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Course outline

1. Lecture l. Introduction to the regularity method
2. Lecture Il. The blow-up lemma
3. Lecture lll. The sparse case: small subgraphs

4. Lecture IV. The sparse case: large subgraphs
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Lecture lll. The sparse case (small subgraphs)
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Motivation

> Shall have a fairly long discussion on motivation.

> Shall discuss rudiments of the regularity method for sparse graphs.
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Restricted Ramsey theory

> We know K¢ — K3.
> Are there G with K® ¢ G such that G — K3?
> Yes: G = K8\ C°> = C3V C° (Graham 1968)

> Also G = (K?\ C?) V K! (Leader)

Definition 1. For positive integers r, k and {, let
f(r,k,£) = min {n: 3G = G" such that G  K' and G — (K*);}.

o G — (H)y: Ramsey property for r-colouring of the edges
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Restricted Ramsey theory

Definition 2. For positive integers r, k and {, let
f(r,k,£) = min {n: 3G = G" such that G  K' and G — (K*);}.

o G — (H)y: Ramsey property for r-colouring of the edges

Question 3 (Erdos and Hajnal 1967). Is f(r, k, {) < oo for every positive r,
kand{ withk < {?

Answer. Yes: Folkman 1970, NesSetril and Rodl 1976

Numbers. Graham: f(2, 3,6) = 8. Nenov, Piwakowski, Radziszowski and
Urbanski: f(2,3,5) = 15. How about f(2,3,4)?

Erdds: (2,3,4) < 10107
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Restricted Ramsey theory

Erdds: f(2,3,4) < 10192

(/) Lu 2008: (2,3,4) < 9697
(i/) Dudek and Rodl 2008: f(2,3,4) < 941

Let us go back to the proof of f(r, k, {) < co.

Natural approach today. Investigate whether can use random graphs.
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The random graphs G(n, p)

> G(n,p): each element of (h;]) IS present with probability p, indepen-
dently of all others

Always interested in n — oco. Use the terms ‘almost surely’, ‘almost every’,
‘almost always’, etc to mean ‘with probability — 1 asn — oo’.

> We are interested in the existence of monoy subgraphs in coloured
random graphs; i.e., properties of the form G(n,p) — (H)r.

> Also interested in existence of monochromatic subgraphs in ‘dense’
subgraphs of random graphs; i.e., statements of the form G(n,p) —n H
(any n-fraction of the edges of G(n,p) contains a copy of H).
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The results for K3

Theorem 4. There is a large enough constant C such that ifp > C/y/n,
then a.e. G(n,p) satisfies

G(n,p) = (K),.
Theorem 5. For anyn > 0, there C such that ifp > C/+/n then a.e. G(n, p)
satisfies

G(Tl,p) %]/2_'_11 K3.
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f(2,3,4) < o0

(i) Basic remark: G(n, C/y/n) a.s. contains O(p®n*) = O(n) copies of K*.

(/i) Two approaches:

> Show that if we delete any O(n) edges from G(n,p) still have a
Ramsey graph for K3.

> Show that the number of monoyx K3 is large (it is actually (1/4 +
o(1 ))p3 (g) a.s.) and that an edge does not belong to too many K3s.

(#ii) It follows that f(2,3,4) < oc.



Regularity and blow-up lemmas |l f(2,3,4) <oco

The case p = 1 (skip/exercise)

Theorem 6 (Goodman). The number of monochromatic triangles in any

2-colouring of K™ is > () — gn(n —1)2 = (3 + o(1))(}).

Proof. Count the number N of 2-coloured cherries. Say have b(x) blue
edges and r(x) red edges at vertex x. Have N = 5__ b(x)r(x) < n(n—1)%/4

(use b(x) + r(x) = n — 1). The number of non-monochromatic triangles
Is N /2. []

Clearly, there are 2-colourings with < }1@) monochromatic triangles!
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The case p = 1 (skip/exercise)

Theorem 7. Goodman implies Mantel: ex(n, K3) < n?/4.

Proof. Suppose K3 ¢ G™ and e(G™) > n?/4, so that e(G") > n?/4 + 3/4.

Count the number N of pairs (e, T) where e € E(G™), T € (V(gn)) and e C

T. Say there are t; triples containing i edges of G. Then, by Theorem 6,
(M%/4+3/4)(n —2) < e(G™)(n —2)
=N <ty +2t) <2(t; + 1) < n(n—1)4/4,

which is a contradiction for n > 4. ]

11
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12

Theorems 4 and 5 from Goodman’s counting (skip/exercise)

Theorem 8. For every ¢ > 0 there is C such that ifp > C/+/n, then

a.e. G(n,p) is such that any 2-colouring of its edges contains at least
(1/4 — e)p3 <g‘) monochromatic K3.

Proof. Exercise!

Exercise 9. Derive Theorem 5 from Theorem 8.

Exercise 10. Show that the threshold for Theorem 4 is indeed 1//n.

Exercise 11. Show that the threshold for Theorem 5 is indeed 1/+/n.
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How about f(r, k, £)?

We are interested in the threshold for the Ramsey property

G(n,p) — (Ko (1)

Threshold: the ‘smallest’ order of growth for p = p(n) such that (1) is
guaranteed to hold a.s.

This was actually a very natural problem in the theory of random graphs,
and was solved by Rddl and Rucinski (1995).
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The Rodl—Rucinski theorem

Definition 12 (2-density and my(H)). The 2-density d,(H) of a graph H with
V(H)| > 21s

(2)

ForH = K! and 2K! let dy(H) = 0; set d;(K2) = 1/2. Let

my(H) = maxid,(J): ] C H, [V(J)| > 0} (3)

Exercise 13. Consider, say, H = K. Show that ifp < n~ /™) then
a.s. #-{H < G(n,p)} < e(G(n,p)). On the other hand, ifp > n—1/ma(H),
then a.s. #{H — G(n,p)} > e(G(n,p)).
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The Rodl—Rucinski theorem

Theorem 14. Let H be a graph containing at least a cycle and letr > 2 be
an integer. Then there exist constants c and C such that

0 ifp < cn~1/maH)

1 ifp > Cn-/ma(H), (4)

n—oo

im P(G(n,p) — (H)r) = {

o In particular, py = po(n) = n~"/m2(H) is the threshold for the property
G(n,p) — (H)T’
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The Rodl—Rucinski theorem

Exercise 15. Prove that f(r,k,{) < co whenever k < {.

Exercise 16. Given a graph G, let H3(G) be the 3-uniform hypergraph
whose hypervertices are the edges of G and the hyperedges are the edge
sets of the triangles in G. Show that, for any integers { and r, there is a
graph G satisfying G — (K3); such that H3(G) has girth > L.
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Turan type results for subgraphs of random graphs

Generalized Turan number:

ex(G,H) = max {[E(G')]: H ¢ G’ C G}. (5)

> ex(n,H) = ex(K™, H)
> ex(Q4,C1) =

> ex(G,K") = ?for (n, d,A)-graphs G
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Turan type results for subgraphs of random graphs

Exercise 17. Show that, for any G and H, we have

1
ex(G,H) > (1 _X(H) — 1) e(G). (6)

> Interested in knowing when this is sharp for G = G(n,p) (up to o(e(G)))
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Turan type results for subgraphs of random graphs

Theorem 18 (K., Rodl and Schacht 2004). Let H be a graph with degener-
acy d and suppose np9 > 1. Then, almost surely,

1 n
ex(G(n,p), H) = (1 S +om> p(,) (7)

Conjecture 19. For any graph H, if np™2M) — oo then (7) holds almost
surely.

Example: if H = KX, have m,(H) = (k + 1)/2, but Theorem 18 supposes
npl/=1) > 1.



Regularity and blow-up lemmas |l Turan for sparse r.gs

Turan type results for subgraphs of random graphs

Conjecture 19 was proved in 2009/2010:

Theorem 20 (Schacht 2016; Conlon and Gowers 2016). Conjecture 19
holds.

> Quite different approaches:

o Schacht: combinatorial, multi-round exposure method
o Conlon and Gowers: analytic approach

o General transference principles
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General transference principles

> Schacht and Conlon & Gowers obtained general transference re-
sults: results that allow one to fransfer classical density results (“full
environment”) to random sparse subenvironments

> Applications: results in additive combinatorics; graph and hypergraph
theorems
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The regularity method for sparse random graphs

> Early approaches to Conjecture 19: regularity method of Szemerédi for
subgraphs of sparse random graphs

o Schacht and Conlon and Gowers bypassed the regularity approach.
> Recently, the regularity method has been fully developed for subgraphs

of random graphs: Balogh, Morris, Samotij (2015), Saxton and Thoma-
son (2015), Conlon, Gowers, Samotij, and Schacht (2014).

> In short: the regularity method of Szemerédi works in sparse random
environments.
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Recall

> Shall have a fairly long discussion on motivation.

> Shall discuss rudiments of the regularity method for sparse graphs.
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Szemeredi’'s regularity lemma

1. Tool for identifying the quasirandom structure of deterministic graphs.

2. Works very well for large, dense graphs: n-vertex graphs with > c¢n?
edges, n — oo.

3. Variant for sparse graphs exists (sparse = with o(n?) edges).

4. With the recent embedding lemmas, the method works nicely/easily
when dealing with small subgraphs.
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e-regularity

Definition 21 (e-reqular pair). G = (V, E) a graph; U, W C V non-empty
and disjoint. Say (U, W) is e-reqular (in G) if

> forallU’ c U, W c W with |U’| > ¢|U| and [W'| > ¢|W/|, we have

E(W, W B W _
wiwl W | S

(8)
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e-regularity

The pair (U, W) is e-regular if

E(u’, w’ E(U,W
||(/ ) _ K )\'S o
U w/ [UW|
Equivalently,
E(U,W
E(U, W = W W/ (' U, )'ie). (10)
U[W|
Clearly, not meaningful if
E(U, W
E(U, W) 1)
UW|

and ¢ is fixed. (We think of G = (V, E) withn = |V| — 0.)
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e-regularity; multiplicative error version

Replace
E(U, W
E(U, W) = [WW] (' W WIT s> (12)
W]
by
ujw’|
[E(UW, W) =(1+¢)EU,W) : (13)
’ ’ Uj[W]
Altered condition becomes
> forallU’ c U, W/ c W with [U’| > ¢|U| and [W'| > ¢|W|, we have
ujw’| ujw’|
E(U, W —[E(U, W) < e|E(U, W) : (14)
’ ’ Ujjw] ’ Ujjw]

OKeven if [E(U, W)|/[U]|W| — 0.
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Szemeredi’s regularity lemma, sparse version

Any graph with no ‘dense patches’ admits a Szemeredi partition with the
new notion of e-regularity.

Definition 22 ((n, b)-bounded). Say G = (V, E) is (n, b)-bounded if for all
U C V with |U] > n|V|, we have

#{edges within U} < b!E!(llzﬂ) (“2/')1. (15)

29
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Szemerédi’s regularity lemma, sparse version

Theorem 23 (The reqgularity lemma). Forany ¢ > 0, to > 1, and b, there
existn > 0 and Ty such that any (n, b)-bounded graph G admits a parti-
tionV = V; U ---U Vi such that

1 IVil < e <V < V41T
2.t <t < T
3. atleast (1 — e)G) pairs (Vi, V;) (1 < j) are e-regular.

Proof. Just follow Szemeredi’s original proof. ]
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A counting lemma (simplest version)

Setup. G = (V7, Vy, V3; E) tripartite with

1. [Vi| =mforalli
2. (Vy,V;) e-regular for all i < j

3. [E(V;, V) = pm? for all i < j
Notation: G = Gée)(m, o) [G is an e-regular triple with density p]

> Wish to embed K3 with V(K3) = {x1,x2, x3} such that x; is placed in V.
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A counting lemma (simplest version)

Just like random:

Lemma 24 (Counting Lemma; Embedding lemma). Vp > 0, 6 > 0 e > 0,
my: Ifm > mg, then

#3 < GY (m, p)} — pPm3| < om?. (16)
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Tough: counting Lemma is false if p — 0

Fact 25. Ve > 0 3p > 0, mg ¥m > mg 3GS (m, p) with
K3 7 Gy (m, p). (17)

[cf. Lemma 24]

Exercise 26. Prove Fact 25.

Hint 27. Consider the random tripartite graph G(t,t,t;6/v/t) (t = t(e) and
5 = b(¢) appropriate constants). Remove few edges to make it K3-free.

Blow up each vertex to an independent set of size n /1.
Change of focus (just for simplicity): from counting K3 C Gge)(m, p) to

existence of K3 C G gg)(m, 0).
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Sparse triangle counting

Counterexamples to the embedding lemma in the sparse setting do exist

(Fact 25), but

Key observation

are extremely rare.

34
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An asymptotic enumeration lemma

Lemma 28. VB > 03e >0, C >0, my: if T =pm? > Cm3/2, then

7 3
#(65(m,p) K < B(7) . (18)

Observe that p > C/4/m — 0.
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Consequence for random graphs
Easy expectation calculations imply
> if p > 1/4/n, then almost every G(n, p) is such that
(K3-free 6! (m, p)) Z G(n,p), (19)
if (*) mp > logn and p > «p for some fixed «.

Conclusion. Recovered an ‘embedding lemma’ in the sparse setting, for
subgraphs of random graphs.

Corollary 29 (EL for subgraphs of r.gs). If p > 1/y/n and (*) holds, then

almost every G(n,p) is such that if Gge)(m, p) C G(n,p), then

3 K3 Gé‘c’)(m, p) C G(n,p). (20)
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The easy calculation

Recall T = pm?, p > «p, and mp > log n. Therefore

E(#{K>-free G (m, p) — G(n,p)}) < n*™o(1)T(

emz 3T emz 3T
§n3m (O(])? p3T §n3m (O(]) p)

_3m <0(1)em f) < p3m (omf)
pm o4

3aomlogn
< e3m'09“(o(1)3> — o).

K
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Superexponential bounds

Suppose we wish to prove a statement about all subgraphs of G(n, p).

e Too many such subgraphs: about 2p(3)

e G(n,p) has no edges with probability (1 — p)(g) > exp{—2pn?}, if, say,
p <1/2

e Concentration inequalities won'’t do (Zp@) VS e—ZP“Z).

e Bounds of the form
m

omT(@) (21)

for the cardinality of a family of ‘undesirable subgraphs’ U(m, T) do the
job. Use of such bounds goes back to Furedi (1994).
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An embedding lemma for K3 (sparse setting)

Scheme:

1. Proved an asymptotic enumeration lemma:

72 3

) . (22)

m

#(65”(m,p) 2 K3 = o()T ("
[T =pm?]

2. Observed that this implies a.e. G(n, w/\/n) contains no K3-free
Gée)(m, p) [any w = w(n) — co as n — ool.

3. Obtained a K3-embedding lemma for subgraphs of G(n,p), even when

p = w//n: for all Gé‘c’)(m, o) C G(n,p), have K3 C Gé‘c’)(m, 0).
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General graphs H?

Suppose |V(H)| > 2. Recall

E(H)| — 1
p— 2
Q= V=2 (23)
and
my(H) = max{d,(]J): ] C H} (24)

Theorem 30 (Balogh, Morris & Samotij 2015 and Saxton & Thomason
2015). VH, p >03e >0,C >0, my: ifT = pm? > CmZ V/m2H) then

€ m2 e(H)
#(Gyy (myp) DHI<BI() (25)

> Can’t miss: container lectures by Rob Morris next week!
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Consequences of Theorem 30

1. The RédI-Rucinski theorem on the threshold for Ramsey properties of
random graphs (1-statement) and the Turan counterpart, with the best
possible edge probability.

2. tuczak (2000): structural and enumerative consequences for H-free
graphs on n vertices and M edges
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Consequences of Theorem 30

Theorem 31 (Luczak 2000). Suppose x(H) =h > 3. Then for every & > 0
there exists C = C(06, H) such that, almost surely, a graph chosen uniformly
at random from the family of all H-free labelled graphs on n vertices and

M > Cn2-1/m2H) edges can be made (h — 1)-partite by removing < M
edges.

42
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Consequences of Theorem 30

Theorem 32 (tuczak 2000). Suppose x(H) = h > 3. Then for every ¢ > 0
there exist C = C(e,H) and ny = ny(e,H) such that, for n > ny and
Cn2—1/d2(H) <ML nz/C, we have

(E—j—a)Mgp(G(n,M)ZH)g(E—j—l—e)M. (26)

> G(n, M): random graph of order n with M edges (uniform distribution)
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The hereditary nature of regularity

Setup. B = (U, W;E) an e-regular bipartite graph with |U| = [W| = m and
E| = pmz, p > 0 constant, and an integer d. Sample N ¢ U and N/ ¢ W
with [N| = [N’/] = d uniformly at random.

Theorem 33 (Duke and Rodl 1985). Forany B > 0, p > 0, and ¢’ > 0, if
£ < 80(6) P, 8/): d > dO(B) P, 8/): and m > mO(B) Py 8/); then

P((N,N') pad)) < p¢, (27)

where (N,N’) is bad if ||E(N,N')|d—2 - p) > ¢’ or else (N,N’) is not
e’-regular.
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The hereditary nature of regularity

Exercise 34. For any k and & > 0, there is C such that the following
holds. If x(G — F) > k for any F C E(G) with [F| < &n?, then there
isH C G withx(H) > k and |V(H)| < C. Can you guarantee many such
‘witnesses’ H?
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Local characterization for regularity

Setup. B = (U, W;E), a bipartite graph with |U| = |W| = m. Consider the
properties

(PC) for some constant p, have m~' 3" ;1 deg(u) —pm| = o(m) and

# Y |deg(u,u) — p*m| = o(m). (28)

u,u’el

(R) (U, W) is o(1)-regular (classical sense).

Theorem 35. (PC) and (R) are equivalent.
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A proof of Theorem 33

Let a graph F = (U, E) with [U| = m and |E| < n(’}) be given. Suppose
we select a d-set N uniformly at random from U. We are then interested in
giving an upper bound for e(F[N]), the number of edges that the set N will
induce in F.

Lemma 36. For every « and 3 > 0, there existny = no(«, ) > 0 such that,
whenever 0 < n < ng, we have

P (e(FIND) > o)) < B 29

Proof. Exercise! (]

Exercise 37. Use Lemma 36 and Theorem 35 to prove Theorem 33.
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The hereditary nature of sparse regularity

Definition 38 ((e,p)-lower-reqularity). Suppose 0 < e <1 and0 < p < 1.
A bipartite graph B = (U, W; E) is (e, p)-lower-regular if for all U’ C U and
W C W with |U’| > ¢|U]| and |W'| > ¢|W|, we have
e(U, W
[Uwi

> (1—¢)p. (30)
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The hereditary nature of sparse regularity

Setup. B = (U,W;E) an (e, p)-lower-regular bipartite graph with |U| =
'W| = m and |E| = pm? and integer d. Sample N ¢ Uand N/ ¢ W
with [N| = |[N’/] = d uniformly at random.

Theorem 39 (Gerke, K., Rodl & Steger 2007). Forall 0 < B,¢’ < 1, there
exist eg = ¢p(B,e’) > 0 and C = C(¢’) such that, forany 0 < ¢ < ¢y and
0 < p < 1, the following holds. Let G = (U, W;E) be an (e, p)-lower-regular
bipartite graph and suppose d > Cp~—'. Then

P((N,N') bad)) < p¢, (31)

where (N, N’) is bad if (N, N’) is not (¢/, p)-lower-regular.
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The hereditary nature of sparse regularity

Setup. B = (U,W;E) an (&, p)-lower-regular bipartite graph with |U| =
'W| =m, [E| = pm?, and p > «q. Also, suppose we have two other bipartite
graphs A = (U/,U;EA) and C = (W, W":E), also (e, p)-lower-regular.

Corollary 40 (Quite imprecise. ..). Suppose AUBUC C G(n,q) andu’ €
U’ andw’ € W' are ‘typical’ vertices. If pm > 1/p then B[Ta(u’), Fc(w')]
is (f(¢),p)-lower-regular (f(¢) — 0 ase — 0).

> Corollary above may be used in inductive embedding schemes.



Regularity and blow-up lemmas lll Inheritance of regularity

Local characterization for sparse regularity

Remark: (very imprecisely) a similar statement to Theorem 35 may be
proved for subgraphs of random graphs.



