The regularity method and blow-up lemmas for sparse graphs

Y. Kohayakawa (São Paulo)

SPSAS Algorithms, Combinatorics and Optimization

University of São Paulo

July 2016

Partially supported CAPES/DAAD (430/15), CNPq (459335/2014-6, 310974/2013-5), and FAPESP (2013/07699-0, 2013/03447-6)

Course outline

- 1. Lecture I. Introduction to the regularity method
- 2. Lecture II. The blow-up lemma
- 3. Lecture III. The sparse case: small subgraphs
- 4. Lecture IV. The sparse case: large subgraphs

Lecture II. The blow-up lemma

From Lecture I

- Elements of the regularity method
- ▷ The regularity lemma

 $\forall G : G \approx G^{rand}$ (w.r.t. small subgraph statistics)

Embedding lemmas

 \forall bdd deg & sufficiently small H & $G_r^{(\epsilon)}(m, \rho) : H \hookrightarrow G_r^{(\epsilon)}(m, \rho)$

Applications of the the blow-up lemma

So far: we saw the regularity method applied to problems involving subgraphs $H = H^{\ell}$ of some $G = G^n$ with $\ell = o(n)$.

We are now concerned with the case in which $l \approx n$ or even l = n (almost spanning or spanning subgraph problems).

- (*i*) The Alon–Yuster conjecture
- (*ii*) The Pósa–Seymour conjecture

The Alon–Yuster theorem & conjecture

Theorem 1 (Alon and Yuster (1997)). $\forall \epsilon > 0$, $h \ge 1 \exists n_0 = n_0(\epsilon, h)$ such that, for every $H = H^h$ and $n \ge n_0$, any $G = G^{hn}$ with minimum degree $\delta(G) \ge (1 - 1/\chi(H) + \epsilon)hn$ has an H-factor.

Conjecture 2. $\delta(G) \ge (1 - 1/\chi(H))nh + c(h)$ suffices.

The Pósa–Seymour conjecture

Conjecture 3. Suppose $G = G^n$. If $\delta(G) \ge (1-1/(k+1))n$, then G contains the kth power of a Hamilton cycle.

Theorem 4 (Hajnal–Szemerédi (1970)). Suppose $G = G^n = G^{s(k+1)}$. If $\delta(G) \ge (1 - 1/(k+1))n$, then $G \supset sK^{k+1}$.

Theorem 5 (Corrádi–Hajnal (1963)). Suppose $G = G^{3s}$. If $\delta(G) \ge 2s$, then $G \supset sK^3$.

Komlós–Sárközy–Szemerédi theorems

Theorem 6. The Alon–Yuster conjecture holds for all $n \ge n_0(H)$.

Theorem 7. The Pósa–Seymour conjecture holds for all $n \ge n_0(k)$.

A key tool: the blow-up lemma

Before we proceed:

Exercise 8. Prove that the minimum degree conditions are best possible.

Basic definition

Definition 9 ((ε , δ)-super-regular). *Fix* ε and $\delta > 0$. *The bipartite graph* $G = (V_1, V_2; E)$ with $|V_1| = |V_2| = n$ is an (ε , δ)-super-regular pair if

 \triangleright for all $W_1 \subset V_1$, $W_2 \subset V_2$ with $|W_1|$, $|W_2| \ge \epsilon n$, we have

 $|d(W_1, W_2) - d(V_1, V_2)| \leq \varepsilon,$

 $\triangleright \ \text{deg}(\nu) \geq \delta n \text{ for all } \nu \in V_1 \cup V_2.$

Terminology:

- 'regular': edges uniformly distributed
- 'super': high minimum degree

Exercises

Exercise 10. Prove that, for any positive ρ and δ , there are $\varepsilon > 0$ and n_0 for which the following holds. Suppose G = (U, W; E) is an (ε, δ) -super-regular pair with $|U| = |W| \ge n_0$ and density $d(U, W) = e(U, W)/|U||W| \ge \rho$. Then G has a perfect matching.

You can also try your teeth on the following:

Exercise 11. Prove that, for any positive ρ and δ , there are $\varepsilon > 0$ and n_0 for which the following holds. Suppose G = (U, W; E) is an (ε, δ) -super-regular pair with $|U| = |W| \ge n_0$ and density $d(U, W) = e(U, W)/|U||W| \ge \rho$. Then G has a Hamilton path/cycle.

9

The Blow-up Lemma

Theorem 12 (The Blow-up Lemma (Komlós, Sárközy & Szemerédi 1997)). $\forall \delta > 0, \Delta, r \in \mathbb{N} \exists \epsilon > 0$ for which the following holds. Let $G^* = (V_1, \ldots, V_r; E^*)$ and $G = (V_1, \ldots, V_r; E)$ be two r-partite graphs. Suppose $R \subset {[r] \choose 2}$ is such that if $ij \in R$, then (V_i, V_j) is a complete bipartite graph in G^* and (V_i, V_j) is an (ϵ, δ) -super-regular pair in G. If H with $\Delta(H) \leq \Delta$ can be If H with $\Delta(H) \leq \Delta$ can be $[\ldots]$

10

The Blow-up Lemma

If f* exists, the f exists.

The Blow-up Lemma

Theorem 13 (The Blow-up Lemma (Komlós, Sárközy & Szemerédi 1997)). $\forall \delta > 0, \Delta, r \in \mathbb{N} \exists \epsilon > 0$ for which the following holds. Let $G^* = (V_1, \ldots, V_r; E^*)$ and $G = (V_1, \ldots, V_r; E)$ be two r-partite graphs. Suppose $R \subset {[r] \choose 2}$ is such that if $ij \in R$, then (V_i, V_j) is a complete bipartite graph in G^* and (V_i, V_j) is an (ϵ, δ) -super-regular pair in G. If H with $\Delta(H) \leq \Delta$ can be embedded into G^* , then it can also be embedded into G.

13

Remarks

• Already interesting in the case in which

 $G^* = (V_1^*, \dots, V_r^*; E^*)$ and $|V_i^*| = .99|V_i|$ for all i.

- Super-regularity not required in this case.
- Recall the challenge from Lecture I (almost spanning embedding lemma).

Proof of the blow-up lemma (rough sketch)

- (*i*) Almost spanning embedding lemma
- (ii) A König–Hall argument

Shall prove (*i*). Shall only mumble a few words about (*ii*).

Almost spanning embedding lemma

Blow-up lemma with $G^* = (V_1^*, \dots, V_r^*; E^*)$ and $|V_i^*| = .99|V_i|$ for every i. Suppose H has vertex classes X_1, \dots, X_r .

A trick (Alon–Füredi trick):

- \triangleright Make the X_i 2-independent (or even more).
- Achieve this by refining the partition (X_i): use a proper colouring of the square of H.
- Can use Hajnal–Szemerédi (complementary form) to make the new vertex classes of H of the same size (up to 1).
- \triangleright Refine the partition (V_i) randomly, watching out for the sizes (want the vertex partitions of H and G to be *compatible*).

Almost spanning embedding lemma

Suppose:

- (*i*) X_i 2-independent in H and $|X_i| = (1 \mu)m$ for all $1 \le i \le r$.
- (*ii*) $|V_i| = m$ for all i.
- (*iii*) Set aside $V_i^q \subset V_i$ with $|V^q| = (\mu/2)m$ for each i.
- (*iv*) x_1, \ldots, x_ℓ is some ordering, say τ , of X = V(H).
- (v) Shall embed the x_i basically following τ .
- (*vi*) Partial embeddings will be $\psi_0 = \emptyset, \psi_1, \psi_2, \dots$

Almost spanning embedding lemma

▷ We'll map X_i into V_i . If $x \in X_i$, then let $V(x) = V_i$.

Further details: for $t = 0, 1, \ldots$, we let

(i) $C_t(x) = V(x) \cap \left\{ N_G(\psi_t(y)) : y \in N_H(x) \text{ and } y \in Dom(\psi_t) \right\},\$

(ii) $A_t(x) = C_t(x) \setminus Im(\psi_t)$,

(*iii*)

$$\begin{split} \mathsf{B}_t(x) &= \big\{ \nu \in \mathsf{A}_t(x) : \exists y \in \mathsf{N}_H(x), \, y \notin \mathsf{Dom}(\psi_t), \\ & \text{and} \ |\mathsf{N}_G(\nu) \cap \mathsf{A}_t(y) \setminus V^\mathsf{q}| < (\rho - \epsilon) |\mathsf{A}_t(y) \setminus V^\mathsf{q}| \\ & \text{or} \ |\mathsf{N}_G(\nu) \cap C_t(y) \cap V^\mathsf{q}| < (\rho - \epsilon) |C_t(y) \cap V^\mathsf{q}| \big\}, \end{split}$$

(iv) $\pi_t(x) = |\operatorname{Dom}(\psi_t) \cap N_H(x)|.$

18

Algorithm 1: Random greedy algorithm

Input: G and H with compatible partitions; an ordering τ on X = V(H)

 $1 \ t:=0; \ \psi_0:=\emptyset; \ Q_0:=\emptyset;$

2 repeat

6

7

8

- 3 let $x \in X \setminus (Dom(\psi_t) \cup Q_t)$ be the next vertex in the order τ ;
- 4 choose $v \in A_t(x) \setminus B_t(x) \setminus V^q$ uniformly at random;

```
 \textbf{5} \qquad \psi_{t+1} := \psi_t \cup \{ x \mapsto \nu \}; \quad Q_{t+1} := Q_t;
```

```
foreach y \in X \setminus Dom(\psi_{t+1}) do
```

```
9 t := t + 1;
```

- 10 until $Dom(\psi_t) \cup Q_t = X;$
- 11 embed $H[Q_t]$ into $G[V^q]$, respecting ψ_t built above;

Embedding queue vertices

Let t_{RGAend} be the last value of t, so that we have the partial embedding $\psi_{t_{RGAend}}$ before we try to embed $H[Q_t]$ into $G[V^q]$. A crucial lemma is as follows:

Lemma 14. With high probability, $Q_t \cap X_i$ never gets too large.

If $|Q_t \cap X_i| \ll \rho^{\Delta} |V^q|$, then $H[Q_t] \subset G[V^q]$ (positive proportion embedding lemma).

Corollary 15. The embedding of $H[Q_t]$ into $G[V^q]$ succeeds with high probability.

The main lemma

Lemma 16 (Uniform distribution of candidate sets). Suppose $\varepsilon \ll \mu$, ρ , κ and $1/\Delta$ and let $\emptyset = \psi_0, \psi_1, \dots, \psi_T$ be partial embeddings with each ψ_t obtained from ψ_{t-1} by embedding some $x \in V(H) \setminus Dom(\psi_{t-1})$ to a uniform random vertex from a subset of $C_{t-1}(x)$ of size at least

$$\frac{1}{4}\mu(\rho-\epsilon)^{\pi_{t-1}(x)}|V(x)|.$$

The following holds with probability at least $1 - r2^{-n/r}$. For every $i \in [r]$ and every set $W \subset V_i$ of size at least $\kappa |V_i|$, the number of vertices $x \in X_i$ such that there exists t = t(x) when x is unembedded and, moreover,

 $|C_{t}(x) \cap W| < (\rho - \varepsilon)^{\pi_{t}(x)} |W|$

is at most $\kappa |X_i|$.

The queues never get too large

Proof of Lemma 14 (rough sketch). Let $W = V_i \setminus V^q \setminus \text{Im}(\psi_{t_{\text{RGAend}}})$. Have $|W| \ge (\mu/2)|V_i|$. Suppose $x \in X_i$ got into Q_t at time t = t(x). We have

 $C_t(x) \cap W \subset A_t(x) \setminus V^{\mathsf{q}}.$

Since $x \in Q_t$, we have

 $|C_{\mathsf{t}}(x) \cap W| \le |A_{\mathsf{t}}(x) \setminus V^{\mathsf{q}}| \le \frac{1}{2}\mu(\rho - \varepsilon)^{\pi_{\mathsf{t}}(x)}|V(x)| \le (\rho - \varepsilon)^{\pi_{\mathsf{t}}(x)}|W|.$

By Lemma 16, have at most $\kappa |X_i|$ such x, with high probability.

The main lemma

Proof of Lemma 16 (rough sketch). Fix i and $W \subset V_i$ with $|W| \ge \kappa |V_i|$. Suppose $x \in X_i$ is unembedded and, moreover,

 $|C_{\mathsf{t}}(\mathsf{x}) \cap W| < (\rho - \varepsilon)^{\pi_{\mathsf{t}}(\mathsf{x})} |W|.$

Pick the first time t = t(x) such that the inequality above holds. Some $y \in N_H(x)$ was embedded to form ψ_t . This y was mapped onto a vertex v that is bad with respect to W (at most $\varepsilon |V(y)|$ choices), and v was selected from a set of size at least $\frac{1}{4}\mu(\rho - \varepsilon)^{\pi_{t-1}(y)}|V(y)|$. Probability of this event is $\leq \varepsilon/\mu\rho^{\Delta}$. Because of the 2-independence of X_i , the map $x \mapsto y(x)$ is injective. The probabilities multiply, and the probability that there are $\kappa |X_i|$ such x is

$$\lesssim \left(rac{arepsilon\Delta}{\mu
ho^{\Delta}}
ight)^{\kappa|X_{\mathfrak{i}}|} \leq 2^{-4|X_{\mathfrak{i}}|}.$$

Now use union bound over all i and W.

The König–Hall argument

- (*i*) Now $G^* = (V_1^*, \dots, V_r^*; E^*)$ and $|V_i^*| = |V_i|$ for all i.
- (*ii*) **Key:** set aside a *set of buffer vertices* in each X_i , say, $X_i^{\text{buff}} \subset X_i$. Let $|X_i^{\text{buff}}| = \mu |X_i|$.
- (*iii*) Choose X_i^{buff} so that $X^{\text{buff}} = \bigcup_i X_i^{\text{buff}}$ is 4-independent.
- (*iv*) Run the random greedy algorithm between $X \setminus X^{\text{buff}}$ and V = V(G). This gives ψ^- : $H[X \setminus X^{\text{buff}}] \hookrightarrow G$.
- (v) Embed X^{buff} into V^{buff} = V\Im(ψ^-) by showing that C(x) \cap V^{buff} (x \in X^{buff}) has a system of distinct representatives (ν_x)_{x \in X^{buff}}. Extend ψ^- by mapping x onto ν_x for all $x \in X^{buff}$.
- (*vi*) Check König–Hall conditions: small sets (easy), medium sized sets (harder), very large sets (hard).

Proof of the BUL

Example applications

- (*i*) Very approximate Alon–Yuster
- (ii) Square of almost Hamilton cycles—approximate version

Very approximate Alon–Yuster

Theorem 17. Fix $\varepsilon > 0$ and $H = H^h$. Then any $G = G^n$ with $n \ge n_0(\varepsilon, H)$ with minimum degree $\delta(G) \ge (1 - 1/\chi(H) + \varepsilon)n$ contains $(1 - \varepsilon)n/h$ vertex disjoint copies of H.

• Doesn't require blow-up; constant size embedding lemma suffices.

Useful to note that the clean-up graph G^* obtained from regularization may be required to satisfy a minimum degree condition.

Cleaned-up graph G* with minimum degree condition

Definition 18. After regularization of G, have $V = V_1 \cup \cdots \cup V_t$. Remove all edges in $G[V_i, V_j]$ for all i and j such that

- 1. (V_i, V_j) is not ε -regular,
- $\textit{2.} |E(V_i,V_j)| \leq f(\epsilon)|V_i||V_j| (\textit{suitable } f \textit{ with } f(\epsilon) \rightarrow 0 \textit{ as } \epsilon \rightarrow 0).$

Resulting graph: cleaned-up graph G*.

In G^{*}, every G^{*}[V_i, V_j] is regular and 'dense'. Usually, lose very little. By allowing an exceptional class V₀ with $|V_0| \leq \epsilon |V|$, may require, for every $\nu \in V(G) \setminus V_0$, that

```
deg_{G^*}(\nu) \geq deg_G(\nu) - g(\epsilon)n,
```

for some g with $g(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$.

Very approximate Alon–Yuster

Exercise 19. *Prove the very approximate Alon–Yuster theorem.*

Hint 20. Clean-up graph with mindeg condition + Hajnal–Szemerédi.

Squares of almost Hamilton cycles—approximate form

Theorem 21. Suppose $G = G^n$ and $n \ge n_0$. If $\delta(G) \ge (2/3 + \varepsilon)n$, then G contains the square of a cycle with $\ge (1 - \varepsilon)n$ vertices.

Exercise 22. Prove the theorem above.

Hint 23. Clean-up graph with mindeg condition + Corrádi–Hajnal + almost spanning blow-up lemma + image restrictions.

Summary

 Got a glimpse into how to use the regularity method to find large subgraphs in given graphs; key tool: blow-up lemma.