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Course outline

1. Lecture I. Introduction to the regularity method

2. Lecture II. The blow-up lemma

3. Lecture III. The sparse case: small subgraphs

4. Lecture IV. The sparse case: large subgraphs
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Lecture II. The blow-up lemma
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From Lecture I

B Elements of the regularity method

B The regularity lemma

∀G : G ≈ Grand (w.r.t. small subgraph statistics)

B Embedding lemmas

∀ bdd deg & sufficiently small H & G
(ε)
r (m, ρ) : H ↪→ G

(ε)
r (m, ρ)
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Applications of the the blow-up lemma

So far: we saw the regularity method applied to problems involving sub-
graphs H = H` of some G = Gn with ` = o(n).

We are now concerned with the case in which ` ≈ n or even ` = n (almost
spanning or spanning subgraph problems).

(i ) The Alon–Yuster conjecture

(ii ) The Pósa–Seymour conjecture
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The Alon–Yuster theorem & conjecture

Theorem 1 (Alon and Yuster (1997)). ∀ε > 0, h ≥ 1 ∃n0 = n0(ε, h)

such that, for every H = Hh and n ≥ n0, any G = Ghn with minimum
degree δ(G) ≥ (1 − 1/χ(H) + ε)hn has an H-factor.

Conjecture 2. δ(G) ≥ (1 − 1/χ(H))nh + c(h) suffices.
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The Pósa–Seymour conjecture

Conjecture 3. SupposeG = Gn. If δ(G) ≥ (1−1/(k+1))n, thenG contains
the kth power of a Hamilton cycle.

Theorem 4 (Hajnal–Szemerédi (1970)). Suppose G = Gn = Gs(k+1).
If δ(G) ≥ (1 − 1/(k + 1))n, then G ⊃ sKk+1.

Theorem 5 (Corrádi–Hajnal (1963)). Suppose G = G3s. If δ(G) ≥ 2s,
then G ⊃ sK3.



Regularity and blow-up lemmas II Applications
7

Komlós–Sárközy–Szemerédi theorems

Theorem 6. The Alon–Yuster conjecture holds for all n ≥ n0(H).

Theorem 7. The Pósa–Seymour conjecture holds for all n ≥ n0(k).

A key tool: the blow-up lemma

Before we proceed:

Exercise 8. Prove that the minimum degree conditions are best possible.
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Basic definition

Definition 9 ((ε, δ)-super-regular). Fix ε and δ > 0. The bipartite graph
G = (V1, V2;E) with |V1| = |V2| = n is an (ε, δ)-super-regular pair if

B for all W1 ⊂ V1, W2 ⊂ V2 with |W1|, |W2| ≥ εn, we have

|d(W1,W2) − d(V1, V2)| ≤ ε,

B deg(v) ≥ δn for all v ∈ V1 ∪ V2.

Terminology:

◦ ‘regular’: edges uniformly distributed

◦ ‘super’: high minimum degree
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Exercises

Exercise 10. Prove that, for any positive ρ and δ, there are ε > 0 and n0 for
which the following holds. Suppose G = (U,W;E) is an (ε, δ)-super-regular
pair with |U| = |W| ≥ n0 and density d(U,W) = e(U,W)/|U||W| ≥ ρ.
Then G has a perfect matching.

You can also try your teeth on the following:

Exercise 11. Prove that, for any positive ρ and δ, there are ε > 0 and n0 for
which the following holds. Suppose G = (U,W;E) is an (ε, δ)-super-regular
pair with |U| = |W| ≥ n0 and density d(U,W) = e(U,W)/|U||W| ≥ ρ.
Then G has a Hamilton path/cycle.
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The Blow-up Lemma

Theorem 12 (The Blow-up Lemma (Komlós, Sárközy & Szemerédi 1997)).
∀δ > 0, ∆, r ∈ N ∃ε > 0 for which the following holds. Let G∗ =

(V1, . . . , Vr;E
∗) and G = (V1, . . . , Vr;E) be two r-partite graphs. Suppose

R ⊂
(
[r]
2

)
is such that if ij ∈ R, then (Vi, Vj) is a complete bipartite graph

in G∗ and (Vi, Vj) is an (ε, δ)-super-regular pair in G. If H with ∆(H) ≤ ∆
can be If H with ∆(H) ≤ ∆ can be [ . . . ]
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The Blow-up Lemma

G∗

V1

V2

V3

V4

V5

G; super-regular pairs

V1

V2

V3

V4

V5

H

If f∗ exists, the f exists.
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The Blow-up Lemma

G∗

V1

V2

V3

V4

V5

G; super-regular pairs

V1

V2

V3

V4

V5

H

f∗ f

If f∗ exists, the f exists.
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The Blow-up Lemma

Theorem 13 (The Blow-up Lemma (Komlós, Sárközy & Szemerédi 1997)).
∀δ > 0, ∆, r ∈ N ∃ε > 0 for which the following holds. Let G∗ =

(V1, . . . , Vr;E
∗) and G = (V1, . . . , Vr;E) be two r-partite graphs. Suppose

R ⊂
(
[r]
2

)
is such that if ij ∈ R, then (Vi, Vj) is a complete bipartite graph

in G∗ and (Vi, Vj) is an (ε, δ)-super-regular pair in G. If H with ∆(H) ≤ ∆
can be embedded into G∗, then it can also be embedded into G.
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Remarks

◦ Already interesting in the case in which

G∗ = (V∗1 , . . . , V
∗
r ;E
∗) and |V∗i | = .99|Vi| for all i.

◦ Super-regularity not required in this case.

◦ Recall the challenge from Lecture I (almost spanning embedding
lemma).
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Proof of the blow-up lemma (rough sketch)

(i ) Almost spanning embedding lemma

(ii ) A König–Hall argument

Shall prove (i ). Shall only mumble a few words about (ii ).
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Almost spanning embedding lemma

Blow-up lemma with G∗ = (V∗1 , . . . , V
∗
r ;E
∗) and |V∗i | = .99|Vi| for every i.

Suppose H has vertex classes X1, . . . , Xr.

A trick (Alon–Füredi trick):

B Make the Xi 2-independent (or even more).

B Achieve this by refining the partition (Xi): use a proper colouring of the
square of H.

B Can use Hajnal–Szemerédi (complementary form) to make the new
vertex classes of H of the same size (up to 1).

B Refine the partition (Vi) randomly, watching out for the sizes (want the
vertex partitions of H and G to be compatible).
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Almost spanning embedding lemma

Suppose:

(i ) Xi 2-independent in H and |Xi| = (1 − µ)m for all 1 ≤ i ≤ r.

(ii ) |Vi| = m for all i.

(iii ) Set aside Vqi ⊂ Vi with |Vq| = (µ/2)m for each i.

(iv ) x1, . . . , x` is some ordering, say τ, of X = V(H).

(v ) Shall embed the xi basically following τ.

(vi ) Partial embeddings will be ψ0 = ∅, ψ1, ψ2, . . . .
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Almost spanning embedding lemma

B We’ll map Xi into Vi. If x ∈ Xi, then let V(x) = Vi.

Further details: for t = 0, 1, . . . , we let

(i ) Ct(x) = V(x) ∩
⋂ {
NG(ψt(y)) : y ∈ NH(x) and y ∈ Dom(ψt)

}
,

(ii ) At(x) = Ct(x) \ Im(ψt),

(iii )

Bt(x) =
{
v ∈ At(x) : ∃y ∈ NH(x), y /∈ Dom(ψt),

and |NG(v) ∩ At(y) \ Vq| < (ρ − ε)|At(y) \ V
q|

or |NG(v) ∩ Ct(y) ∩ Vq| < (ρ − ε)|Ct(y) ∩ Vq|
}
,

(iv ) πt(x) = |Dom(ψt) ∩NH(x)|.
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Algorithm 1: Random greedy algorithm

Input :G and H with compatible partitions; an ordering τ on X = V(H)

1 t := 0; ψ0 := ∅; Q0 := ∅;
2 repeat
3 let x ∈ X \ (Dom(ψt) ∪Qt) be the next vertex in the order τ;

4 choose v ∈ At(x) \ Bt(x) \ Vq uniformly at random;

5 ψt+1 := ψt ∪ {x 7→ v}; Qt+1 := Qt;

6 foreach y ∈ X \Dom(ψt+1) do

7 if |At+1(y) \ Vq| < 1
2
µ(ρ − ε)πt+1(y)|V(y)| then

8 Qt+1 := Qt+1 ∪ {y};

9 t := t + 1;

10 until Dom(ψt) ∪Qt = X;

11 embed H[Qt] into G[Vq], respecting ψt built above;



Regularity and blow-up lemmas II Proof of the BUL
20

Embedding queue vertices

Let tRGAend be the last value of t, so that we have the partial embed-
ding ψtRGAend before we try to embed H[Qt] into G[Vq]. A crucial lemma is
as follows:

Lemma 14. With high probability, Qt ∩ Xi never gets too large.

If |Qt ∩ Xi|� ρ∆|Vq|, then H[Qt] ⊂ G[Vq] (positive proportion embedding
lemma).

Corollary 15. The embedding of H[Qt] into G[Vq] succeeds with high pro-
bability.
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The main lemma

Lemma 16 (Uniform distribution of candidate sets). Suppose ε � µ, ρ, κ
and 1/∆ and let ∅ = ψ0, ψ1, . . . , ψT be partial embeddings with each ψt
obtained from ψt−1 by embedding some x ∈ V(H) \ Dom(ψt−1) to a
uniform random vertex from a subset of Ct−1(x) of size at least

1
4µ(ρ − ε)

πt−1(x)|V(x)|.

The following holds with probability at least 1 − r2−n/r. For every i ∈ [r]

and every set W ⊂ Vi of size at least κ|Vi|, the number of vertices x ∈ Xi
such that there exists t = t(x) when x is unembedded and, moreover,

|Ct(x) ∩W| < (ρ − ε)πt(x) |W|

is at most κ|Xi|.
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The queues never get too large

Proof of Lemma 14 (rough sketch). Let W = Vi \V
q \ Im(ψtRGAend). Have

|W| ≥ (µ/2)|Vi|. Suppose x ∈ Xi got into Qt at time t = t(x). We have

Ct(x) ∩W ⊂ At(x) \ Vq.

Since x ∈ Qt, we have

|Ct(x) ∩W| ≤ |At(x) \ V
q| ≤ 1

2µ(ρ − ε)
πt(x)|V(x)| ≤ (ρ − ε)πt(x)|W|.

By Lemma 16, have at most κ|Xi| such x, with high probability.
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The main lemma

Proof of Lemma 16 (rough sketch). Fix i and W ⊂ Vi with |W| ≥ κ|Vi|.
Suppose x ∈ Xi is unembedded and, moreover,

|Ct(x) ∩W| < (ρ − ε)πt(x) |W|.

Pick the first time t = t(x) such that the inequality above holds. Some y ∈
NH(x) was embedded to form ψt. This y was mapped onto a vertex v
that is bad with respect to W (at most ε|V(y)| choices), and v was selected
from a set of size at least 14µ(ρ − ε)

πt−1(y)|V(y)|. Probability of this event
is > ε/µρ∆. Because of the 2-independence of Xi, the map x 7→ y(x) is
injective. The probabilities multiply, and the probability that there are κ|Xi|
such x is

>
(
ε∆

µρ∆

)κ|Xi|
≤ 2−4|Xi|.

Now use union bound over all i and W.
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The König–Hall argument

(i ) Now G∗ = (V∗1 , . . . , V
∗
r ;E
∗) and |V∗i | = |Vi| for all i.

(ii ) Key: set aside a set of buffer vertices in each Xi, say, Xbuffi ⊂ Xi.
Let |Xbuffi | = µ|Xi|.

(iii ) Choose Xbuffi so that Xbuff =
⋃
i X

buff
i is 4-independent.

(iv ) Run the random greedy algorithm between X \ Xbuff and V = V(G).
This gives ψ− : H[X \ Xbuff ] ↪→ G.

(v ) Embed Xbuff into Vbuff = V\Im(ψ−) by showing that C(x)∩Vbuff (x ∈
Xbuff) has a system of distinct representatives (vx)x∈Xbuff . Extend ψ−

by mapping x onto vx for all x ∈ Xbuff .

(vi ) Check König–Hall conditions: small sets (easy), medium sized sets
(harder), very large sets (hard).
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Example applications

(i ) Very approximate Alon–Yuster

(ii ) Square of almost Hamilton cycles—approximate version
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Very approximate Alon–Yuster

Theorem 17. Fix ε > 0 and H = Hh. Then any G = Gn with n ≥ n0(ε, H)
with minimum degree δ(G) ≥ (1− 1/χ(H) + ε)n contains (1− ε)n/h vertex
disjoint copies of H.

◦ Doesn’t require blow-up; constant size embedding lemma suffices.

Useful to note that the clean-up graph G∗ obtained from regularization may
be required to satisfy a minimum degree condition.
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Cleaned-up graph G∗ with minimum degree condition

Definition 18. After regularization of G, have V = V1 ∪ · · · ∪ Vt. Remove
all edges in G[Vi, Vj] for all i and j such that

1. (Vi, Vj) is not ε-regular,

2. |E(Vi, Vj)| ≤ f(ε)|Vi||Vj| (suitable f with f(ε)→ 0 as ε→ 0).

Resulting graph: cleaned-up graph G∗.

In G∗, every G∗[Vi, Vj] is regular and ‘dense’. Usually, lose very little.
By allowing an exceptional class V0 with |V0| ≤ ε|V |, may require, for
every v ∈ V(G) \ V0, that

degG∗(v) ≥ degG(v) − g(ε)n,

for some g with g(ε)→ 0 as ε→ 0.
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Very approximate Alon–Yuster

Exercise 19. Prove the very approximate Alon–Yuster theorem.

Hint 20. Clean-up graph with mindeg condition + Hajnal–Szemerédi.
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Squares of almost Hamilton cycles—approximate form

Theorem 21. Suppose G = Gn and n ≥ n0. If δ(G) ≥ (2/3 + ε)n, then G
contains the square of a cycle with ≥ (1 − ε)n vertices.

Exercise 22. Prove the theorem above.

Hint 23. Clean-up graph with mindeg condition + Corrádi–Hajnal + almost
spanning blow-up lemma + image restrictions.
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Summary

◦ Got a glimpse into how to use the regularity method to find large
subgraphs in given graphs; key tool: blow-up lemma.


