Dados $B \in \wp(\omega)$ e $\mathcal{E} \subset \wp(\omega)$, dizemos que B é bom para \mathcal{E} se para todo $k \in \omega$ o conjunto:

$${E \in \mathcal{E} : E \cap B \subset k}$$

é finito. Para $B \in \wp(\omega)$, denotamos por $[B] \in \wp(\omega)$ /fin a classe de equivalência de B.

Nós queremos demonstrar a seguinte:

- 1. **Proposição.** Existem famílias $(A_{\alpha})_{\alpha \in \aleph_1}$, $(B_{\alpha})_{\alpha \in \aleph_1}$ em $\wp(\omega)$ tais que:
 - (a) se $\alpha, \beta \in \aleph_1$ e $\alpha < \beta$ então $[A_{\alpha}] < [A_{\beta}]$ e $[B_{\alpha}] < [B_{\beta}]$;
 - (b) $A_{\alpha} \cap B_{\alpha} = \emptyset$, para todo $\alpha \in \aleph_1$;
 - (c) para todo $\alpha \in \aleph_1$, B_{α} é bom para $\{A_{\beta} : \beta < \alpha\}$.

Precisamos de alguns lemas.

2. **Lema.** Dados $B, C \in \wp(\omega)$ e $\mathcal{E} \subset \wp(\omega)$, se B é bom para \mathcal{E} e $[B] \leq [C]$ então C é bom para \mathcal{E} .

Demonstração. Seja $F \subset \omega$ um conjunto finito tal que $B \subset C \cup F$. Dado $k \in \omega$, seja $l \in \omega$ tal que $k \cup F \subset l$. É claro que:

$${E \in \mathcal{E} : E \cap C \subset k} \subset {E \in \mathcal{E} : E \cap B \subset l}$$

e portanto $\{E \in \mathcal{E} : E \cap C \subset k\}$ é finito.

Dados $B \in \wp(\omega)$ e $\mathcal{E} \subset \wp(\omega)$, dizemos que B é quase-incompatível com \mathcal{E} se $[B] \wedge [E] = 0$ (i.e., se $B \cap E$ é finito) para todo $E \in \mathcal{E}$.

3. **Lema.** Sejam $(\mathcal{E}_k)_{k\in\omega}$ uma seqüência de subconjuntos enumeráveis de $\wp(\omega)$ e $\mathcal{E} = \bigcup_{k\in\omega} \mathcal{E}_k$. Suponha¹ que para quaisquer $k \in \omega$, $E \in \mathcal{E}_k$ e para todo subconjunto finito \mathcal{F} de $\bigcup_{i< k} \mathcal{E}_i$ o conjunto $E \setminus (\bigcup_{F \in \mathcal{F}} F)$ seja infinito. Se $B \in \wp(\omega)$ é bom para \mathcal{E}_k para todo $k \in \omega$ então existe $C \in \wp(\omega)$ que é quase-incompatível com \mathcal{E} e tal que $B \cup C$ é bom para \mathcal{E} .

Demonstração. Suponha $\mathcal{E} \neq \emptyset$ (senão o resultado é trivial). Seja $\phi : \omega \to \mathcal{E}$ uma função sobrejetora. Para cada $k \in \omega$ seja $\mathcal{F}_k \subset \mathcal{E}$ a interseção de $\bigcup_{i < k} \mathcal{E}_i$ com a imagem de $\phi|_k$. Daí \mathcal{F}_k é um subconjunto finito de $\bigcup_{i < k} \mathcal{E}_i$, $\mathcal{F}_k \subset \mathcal{F}_{k+1}$ para todo $k \in \omega$ e $\mathcal{E} = \bigcup_{k \in \omega} \mathcal{F}_k$. Para $k \in \omega$ defina também:

$$\mathcal{G}_k = \{ E \in \mathcal{E}_k : E \cap B \subset k \},\$$

de modo que \mathcal{G}_k é um subconjunto finito de \mathcal{E}_k . Para cada $E \in \mathcal{G}_k$ o conjunto $E \setminus (\bigcup_{F \in \mathcal{F}_k} F)$ é infinito e portanto possui um elemento $x_E \ge k$. Sejam:

$$C_k = \{x_E : E \in \mathcal{G}_k\} \in \wp(\omega), \quad k \in \omega,$$

e $C = \bigcup_{k \in \omega} C_k$. Temos então que C_k é finito e é disjunto de todo $F \in \mathcal{F}_k$. Dado $F \in \mathcal{E}$ temos que existe $l \in \omega$ tal que $F \in \mathcal{F}_k$ para todo $k \geq l$ e portanto o conjunto:

$$F \cap C = \bigcup_{k \in \omega} (F \cap C_k) = \bigcup_{k < l} (F \cap C_k)$$

¹Essa hipótese implica em particular que os conjuntos \mathcal{E}_k são dois a dois disjuntos. De fato, se i < k, $E \in \mathcal{E}_k$ e $F \in \mathcal{E}_i$ então $E \setminus F$ é infinito e, em particular, $E \neq F$.

é finito. Isso mostra que C é quase-incompatível com \mathcal{E} . Vamos mostrar que $B \cup C$ é bom para \mathcal{E} . Dado $k \in \omega$, temos:

$$\left\{ E \in \mathcal{E} : E \cap (B \cup C) \subset k \right\} = \bigcup_{l \in \omega} \left\{ E \in \mathcal{E}_l : E \cap (B \cup C) \subset k \right\}.$$

Para todo $l \in \omega$ o conjunto:

$$\{E \in \mathcal{E}_l : E \cap (B \cup C) \subset k\}$$

está contido no conjunto finito $\{E \in \mathcal{E}_l : E \cap B \subset k\}$. A demonstração estará completa se verificarmos que o conjunto (1) é vazio para $l \geq k$. Suponha que existam $l \geq k$ e $E \in \mathcal{E}_l$ com $E \cap (B \cup C) \subset k$. Daí $E \cap B \subset k \subset l$ e portanto $E \in \mathcal{G}_l$. Temos $x_E \geq l \geq k$, $x_E \in E$ e $x_E \in C_l \subset C$. Daí $x_E \in E \cap (B \cup C)$ e $x_E \notin k$, uma contradição.

Temos agora um lema simples a respeito de ordinais enumeráveis.

4. **Lema.** Se α é um ordinal limite enumerável então existe uma seqüência estritamente crescente de ordinais $(\alpha_k)_{k\in\omega}$ tal que $\alpha = \bigcup_{k\in\omega} \alpha_k$.

Demonstração. Como $\alpha \neq \emptyset$ é enumerável, existe uma função sobrejetora $\phi: \omega \to \alpha$. Construa a seqüência $(\alpha_k)_{k \in \omega}$ por recursão fazendo $\alpha_0 = \phi(0)$ e α_{k+1} igual ao sucessor de $\alpha_k \cup \phi(k+1)$, para todo $k \in \omega$. Daí $\alpha_k \geq \phi(k)$ para todo $k \in \omega$ e portanto $\alpha = \bigcup_{k \in \omega} \alpha_k$.

Agora precisamos de alguns lemas simples sobre álgebras de Boole. Dois subconjuntos \mathcal{E} , \mathcal{F} de uma álgebra de Boole \mathcal{B} serão ditos *incompatíveis* se $e \wedge f = 0$ para todos $e \in \mathcal{E}$, $f \in \mathcal{F}$. Se $b \in \mathcal{B}$ e $\mathcal{E} \subset \mathcal{B}$ diremos também que b é *incompatível* com \mathcal{E} se $b \wedge e = 0$ para todo $e \in \mathcal{E}$.

5. **Lema.** Seja \mathcal{B} uma álgebra de Boole com a propriedade de separação enumerável. Se \mathcal{E} , \mathcal{F} são subconjuntos incompatíveis enumeráveis de \mathcal{B} então \mathcal{F} possui uma cota superior $b \in \mathcal{B}$ que é incompatível com \mathcal{E} .

Demonstração. Seja $\mathcal{F}' = \{f' : f \in \mathcal{F}\}$. Como \mathcal{E} e \mathcal{F} são incompatíveis, temos que $\mathcal{E} \leq \mathcal{F}'$. Como \mathcal{B} possui a propriedade de separação enumerável, existe $b \in \mathcal{B}$ que é uma cota superior para \mathcal{E} e uma cota inferior para \mathcal{F}' . Daí b' é uma cota superior para \mathcal{F} que é incompatível com \mathcal{E} .

- 6. Observação. Recorde que se uma álgebra de Boole \mathcal{B} possui a propriedade forte de separação enumerável, se \mathcal{E} é um subconjunto enumerável dirigido para cima sem maior elemento de \mathcal{B} e se $b \in \mathcal{B}$ é uma cota superior de \mathcal{E} então existe uma cota superior b_0 de \mathcal{E} tal que $b_0 < b$.
- 7. **Lema.** Seja \mathcal{B} uma álgebra de Boole sem átomos. Dados $x, y \in \mathcal{B}$, se $x \wedge y = 0$ e $x \vee y < 1$ então existem $x_1, y_1 \in \mathcal{B}$ com $x < x_1, y < y_1, x_1 \wedge y_1 = 0$ e $x_1 \vee y_1 < 1$.

Demonstração. Como $(x \vee y)' > 0$ e \mathcal{B} não tem átomos, existe $z \in \mathcal{B}$ com $0 < z < (x \vee y)'$. Novamente, como \mathcal{B} não tem átomos, podemos escrever $z = t \vee w$ com $t \wedge w = 0$ e t, w > 0. Basta tomar então $x_1 = x \vee t$ e $y_1 = y \vee w$.

Demonstração da Proposição 1. Nós construiremos as famílias

$$(A_{\alpha})_{\alpha \in \aleph_1}, \quad (B_{\alpha})_{\alpha \in \aleph_1}$$

por recursão em α fazendo com que as condições (a), (b) e (c) sejam satisfeitas e fazendo também com que $[A_{\alpha}] \vee [B_{\alpha}] < 1$ (i.e., $\omega \setminus (A_{\alpha} \cup B_{\alpha})$ seja infinito) para todo $\alpha \in \aleph_1$. Como base da recursão, podemos tomar simplesmente $A_0 = B_0 = \emptyset$. Dado $\alpha \in \aleph_1$, se os conjuntos A_{β} e B_{β} estão definidos para $\beta \leq \alpha$, vamos definir os conjuntos $A_{\alpha+1}$ e $B_{\alpha+1}$. Se $A_{\alpha} \cap B_{\alpha} = \emptyset$ e $[A_{\alpha}] \vee [B_{\alpha}] < 1$ então, como $\wp(\omega)$ /fin não tem átomos, o Lema 7 nos permite obter $X, Y \in \wp(\omega)$ tais que $[A_{\alpha}] < [X]$, $[B_{\alpha}] < [Y]$, $[X] \wedge [Y] = 0$ e $[X] \vee [Y] < 1$. Tomando $A_{\alpha+1} = X \setminus Y$ e $B_{\alpha+1} = Y$ então $[A_{\alpha+1}] = [X]$, $[B_{\alpha+1}] = [Y]$, de modo que $[A_{\alpha}] < [A_{\alpha+1}]$, $[B_{\alpha}] < [B_{\alpha+1}]$, $[A_{\alpha+1}] \vee [B_{\alpha+1}] < 1$ e $A_{\alpha+1} \cap B_{\alpha+1} = \emptyset$. Além do mais, se B_{α} é bom para $\{A_{\beta} : \beta < \alpha\}$ então o Lema 2 nos diz que $B_{\alpha+1}$ é bom para $\{A_{\beta} : \beta < \alpha\}$ e portanto $B_{\alpha+1}$ também é bom para:

$${A_{\beta}: \beta < \alpha + 1} = {A_{\beta}: \beta < \alpha} \cup {A_{\alpha}}.$$

Finalmente, seja $\alpha \in \aleph_1$ um ordinal limite e suponha que os conjuntos A_{β} e B_{β} estejam definidos para $\beta < \alpha$. Vamos definir A_{α} e B_{α} . Supondo que:

(2)
$$\beta < \gamma \Longrightarrow [A_{\beta}] < [A_{\gamma}], [B_{\beta}] < [B_{\gamma}], \beta, \gamma < \alpha$$

e que $A_{\beta} \cap B_{\beta} = \emptyset$ para todo $\beta < \alpha$ então:

$$\{[A_{\beta}]: \beta < \alpha\}, \{[B_{\beta}]: \beta < \alpha\}$$

são subconjuntos incompatíveis, enumeráveis, dirigidos para cima e sem maior elemento da álgebra de Boole $\wp(\omega)$ /fin. Como $\wp(\omega)$ /fin possui a propriedade de separação enumerável, o Lema 5 nos dá $B \in \wp(\omega)$ tal que $[A_{\beta}] \wedge [B] = 0$ e $[B_{\beta}] < [B]$, para todo $\beta < \alpha$. Pelo Lema 4 existe uma seqüência estritamente crescente $(\alpha_k)_{k \in \omega}$ de ordinais tal que $\alpha = \bigcup_{k \in \omega} \alpha_k$; obviamente podemos supor $\alpha_0 = 0$, de modo que:

$$\alpha = \bigcup_{k \in \omega} \left\{ \beta : \alpha_k \le \beta < \alpha_{k+1} \right\}$$

é uma partição de $\alpha.$ Para cada $k\in\omega$ seja:

$$\mathcal{E}_k = \{A_\beta : \alpha_k \le \beta < \alpha_{k+1}\} \subset \wp(\omega).$$

Segue de (2) que a hipótese do Lema 3 a respeito dos conjuntos \mathcal{E}_k é satisfeita: de fato, dados $k \in \omega$, $E \in \mathcal{E}_k$ e um subconjunto finito \mathcal{F} de $\bigcup_{i < k} \mathcal{E}_i$ então $E = A_\beta$ para algum β tal que $\alpha_k \leq \beta < \alpha_{k+1}$ e $\left[\bigcup_{F \in \mathcal{F}} F\right] = [A_\gamma]$ para algum $\gamma < \alpha_k$. Daí $[A_\gamma] < [A_\beta]$ e $E \setminus \left(\bigcup_{F \in \mathcal{F}} F\right)$ é infinito. Se B_β é bom para $\left\{A_\gamma : \gamma < \beta\right\}$ para todo $\beta < \alpha$ então $B_{\alpha_{k+1}}$ é bom para \mathcal{E}_k para todo $k \in \omega$ e portanto, pelo Lema 2, temos que B é bom para \mathcal{E}_k para todo $k \in \omega$. O Lema 3 nos dá então um conjunto $C \in \wp(\omega)$ que é quase-incompatível com:

$$\mathcal{E} = \bigcup_{k \in \omega} \mathcal{E}_k = \left\{ A_\beta : \beta < \alpha \right\}$$

e tal que $B \cup C$ é bom para \mathcal{E} . Como B também é quase-incompatível com \mathcal{E} , tomando $B_{\alpha} = B \cup C$ temos que B_{α} é quase-incompatível com \mathcal{E} e bom para \mathcal{E} . O fato que B_{α} é quase-incompatível com \mathcal{E} nos diz que $[\omega \setminus B_{\alpha}] = [B_{\alpha}]'$ é uma cota superior para $\{[A_{\beta}] : \beta < \alpha\}$ e, já que $\wp(\omega)$ /fin possui a propriedade forte de separação enumerável, a Observação 6 nos dá $A \in \wp(\omega)$ tal que $[A_{\beta}] < [A] < [B_{\alpha}]'$ para todo $\beta < \alpha$. Daí $[A] \wedge [B_{\alpha}] = 0$ e $[A] \vee [B_{\alpha}] < 1$. Tomando $A_{\alpha} = A \setminus B_{\alpha}$ então $[A_{\alpha}] = [A]$, de modo que $[A_{\beta}] < [A_{\alpha}]$ para todo $\beta < \alpha$, $[A_{\alpha}] \vee [B_{\alpha}] < 1$ e $A_{\alpha} \cap B_{\alpha} = \emptyset$. Isso completa a demonstração.

8. **Proposição.** Se $(A_{\alpha})_{\alpha \in \aleph_1}$, $(B_{\alpha})_{\alpha \in \aleph_1}$ são famílias como no enunciado da Proposição 1 então não existe $C \in \wp(\omega)$ tal que [C] é cota superior de $\{[A_{\alpha}] : \alpha \in \aleph_1\}$ e [C] é incompatível com $\{[B_{\alpha}] : \alpha \in \aleph_1\}$.

Demonstração. Suponha por absurdo que exista C como no enunciado. Para todo $\alpha \in \aleph_1$ temos que $A_\alpha \setminus C$ e $B_\alpha \cap C$ são finitos e portanto:

$$\aleph_1 = \bigcup_{k \in \omega} \Gamma_k,$$

onde:

$$\Gamma_k = \{ \alpha \in \aleph_1 : A_\alpha \setminus C \subset k, \ B_\alpha \cap C \subset k \}.$$

Daí existe $k \in \omega$ tal que Γ_k não é enumerável. Sendo Γ_k um conjunto bem-ordenado não enumerável, existe $\alpha \in \Gamma_k$ tal que $\{\beta \in \Gamma_k : \beta < \alpha\}$ é infinito. Mas se $\alpha, \beta \in \Gamma_k$ então $A_\beta \setminus C \subset k$ e $B_\alpha \cap C \subset k$, donde $A_\beta \cap B_\alpha \subset (A_\beta \setminus C) \cup (B_\alpha \cap C) \subset k$. Isso mostra que:

$$\{\beta \in \Gamma_k : \beta < \alpha\} \subset \{\beta < \alpha : A_\beta \cap B_\alpha \subset k\},\$$

donde $\{\beta < \alpha : A_{\beta} \cap B_{\alpha} \subset k\}$ é infinito, contradizendo o fato que B_{α} é bom para $\{A_{\beta} : \beta < \alpha\}$.