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Course outline

1. Lecture I. Introduction to the regularity method

2. Lecture II. The blow-up lemma

3. Lecture III. The sparse case: small subgraphs

4. Lecture IV. The sparse case: large subgraphs
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Lecture IV. The sparse case (large subgraphs)
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Aim of talk

B Shall only give some idea (shan’t be ambitious)

B Joint work with

◦ P. Allen (London),

◦ J. Böttcher (London),

◦ H. Hàn (Santiago),

◦ Y. Person (Frankfurt).

B Preprint available on the school’s webpage

http://www.ime.usp.br/~spschool2016/course-material/
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Outline of talk

1. (Lecture I & II) The regularity method; the blow-up lemma

2. (Lecture III) The regularity method in the sparse setting

3. Applications of the blow-up lemmas in the sparse setting

4. Inheritance of regularity

5. Statement of the sparse blow-up lemmas
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Outline of talk

1. (Lecture I & II) The regularity method; the blow-up lemma

2. (Lecture III) The regularity method in the sparse setting

3. Applications of the blow-up lemmas in the sparse setting

4. Inheritance of regularity

5. Statement of the sparse blow-up lemmas
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The Blow-up Lemma

Theorem 1 (The Blow-up Lemma (Komlós, Sárközy & Szemerédi ’97)).
For every δ > 0, ∆, r ∈ N there is ε > 0 such that the following holds.
Let G∗ = (V1, . . . , Vr;E

∗) and G = (V1, . . . , Vr;E) be two graphs and let
R ⊂

(
[r]
2

)
be such that (Vi, Vj) is a complete bipartite graph in G∗ and

(Vi, Vj) is an (ε, δ)-super-regular graph in G whenever ij ∈ R. If H with
∆(H) ≤ ∆ can be embedded into G∗ then it can also be embedded into G.
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The Blow-up Lemma

G∗

V1

V2

V3

V4

V5

G; super-regular pairs

V1

V2

V3

V4

V5

H

If f∗ exists, the f exists.
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The Blow-up Lemma

G∗

V1

V2

V3

V4

V5

G; super-regular pairs

V1

V2

V3

V4

V5

H

f∗ f

If f∗ exists, the f exists.
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Applications of the Blow-up Lemma

Do graphs with sufficiently high minimum degree contain . . .

B Pósa & Seymour ’74: r-th powers of Hamiltonian cycles?

B Alon & Yuster ’96: F-factors (for F fixed)?

Answer: Yes!

B Invented by Komlós, Sárközy &
Szemerédi

Spanning subgraphs with constant
maximum degree
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Outline of talk

1. (Lecture I & II) The regularity method; the blow-up lemma

2. (Lecture III) The regularity method in the sparse setting

3. Applications of the blow-up lemmas in the sparse setting

4. Inheritance of regularity

5. Statement of the sparse blow-up lemmas
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The sparse setting

B So far: we have been concerned with dense graphs, i.e., graphs G =

Gn with Ω(n2) edges.

B Sparse: graphs with o(n2) edges.

B Densities d(U,U ′) = e(U,U ′)/|U||U ′| in such sparse graphs vanish
as n→ ∞. Therefore, the regularity condition

∀U ′ ⊂ U, W ′ ⊂W with |U ′|/|U|, |W ′|/|W| ≥ ε
we have |d(U ′,W ′) − d(U,W)| ≤ ε

becomes trivial.

B Easy fix: normalize the density by dividing by p = p(n) = e(G)
(
n
2

)−1
.
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Szemerédi’s regularity lemma, sparse version

Definition 2. B = (U,W;E) is (ε, d; p)-regular if for allU ′ ⊂ U andW ′ ⊂W
with |U ′|/|U|, |W ′|/|W| ≥ ε, we have |dp(U ′,W ′) − d| ≤ ε, where

dp(U
′,W ′) =

e(U ′,W ′)

p|U ′||W ′|
.

Typical applications: B is a subgraph of the random graph G(n, p) or of a
pseudorandom graph of some density p, with p→ 0.

Ambient graph: we shall usually have a sparse, ambient graph Γ .
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Szemerédi’s regularity lemma, sparse version

Any graph with no ‘dense patches’ admits a Szemerédi partition with the
above notion of ε-regularity.

Definition 3. Let us say G = (V, E) is locally (η, b)-bounded if for all U ⊂ V
with |U| ≥ η|V |, we have

#{edges within U} ≤ b|E|
(|U|
2

)(|V |
2

)−1
.
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Szemerédi’s regularity lemma, sparse version

Theorem 4 (The regularity lemma). For any ε > 0, t0 ≥ 1, and b, there exist
η > 0 and T0 such that any locally (η, b)-bounded graph G = Gn admits a
partition V = V1 ∪ · · · ∪ Vt such that

B t0 ≤ t ≤ T0,

B |V1| ≤ · · · ≤ |Vt| ≤ |V1| + 1,

B (Vi, Vj) is (ε; p)-regular for at least (1 − ε)
(
t
2

)
pairs ij ∈

(
t
2

)
, where

p = e(G)
(n
2

)−1
.

◦ A structure theorem for locally bounded sparse graphs
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Embedding lemma; sparse setting

B Thanks to the work of several researchers, we now know how to use
the regularity lemma in the sparse setting.

Contributors: Balogh, Conlon, Fox, Gerke, Gowers, K., Łuczak, Mor-
ris, Rödl, Samotij, Saxton, Schacht, Steger, Thomason, Zhao, among
others.

B Typical applications: when G ⊂ Γ , and Γ = G(n, p) or Γ is a strongly
pseudorandom graph.

B More precisely: we know suitable embedding lemmas for graphs H =

Hh with h = O(1).

B How about large H? E.g., h = n?
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Sparse blow-up lemmas

B Main result: suitable blow-up lemmas exist in the sparse setting.

B Statements are technical: we’ll discuss some applications first.
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Outline of talk

1. (Lecture I & II) The regularity method; the blow-up lemma

2. (Lecture III) The regularity method in the sparse setting

3. Applications of the blow-up lemmas in the sparse setting

4. Inheritance of regularity

5. Statement of the sparse blow-up lemmas
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Sparse blow-up applications

1. Universality results for random and pseudorandom graphs

2. Partition-universality results for random and pseudorandom graphs

3. Resilience and robustness of low-bandwidth graphs

4. Maker-Breaker games
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Universality

B H: a set of graphs

B A graph G is H-universal if H ⊂ G for each H ∈ H.
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A universality result (random graphs)

H(n, d, ∆): class of graphs H = Hn with ∆(H) = ∆ and degeneracy d

Theorem 5. For every d and ∆ ∈ N there is C such that if

p ≥ C
(logn

n

)1/(2d+1)
,

then the r.g. G(n, p) is a.a.s. H(n, d, ∆)-universal.

Theorem 6. For every d, ∆ ∈ N and γ > 0 there is C such that if

p ≥ C
(logn

n

)1/2d
,

then the r.g. G((1 + γ)n, p) is a.a.s. H(n, d, ∆)-universal.
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Remarks

B Strengthen results of Dellamonica, K., Rödl and Ruciński (2015) and
Kim and Lee (2013+), Ferber, Nenadov and Peter (2013+). [For d = 1,
Montgomery can do p = Õ(1/n).]

B One of the forms of the blow-up lemma is tailored to handle graphs with
low degeneracy.
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A universality result (pseudorandom graphs)

Pseudorandom concept we shall use: G is (p, β)-bi-jumbled if, for all U,
W ⊂ V(G), we have ∣∣∣e(U,W) − p|U||W|

∣∣∣ ≤ β√|U||W|.

Thomason (1987): (p, β)-jumbled graphs

Remarks:

(i) graph discrepancy results imply that if G = Gn is (p, β)-bi-jumbled,
then β ≥

√
np(1 − p)/80 as long as p(1 − p) ≥ 1/n.

(ii) (n, d, λ)-graphs are (d/n, λ)-bi-jumbled.

(iii) Shall just say jumbled for bi-jumbled.
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A universality result (pseudorandom graphs)

H(n,∆): class of graphs H = Hn with ∆(H) = ∆

Theorem 7. For every ∆ ≥ 2 there is c > 0 such that, for any p > 0, if β ≤
cp3∆/2+1/2n, then any n-vertex (p, β)-jumbled graph G with δ(G) ≥ 1

2pn is
H(n,∆)-universal.
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A partition-universality result (random graphs)

G is r-partition universal for H if in any r-colouring of E(G) there is a colour
class which is H-universal.

H(n, d, ∆): class of graphs H = Hn with ∆(H) = ∆ and degeneracy d

Theorem 8. For every r, d, and ∆ ∈ N, there is C such that if

p ≥ C
(logn

n

)1/2d
,

then a.a.s. G(Cn, p) is r-partition universal for H(n, d, ∆).

B Strengthens a result of K., Rödl, Schacht and Szemerédi (2011).
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A partition-universality result (pseudorandom graphs)

H(n,∆): class of graphs H = Hn with ∆(H) = ∆

Theorem 9. For every r and ∆ ∈ N there is c > 0 such that if p > 0 and G
is an n/c-vertex graph that is

(
p, p3∆/2+1/2n

)
-jumbled, then G is r-partition

universal for H(n,∆).

B Answers a question of K., Rödl, Schacht and Szemerédi (2011).
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The bandwidth of a graph

H = Hn has bandwidth bw(H) at most b if there is an ordering x1, . . . , xn
of the vertices of H such that every edge xixj of H is such that |j − i| ≤ b.

Naturally,

bw(H) = min b,

with b as above.



Regularity and blow-up lemmas IV Low bandwidth graphs
27

The bandwidth theorem

Theorem 10 (Böttcher, Schacht and Taraz (2009)). For every γ > 0 and ∆
there is β > 0 such that for all sufficiently large n the following holds. If
H = Hn has ∆(H) ≤ ∆ and bw(H) ≤ βn, and G = Gn is such that

δ(G) ≥
(
1 −

1

χ(H)
+ γ

)
n,

then H ⊂ G.

B Conjectured by Bollobás and Komlós.

B Generalizes, up to a small error term, several results dealing with
spanning graphs in extremal graph theory.
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Resilience of low-bandwidth graphs (approximate form)

Theorem 11. For every γ > 0 and ∆ there is β > 0 and C such that if

p ≥ C
(
logn
n

)1/∆
,

then a.a.s. Γ = G(n, p) has the following property. IfH is any (1−γ)n-vertex
graph with ∆(H) ≤ ∆ and bw(H) ≤ βn, and G = Gn ⊂ Γ is such that

δ(G) ≥
(
1 − 1

χ(H)
+ γ

)
pn,

then H ⊂ G.
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Remarks

B Forthcoming result of Allen, Böttcher, Ehrenmüller and Taraz: the case
in which |V(H)| = n−Cp−2 if p ≤ 1/ logn (which is optimal) and even
H = Hn for some H.

B Previous results by Böttcher, K. and Taraz (2013) and Huang, Lee and
Sudakov (2012).
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Robustness of the Bandwidth Theorem

B Robustness: proposed by Krivelevich, Lee and Sudakov (2014), who
proved that Pósa’s result on the Hamiltonicity of G(n, p) with p =

C(logn)/n is very robust, in the sense that random subgraphs Gp =

Gnp of Dirac graphs are a.a.s. Hamiltonian for p = C ′(logn)/n. [Dirac
graph: G = Gn with δ(G) ≥ n/2].
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Robustness of the Bandwidth Theorem

If G is a graph and 0 ≤ p ≤ 1, then Gp is random spanning subgraph of G
in which each e ∈ E(G) is included in Gp with probability p, independently
of all other edges.

Theorem 12. For every γ > 0 and ∆ ≥ 2 there are β > 0 and C such that

if p ≥ C
(
logn
n

)1/∆
, then the following holds. If H = Hn is a graph with

∆(H) ≤ ∆ and bw(H) ≤ βn, and G is any n-vertex graph with

δ(G) ≥
(
1 −

1

χ(H)
+ γ

)
n,

then a.a.s. H ⊂ Gp.
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Make-Breaker games

Maker-Breaker H-game on Kn with bias b: Maker and Breaker take turns to
colour the edges of Kn red and blue. In each turn, Maker colours one edge,
while Breaker colours b edges (and edges may not be recoloured). Maker’s
aim: create a red copy of H; Breaker’s aim: prevent Maker from doing so.

H-universality game: Maker’s graph contains simultaneously each H ∈ H.
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Make-Breaker games

Theorem 13. For every d, ∆ ∈ N and δ > 0 there is c > 0 with the following
properties.

(i) If b ≤ c
(

n
logn

)1/∆
then Maker wins the H(n,∆)-universality game on

K(1+δ)n with bias b.

(ii) If b ≤ c
(

n
logn

)1/2d
then Maker wins the H(n, d, ∆)-universality game

on K(1+δ)n with bias b.
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Outline of talk

1. (Lecture I & II) The regularity method; the blow-up lemma

2. (Lecture III) The regularity method in the sparse setting

3. Applications of the blow-up lemmas in the sparse setting

4. Inheritance of regularity

5. Statement of the sparse blow-up lemmas
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An ingredient: inheritance of density and regularity

B Immediate inheritance

B Inheritance by very small sets
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Immediate inheritance; dense case

B Suppose have an ε-regular triple G = (X,U,W;E), with all pairs with
density d.

Fact 14. Suppose d� ε. Then typical vertices x ∈ X are such that

(NG(x) ∩ U,NG(x) ∩W) (1)

has density d(U,W)± ε. Moreover, the pair is, say, 2ε/d-regular.

In particular, (1) induces an edge, and hence K3 ⊂ G. Even have many
such edges, and hence many such K3. The regularity of pairs of the form (1)
is useful in inductive arguments.
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Inheritance

Question 15. Suppose B = (U,W;E) is an ε-regular pair of density d =
|E|/|U||W|. Suppose W ′ ⊂ W and U ′ ⊂ U. What can we say about the
density and the regularity of B[U ′,W ′]?

◦ Inheritance: positive results in this direction.

◦ Immediate if can take

ε� |U ′|/|U|, |W ′|/|W|. (2)

◦ In several applications, can take (2).

◦ What if |U ′|� ε|U| or |W ′|� ε|W|?

B Often, U ′ and W ′ are neighbourhoods (or intersections of neighbourho-
ods). If the graphs are sparse, then certainly (2) fails.
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Inheritance results

Even in the case |U ′|/|U|, |W ′|/|W|� ε,

B there are inheritance results for subgraphs of r.gs: B = (U,W;E) ⊂
Γ = G(n, p), and

B there are inheritance results for subgraphs of (p, β)-jumbled graphs Γ :
B = (U,W;E) ⊂ Γ ,

as long as one considers U ′ and W ′ that are neighbourhoods or joint
neighbourhoods of vertices in Γ .
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Random case

B Dense/classical case: overwhelming majority of pairs (U ′,W ′) induce
ε ′-regular bipartite graphs B[U ′,W ′], with ε ′ → 0 as ε → 0, as long
as |U ′|, |W ′| ≥ C/d, where C = C(ε ′).

B Statement above is true even if d → 0 (as long as we replace ε ′-
regularity by ε ′-lower-regularity) [Gerke, K., Rödl, Steger 2007]

Definition 16. B = (U,W;E) is (ε, d; p)-lower-regular if for all U ′ ⊂ U and
W ′ ⊂W with |U ′|/|U|, |W ′|/|W| ≥ ε, we have

dp(U
′,W ′) =

e(U ′,W ′)

p|U ′||W ′|
≥ d − ε.
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Inheritance for subgraphs of G(n, p) [SKIP]

Set-up 17. J = J3m is a graph with vertex classes X, U, and W, all of
cardinality m; the graphs J[X,U], J[X,W], and J[U,W] are (ε, d; p)-lower-
regular, and J = J[X,U] ∪ J[X,W] ∪ J[U,W].

Definition 18. J is ε ′-good if ∃X ′ ⊂ X with |X ′| ≥ (1− ε ′)m such that ∀x ′ ∈
X ′ we have that J[N(x ′) ∩ U,N(x ′) ∩W] is (ε ′, d; p)-regular.
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Inheritance for subgraphs of G(n, p)

Theorem 19 (Gerke, K., Rödl, Steger 2007). For all ε ′ and d > 0, there
is ε > 0 such that if p2m� 1 and pm� logn, then

P(∃J3m ⊂ G(n, p) ε ′-bad) = o(1).

B Similar statement holds for the setting in which we are concerned
with J4m = J[X,U] ∪ J[U,W] ∪ J[W,Y] and pairs (x, y) ∈ X× Y.
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Inheritance for subgraphs of (p, β)-jumbled graphs

(i) Recall Set-up 17.

(ii) Suppose J = J3m ⊂ Γ , with Γ (p, γpdn)-jumbled, for some d ≥ 1.

(iii) Furthermore, suppose m = Ω(pfn) and d ≥ f + 3.

(iv ) (Recall) J is ε ′-good if ∃X ′ ⊂ X with |X ′| ≥ (1−ε ′)m such that ∀x ′ ∈ X ′

we have that J[N(x ′) ∩ U,N(x ′) ∩W] is (ε ′, d; p)-regular.

Theorem 20 (K., Rödl, Schacht & Skokan (2010)). For all ε ′ and d > 0,
there are ε and γ > 0 such that if (ii) and (iii) hold, then J is ε ′-good.
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One-sided inheritance in Γ [RESUME]

Definition 21. Let (X,U,W) be a triple of pairwise disjoint vertex sets in
G ⊂ Γ . We say that (X,U,W) has one-sided (ε, d; p)-inheritance if for each
x ∈ X the pair (NΓ (x;U),W) is (ε, d; p)-regular in G.
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One-sided inheritance in Γ

X

U W(ε, d; p)-reg.
NΓ (x;U)

∀x
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One-sided inheritance in Γ

Definition 22. Let (X,U) be a pair of vertex sets in G ⊂ Γ , with X and U
disjoint. We say that (X,U) has one-sided (ε, d; p)-inheritance if for each
x ∈ X the pair (NΓ (x;U), X) is (ε, d; p)-regular in G.
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One-sided inheritance in Γ

X

U

(ε, d; p)-reg.

NΓ (x;U)

∀x

B To talk about one-sided inheritance for (X,U,W) and (X,U) at the
same time, we allow the triple (X,U, X).
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Two-sided inheritance in Γ

Definition 23. Let (X,U,W) be a triple of pairwise disjoint vertex sets in
G ⊂ Γ . We say that (X,U,W) has two-sided (ε, d; p)-inheritance if for each
x ∈ X the pair (NΓ (x;U), NΓ (x;W)) is (ε, d; p)-regular in G.
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Two-sided inheritance in Γ

X

U W
(ε, d; p)-reg.NΓ (x;U)

NΓ (x;W)

∀x
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Outline of talk

1. (Lecture I & II) The regularity method; the blow-up lemma

2. (Lecture III) The regularity method in the sparse setting

3. Applications of the blow-up lemmas in the sparse setting

4. Inheritance of regularity

5. Statement of the sparse blow-up lemmas
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Sparse super-regularity

Recall: B = (U,W;E) is (ε, d; p)-lower-regular if for all U ′ ⊂ U and
W ′ ⊂ W with |U ′|/|U|, |W ′|/|W| ≥ ε, we have dp(U ′,W ′) ≥ d − ε, where
dp(U ′,W ′) = e(U ′,W ′)/p|U ′||W ′|.

Definition 24 (sparse super-regularity in random graphs). A pair (U,W) in
G ⊂ Γ is called (ε, d; p)-super-regular in G if it is (ε, d; p)-lower-regular and,
for every u ∈ U and w ∈W, we have

degG(u;W) > (d − ε)max{p|W|,degΓ (u;W)/2} .

degG(w;U) > (d − ε)max{p|U|,degΓ (w;U)/2} .
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A simplified blow-up lemma for random graphs

The objects:

B Γ = G(n, p), where p ≥ C(logn/n)1/∆,

B G = Gn ⊂ Γ and H = Hn with ∆(H) ≤ ∆,

B H is r-partite, with r-partition V(H) = X1 ∪ · · · ∪ Xr. Moreover, V(G) =
V1 ∪ · · · ∪ Vr is an equitable partition with |Vi| ≥ |Xi| for all i ∈ [r].
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A simplified blow-up lemma for random graphs

Furthermore, we suppose that the following conditions hold:

(i) (Vi, Vj) is (ε, d; p)-super-regular in G for each i, j ∈ [r] with i 6= j.

(ii) (Vi, Vj, Vk) has one-sided (ε, d; p)-inheritance for each i, j, k ∈ [r] with
i 6= j and j 6= k.

(iii) (Vi, Vj, Vk) has two-sided (ε, d; p)-inheritance for each i, j, k ∈ [r]

with i, j and k all distinct.

Conclusion: Then H is a subgraph of G.

Theorem 25. For all ∆, r ∈ N and d > 0 there exist ε > 0 and C such that
if p ≥ C(logn/n)1/∆, then the random graph Γ = G(n, p) asymptotically
almost surely satisfies the above.
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Full blow-up lemma for random graphs

Features include:

(i) Partition of V(G) is allowed to be just approximately balanced.

(ii) Have two ‘reduced graphs’ R and R ′ to encode regular and super-
regular pairs (R ′ ⊂ R).

(iii) Require two-sided regularity inheritance only where triangles of H need
to be embedded.

(iv) The required regularity, i.e., the value of ε, does not depend on r
(number of parts in the partitions of H and G), but only on ∆(R ′). (New
for p = 1 also)

(v) Image restrictions are permitted.
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Full blow-up lemma for random graphs, cont.

We have a specific version for embedding degenerate graphs H:

B E.g., for embedding H = Hn with ∆(H) = ∆ and degeneracy D into
suitably compatible G = Gn ⊂ G(n, p) with

p ≥ C∆
(logn

n

)2D+1

.
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Full blow-up lemma for pseudorandom graphs

Rough statement:

B We are able to embed H = Hn with ∆(H) = ∆ into suitably compati-
ble Gn ⊂ Γ , when Γ = Γn is a (p, o(p(3∆+1)/2n))-jumbled graph.


