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Course outline

1. Lecture I. Introduction to the regularity method

2. Lecture II. The blow-up lemma

3. Lecture III. The sparse case: small subgraphs

4. Lecture IV. The sparse case: large subgraphs
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Lecture III. The sparse case (small subgraphs)
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Motivation

B Shall have a fairly long discussion on motivation.

B Shall discuss rudiments of the regularity method for sparse graphs.
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Restricted Ramsey theory

B We know K6 → K3.

B Are there G with K6 6⊂ G such that G→ K3?

B Yes: G = K8 \ C5 = C3 ∨ C5 (Graham 1968)

B Also G = (K9 \ C9) ∨ K1 (Leader)

Definition 1. For positive integers r, k and `, let

f(r, k, `) = min
{
n : ∃G = Gn such that G 6⊃ K` and G→ (Kk)r

}
.

◦ G→ (H)r: Ramsey property for r-colouring of the edges
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Restricted Ramsey theory

Definition 2. For positive integers r, k and `, let

f(r, k, `) = min
{
n : ∃G = Gn such that G 6⊃ K` and G→ (Kk)r

}
.

◦ G→ (H)r: Ramsey property for r-colouring of the edges

Question 3 (Erdős and Hajnal 1967). Is f(r, k, `) <∞ for every positive r,
k and ` with k < `?

Answer. Yes: Folkman 1970, Nešetřil and Rödl 1976

Numbers. Graham: f(2, 3, 6) = 8. Nenov, Piwakowski, Radziszowski and
Urbański: f(2, 3, 5) = 15. How about f(2, 3, 4)?

Erdős: f(2, 3, 4) ≤ 1010?
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Restricted Ramsey theory

Erdős: f(2, 3, 4) ≤ 1010?

(i ) Lu 2008: f(2, 3, 4) ≤ 9697

(ii ) Dudek and Rödl 2008: f(2, 3, 4) ≤ 941

Let us go back to the proof of f(r, k, `) <∞.

Natural approach today. Investigate whether can use random graphs.
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The random graphs G(n, p)

B G(n, p): each element of
(
[n]
2

)
is present with probability p, indepen-

dently of all others

Always interested in n→∞. Use the terms ‘almost surely’, ‘almost every’,
‘almost always’, etc to mean ‘with probability→ 1 as n→∞’.

B We are interested in the existence of monoχ subgraphs in coloured
random graphs; i.e., properties of the form G(n, p)→ (H)r.

B Also interested in existence of monochromatic subgraphs in ‘dense’
subgraphs of random graphs; i.e., statements of the form G(n, p)→η H
(any η-fraction of the edges of G(n, p) contains a copy of H).
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The results for K3

Theorem 4. There is a large enough constant C such that if p ≥ C/
√
n,

then a.e. G(n, p) satisfies

G(n, p)→ (K3)2.

Theorem 5. For any η > 0, there C such that if p ≥ C/
√
n then a.e. G(n, p)

satisfies

G(n, p)→1/2+η K3.
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f(2, 3, 4) <∞
(i ) Basic remark: G(n,C/

√
n) a.s. contains O(p6n4) = O(n) copies of K4.

(ii ) Two approaches:

B Show that if we delete any O(n) edges from G(n, p) still have a
Ramsey graph for K3.

B Show that the number of monoχ K3 is large (it is actually (1/4 +

o(1))p3
(
n
3

)
a.s.) and that an edge does not belong to too many K3s.

(iii ) It follows that f(2, 3, 4) <∞.
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The case p = 1 (skip/exercise)

Theorem 6 (Goodman). The number of monochromatic triangles in any
2-colouring of Kn is ≥

(
n
3

)
− 1
8n(n − 1)2 = (14 + o(1))

(
n
3

)
.

Proof. Count the number N of 2-coloured cherries. Say have b(x) blue
edges and r(x) red edges at vertex x. HaveN =

∑
x b(x)r(x) ≤ n(n−1)2/4

(use b(x) + r(x) = n − 1). The number of non-monochromatic triangles
is N/2.

Clearly, there are 2-colourings with ≤ 1
4

(
n
3

)
monochromatic triangles!



Regularity and blow-up lemmas III f(2, 3, 4) <∞
11

The case p = 1 (skip/exercise)

Theorem 7. Goodman implies Mantel: ex(n, K3) ≤ n2/4.

Proof. Suppose K3 6⊂ Gn and e(Gn) > n2/4, so that e(Gn) ≥ n2/4 + 3/4.
Count the number N of pairs (e, T) where e ∈ E(Gn), T ∈

(
V(Gn)
3

)
and e ⊂

T . Say there are ti triples containing i edges of G. Then, by Theorem 6,

(n2/4 + 3/4)(n − 2) ≤ e(Gn)(n − 2)

= N ≤ t1 + 2t2 ≤ 2(t1 + t2) ≤ n(n − 1)2/4,

which is a contradiction for n ≥ 4.
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Theorems 4 and 5 from Goodman’s counting (skip/exercise)

Theorem 8. For every ε > 0 there is C such that if p ≥ C/
√
n, then

a.e. G(n, p) is such that any 2-colouring of its edges contains at least
(1/4 − ε)p3

(
n
3

)
monochromatic K3.

Proof. Exercise!

Exercise 9. Derive Theorem 5 from Theorem 8.

Exercise 10. Show that the threshold for Theorem 4 is indeed 1/
√
n.

Exercise 11. Show that the threshold for Theorem 5 is indeed 1/
√
n.
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How about f(r, k, `)?

We are interested in the threshold for the Ramsey property

G(n, p)→ (Kk)r. (1)

Threshold: the ‘smallest’ order of growth for p = p(n) such that (1) is
guaranteed to hold a.s.

This was actually a very natural problem in the theory of random graphs,
and was solved by Rödl and Ruciński (1995).
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The Rödl–Ruciński theorem

Definition 12 (2-density andm2(H)). The 2-density d2(H) of a graph H with
|V(H)| > 2 is

|E(H)| − 1

|V(H)| − 2
. (2)

For H = K1 and 2K1 let d2(H) = 0; set d2(K2) = 1/2. Let

m2(H) = max{d2(J) : J ⊂ H, |V(J)| > 0}. (3)

Exercise 13. Consider, say, H = Kh. Show that if p � n−1/m2(H), then
a.s. #{H ↪→ G(n, p)}� e(G(n, p)). On the other hand, if p� n−1/m2(H),
then a.s. #{H ↪→ G(n, p)}� e(G(n, p)).
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The Rödl–Ruciński theorem

Theorem 14. Let H be a graph containing at least a cycle and let r ≥ 2 be
an integer. Then there exist constants c and C such that

lim
n→∞P(G(n, p)→ (H)r) =

{
0 if p ≤ cn−1/m2(H)

1 if p ≥ Cn−1/m2(H).
(4)

◦ In particular, p0 = p0(n) = n−1/m2(H) is the threshold for the property
G(n, p)→ (H)r.
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The Rödl–Ruciński theorem

Exercise 15. Prove that f(r, k, `) <∞ whenever k < `.

Exercise 16. Given a graph G, let H3(G) be the 3-uniform hypergraph
whose hypervertices are the edges of G and the hyperedges are the edge
sets of the triangles in G. Show that, for any integers ` and r, there is a
graph G satisfying G→ (K3)r such that H3(G) has girth ≥ `.
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Turán type results for subgraphs of random graphs

Generalized Turán number:

ex(G,H) = max
{
|E(G ′)| : H 6⊂ G ′ ⊂ G

}
. (5)

B ex(n,H) = ex(Kn, H)

B ex(Qd, C4) = ?

B ex(G,Kh) = ? for (n, d, λ)-graphs G
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Turán type results for subgraphs of random graphs

Exercise 17. Show that, for any G and H, we have

ex(G,H) ≥
(
1 −

1

χ(H) − 1

)
e(G). (6)

B Interested in knowing when this is sharp for G = G(n, p) (up to o(e(G)))
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Turán type results for subgraphs of random graphs

Theorem 18 (K., Rödl and Schacht 2004). Let H be a graph with degener-
acy d and suppose npd � 1. Then, almost surely,

ex(G(n, p), H) =
(
1 −

1

χ(H) − 1
+ o(1)

)
p
(n
2

)
. (7)

Conjecture 19. For any graph H, if npm2(H) → ∞ then (7) holds almost
surely.

Example: if H = Kk, have m2(H) = (k + 1)/2, but Theorem 18 supposes
np1/(k−1) � 1.
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Turán type results for subgraphs of random graphs

Conjecture 19 was proved in 2009/2010:

Theorem 20 (Schacht 2016; Conlon and Gowers 2016). Conjecture 19
holds.

B Quite different approaches:

◦ Schacht: combinatorial, multi-round exposure method

◦ Conlon and Gowers: analytic approach

◦ General transference principles
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General transference principles

B Schacht and Conlon & Gowers obtained general transference re-
sults: results that allow one to transfer classical density results (“full
environment”) to random sparse subenvironments

B Applications: results in additive combinatorics; graph and hypergraph
theorems
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The regularity method for sparse random graphs

B Early approaches to Conjecture 19: regularity method of Szemerédi for
subgraphs of sparse random graphs

◦ Schacht and Conlon and Gowers bypassed the regularity approach.

B Recently, the regularity method has been fully developed for subgraphs
of random graphs: Balogh, Morris, Samotij (2015), Saxton and Thoma-
son (2015), Conlon, Gowers, Samotij, and Schacht (2014).

B In short: the regularity method of Szemerédi works in sparse random
environments.



Regularity and blow-up lemmas III Motivation
24

Recall

B Shall have a fairly long discussion on motivation.

B Shall discuss rudiments of the regularity method for sparse graphs.
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Szemerédi’s regularity lemma

1. Tool for identifying the quasirandom structure of deterministic graphs.

2. Works very well for large, dense graphs: n-vertex graphs with ≥ cn2

edges, n→∞.

3. Variant for sparse graphs exists (sparse = with o(n2) edges).

4. With the recent embedding lemmas, the method works nicely/easily
when dealing with small subgraphs.
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ε-regularity

Definition 21 (ε-regular pair). G = (V, E) a graph; U, W ⊂ V non-empty
and disjoint. Say (U,W) is ε-regular (in G) if

B for all U ′ ⊂ U, W ′ ⊂W with |U ′| ≥ ε|U| and |W ′| ≥ ε|W|, we have∣∣∣∣∣|E(U ′,W ′)||U ′||W ′|
−

|E(U,W)|

|U||W|

∣∣∣∣∣ ≤ ε. (8)
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ε-regularity

The pair (U,W) is ε-regular if∣∣∣∣∣|E(U ′,W ′)||U ′||W ′|
−

|E(U,W)|

|U||W|

∣∣∣∣∣ ≤ ε. (9)

Equivalently,

|E(U ′,W ′)| = |U ′||W ′|

(
|E(U,W)|

|U||W|
± ε

)
. (10)

Clearly, not meaningful if

|E(U,W)|

|U||W|
→ 0 (11)

and ε is fixed. (We think of G = (V, E) with n = |V |→∞.)
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ε-regularity; multiplicative error version

Replace

|E(U ′,W ′)| = |U ′||W ′|

(
|E(U,W)|

|U||W|
± ε

)
(12)

by

|E(U ′,W ′)| = (1± ε)|E(U,W)|
|U ′||W ′|

|U||W|
. (13)

Altered condition becomes

B for all U ′ ⊂ U, W ′ ⊂W with |U ′| ≥ ε|U| and |W ′| ≥ ε|W|, we have∣∣∣∣∣|E(U ′,W ′)| − |E(U,W)|
|U ′||W ′|

|U||W|

∣∣∣∣∣ ≤ ε|E(U,W)|
|U ′||W ′|

|U||W|
. (14)

OK even if |E(U,W)|/|U||W|→ 0.
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Szemerédi’s regularity lemma, sparse version

Any graph with no ‘dense patches’ admits a Szemerédi partition with the
new notion of ε-regularity.

Definition 22 ((η, b)-bounded). Say G = (V, E) is (η, b)-bounded if for all
U ⊂ V with |U| ≥ η|V |, we have

#{edges within U} ≤ b|E|
(|U|
2

)(|V |
2

)−1
. (15)
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Szemerédi’s regularity lemma, sparse version

Theorem 23 (The regularity lemma). For any ε > 0, t0 ≥ 1, and b, there
exist η > 0 and T0 such that any (η, b)-bounded graph G admits a parti-
tion V = V1 ∪ · · · ∪ Vt such that

1. |V1| ≤ · · · ≤ |Vt| ≤ |V1| + 1

2. t0 ≤ t ≤ T0

3. at least (1 − ε)
(
t
2

)
pairs (Vi, Vj) (i < j) are ε-regular.

Proof. Just follow Szemerédi’s original proof.



Regularity and blow-up lemmas III Sparse triangle counting
31

A counting lemma (simplest version)

Setup. G = (V1, V2, V3;E) tripartite with

1. |Vi| = m for all i

2. (Vi, Vj) ε-regular for all i < j

3. |E(Vi, Vj)| = ρm
2 for all i < j

Notation: G = G
(ε)
3 (m, ρ) [G is an ε-regular triple with density ρ]

B Wish to embed K3 with V(K3) = {x1, x2, x3} such that xi is placed in Vi.
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A counting lemma (simplest version)

Just like random:

Lemma 24 (Counting Lemma; Embedding lemma). ∀ρ > 0, δ > 0 ∃ε > 0,
m0 : if m ≥ m0, then∣∣∣#{K3 ↪→ G

(ε)
3 (m, ρ)} − ρ3m3

∣∣∣ ≤ δm3. (16)
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Tough: counting Lemma is false if ρ→ 0

Fact 25. ∀ε > 0 ∃ρ > 0, m0 ∀m ≥ m0 ∃G
(ε)
3 (m, ρ) with

K3 6⊂ G(ε)
3 (m, ρ). (17)

[cf. Lemma 24]

Exercise 26. Prove Fact 25.
Hint 27. Consider the random tripartite graph G(t, t, t; δ/

√
t) (t = t(ε) and

δ = δ(ε) appropriate constants). Remove few edges to make it K3-free.
Blow up each vertex to an independent set of size n/t.

Change of focus (just for simplicity): from counting K3 ⊂ G(ε)
3 (m, ρ) to

existence of K3 ⊂ G(ε)
3 (m, ρ).
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Key observation

Counterexamples to the embedding lemma in the sparse setting do exist
(Fact 25), but

are extremely rare.
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An asymptotic enumeration lemma

Lemma 28. ∀β > 0 ∃ε > 0, C > 0, m0 : if T = ρm2 ≥ Cm3/2, then

#{G
(ε)
3 (m, ρ) 6⊃ K3} ≤ βT

(m2
T

)3
. (18)

Observe that ρ ≥ C/
√
m→ 0.
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Consequence for random graphs

Easy expectation calculations imply

B if p� 1/
√
n, then almost every G(n, p) is such that(

K3-free G(ε)
3 (m, ρ)

)
6⊂ G(n, p), (19)

if (*) mp� logn and ρ ≥ αp for some fixed α.

Conclusion. Recovered an ‘embedding lemma’ in the sparse setting, for
subgraphs of random graphs.

Corollary 29 (EL for subgraphs of r.gs). If p� 1/
√
n and (*) holds, then

almost every G(n, p) is such that if G(ε)
3 (m, ρ) ⊂ G(n, p), then

∃ι : K3 ↪→ G
(ε)
3 (m, ρ) ⊂ G(n, p). (20)
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The easy calculation

Recall T = ρm2, ρ ≥ αp, and mp� logn. Therefore

E(#{K3-free G(ε)
3 (m, ρ) ↪→ G(n, p)}) ≤ n3mo(1)T

(m2
T

)3
p3T

≤ n3m
(
o(1)

em2

T

)3T
p3T ≤ n3m

(
o(1)

em2p

T

)3T

= n3m
(
o(1)

em2p

ρm2

)3T
≤ n3m

(
o(1)

e

α

)3T

≤ e3m logn
(
o(1)

e

α

)3αm logn
= o(1).
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Superexponential bounds

Suppose we wish to prove a statement about all subgraphs of G(n, p).

• Too many such subgraphs: about 2p(
n
2)

• G(n, p) has no edges with probability (1 − p)(
n
2) ≥ exp{−2pn2}, if, say,

p ≤ 1/2.

• Concentration inequalities won’t do (2p(
n
2) vs e−2pn

2
).

• Bounds of the form

o(1)T
((m
2

)
T

)
(21)

for the cardinality of a family of ‘undesirable subgraphs’ U(m, T) do the
job. Use of such bounds goes back to Füredi (1994).
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An embedding lemma for K3 (sparse setting)

Scheme:

1. Proved an asymptotic enumeration lemma:

#{G
(ε)
3 (m, ρ) 6⊃ K3} = o(1)T

(m2
T

)3
. (22)

[T = ρm2]

2. Observed that this implies a.e. G(n,ω/
√
n) contains no K3-free

G
(ε)
3 (m, ρ) [any ω = ω(n)→∞ as n→∞].

3. Obtained a K3-embedding lemma for subgraphs of G(n, p), even when
p = ω/

√
n: for all G(ε)

3 (m, ρ) ⊂ G(n, p), have K3 ⊂ G(ε)
3 (m, ρ).
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General graphs H?

Suppose |V(H)| > 2. Recall

d2(H) =
|E(H)| − 1

|V(H)| − 2
(23)

and

m2(H) = max{d2(J) : J ⊂ H}. (24)

Theorem 30 (Balogh, Morris & Samotij 2015 and Saxton & Thomason
2015). ∀H, β > 0 ∃ε > 0, C > 0, m0 : if T = ρm2 ≥ Cm2−1/m2(H), then

#{G
(ε)
H (m, ρ) 6⊃ H} ≤ βT

(m2
T

)e(H)
. (25)

B Can’t miss: container lectures by Rob Morris next week!
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Consequences of Theorem 30

1. The Rödl–Ruciński theorem on the threshold for Ramsey properties of
random graphs (1-statement) and the Turán counterpart, with the best
possible edge probability.

2. Łuczak (2000): structural and enumerative consequences for H-free
graphs on n vertices and M edges
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Consequences of Theorem 30

Theorem 31 (Łuczak 2000). Suppose χ(H) = h ≥ 3. Then for every δ > 0
there exists C = C(δ, H) such that, almost surely, a graph chosen uniformly
at random from the family of all H-free labelled graphs on n vertices and
M ≥ Cn2−1/m2(H) edges can be made (h − 1)-partite by removing ≤ δM
edges.
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Consequences of Theorem 30

Theorem 32 (Łuczak 2000). Suppose χ(H) = h ≥ 3. Then for every ε > 0
there exist C = C(ε, H) and n0 = n0(ε, H) such that, for n ≥ n0 and
Cn2−1/d2(H) ≤M ≤ n2/C, we have(

h − 2

h − 1
− ε

)M
≤ P (G(n,M) 6⊃ H) ≤

(
h − 2

h − 1
+ ε

)M
. (26)

B G(n,M): random graph of order n with M edges (uniform distribution)
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The hereditary nature of regularity

Setup. B = (U,W;E) an ε-regular bipartite graph with |U| = |W| = m and
|E| = ρm2, ρ > 0 constant, and an integer d. Sample N ⊂ U and N ′ ⊂ W
with |N| = |N ′| = d uniformly at random.

Theorem 33 (Duke and Rödl 1985). For any β > 0, ρ > 0, and ε ′ > 0, if
ε ≤ ε0(β, ρ, ε ′), d ≥ d0(β, ρ, ε ′), and m ≥ m0(β, ρ, ε ′), then

P
(
(N,N ′) bad

)
≤ βd, (27)

where (N,N ′) is bad if
∣∣∣|E(N,N ′)|d−2 − ρ

∣∣∣ > ε ′ or else (N,N ′) is not
ε ′-regular.
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The hereditary nature of regularity

Exercise 34. For any k and δ > 0, there is C such that the following
holds. If χ(G − F) ≥ k for any F ⊂ E(G) with |F| ≤ δn2, then there
is H ⊂ G with χ(H) ≥ k and |V(H)| ≤ C. Can you guarantee many such
‘witnesses’ H?
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Local characterization for regularity

Setup. B = (U,W;E), a bipartite graph with |U| = |W| = m. Consider the
properties

(PC) for some constant p, have m−1∑
u∈U |deg(u) − pm| = o(m) and

1

m2

∑
u,u ′∈U

|deg(u, u ′) − p2m| = o(m). (28)

(R) (U,W) is o(1)-regular (classical sense).

Theorem 35. (PC) and (R) are equivalent.
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A proof of Theorem 33

Let a graph F = (U, E) with |U| = m and |E| ≤ η
(
m
2

)
be given. Suppose

we select a d-set N uniformly at random from U. We are then interested in
giving an upper bound for e(F[N]), the number of edges that the set N will
induce in F.

Lemma 36. For every α and β > 0, there exist η0 = η0(α, β) > 0 such that,
whenever 0 < η ≤ η0, we have

P
(
e(F[N]) ≥ α

(d
2

))
≤ βd. (29)

Proof. Exercise!

Exercise 37. Use Lemma 36 and Theorem 35 to prove Theorem 33.
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The hereditary nature of sparse regularity

Definition 38 ((ε, p)-lower-regularity). Suppose 0 < ε < 1 and 0 < p ≤ 1.
A bipartite graph B = (U,W;E) is (ε, p)-lower-regular if for all U ′ ⊂ U and
W ⊂W with |U ′| ≥ ε|U| and |W ′| ≥ ε|W|, we have

e(U ′,W ′)

|U ′||W|
≥ (1 − ε)p. (30)
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The hereditary nature of sparse regularity

Setup. B = (U,W;E) an (ε, p)-lower-regular bipartite graph with |U| =

|W| = m and |E| = pm2 and integer d. Sample N ⊂ U and N ′ ⊂ W

with |N| = |N ′| = d uniformly at random.

Theorem 39 (Gerke, K., Rödl & Steger 2007). For all 0 < β, ε ′ < 1, there
exist ε0 = ε0(β, ε

′) > 0 and C = C(ε ′) such that, for any 0 < ε ≤ ε0 and
0 < p < 1, the following holds. Let G = (U,W;E) be an (ε, p)-lower-regular
bipartite graph and suppose d ≥ Cp−1. Then

P
(
(N,N ′) bad

)
≤ βd, (31)

where (N,N ′) is bad if (N,N ′) is not (ε ′, p)-lower-regular.
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The hereditary nature of sparse regularity

Setup. B = (U,W;E) an (ε, p)-lower-regular bipartite graph with |U| =

|W| = m, |E| = pm2, and p ≥ αq. Also, suppose we have two other bipartite
graphs A = (U ′, U;EA) and C = (W,W ′;EC), also (ε, p)-lower-regular.

Corollary 40 (Quite imprecise. . . ). Suppose A∪B∪C ⊂ G(n, q) and u ′ ∈
U ′ and w ′ ∈W ′ are ‘typical’ vertices. If pm� 1/p then B[ΓA(u ′), ΓC(w ′)]
is (f(ε), p)-lower-regular (f(ε)→ 0 as ε→ 0).

B Corollary above may be used in inductive embedding schemes.
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Local characterization for sparse regularity

Remark: (very imprecisely) a similar statement to Theorem 35 may be
proved for subgraphs of random graphs.


