and
m(Bi) > 0. �

3. Paragraphs 2.7.14 and 2.7.15

There is something important missing from the proofs of Theorem 2.7.14
and Corollary 2.7.15. Both results are true, however. In the proof of Theo-
rem 2.7.14, the book considers the K(G)-regular measure α representing a
left χ-covariant monotone Daniell integral λ. The proof proceeds to show
correctly that every open subset of G is α-measurable. However, something
else is needed to complete the argument, as explained below. The situation
with Corollary 2.7.15 is similar.

Let X be an arbitrary locally compact Hausdorff topological space and
α be a K(X)-regular measure representing an arbitrary monotone Daniell
integral λ on K(X). Assume that every open subset of X is α-measurable.
The results mentioned in the proof of Theorem 2.7.14 (paragraphs 2.5.3 and
2.5.14) imply that α satisfies all the conditions in the definition of a Radon
measure except for the fact that the equality

(5) α(U) = sup
{
α(K) : K ⊂ U , K compact

}
might not hold if U is an open subset of X with α(U) = +∞. Equality
(5) does hold if U is contained in a countable union of compact subsets.
Namely, in this case we can write U =

⋃∞
n=1 Un as a disjoint union of Borel

subsets Un with finite measure and for each n we can find a compact subset
Kn of Un with α(Un \ Kn) < 1

2n . Then
⋃n
i=1Ki is a compact subset of U

for all n and limn→+∞ α
(⋃n

i=1Ki

)
= +∞ if α(U) = +∞.

In general, equality (5) might not hold. If U is not contained in a count-
able union of compact subsets then we necessarily have α(U) = +∞. How-
ever, it might happen for instance that U is disjoint from the support of λ,
so that α(K) = 0 for every compact subset K of U . Even assuming that
the support of λ equals X itself, equality (5) does not follow, as shown in
the counterexample given below in Subsection 3.1. In the context of Theo-
rem 2.7.14 and Corollary 2.7.15 the equality does hold, however, due to the
following two lemmas.

Lemma 4. Let X be a locally compact Hausdorff topological space and λ
be a monotone Daniell integral on K(X) whose support is X. Let α be the
K(X)-regular measure that represents λ and assume that every open subset
of X is α-measurable. If X is a disjoint union2 of open σ-compact subsets,
then α is a Radon measure.

2A subset of X is σ-compact if it is a countable union of compact subsets. For a locally
compact Hausdorff space X, it holds that X is a disjoint union of open σ-compact subsets
if and only if X is paracompact.



PARTIAL LIST OF BUGS ON FEDERER’S BUG ON GEOMETRIC MEASURE THEORY7

Proof. It remains to check that the righthand side of (5) is infinite if U is
an open subset of X that is not contained in a σ-compact subset. Write
X =

⋃
i∈I Xi as a disjoint union of open σ-compact subsets Xi. Since

U is not contained in a σ-compact subset, it follows that U intersects Xi

for uncountably many i. Since the support of λ is X, we have that the
measure of a nonempty open set is positive. Thus, α(U ∩Xi) is positive for
uncountably many i. It follows that there exists ε > 0 and an infinite set
J ⊂ I such that α(U ∩ Xi) > ε for all i ∈ J . For each i ∈ J let Ki be a
compact subset of U ∩ Xi such that α(Ki) > ε. The unions

⋃
i∈F Ki with

F ⊂ J finite are compact subsets of U and their measure can be made as
large as desired. �

If G acts transitively on X and λ is nonzero and χ-covariant, then the
support of λ is G-invariant and nonempty and thus it is equal to X. To
conclude the argument, we need the following result.

Lemma 5. If G is a locally compact Hausdorff topological group, then G
admits an open σ-compact subgroup G0. If G acts on X and the maps

G 3 g 7−→ g · x ∈ X
are continuous and open for all x ∈ X then the orbits of the action of G0

on X yield a partition of X into open σ-compact subsets.

Proof. Simply take G0 to be the subgroup generated by a compact neigh-
borhood of 1. The second statement is immediate. �

3.1. Counterexample. Let ω denote the set of natural numbers and let
(Ai)i∈I be an uncountable almost disjoint family of subsets of ω (i.e., each
Ai is an infinite subset of ω and Ai ∩ Aj is finite, if i 6= j). Topologize
the disjoint union X = ω ∪ I so that each point of ω is isolated and the
fundamental neighborhoods of each i ∈ I are unions of {i} with cofinite
subsets of Ai. Then X is a locally compact Hausdorff topological space and
ω is a countable open dense subset ofX. Since I is closed inX and discrete in
the relative topology, it follows that the intersection with I of every compact
subset of X is finite. Thus, the σ-compact subsets of X are precisely the
countable subsets of X. Let (pn)n∈ω be a sequence of positive real numbers
with

∑
n∈ω pn < +∞ and let λ be the monotone Daniell integral on K(X)

defined by λ(f) =
∑

n∈ω pnf(n), for all f ∈ K(X). The support of λ is X
itself, because ω is dense in X. The K(X)-regular measure α representing
λ is given as follows: if A is an uncountable subset of X, then α(A) = +∞.
If A ⊂ X is countable, then α(A) =

∑
n∈A∩ω pn. Every subset of X is

α-measurable. Equality (5) does not hold with U = X, since α(X) = +∞
and the righthand side of (5) equals the sum

∑
n∈ω pn.
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