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Course outline

1. Lecture l. Introduction to the regularity method
2. Lecture Il. The blow-up lemma
3. Lecture lll. The sparse case: small subgraphs

4. Lecture IV. The sparse case: large subgraphs
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Lecture Il. The blow-up lemma
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From Lecture |

> Elements of the regularity method
> The regularity lemma

VG : G =~ G""9 (w.r.t. small subgraph statistics)

> Embedding lemmas

v bdd deg & sufficiently small H & G1¢)(m, p) : H — G\ (m, p)
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Applications of the the blow-up lemma

So far: we saw the regularity method applied to problems involving sub-
graphs H = H' of some G = G™ with £ = o(n).

We are now concerned with the case in which £ = n or even { = n (almost
spanning or spanning subgraph problems).

(/) The Alon—Yuster conjecture

(if) The Pésa—Seymour conjecture
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The Alon—Yuster theorem & conjecture

Theorem 1 (Alon and Yuster (1997)).Ve > 0, h > 1 dny = ny(e, h)
such that, for every H = H" andn > ng, any G = G with minimum
degree 6(G) > (1 — 1/x(H) + ¢)hn has an H-factor.

Conjecture 2. 5(G) > (1 — 1/x(H))nh 4+ c(h) suffices.
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The Pdsa—Seymour conjecture

Conjecture 3. Suppose G = G™. If6(G) > (1—1/(k+1))n, then G contains
the kth power of a Hamilton cycle.

Theorem 4 (Hajnal-Szemerédi (1970)). Suppose G = G™ = GSlk+1),
IF6(G) > (1—1/(k+1))n, then G D skKk+t1,

Theorem 5 (Corradi—Hajnal (1963)). Suppose G = G35. If §(G) > 2s,
then G D sk3.
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Komlbos—Sarkozy—Szemeredi theorems

Theorem 6. The Alon—Yuster conjecture holds for alln > ny(H).

Theorem 7. The Posa—Seymour conjecture holds for alln > ny(k).

A key tool: the blow-up lemma

Before we proceed:

Exercise 8. Prove that the minimum degree conditions are best possible.

7



Regularity and blow-up lemmas |l The blow-up lemma

Basic definition

Definition 9 ((e, 6)-super-regular). Fix ¢ and &6 > 0. The bipartite graph
G = (Vq, Vo, E) with |V;| = |Vo| = n is an (¢, d)-super-reqular pair if

> for all Wi C Vi, W, C V, with |W;|, IW>| > en, we have
[d(Wq,W3) — d(V7, V2)| <,

> deg(v) > on forallv € Vi UV,.

Terminology:
o ‘regular’: edges uniformly distributed

o ‘super’: high minimum degree
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Exercises

Exercise 10. Prove that, for any positive p and §, there are ¢ > 0 and n for
which the following holds. Suppose G = (U, W, E) is an (e, b)-super-regular
pair with |U| = |W| > ny and density d(U,W) = e(U, W)/[U||W]| > p.
Then G has a perfect matching.

You can also try your teeth on the following:

Exercise 11. Prove that, for any positive p and 9, there are ¢ > 0 and n for
which the following holds. Suppose G = (U, W; E) is an (e, d)-super-reqular
pair with |U| = |W| > ny and density d(U,W) = e(U, W)/[U]|W]| > bp.
Then G has a Hamilton path/cycle.
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The Blow-up Lemma

Theorem 12 (The Blow-up Lemma (Komlos, Sarkozy & Szemeréedi 1997)).
Vo6 > 0, A, r € N de > 0 for which the following holds. Let G* =
(V1,...,VisE*) and G = (V4,..., Vs, E) be two r-partite graphs. Suppose
R C ([E]) is such that if ij € R, then (V;,V;) is a complete bipartite graph
in G* and (Vi,V;) is an (¢, 8)-super-reqular pair in G. If H with A(H) < A
can be IfH with A(H) < Acanbe]|...]
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The Blow-up Lemma

H

G; super-regular pairs
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Exercises &

The Blow-up Lemma

H
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If * exists, the f exists.

G; super-regular pairs
V3
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The Blow-up Lemma

Theorem 13 (The Blow-up Lemma (Komlos, Sarkozy & Szemerédi 1997)).
Vo > 0, A, r € N de > 0 for which the following holds. Let G* =
(V1,...,VisE*) and G = (V4,..., Vy; E) be two r-partite graphs. Suppose
R C ([E]) is such that if ij € R, then (Vi, V;) is a complete bipartite graph
in G* and (Vi, V;) is an (¢, 8)-super-regular pair in G. If H with A(H) < A
can be embedded into G*, then it can also be embedded into G.
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Remarks

o Already interesting in the case in which

G* = (Vy,...,V;3E") and  |Vi| = .99V for all i.

o Super-regularity not required in this case.

o Recall the challenge from Lecture | (almost spanning embedding
lemma).
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Proof of the blow-up lemma (rough sketch)

(/) Almost spanning embedding lemma

(/1) A Konig—Hall argument

Shall prove (/). Shall only mumble a few words about (/i ).
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Almost spanning embedding lemma

Blow-up lemma with G* = (V7,..., V{5 E*) and [V = .99|V;] for every i.
Suppose H has vertex classes Xj, ..., Xr.

A trick (Alon—Furedi trick):

> Make the X; 2-independent (or even more).

> Achieve this by refining the partition (X;): use a proper colouring of the
square of H.

> Can use Hajnal-Szemerédi (complementary form) to make the new
vertex classes of H of the same size (up to 1).

> Refine the partition (V;) randomly, watching out for the sizes (want the
vertex partitions of H and G to be compatible).
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Almost spanning embedding lemma

Suppose:

(/) X; 2-independentin Hand [X;| = (1 —umforall1 <i <.
(if) |V;] = m for all i.
(iii) Setaside V! C V; with [V9| = (n/2)m for each i.
(iv) x1,...,xp IS some ordering, say T, of X = V(H).
(v) Shall embed the x; basically following .

(vi) Partial embeddings will be 1y = 0, {1, P, . ...



Regularity and blow-up lemmas |l Proof of the BUL

Almost spanning embedding lemma

> We'll map X; into V;. If x € X;, then let V(x) = V;.
Further details: fort =0, 1,..., we let
(i) Ci(x) =V(x)NN{Ngt(y)):y € Ny(x) andy € Dom(y) },
(if) At(x) = Ce(x) \Im(y),
(iif
B(x) = {v € At(x) : Iy € Ny(x), y & Dom(y),

and [Ng(v) N A¢(y) \ VI < (p — e)|A¢(y) \ VI
or [Ng(v) N Ce(y) NVI < (p — €)ICely) N VI},

(iv) me(x) = Dom(Pg) N Ny (x)l.
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Proof of the BUL

Algorithm 1: Random greedy algorithm

Input: G and H with compatible partitions; an ordering T on X = V(H)

t:=0; Yo:=0; Qp:=0;
repeat
let x € X\ (Dom(1¢) U Q) be the next vertex in the order T;
choose v € A(x) \ Bi(x) \ V9 uniformly at random;
Y =P U{x = vl Qi1 := Qx;
foreach y € X\ Dom(\.1) do

if A1 (y)\ VI < Ju(p — &)™ W|V(y)| then

Qi1 = Qe Uy

t=t+4+1;
until Dom(Y:) U Q¢ = X;
embed H[Q+] into G[VY], respecting W built above;

19
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Embedding queue vertices

Let trgaeng € the last value of t, so that we have the partial embed-
ding Pigsa.ng OEfOre we try to embed H[Q¢] into G[VY]. A crucial lemma is
as follows:

Lemma 14. With high probability, Q1 N X; never gets too large.

If |Q¢ N Xi| < p2|VY|, then H[Q{] C G[VY] (positive proportion embedding
lemma).

Corollary 15. The embedding of H[Q+] into G[VY] succeeds with high pro-
bability.
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The main lemma

Lemma 16 (Uniform distribution of candidate sets). Suppose ¢ < u, p, K
and 1/A and let ) = Vg, U1, ..., b1 be partial embeddings with each 1
obtained from \V¢_1 by embedding some x € V(H) \ Dom({{_1) to a
uniform random vertex from a subset of C;_1(x) of size at least

u(p — &)1V (x)].

o

The following holds with probability at least 1 — r2~™/T. For every i € [1]
and every set W C V; of size at least k|V;|, the number of vertices x € X;
such that there exists t = t(x) when x is unembedded and, moreover,

Ci(x) N W] < (p— )™M (W

is at most k|X;|.
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The queues never get too large

Proof of Lemma 14 (rough sketch). Let W = Vi \ VINIm (g, 4)- Have
W] > (1/2)|V;]. Suppose x € X; gotinto Q¢ attime t = t(x). We have

Ci(x) "W C A¢(x) \ VY.
Since x € Q¢, we have
Ce(x) N W] < JAL() \ VI < Julp — &)™ V()| < (p— )™M,
By Lemma 16, have at most «|X;| such x, with high probability. ]
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The main lemma

Proof of Lemma 16 (rough sketch). Fix i and W C V; with |W| > «|V;].
Suppose x € X; is unembedded and, moreover,

Ce(x) N W] < (p— &)™ |

Pick the first time t = t(x) such that the inequality above holds. Some y €
Ny(x) was embedded to form V. This y was mapped onto a vertex v
that is bad with respect to W (at most ¢|V(y)| choices), and v was selected
from a set of size at least Juu(p — &)™-1Y)|V(y)|. Probability of this event
is < ¢/up?. Because of the 2-independence of X;, the map x — y(x) is
injective. The probabilities multiply, and the probability that there are «|X;]

such x is
K|X;]|
< (—“}) <2,
Ho

Now use union bound over all 1 and W. (]
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The Konig—Hall argument

(i) Now G* = (V§,..., V5 E*) and |V = [V foralli.

(i) Key: set aside a set of buffer vertices in each X;, say, XPUT C X;.
Let [XPUTT| = p/X].
(iif) Choose XPUTT so that XPUTT = J; XPU™ s 4-independent.

(iv) Run the random greedy algorithm between X \ XPU" and v = V(G).
This gives {—: H[X \ XPuTf] — G.

(v) Embed XPUTl into VPUTT — Vv\Im(y—) by showing that C(x)NVPUTT (x
XPU™) has a system of distinct representatives (vx), . yourr- Extend
by mapping x onto vy for all x € XPUTT.

(vi) Check Kdnig—Hall conditions: small sets (easy), medium sized sets
(harder), very large sets (hard).
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Example applications

() Very approximate Alon—Yuster

(/1) Square of almost Hamilton cycles—approximate version
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Very approximate Alon—Yuster

Theorem 17. Fix e > 0 and H = H". Then any G = G™ withn > ny(e, H)
with minimum degree 5(G) > (1 —1/x(H) 4+ ¢)n contains (1 — ¢)n/h vertex
disjoint copies of H.

o Doesn’t require blow-up; constant size embedding lemma suffices.

Useful to note that the clean-up graph G* obtained from regularization may
be required to satisfy a minimum degree condition.
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Cleaned-up graph G* with minimum degree condition

Definition 18. After reqularization of G, have V = V; U - - - U V. Remove
all edges in G|V, V;l for all i and j such that

1. (Vi,V;) is not e-regular,

2. [E(Vy, V3l < 1(e)VillVjl (suitable T with f(e) — 0 ase — 0).

Resulting graph: cleaned-up graph G*.

In G¥, every G*[Vi,Vj] is regular and ‘dense’. Usually, lose very little.
By allowing an exceptional class V, with |V,| < ¢|V|, may require, for
every v € V(G) \ V), that

degg+(v) > degg(v) —gle)n,
for some g with g(¢) — 0as ¢ — 0.
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Very approximate Alon—Yuster

Exercise 19. Prove the very approximate Alon—Yuster theorem.

Hint 20. Clean-up graph with mindeg condition + Hajnal-Szemeréedi.
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Squares of almost Hamilton cycles—approximate form

Theorem 21. Suppose G = G™ andn > ngy. If6(G) > (2/3 + ¢)n, then G
contains the square of a cycle with > (1 — ¢)n vertices.

Exercise 22. Prove the theorem above.

Hint 23. Clean-up graph with mindeg condition + Corradi—Hajnal + almost
spanning blow-up lemma + image restrictions.
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Summary

o Got a glimpse into how to use the regularity method to find large
subgraphs in given graphs; key tool: blow-up lemma.
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