The regularity method and blow-up lemmas for sparse graphs

Y. Kohayakawa (São Paulo)

SPSAS Algorithms, Combinatorics and Optimization

University of São Paulo

July 2016

Partially supported CAPES/DAAD (430/15), CNPq (459335/2014-6, 310974/2013-5), and FAPESP (2013/07699-0, 2013/03447-6)

Course outline

- 1. Lecture I. Introduction to the regularity method
- 2. Lecture II. The blow-up lemma
- 3. Lecture III. The sparse case: small subgraphs
- 4. Lecture IV. The sparse case: large subgraphs

Lecture III. The sparse case (small subgraphs)

Motivation

- > Shall have a fairly long discussion on motivation.
- > Shall discuss rudiments of the regularity method for sparse graphs.

Restricted Ramsey theory

- \triangleright We know $K^6 \rightarrow K^3$.
- ightharpoonup Are there G with $K^6 \not\subset G$ such that $G \to K^3$?
- > Yes: $G = K^8 \setminus C^5 = C^3 \vee C^5$ (Graham 1968)
- \triangleright Also $G = (K^9 \setminus C^9) \vee K^1$ (Leader)

Definition 1. For positive integers r, k and ℓ, let

$$f(r,k,\ell) = min \, \big\{ n \colon \exists G = G^n \, \textit{such that} \, G \not\supset K^\ell \, \textit{and} \, G \to (K^k)_r \big\}.$$

 \circ G \rightarrow (H)_r: Ramsey property for r-colouring of the edges

Restricted Ramsey theory

Definition 2. For positive integers r, k and ℓ, let

$$f(r,k,\ell) = min \left\{ n \colon \exists G = G^n \text{ such that } G \not\supset K^\ell \text{ and } G \to (K^k)_r \right\}.$$

 \circ G \rightarrow (H)_r: Ramsey property for r-colouring of the edges

Question 3 (Erdős and Hajnal 1967). *Is* $f(r, k, \ell) < \infty$ *for every positive* r, k *and* ℓ *with* $k < \ell$?

Answer. Yes: Folkman 1970, Nešetřil and Rödl 1976

Numbers. Graham: f(2,3,6) = 8. Nenov, Piwakowski, Radziszowski and Urbański: f(2,3,5) = 15. How about f(2,3,4)?

Erdős: $f(2,3,4) \le 10^{10}$?

Restricted Ramsey theory

Erdős: $f(2,3,4) \le 10^{10}$?

- (i) Lu 2008: $f(2,3,4) \le 9697$
- (ii) Dudek and Rödl 2008: $f(2,3,4) \le 941$

Let us go back to the proof of $f(r, k, \ell) < \infty$.

Natural approach today. Investigate whether can use random graphs.

The random graphs G(n, p)

ightharpoonup G(n,p): each element of $\binom{[n]}{2}$ is present with probability p, independently of all others

Always interested in $n \to \infty$. Use the terms 'almost surely', 'almost every', 'almost always', etc to mean 'with probability $\to 1$ as $n \to \infty$ '.

- \triangleright We are interested in the existence of mono χ subgraphs in **coloured** random graphs; i.e., properties of the form $G(n,p) \to (H)_r$.
- Also interested in existence of monochromatic subgraphs in 'dense' subgraphs of random graphs; i.e., statements of the form $G(n, p) \to_{\eta} H$ (any η-fraction of the edges of G(n, p) contains a copy of H).

The results for K^3

Theorem 4. There is a large enough constant C such that if $p \ge C/\sqrt{n}$, then a.e. G(n,p) satisfies

$$G(n,p) \rightarrow (K^3)_2$$
.

Theorem 5. For any $\eta > 0$, there C such that if $p \ge C/\sqrt{n}$ then a.e. G(n,p) satisfies

$$G(n,p) \rightarrow_{1/2+\eta} K^3$$
.

$$f(2,3,4) < \infty$$

- (i) Basic remark: $G(n, C/\sqrt{n})$ a.s. contains $O(p^6n^4) = O(n)$ copies of K^4 .
- (ii) Two approaches:
 - Show that if we delete any O(n) edges from G(n,p) still have a Ramsey graph for K^3 .
 - Show that the number of mono χ K³ is large (it is actually $(1/4 + o(1))p^3\binom{n}{3}$ a.s.) and that an edge does not belong to too many K³s.
- (iii) It follows that $f(2,3,4) < \infty$.

The case p = 1 (skip/exercise)

Theorem 6 (Goodman). The number of monochromatic triangles in any 2-colouring of K^n is $\geq \binom{n}{3} - \frac{1}{8}n(n-1)^2 = (\frac{1}{4} + o(1))\binom{n}{3}$.

Proof. Count the number N of 2-coloured cherries. Say have b(x) blue edges and r(x) red edges at vertex x. Have $N = \sum_{x} b(x)r(x) \le n(n-1)^2/4$ (use b(x) + r(x) = n - 1). The number of non-monochromatic triangles is N/2.

Clearly, there are 2-colourings with $\leq \frac{1}{4} \binom{n}{3}$ monochromatic triangles!

The case p = 1 (skip/exercise)

Theorem 7. Goodman implies Mantel: $ex(n, K^3) \le n^2/4$.

Proof. Suppose $K^3 \not\subset G^n$ and $e(G^n) > n^2/4$, so that $e(G^n) \ge n^2/4 + 3/4$. Count the number N of pairs (e,T) where $e \in E(G^n)$, $T \in \binom{V(G^n)}{3}$ and $e \subset T$. Say there are t_i triples containing i edges of G. Then, by Theorem 6,

$$(n^2/4 + 3/4)(n-2) \le e(G^n)(n-2)$$

= $N \le t_1 + 2t_2 \le 2(t_1 + t_2) \le n(n-1)^2/4$,

which is a contradiction for $n \geq 4$.

Theorems 4 and 5 from Goodman's counting (skip/exercise)

Theorem 8. For every $\varepsilon > 0$ there is C such that if $\mathfrak{p} \geq C/\sqrt{\mathfrak{n}}$, then a.e. G(n,p) is such that any 2-colouring of its edges contains at least $(1/4 - \varepsilon)p^3\binom{n}{3}$ monochromatic K^3 .

Proof. Exercise!

Exercise 9. Derive Theorem 5 from Theorem 8.

Exercise 10. Show that the threshold for Theorem 4 is indeed $1/\sqrt{n}$.

Exercise 11. Show that the threshold for Theorem 5 is indeed $1/\sqrt{n}$.

How about $f(r, k, \ell)$?

We are interested in the *threshold* for the Ramsey property

$$G(n,p) \to (K^k)_r. \tag{1}$$

Threshold: the 'smallest' order of growth for p = p(n) such that (1) is guaranteed to hold a.s.

This was actually a very natural problem in the theory of random graphs, and was solved by Rödl and Ruciński (1995).

The Rödl-Ruciński theorem

Definition 12 (2-density and $m_2(H)$). The 2-density $d_2(H)$ of a graph H with |V(H)| > 2 is

$$\frac{|E(H)| - 1}{|V(H)| - 2}.$$
 (2)

For $H = K^1$ and $2K^1$ let $d_2(H) = 0$; set $d_2(K^2) = 1/2$. Let

$$m_2(H) = \max\{d_2(J): J \subset H, |V(J)| > 0\}.$$
 (3)

Exercise 13. Consider, say, $H = K^h$. Show that if $p \ll n^{-1/m_2(H)}$, then a.s. $\#\{H \hookrightarrow G(n,p)\} \ll e(G(n,p))$. On the other hand, if $p \gg n^{-1/m_2(H)}$, then a.s. $\#\{H \hookrightarrow G(n,p)\} \gg e(G(n,p))$.

The Rödl–Ruciński theorem

Theorem 14. Let H be a graph containing at least a cycle and let $r \ge 2$ be an integer. Then there exist constants c and C such that

$$\lim_{n\to\infty} \mathbb{P}(G(n,p)\to (H)_r) = \begin{cases} 0 & \text{if } p \leq cn^{-1/m_2(H)} \\ 1 & \text{if } p \geq Cn^{-1/m_2(H)}. \end{cases} \tag{4}$$

o In particular, $p_0 = p_0(n) = n^{-1/m_2(H)}$ is the threshold for the property $G(n,p) \to (H)_r$.

The Rödl-Ruciński theorem

Exercise 15. Prove that $f(r, k, \ell) < \infty$ whenever $k < \ell$.

Exercise 16. Given a graph G, let $\mathcal{H}_3(G)$ be the 3-uniform hypergraph whose hypervertices are the edges of G and the hyperedges are the edge sets of the triangles in G. Show that, for any integers ℓ and r, there is a graph G satisfying $G \to (K^3)_r$ such that $\mathcal{H}_3(G)$ has girth $\geq \ell$.

Generalized Turán number:

$$ex(G, H) = max \{ |E(G')| : H \not\subset G' \subset G \}.$$
 (5)

$$\triangleright \operatorname{ex}(n, H) = \operatorname{ex}(K^n, H)$$

$$\triangleright \operatorname{ex}(Q^{\operatorname{d}}, C^4) = ?$$

$$\triangleright$$
 ex(G, K^h) = ? for (n, d, λ)-graphs G

Exercise 17. Show that, for any G and H, we have

$$ex(G,H) \ge \left(1 - \frac{1}{\chi(H) - 1}\right)e(G). \tag{6}$$

 \triangleright Interested in knowing when this is sharp for G = G(n, p) (up to o(e(G)))

Theorem 18 (K., Rödl and Schacht 2004). Let H be a graph with degeneracy d and suppose $np^d \gg 1$. Then, almost surely,

$$ex(G(n,p),H) = \left(1 - \frac{1}{\chi(H) - 1} + o(1)\right)p\binom{n}{2}.$$
 (7)

Conjecture 19. For any graph H, if $np^{m_2(H)} \to \infty$ then (7) holds almost surely.

Example: if $H = K^k$, have $m_2(H) = (k+1)/2$, but Theorem 18 supposes $np^{1/(k-1)} \gg 1$.

Conjecture 19 was proved in 2009/2010:

Theorem 20 (Schacht 2016; Conlon and Gowers 2016). *Conjecture 19 holds.*

- Quite different approaches:
 - Schacht: combinatorial, multi-round exposure method
 - Conlon and Gowers: analytic approach
 - General transference principles

General transference principles

- Schacht and Conlon & Gowers obtained general transference results: results that allow one to transfer classical density results ("full environment") to random sparse subenvironments
- Applications: results in additive combinatorics; graph and hypergraph theorems

The regularity method for sparse random graphs

- - Schacht and Conlon and Gowers bypassed the regularity approach.
- ▶ In short: the regularity method of Szemerédi works in sparse random environments.

Recall

- > Shall have a fairly long discussion on motivation.
- > Shall discuss rudiments of the regularity method for sparse graphs.

Szemerédi's regularity lemma

- 1. Tool for identifying the quasirandom structure of deterministic graphs.
- 2. Works very well for large, dense graphs: n-vertex graphs with $\geq cn^2$ edges, $n \to \infty$.
- 3. Variant for sparse graphs exists (sparse = with $o(n^2)$ edges).
- 4. With the recent embedding lemmas, the method works nicely/easily when dealing with small subgraphs.

ε-regularity

Definition 21 (ε -regular pair). G = (V, E) a graph; $U, W \subset V$ non-empty and disjoint. Say (U, W) is ε -regular (in G) if

ho for all $U' \subset U$, $W' \subset W$ with $|U'| \geq \varepsilon |U|$ and $|W'| \geq \varepsilon |W|$, we have

$$\left|\frac{|\mathsf{E}(\mathsf{U}',\mathsf{W}')|}{|\mathsf{U}'||\mathsf{W}'|} - \frac{|\mathsf{E}(\mathsf{U},\mathsf{W})|}{|\mathsf{U}||\mathsf{W}|}\right| \le \varepsilon. \tag{8}$$

ε-regularity

The pair (U, W) is ε -regular if

$$\left|\frac{|\mathsf{E}(\mathsf{U}',\mathsf{W}')|}{|\mathsf{U}'||\mathsf{W}'|} - \frac{|\mathsf{E}(\mathsf{U},\mathsf{W})|}{|\mathsf{U}||\mathsf{W}|}\right| \le \varepsilon. \tag{9}$$

Equivalently,

$$|\mathsf{E}(\mathsf{U}',\mathsf{W}')| = |\mathsf{U}'||\mathsf{W}'| \left(\frac{|\mathsf{E}(\mathsf{U},\mathsf{W})|}{|\mathsf{U}||\mathsf{W}|} \pm \varepsilon\right). \tag{10}$$

Clearly, not meaningful if

$$\frac{|\mathsf{E}(\mathsf{U},\mathsf{W})|}{|\mathsf{U}||\mathsf{W}|} \to 0 \tag{11}$$

and ε is fixed. (We think of G = (V, E) with $n = |V| \to \infty$.)

ε-regularity; multiplicative error version

Replace

$$|E(U', W')| = |U'||W'| \left(\frac{|E(U, W)|}{|U||W|} \pm \varepsilon\right)$$
 (12)

by

$$|E(U', W')| = (1 \pm \varepsilon)|E(U, W)| \frac{|U'||W'|}{|U||W|}.$$
 (13)

Altered condition becomes

 \triangleright for all $U' \subset U$, $W' \subset W$ with $|U'| \ge \varepsilon |U|$ and $|W'| \ge \varepsilon |W|$, we have

$$\left| |\mathsf{E}(\mathsf{U}', \mathsf{W}')| - |\mathsf{E}(\mathsf{U}, \mathsf{W})| \frac{|\mathsf{U}'||\mathsf{W}'|}{|\mathsf{U}||\mathsf{W}|} \right| \le \varepsilon |\mathsf{E}(\mathsf{U}, \mathsf{W})| \frac{|\mathsf{U}'||\mathsf{W}'|}{|\mathsf{U}||\mathsf{W}|}. \tag{14}$$

OK even if $|E(U, W)|/|U||W| \rightarrow 0$.

Szemerédi's regularity lemma, sparse version

Any graph with no 'dense patches' admits a Szemerédi partition with the new notion of ε -regularity.

Definition 22 ((η, b) -bounded). Say G = (V, E) is (η, b) -bounded if for all $U \subset V$ with $|U| \ge \eta |V|$, we have

$$\#\{edges \ within \ U\} \le b|E| {|U| \choose 2} {|V| \choose 2}^{-1}. \tag{15}$$

Szemerédi's regularity lemma, sparse version

Theorem 23 (The regularity lemma). For any $\epsilon > 0$, $t_0 \ge 1$, and b, there exist $\eta > 0$ and T_0 such that any (η, b) -bounded graph G admits a partition $V = V_1 \cup \cdots \cup V_t$ such that

- 1. $|V_1| \leq \cdots \leq |V_t| \leq |V_1| + 1$
- 2. $t_0 \le t \le T_0$
- 3. at least $(1 \epsilon) {t \choose 2}$ pairs (V_i, V_j) (i < j) are ϵ -regular.

Proof. Just follow Szemerédi's original proof.

A counting lemma (simplest version)

Setup. $G = (V_1, V_2, V_3; E)$ tripartite with

- 1. $|V_i| = m$ for all i
- 2. (V_i, V_j) ε -regular for all i < j
- 3. $|E(V_i, V_j)| = \rho m^2$ for all i < j

Notation: $G = G_3^{(\epsilon)}(m, \rho)$ [G is an ϵ -regular triple with density ρ]

 \triangleright Wish to embed K^3 with $V(K^3) = \{x_1, x_2, x_3\}$ such that x_i is placed in V_i .

A counting lemma (simplest version)

Just like random:

Lemma 24 (Counting Lemma; Embedding lemma). $\forall \rho > 0, \ \delta > 0 \ \exists \epsilon > 0, \ m_0$: if $m \ge m_0$, then

$$\left| \# \{ \mathsf{K}^3 \hookrightarrow \mathsf{G}_3^{(\varepsilon)}(\mathsf{m}, \rho) \} - \rho^3 \mathsf{m}^3 \right| \le \delta \mathsf{m}^3. \tag{16}$$

Tough: counting Lemma is false if $\rho \to 0$

Fact 25.
$$\forall \varepsilon > 0 \; \exists \rho > 0, \; m_0 \; \forall m \geq m_0 \; \exists G_3^{(\varepsilon)}(m, \rho) \; \textit{with}$$

$$K^3 \not\subset G_3^{(\varepsilon)}(m, \rho). \tag{17}$$

[cf. Lemma 24]

Exercise 26. Prove Fact 25.

Hint 27. Consider the random tripartite graph $G(t, t, t; \delta/\sqrt{t})$ ($t = t(\epsilon)$ and $\delta = \delta(\epsilon)$ appropriate constants). Remove few edges to make it K^3 -free. Blow up each vertex to an independent set of size n/t.

Change of focus (just for simplicity): from counting $K^3 \subset G_3^{(\epsilon)}(\mathfrak{m},\rho)$ to existence of $K^3 \subset G_3^{(\epsilon)}(\mathfrak{m},\rho)$.

Key observation

Counterexamples to the embedding lemma in the sparse setting do exist (Fact 25), but

are extremely rare.

An asymptotic enumeration lemma

Lemma 28.
$$\forall \beta > 0 \ \exists \varepsilon > 0, \ C > 0, \ m_0: \ \textit{if} \ T = \rho m^2 \ge C m^{3/2}, \ \textit{then}$$

$$\# \{G_3^{(\varepsilon)}(m,\rho) \not\supset K^3\} \le \beta^T {m^2 \choose T}^3. \tag{18}$$

Observe that $\rho \geq C/\sqrt{m} \rightarrow 0$.

Consequence for random graphs

Easy expectation calculations imply

ightrightarrow if $p \gg 1/\sqrt{n}$, then almost every G(n,p) is such that

$$\left(\mathsf{K}^3\text{-free }\mathsf{G}_3^{(\varepsilon)}(\mathsf{m},\mathsf{p})\right)\not\subset\mathsf{G}(\mathsf{n},\mathsf{p}),$$
 (19)

if (*) mp $\gg \log n$ and $\rho \geq \alpha p$ for some fixed α .

Conclusion. Recovered an 'embedding lemma' in the sparse setting, *for* subgraphs of random graphs.

Corollary 29 (EL for subgraphs of r.gs). If $p \gg 1/\sqrt{n}$ and (*) holds, then almost every G(n,p) is such that if $G_3^{(\epsilon)}(m,\rho) \subset G(n,p)$, then

$$\exists \iota \colon \mathsf{K}^3 \hookrightarrow \mathsf{G}_3^{(\varepsilon)}(\mathsf{m}, \rho) \subset \mathsf{G}(\mathsf{n}, \mathsf{p}). \tag{20}$$

The easy calculation

Recall $T = \rho m^2$, $\rho \ge \alpha p$, and $mp \gg \log n$. Therefore

$$\begin{split} \mathbb{E}(\#\{K^3\text{-free }G_3^{(\epsilon)}(m,\rho)\hookrightarrow G(n,p)\}) &\leq n^{3m}o(1)^T{m^2\choose T}^3p^{3T}\\ &\leq n^{3m}\left(o(1)\frac{em^2}{T}\right)^{3T}p^{3T} \leq n^{3m}\left(o(1)\frac{em^2p}{T}\right)^{3T}\\ &= n^{3m}\left(o(1)\frac{em^2p}{\rho m^2}\right)^{3T} \leq n^{3m}\left(o(1)\frac{e}{\alpha}\right)^{3T}\\ &\leq e^{3m\log n}\left(o(1)\frac{e}{\alpha}\right)^{3\alpha m\log n} = o(1). \end{split}$$

Superexponential bounds

Suppose we wish to prove a statement about all subgraphs of G(n, p).

- Too many such subgraphs: about $2^{p\binom{n}{2}}$
- G(n,p) has no edges with probability $(1-p)^{\binom{n}{2}} \ge \exp\{-2pn^2\}$, if, say, $p \le 1/2$.
- Concentration inequalities won't do $(2^{p\binom{n}{2}})$ vs e^{-2pn^2} .
- Bounds of the form

$$o(1)^{\mathsf{T}} \binom{\binom{\mathsf{m}}{2}}{\mathsf{T}} \tag{21}$$

for the cardinality of a family of 'undesirable subgraphs' U(m, T) do the job. Use of such bounds goes back to Füredi (1994).

An embedding lemma for K³ (sparse setting)

Scheme:

 $[T = \rho m^2]$

1. Proved an asymptotic enumeration lemma:

$$\#\{G_3^{(\varepsilon)}(m,\rho) \not\supset K^3\} = o(1)^T {m^2 \choose T}^3.$$
 (22)

- 2. Observed that this implies a.e. $G(n, \omega/\sqrt{n})$ contains no K^3 -free $G_3^{(\epsilon)}(m, \rho)$ [any $\omega = \omega(n) \to \infty$ as $n \to \infty$].
- 3. Obtained a K³-embedding lemma for subgraphs of G(n,p), even when $p = \omega/\sqrt{n}$: for all $G_3^{(\epsilon)}(m,\rho) \subset G(n,p)$, have $K^3 \subset G_3^{(\epsilon)}(m,\rho)$.

General graphs H?

Suppose |V(H)| > 2. Recall

$$d_2(H) = \frac{|E(H)| - 1}{|V(H)| - 2}$$
 (23)

and

$$m_2(H) = \max\{d_2(J) \colon J \subset H\}. \tag{24}$$

Theorem 30 (Balogh, Morris & Samotij 2015 and Saxton & Thomason 2015). $\forall H, \beta > 0 \exists \epsilon > 0, C > 0, m_0$: if $T = \rho m^2 \geq C m^{2-1/m_2(H)}$, then

$$\#\{G_{H}^{(\varepsilon)}(m,\rho) \not\supset H\} \le \beta^{\mathsf{T}} {m^2 \choose \mathsf{T}}^{e(\mathsf{H})}. \tag{25}$$

□ Can't miss: container lectures by Rob Morris next week!

Consequences of Theorem 30

- 1. The Rödl–Ruciński theorem on the threshold for Ramsey properties of random graphs (1-statement) and the Turán counterpart, with the best possible edge probability.
- 2. Łuczak (2000): structural and enumerative consequences for H-free graphs on n vertices and M edges

Consequences of Theorem 30

Theorem 31 (Łuczak 2000). Suppose $\chi(H) = h \ge 3$. Then for every $\delta > 0$ there exists $C = C(\delta, H)$ such that, almost surely, a graph chosen uniformly at random from the family of all H-free labelled graphs on $\mathfrak n$ vertices and $M \ge C\mathfrak n^{2-1/m_2(H)}$ edges can be made (h-1)-partite by removing $\le \delta M$ edges.

Consequences of Theorem 30

Theorem 32 (Łuczak 2000). Suppose $\chi(H) = h \ge 3$. Then for every $\varepsilon > 0$ there exist $C = C(\varepsilon, H)$ and $n_0 = n_0(\varepsilon, H)$ such that, for $n \ge n_0$ and $Cn^{2-1/d_2(H)} \le M \le n^2/C$, we have

$$\left(\frac{h-2}{h-1}-\varepsilon\right)^{M} \leq \mathbb{P}\left(G(n,M) \not\supset H\right) \leq \left(\frac{h-2}{h-1}+\varepsilon\right)^{M}. \tag{26}$$

 $\triangleright G(n, M)$: random graph of order n with M edges (uniform distribution)

The hereditary nature of regularity

Setup. B = (U, W; E) an ε -regular bipartite graph with |U| = |W| = m and $|E| = \rho m^2$, $\rho > 0$ constant, and an integer d. Sample N \subset U and N' \subset W with |N| = |N'| = d uniformly at random.

Theorem 33 (Duke and Rödl 1985). For any $\beta > 0$, $\rho > 0$, and $\epsilon' > 0$, if $\epsilon \leq \epsilon_0(\beta, \rho, \epsilon')$, $d \geq d_0(\beta, \rho, \epsilon')$, and $m \geq m_0(\beta, \rho, \epsilon')$, then

$$\mathbb{P}\big((\mathsf{N},\mathsf{N}')\;\mathit{bad}\big) \leq \beta^{\mathrm{d}},\tag{27}$$

where (N, N') is bad if $\left| |E(N, N')| d^{-2} - \rho \right| > \epsilon'$ or else (N, N') is not ϵ' -regular.

The hereditary nature of regularity

Exercise 34. For any k and $\delta > 0$, there is C such that the following holds. If $\chi(G - F) \ge k$ for any $F \subset E(G)$ with $|F| \le \delta n^2$, then there is $H \subset G$ with $\chi(H) \ge k$ and $|V(H)| \le C$. Can you guarantee many such 'witnesses' H?

Local characterization for regularity

Setup. B = (U, W; E), a bipartite graph with |U| = |W| = m. Consider the properties

(PC) for some constant p, have $\mathfrak{m}^{-1}\sum_{\mathfrak{u}\in U}|\operatorname{deg}(\mathfrak{u})-\mathfrak{pm}|=o(\mathfrak{m})$ and

$$\frac{1}{m^2} \sum_{u,u' \in U} |\deg(u,u') - p^2 m| = o(m).$$
 (28)

(R) (U, W) is o(1)-regular (classical sense).

Theorem 35. (PC) and (R) are equivalent.

A proof of Theorem 33

Let a graph F=(U,E) with |U|=m and $|E|\leq \eta\binom{m}{2}$ be given. Suppose we select a d-set N uniformly at random from U. We are then interested in giving an upper bound for e(F[N]), the number of edges that the set N will induce in F.

Lemma 36. For every α and $\beta > 0$, there exist $\eta_0 = \eta_0(\alpha, \beta) > 0$ such that, whenever $0 < \eta \le \eta_0$, we have

$$\mathbb{P}\left(e(\mathsf{F}[\mathsf{N}]) \ge \alpha \binom{d}{2}\right) \le \beta^d. \tag{29}$$

Proof. Exercise!

Exercise 37. Use Lemma 36 and Theorem 35 to prove Theorem 33.

The hereditary nature of sparse regularity

Definition 38 $((\varepsilon, \mathfrak{p})\text{-lower-regularity})$. Suppose $0 < \varepsilon < 1$ and $0 < \mathfrak{p} \le 1$. A bipartite graph B = (U, W; E) is $(\varepsilon, \mathfrak{p})\text{-lower-regular}$ if for all $U' \subset U$ and $W \subset W$ with $|U'| > \varepsilon |U|$ and $|W'| > \varepsilon |W|$, we have

$$\frac{e(\mathbf{U}', \mathbf{W}')}{|\mathbf{U}'||\mathbf{W}|} \ge (1 - \varepsilon)\mathbf{p}. \tag{30}$$

The hereditary nature of sparse regularity

Setup. B = (U, W; E) an (ε, p) -lower-regular bipartite graph with |U| = |W| = m and $|E| = pm^2$ and integer d. Sample $N \subset U$ and $N' \subset W$ with |N| = |N'| = d uniformly at random.

Theorem 39 (Gerke, K., Rödl & Steger 2007). For all $0 < \beta, \epsilon' < 1$, there exist $\epsilon_0 = \epsilon_0(\beta, \epsilon') > 0$ and $C = C(\epsilon')$ such that, for any $0 < \epsilon \le \epsilon_0$ and 0 , the following holds. Let <math>G = (U, W; E) be an (ϵ, p) -lower-regular bipartite graph and suppose $d \ge Cp^{-1}$. Then

$$\mathbb{P}\big((\mathsf{N},\mathsf{N}')\;\mathit{bad}\big) \leq \beta^{\mathrm{d}},\tag{31}$$

where (N, N') is bad if (N, N') is not (ε', p) -lower-regular.

The hereditary nature of sparse regularity

Setup. B = (U, W; E) an (ε, p) -lower-regular bipartite graph with |U| = |W| = m, $|E| = pm^2$, and $p \ge \alpha q$. Also, suppose we have two other bipartite graphs $A = (U', U; E_A)$ and $C = (W, W'; E_C)$, also (ε, p) -lower-regular.

Corollary 40 (Quite imprecise...). Suppose $A \cup B \cup C \subset G(\mathfrak{n},\mathfrak{q})$ and $\mathfrak{u}' \in U'$ and $w' \in W'$ are 'typical' vertices. If $\mathfrak{pm} \gg 1/\mathfrak{p}$ then $B[\Gamma_A(\mathfrak{u}'),\Gamma_C(w')]$ is $(f(\varepsilon),\mathfrak{p})$ -lower-regular $(f(\varepsilon) \to 0 \text{ as } \varepsilon \to 0)$.

Local characterization for sparse regularity

Remark: (very imprecisely) a similar statement to Theorem 35 may be proved for subgraphs of random graphs.