The regularity method and blow-up lemmas for sparse graphs

Y. Kohayakawa (São Paulo)

SPSAS Algorithms, Combinatorics and Optimization

University of São Paulo

July 2016

Partially supported CAPES/DAAD (430/15), CNPq (459335/2014-6, 310974/2013-5), and FAPESP (2013/07699-0, 2013/03447-6)

Course outline

- 1. Lecture I. Introduction to the regularity method
- 2. Lecture II. The blow-up lemma
- 3. Lecture III. The sparse case: small subgraphs
- 4. Lecture IV. The sparse case: large subgraphs

Lecture IV. The sparse case (large subgraphs)

Aim of talk

- Shall only give some idea (shan't be ambitious)
- > Joint work with
 - o P. Allen (London),
 - o J. Böttcher (London),
 - H. Hàn (Santiago),
 - Y. Person (Frankfurt).
- Preprint available on the school's webpage

Outline of talk

- 1. (Lecture I & II) The regularity method; the blow-up lemma
- 2. (Lecture III) The regularity method in the sparse setting
- 3. Applications of the blow-up lemmas in the sparse setting
- 4. Inheritance of regularity
- 5. Statement of the sparse blow-up lemmas

Outline of talk

- 1. (Lecture I & II) The regularity method; the blow-up lemma
- 2. (Lecture III) The regularity method in the sparse setting
- 3. Applications of the blow-up lemmas in the sparse setting
- 4. Inheritance of regularity
- 5. Statement of the sparse blow-up lemmas

The Blow-up Lemma

Theorem 1 (The Blow-up Lemma (Komlós, Sárközy & Szemerédi '97)). For every $\delta > 0$, Δ , $r \in \mathbb{N}$ there is $\varepsilon > 0$ such that the following holds. Let $G^* = (V_1, \ldots, V_r; E^*)$ and $G = (V_1, \ldots, V_r; E)$ be two graphs and let $R \subset {[r] \choose 2}$ be such that (V_i, V_j) is a complete bipartite graph in G^* and (V_i, V_j) is an (ε, δ) -super-regular graph in G whenever $ij \in R$. If H with $\Delta(H) \leq \Delta$ can be embedded into G^* then it can also be embedded into G.

The Blow-up Lemma

The Blow-up Lemma

If f* exists, the f exists.

Applications of the Blow-up Lemma

Do graphs with sufficiently high minimum degree contain ...

- ▶ Pósa & Seymour '74: r-th powers of Hamiltonian cycles?
- → Alon & Yuster '96: F-factors (for F fixed)?

Answer: Yes!

 Invented by Komlós, Sárközy & Szemerédi

Spanning subgraphs with constant maximum degree

Outline of talk

- 1. (Lecture I & II) The regularity method; the blow-up lemma
- 2. (Lecture III) The regularity method in the sparse setting
- 3. Applications of the blow-up lemmas in the sparse setting
- 4. Inheritance of regularity
- 5. Statement of the sparse blow-up lemmas

The sparse setting

- So far: we have been concerned with dense graphs, i.e., graphs $G = G^n$ with $\Omega(n^2)$ edges.
- \triangleright *Sparse*: graphs with $o(n^2)$ edges.
- Densities d(U, U') = e(U, U')/|U||U'| in such sparse graphs vanish as $n \to \infty$. Therefore, the regularity condition

$$\forall u' \subset u, \ W' \subset W \ \text{with} \ |u'|/|u|, \ |W'|/|W| \geq \varepsilon$$
 we have $|d(u', W') - d(u, W)| \leq \varepsilon$

becomes trivial.

⊳ Easy fix: normalize the density by dividing by $p = p(n) = e(G) {n \choose 2}^{-1}$.

Szemerédi's regularity lemma, sparse version

Definition 2. B = (U, W; E) *is* $(\varepsilon, d; p)$ -regular if for all $U' \subset U$ and $W' \subset W$ with |U'|/|U|, $|W'|/|W| \ge \varepsilon$, we have $|d_p(U', W') - d| \le \varepsilon$, where

$$d_p(U', W') = \frac{e(U', W')}{p|U'||W'|}.$$

Typical applications: B is a subgraph of the random graph G(n, p) or of a pseudorandom graph of some density p, with $p \to 0$.

Ambient graph: we shall usually have a sparse, ambient graph Γ .

Szemerédi's regularity lemma, sparse version

Any graph with no 'dense patches' admits a Szemerédi partition with the above notion of ε -regularity.

Definition 3. Let us say G = (V, E) is locally (η, b) -bounded if for all $U \subset V$ with $|U| \ge \eta |V|$, we have

$$\#\{edges\ within\ U\} \le b|E|{|U| \choose 2}{|V| \choose 2}^{-1}.$$

Szemerédi's regularity lemma, sparse version

Theorem 4 (The regularity lemma). For any $\varepsilon > 0$, $t_0 \ge 1$, and b, there exist $\eta > 0$ and T_0 such that any locally (η, b) -bounded graph $G = G^n$ admits a partition $V = V_1 \cup \cdots \cup V_t$ such that

- \triangleright t₀ \leq t \leq T₀,
- $|V_1| \le \cdots \le |V_t| \le |V_1| + 1$,
- $> (V_i, V_j) \text{ is } (\epsilon; \mathfrak{p}) \text{-regular for at least } (1 \epsilon) {t \choose 2} \text{ pairs } \mathfrak{i} \mathfrak{j} \in {t \choose 2} \text{, where }$

$$p = e(G) {n \choose 2}^{-1}.$$

A structure theorem for locally bounded sparse graphs

Embedding lemma; sparse setting

- ► Thanks to the work of several researchers, we now know how to use the regularity lemma in the sparse setting.
 - **Contributors:** Balogh, Conlon, Fox, Gerke, Gowers, K., Łuczak, Morris, Rödl, Samotij, Saxton, Schacht, Steger, Thomason, Zhao, among others.
- ⊳ Typical applications: when $G \subset \Gamma$, and $\Gamma = G(n, p)$ or Γ is a strongly pseudorandom graph.
- More precisely: we know suitable embedding lemmas for graphs $H = H^h$ with h = O(1).
- ightharpoonup How about *large* H? E.g., h = n?

Sparse blow-up lemmas

- Main result: suitable blow-up lemmas exist in the sparse setting.
- > Statements are technical: we'll discuss some applications first.

Outline of talk

- 1. (Lecture I & II) The regularity method; the blow-up lemma
- 2. (Lecture III) The regularity method in the sparse setting
- 3. Applications of the blow-up lemmas in the sparse setting
- 4. Inheritance of regularity
- 5. Statement of the sparse blow-up lemmas

Sparse blow-up applications

- 1. Universality results for random and pseudorandom graphs
- 2. Partition-universality results for random and pseudorandom graphs
- 3. Resilience and robustness of low-bandwidth graphs
- 4. Maker-Breaker games

Universality

- $\triangleright \mathcal{H}$: a set of graphs
- ightharpoonup A graph G is \mathcal{H} -universal if $H \subset G$ for each $H \in \mathcal{H}$.

A universality result (random graphs)

 $\mathcal{H}(n, d, \Delta)$: class of graphs $H = H^n$ with $\Delta(H) = \Delta$ and degeneracy d

Theorem 5. For every d and $\Delta \in \mathbb{N}$ there is C such that if

$$p \ge C \left(\frac{\log n}{n}\right)^{1/(2d+1)},$$

then the r.g. G(n, p) is a.a.s. $\mathcal{H}(n, d, \Delta)$ -universal.

Theorem 6. For every d, $\Delta \in \mathbb{N}$ and $\gamma > 0$ there is C such that if

$$p \ge C \left(\frac{\log n}{n}\right)^{1/2d},$$

then the r.g. $G((1 + \gamma)n, p)$ is a.a.s. $\mathcal{H}(n, d, \Delta)$ -universal.

Remarks

- Strengthen results of Dellamonica, K., Rödl and Ruciński (2015) and Kim and Lee (2013+), Ferber, Nenadov and Peter (2013+). [For d=1, Montgomery can do $p=\widetilde{O}(1/n)$.]
- One of the forms of the blow-up lemma is tailored to handle graphs with low degeneracy.

A universality result (pseudorandom graphs)

Pseudorandom concept we shall use: G is (p, β) -bi-jumbled if, for all U, $W \subset V(G)$, we have

$$\left| e(\mathbf{U}, \mathbf{W}) - \mathbf{p}|\mathbf{U}||\mathbf{W}| \right| \le \beta \sqrt{|\mathbf{U}||\mathbf{W}|}.$$

Thomason (1987): (p, β) -jumbled graphs

Remarks:

- (i) graph discrepancy results imply that if $G = G^n$ is (p, β) -bi-jumbled, then $\beta \ge \sqrt{np(1-p)}/80$ as long as $p(1-p) \ge 1/n$.
- (ii) (n, d, λ) -graphs are $(d/n, \lambda)$ -bi-jumbled.
- (iii) Shall just say jumbled for bi-jumbled.

A universality result (pseudorandom graphs)

 $\mathcal{H}(n,\Delta)$: class of graphs $H=H^n$ with $\Delta(H)=\Delta$

Theorem 7. For every $\Delta \geq 2$ there is c > 0 such that, for any p > 0, if $\beta \leq cp^{3\Delta/2+1/2}n$, then any n-vertex (p,β) -jumbled graph G with $\delta(G) \geq \frac{1}{2}pn$ is $\mathcal{H}(n,\Delta)$ -universal.

A partition-universality result (random graphs)

G is r-partition universal for \mathcal{H} if in any r-colouring of E(G) there is a colour class which is \mathcal{H} -universal.

 $\mathcal{H}(n,d,\Delta)$: class of graphs $H=H^n$ with $\Delta(H)=\Delta$ and degeneracy d

Theorem 8. For every r, d, and $\Delta \in \mathbb{N}$, there is C such that if

$$p \ge C \left(\frac{\log n}{n}\right)^{1/2d},$$

then a.a.s. G(Cn, p) is r-partition universal for $\mathcal{H}(n, d, \Delta)$.

Strengthens a result of K., Rödl, Schacht and Szemerédi (2011).

A partition-universality result (pseudorandom graphs)

 $\mathcal{H}(n,\Delta)$: class of graphs $H=H^n$ with $\Delta(H)=\Delta$

Theorem 9. For every r and $\Delta \in \mathbb{N}$ there is c > 0 such that if p > 0 and G is an n/c-vertex graph that is $(p, p^{3\Delta/2 + 1/2}n)$ -jumbled, then G is r-partition universal for $\mathcal{H}(n, \Delta)$.

Answers a question of K., Rödl, Schacht and Szemerédi (2011).

The bandwidth of a graph

 $H = H^n$ has bandwidth bw(H) at most b if there is an ordering x_1, \ldots, x_n of the vertices of H such that every edge $x_i x_j$ of H is such that $|j - i| \le b$.

Naturally,

$$bw(H) = min b$$
,

with b as above.

The bandwidth theorem

Theorem 10 (Böttcher, Schacht and Taraz (2009)). For every $\gamma > 0$ and Δ there is $\beta > 0$ such that for all sufficiently large n the following holds. If $H = H^n$ has $\Delta(H) \leq \Delta$ and $bw(H) \leq \beta n$, and $G = G^n$ is such that

$$\delta(G) \ge \left(1 - \frac{1}{\chi(H)} + \gamma\right)n,$$

then $H \subset G$.

- Conjectured by Bollobás and Komlós.
- □ Generalizes, up to a small error term, several results dealing with spanning graphs in extremal graph theory.

Resilience of low-bandwidth graphs (approximate form)

Theorem 11. For every $\gamma > 0$ and Δ there is $\beta > 0$ and C such that if

$$p \ge C \left(\frac{\log n}{n}\right)^{1/\Delta}$$

then a.a.s. $\Gamma = G(n,p)$ has the following property. If H is any $(1-\gamma)n$ -vertex graph with $\Delta(H) \leq \Delta$ and $bw(H) \leq \beta n$, and $G = G^n \subset \Gamma$ is such that

$$\delta(G) \ge \left(1 - \frac{1}{\chi(H)} + \gamma\right) pn,$$

then $H \subset G$.

Remarks

- Forthcoming result of Allen, Böttcher, Ehrenmüller and Taraz: the case in which $|V(H)| = n Cp^{-2}$ if $p \le 1/\log n$ (which is optimal) and even $H = H^n$ for some H.
- Previous results by Böttcher, K. and Taraz (2013) and Huang, Lee and Sudakov (2012).

Robustness of the Bandwidth Theorem

Robustness: proposed by Krivelevich, Lee and Sudakov (2014), who proved that Pósa's result on the Hamiltonicity of G(n,p) with $p = C(\log n)/n$ is very *robust*, in the sense that random subgraphs $G_p = G_p^n$ of *Dirac graphs* are a.a.s. Hamiltonian for $p = C'(\log n)/n$. [Dirac graph: $G = G^n$ with $\delta(G) \ge n/2$].

Robustness of the Bandwidth Theorem

If G is a graph and $0 \le p \le 1$, then G_p is random spanning subgraph of G in which each $e \in E(G)$ is included in G_p with probability p, independently of all other edges.

Theorem 12. For every $\gamma > 0$ and $\Delta \ge 2$ there are $\beta > 0$ and C such that if $p \ge C \left(\frac{\log n}{n}\right)^{1/\Delta}$, then the following holds. If $H = H^n$ is a graph with $\Delta(H) \le \Delta$ and $bw(H) \le \beta n$, and G is any n-vertex graph with

$$\delta(G) \ge \left(1 - \frac{1}{\chi(H)} + \gamma\right) n,$$

then a.a.s. $H \subset G_p$.

Make-Breaker games

Maker-Breaker H-game on Kⁿ with bias b: Maker and Breaker take turns to colour the edges of Kⁿ red and blue. In each turn, Maker colours one edge, while Breaker colours b edges (and edges may not be recoloured). Maker's aim: create a red copy of H; Breaker's aim: prevent Maker from doing so.

 \mathcal{H} -universality game: Maker's graph contains simultaneously each $H \in \mathcal{H}$.

Make-Breaker games

Theorem 13. For every d, $\Delta \in \mathbb{N}$ and $\delta > 0$ there is c > 0 with the following properties.

- (i) If $b \le c \left(\frac{n}{\log n}\right)^{1/\Delta}$ then Maker wins the $\mathcal{H}(n,\Delta)$ -universality game on $K^{(1+\delta)n}$ with bias b.
- (ii) If $b \le c \left(\frac{n}{\log n}\right)^{1/2d}$ then Maker wins the $\mathcal{H}(n,d,\Delta)$ -universality game on $K^{(1+\delta)n}$ with bias b.

Outline of talk

- 1. (Lecture I & II) The regularity method; the blow-up lemma
- 2. (Lecture III) The regularity method in the sparse setting
- 3. Applications of the blow-up lemmas in the sparse setting
- 4. Inheritance of regularity
- 5. Statement of the sparse blow-up lemmas

An ingredient: inheritance of density and regularity

- > Immediate inheritance
- ▷ Inheritance by very small sets

Immediate inheritance; dense case

Suppose have an ε -regular triple G = (X, U, W; E), with all pairs with density d.

Fact 14. Suppose $d \gg \varepsilon$. Then typical vertices $x \in X$ are such that

$$(N_{G}(x) \cap U, N_{G}(x) \cap W)$$
(1)

has density $d(U, W) \pm \epsilon$. Moreover, the pair is, say, $2\epsilon/d$ -regular.

In particular, (1) induces an edge, and hence $K^3 \subset G$. Even have many such edges, and hence many such K^3 . The regularity of pairs of the form (1) is useful in inductive arguments.

Inheritance

Question 15. Suppose B = (U, W; E) is an ε -regular pair of density d = |E|/|U||W|. Suppose $W' \subset W$ and $U' \subset U$. What can we say about the density and the regularity of B[U', W']?

- Inheritance: positive results in this direction.
- Immediate if can take

$$\varepsilon \ll |U'|/|U|, |W'|/|W|. \tag{2}$$

- In several applications, can take (2).
- What if $|U'| \ll \varepsilon |U|$ or $|W'| \ll \varepsilon |W|$?
- \triangleright Often, U' and W' are neighbourhoods (or intersections of neighbourhoods). If the graphs are **sparse**, then certainly (2) fails.

Inheritance results

Even in the case |U'|/|U|, $|W'|/|W| \ll \varepsilon$,

- \triangleright there are inheritance results for subgraphs of r.gs: B = (U, W; E) \subset $\Gamma = G(n, p)$, and
- b there are inheritance results for subgraphs of (p, β)-jumbled graphs Γ: $B = (U, W; E) \subset Γ$,

as long as one considers U' and W' that are neighbourhoods or joint neighbourhoods of vertices in Γ .

Random case

- Dense/classical case: overwhelming majority of pairs (U', W') induce ε' -regular bipartite graphs B[U', W'], with ε' → 0 as ε → 0, as long as |U'|, $|W'| \ge C/d$, where $C = C(\varepsilon')$.
- Statement above is true even if $d \to 0$ (as long as we replace ϵ' -regularity by ϵ' -lower-regularity) [Gerke, K., Rödl, Steger 2007]

Definition 16. B = (U, W; E) *is* $(\varepsilon, d; p)$ -lower-regular if for all $U' \subset U$ and $W' \subset W$ with |U'|/|U|, $|W'|/|W| \ge \varepsilon$, we have

$$d_{p}(U',W') = \frac{e(U',W')}{p|U'||W'|} \ge d - \varepsilon.$$

Inheritance for subgraphs of G(n, p) [SKIP]

Set-up 17. $J = J^{3m}$ is a graph with vertex classes X, U, and W, all of cardinality m; the graphs J[X, U], J[X, W], and J[U, W] are $(\varepsilon, d; p)$ -lower-regular, and $J = J[X, U] \cup J[X, W] \cup J[U, W]$.

Definition 18. J is ε' -good if $\exists X' \subset X$ with $|X'| \ge (1 - \varepsilon') m$ such that $\forall x' \in X'$ we have that $J[N(x') \cap U, N(x') \cap W]$ is $(\varepsilon', d; p)$ -regular.

Inheritance for subgraphs of G(n, p)

Theorem 19 (Gerke, K., Rödl, Steger 2007). For all ϵ' and d>0, there is $\epsilon>0$ such that if $p^2m\gg 1$ and $pm\gg \log n$, then

$$\mathbb{P}(\exists J^{3m} \subset G(n,p) \ \epsilon' \text{-bad}) = o(1).$$

Similar statement holds for the setting in which we are concerned with $J^{4m} = J[X, U] \cup J[U, W] \cup J[W, Y]$ and pairs $(x, y) \in X \times Y$.

Inheritance for subgraphs of (p, β) -jumbled graphs

- (i) Recall Set-up 17.
- (ii) Suppose $J = J^{3m} \subset \Gamma$, with $\Gamma(p, \gamma p^d n)$ -jumbled, for some $d \ge 1$.
- (iii) Furthermore, suppose $m = \Omega(p^f n)$ and $d \ge f + 3$.
- (iv) (Recall) J is ε' -good if $\exists X' \subset X$ with $|X'| \ge (1 \varepsilon')m$ such that $\forall x' \in X'$ we have that $J[N(x') \cap U, N(x') \cap W]$ is $(\varepsilon', d; p)$ -regular.

Theorem 20 (K., Rödl, Schacht & Skokan (2010)). For all ε' and d > 0, there are ε and $\gamma > 0$ such that if (ii) and (iii) hold, then J is ε' -good.

One-sided inheritance in Γ [RESUME]

Definition 21. Let (X, U, W) be a triple of pairwise disjoint vertex sets in $G \subset \Gamma$. We say that (X, U, W) has one-sided $(\varepsilon, d; p)$ -inheritance if for each $x \in X$ the pair $(N_{\Gamma}(x; U), W)$ is $(\varepsilon, d; p)$ -regular in G.

One-sided inheritance in Γ

One-sided inheritance in Γ

Definition 22. Let (X, U) be a pair of vertex sets in $G \subset \Gamma$, with X and U disjoint. We say that (X, U) has one-sided $(\varepsilon, d; p)$ -inheritance if for each $x \in X$ the pair $(N_{\Gamma}(x; U), X)$ is $(\varepsilon, d; p)$ -regular in G.

One-sided inheritance in [

 \triangleright To talk about one-sided inheritance for (X, U, W) and (X, U) at the same time, we allow the triple (X, U, X).

Two-sided inheritance in Γ

Definition 23. Let (X, U, W) be a triple of pairwise disjoint vertex sets in $G \subset \Gamma$. We say that (X, U, W) has two-sided $(\varepsilon, d; p)$ -inheritance if for each $x \in X$ the pair $(N_{\Gamma}(x; U), N_{\Gamma}(x; W))$ is $(\varepsilon, d; p)$ -regular in G.

Two-sided inheritance in □

Outline of talk

- 1. (Lecture I & II) The regularity method; the blow-up lemma
- 2. (Lecture III) The regularity method in the sparse setting
- 3. Applications of the blow-up lemmas in the sparse setting
- 4. Inheritance of regularity
- 5. Statement of the sparse blow-up lemmas

Sparse super-regularity

Recall: B = (U, W; E) is $(\varepsilon, d; p)$ -lower-regular if for all $U' \subset U$ and $W' \subset W$ with |U'|/|U|, $|W'|/|W| \ge \varepsilon$, we have $d_p(U', W') \ge d - \varepsilon$, where $d_p(U', W') = e(U', W')/p|U'||W'|$.

Definition 24 (sparse super-regularity in random graphs). *A pair* (U, W) *in* $G \subset \Gamma$ *is called* $(\varepsilon, d; p)$ -*super-regular in* G *if it is* $(\varepsilon, d; p)$ -*lower-regular and, for every* $u \in U$ *and* $w \in W$, *we have*

```
\deg_{G}(u; W) > (d - \varepsilon) \max\{p|W|, \deg_{\Gamma}(u; W)/2\}.

\deg_{G}(w; U) > (d - \varepsilon) \max\{p|U|, \deg_{\Gamma}(w; U)/2\}.
```

A simplified blow-up lemma for random graphs

The objects:

- ho $\Gamma = G(n, p)$, where $p \ge C(\log n/n)^{1/\Delta}$,
- $ightharpoonup G = G^n \subset \Gamma$ and $H = H^n$ with $\Delta(H) \leq \Delta$,
- ightharpoonup H is r-partite, with r-partition $V(H) = X_1 \cup \cdots \cup X_r$. Moreover, $V(G) = V_1 \cup \cdots \cup V_r$ is an equitable partition with $|V_i| \ge |X_i|$ for all $i \in [r]$.

A simplified blow-up lemma for random graphs

Furthermore, we suppose that the following conditions hold:

- (i) (V_i, V_j) is $(\varepsilon, d; p)$ -super-regular in G for each $i, j \in [r]$ with $i \neq j$.
- (ii) (V_i, V_j, V_k) has one-sided $(\varepsilon, d; p)$ -inheritance for each $i, j, k \in [r]$ with $i \neq j$ and $j \neq k$.
- (iii) (V_i, V_j, V_k) has two-sided $(\varepsilon, d; p)$ -inheritance for each $i, j, k \in [r]$ with i, j and k all distinct.

Conclusion: Then H is a subgraph of G.

Theorem 25. For all Δ , $r \in \mathbb{N}$ and d > 0 there exist $\epsilon > 0$ and C such that if $p \geq C(\log n/n)^{1/\Delta}$, then the random graph $\Gamma = G(n,p)$ asymptotically almost surely satisfies the above.

Full blow-up lemma for random graphs

Features include:

- (i) Partition of V(G) is allowed to be just approximately balanced.
- (ii) Have two 'reduced graphs' R and R' to encode regular and superregular pairs (R' \subset R).
- (iii) Require two-sided regularity inheritance only where triangles of H need to be embedded.
- (iv) The required regularity, i.e., the value of ε , does not depend on r (number of parts in the partitions of H and G), but only on $\Delta(R')$. (New for p=1 also)
- (v) Image restrictions are permitted.

Full blow-up lemma for random graphs, cont.

We have a specific version for embedding *degenerate* graphs H:

 \triangleright E.g., for embedding $H = H^n$ with $\Delta(H) = \Delta$ and degeneracy D into suitably compatible $G = G^n \subset G(n,p)$ with

$$p \ge C_{\Delta} \left(\frac{\log n}{n}\right)^{2D+1}$$
.

Full blow-up lemma for pseudorandom graphs

Rough statement:

Arr We are able to embed H = Hⁿ with Δ(H) = Δ into suitably compatible Gⁿ ⊂ Γ, when Γ = Γⁿ is a (p, o(p^{(3Δ+1)/2}n))-jumbled graph.